JP2005143484A - Method for cutting dna and kit for the same - Google Patents

Method for cutting dna and kit for the same Download PDF

Info

Publication number
JP2005143484A
JP2005143484A JP2003421571A JP2003421571A JP2005143484A JP 2005143484 A JP2005143484 A JP 2005143484A JP 2003421571 A JP2003421571 A JP 2003421571A JP 2003421571 A JP2003421571 A JP 2003421571A JP 2005143484 A JP2005143484 A JP 2005143484A
Authority
JP
Japan
Prior art keywords
dna
complex
lane
complementary strand
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003421571A
Other languages
Japanese (ja)
Inventor
Makoto Komiyama
真 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2003421571A priority Critical patent/JP2005143484A/en
Publication of JP2005143484A publication Critical patent/JP2005143484A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for regiospecifically and efficiently cutting a DNA. <P>SOLUTION: This method for cutting the DNA comprises hybridizing a target DNA with a complementary chain A complementary to a 5' terminal region of a target part of the target DNA together with a complementary chain B complementary to a 3' terminal region of the target part of the target DNA, so as to obtain a nucleic acid complex, and then contacting the nucleic acid complex with a cerium (IV) ion or a cerium (IV) complex, wherein a phosphoric acid group or a derivative containing the group is introduced into the 5' terminal of the complementary chain A and/or the 3' terminal of the complementary chain B. Further, a kit capable of being used in conducing the method is provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

産業上の分野Industrial field

本発明は、DNAの特異的な切断方法およびキットに関し、更に詳細には人工的に作出された化学構造においてDNAを特異的に切断する方法およびキットに関する。  The present invention relates to a method and kit for specifically cleaving DNA, and more particularly to a method and kit for cleaving DNA specifically in an artificially created chemical structure.

DNA鎖を任意の位置で切断する簡便な方法は、医学、分子生物学等、遺伝子を取り扱う諸分野において大きな役割を果たすことが期待されている。現在は、DNAを切断するのに制限酵素が広く使用されているが、制限酵素は塩基配列の特異性が低く、巨大なDNAを特定の位置で選択的に切断することができない。また天然酵素を使用しないDNA切断法としては、これまでにも、DNAを金属イオンや金属イオン錯体で切断する試みがなされてきた。しかし、たとえばセリウム(IV)イオンがDNA切断能を持つことは知られているものの、塩基配列特異性はほとんどない。すなわち、巨大なDNAを特定の位置で切断する方法はいまだ開発されていない。  A simple method for cleaving a DNA strand at an arbitrary position is expected to play a major role in various fields dealing with genes such as medicine and molecular biology. Currently, restriction enzymes are widely used to cleave DNA. However, restriction enzymes have low base sequence specificity and cannot selectively cleave huge DNA at specific positions. Moreover, as a method for cleaving DNA without using a natural enzyme, attempts have been made so far to cleave DNA with metal ions or metal ion complexes. However, for example, cerium (IV) ions are known to have DNA-cleaving ability, but have little base sequence specificity. That is, a method for cutting a huge DNA at a specific position has not been developed yet.

本発明が解決しようとする課題Problems to be solved by the present invention

本発明はDNAを特定の位置で、しかも効率よく切断する方法の提供をその目的とする。本発明はまた、DNAを特異的に、しかも効率よく切断するキットの提供をその目的とする。  An object of the present invention is to provide a method for efficiently cleaving DNA at a specific position. Another object of the present invention is to provide a kit that specifically and efficiently cleaves DNA.

課題を解決するための手段Means for solving the problem

本発明の課題は、
(1)標的となるDNA(標的DNA)を、標的DNAの標的部分の5’末端領域に相補的な配列を持つ相補鎖Aおよび標的DNAの標的部分の3’末端領域に相補的な配列を持つ相補鎖Bとハイブリダイズさせて核酸複合体を得、次いで核酸複合体をセリウム(IV)イオンまたはセリウム(IV)錯体と接触させることで標的DNAを切断する方法において、相補鎖Aの5’末端および/または相補鎖Bの3’末端にリン酸基またはこれを含有する誘導体が導入されていることを特徴とするDNAの切断方法。
(2)該相補鎖Aがハイブリダイズする標的DNAの5’末端領域と相補鎖Bがハイブリダイズする標的DNAの3’末端領域との間にギャップが存在し、かつ所望の切断点がギャップ中に存在することを特徴とする(1)記載のDNAの切断方法。
(3)セリウム(IV)錯体が、セリウム(IV)とポリアミン−N−ポリカルボン酸の錯体であることを特徴とする、(1)〜(2)記載のDNA切断方法。
(4)該相補鎖Aおよび該相補鎖Bの両方あるいはどちらかがDNAであることを特徴とする、(1)〜(3)記載のDNA切断方法。
(5)該相補鎖Aおよび該相補鎖Bの両方あるいはどちらかがペプチド核酸(PNA)であることを特徴とする、(1)〜(3)記載のDNA切断方法。
(6)標的となるDNA(標的DNA)を、標的DNAの標的部分の5’末端領域に相補的な配列を持つ相補鎖Aおよび標的DNAの標的部分の3’末端領域に相補的な配列を持つ相補鎖Bとハイブリダイズさせて核酸複合体を得、次いで核酸複合体をセリウム(IV)イオンまたはセリウム(IV)錯体と接触させることで標的DNAを切断する方法において、相補鎖Aの5’末端および/または相補鎖Bの3’末端にリン酸基またはこれを含有する誘導体が導入されていることを特徴とするキットによって達成された。(1)項における核酸複合体の構造を図1および図2に示す。
The subject of the present invention is
(1) A target DNA (target DNA) is a complementary strand A having a sequence complementary to the 5 ′ end region of the target portion of the target DNA and a sequence complementary to the 3 ′ end region of the target portion of the target DNA. In the method of cleaving a target DNA by hybridizing with a complementary strand B having a nucleic acid complex and then contacting the nucleic acid complex with a cerium (IV) ion or a cerium (IV) complex, the 5 ′ of the complementary strand A A method for cleaving DNA, wherein a phosphate group or a derivative containing the same is introduced into the terminal and / or the 3 ′ terminal of the complementary strand B.
(2) A gap exists between the 5 ′ end region of the target DNA to which the complementary strand A hybridizes and the 3 ′ end region of the target DNA to which the complementary strand B hybridizes, and the desired cleavage point is in the gap. (1) The method for cleaving DNA according to (1).
(3) The DNA cutting method according to (1) to (2), wherein the cerium (IV) complex is a complex of cerium (IV) and polyamine-N-polycarboxylic acid.
(4) The DNA cutting method according to any one of (1) to (3), wherein both or one of the complementary strand A and the complementary strand B is DNA.
(5) The DNA cutting method according to any one of (1) to (3), wherein both or one of the complementary strand A and the complementary strand B is a peptide nucleic acid (PNA).
(6) A target DNA (target DNA) is a complementary strand A having a sequence complementary to the 5 ′ end region of the target portion of the target DNA and a sequence complementary to the 3 ′ end region of the target portion of the target DNA. In the method of cleaving a target DNA by hybridizing with a complementary strand B having a nucleic acid complex and then contacting the nucleic acid complex with a cerium (IV) ion or a cerium (IV) complex, the 5 ′ of the complementary strand A This was achieved by a kit characterized in that a phosphate group or a derivative containing the same was introduced into the terminal and / or the 3 ′ terminal of the complementary strand B. The structure of the nucleic acid complex in item (1) is shown in FIGS.

図1FIG.

図2FIG.

発明の詳細な説明Detailed Description of the Invention

本発明による第一の態様によれば、 標的となるDNA(標的DNA)を、標的DNAの標的部分の5’末端領域に相補的な配列を持つ相補鎖Aおよび標的DNAの標的部分の3’末端領域に相補的な相補鎖Bとハイブリダイズさせて核酸複合体を得、次いで核酸複合体をセリウム(IV)イオンまたはセリウム(IV)錯体と接触させることを含む標的DNAを切断する方法であって、相補鎖Aの5’末端および/または相補鎖Bの3’端にリン酸基またはこれを含有する誘導体が導入されることを特徴とする方法が提供される。  According to the first aspect of the present invention, the target DNA (target DNA) is converted into a complementary strand A having a sequence complementary to the 5 ′ end region of the target portion of the target DNA and 3 ′ of the target portion of the target DNA. A method of cleaving a target DNA comprising hybridizing with a complementary strand B complementary to a terminal region to obtain a nucleic acid complex, and then contacting the nucleic acid complex with a cerium (IV) ion or a cerium (IV) complex. Thus, a method is provided in which a phosphate group or a derivative containing the same is introduced into the 5 ′ end of the complementary strand A and / or the 3 ′ end of the complementary strand B.

ここに相補鎖AおよびBとは、DNA,ペプチド核酸(PNA)、RNA、およびその誘導体であり、合成や取り扱いの容易さから好ましくはDNAまたはペプチド核酸(PNA)である。ここで、PNAは、アミド結合を主鎖に、核酸塩基を側鎖に持つ高分子であり、例えば、「生命化学のニューセントラルドグマ」(化学同人、平成14年発行)の第66ページに記載されているものを利用することができる。  Here, the complementary strands A and B are DNA, peptide nucleic acid (PNA), RNA, and derivatives thereof, and are preferably DNA or peptide nucleic acid (PNA) because of their ease of synthesis and handling. Here, PNA is a polymer having an amide bond in the main chain and a nucleobase in the side chain. For example, PNA is described on page 66 of “New Central Dogma of Biochemistry” (published by Kagaku Dojin, 2002). Can be used.

相補鎖Aの5’末端および相補鎖Bの3’末端にリン酸基またはこれを含有する誘導体が導入する際には、導入部分の構造は例えば図3のいずれかであることができる。  When a phosphate group or a derivative containing the same is introduced into the 5 'end of the complementary strand A and the 3' end of the complementary strand B, the structure of the introduced portion can be, for example, any of FIG.

図3FIG.

図3で、Xは酸素原子またはCH基を表す。また、mは1〜20、好ましくは6−12の整数、nは1〜10、好ましくは3または4の整数、qおよびrは0−5の整数であって最も好ましくは0である。In FIG. 3, X represents an oxygen atom or a CH 2 group. M is an integer of 1 to 20, preferably 6 to 12, n is an integer of 1 to 10, preferably 3 or 4, and q and r are integers of 0 to 5 and most preferably 0.

セリウム(IV)イオンは、硫酸二アンモニウムセリウム(IV)水溶液、硫酸セリウム(IV)水溶液、塩化セリウム(III)水溶液の酸化物、硫酸セリウム(III)水溶液の酸化物、過塩素酸セリウム(III)水溶液の酸化物など、Ce(IV)イオンを含む水溶液であれば、いずれの形態で反応系に導入してもよいが、好ましくは硫酸二アンモニウムセリウム(IV)である。DNA切断能を有するセリウム錯体は、例えばセリウム(IV)とポリアミン−N−ポリカルボン酸を水中で接触することにより得られる。ポリアミン−N−ポリカルボン酸としては、「金属キレート、I−IV」(南江堂、昭和42年発行)に記載するものを利用することができる。例えば、エチレンジアミン四酢酸、1,3−ジアミノプロパン−N,N,N’,N’−四酢酸、1,4−ジアミノブタン−N,N,N’,N’−四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン−N,N,N’,N’’,N’’’,N’’’−六酢酸、などが挙げられるが、これらに限られるものではない。  Cerium (IV) ions include diammonium cerium (IV) sulfate aqueous solution, cerium sulfate (IV) aqueous solution, oxide of cerium (III) chloride aqueous solution, oxide of cerium (III) sulfate aqueous solution, cerium (III) perchlorate Any aqueous solution containing Ce (IV) ions, such as an aqueous oxide, may be introduced into the reaction system in any form, but diammonium cerium (IV) sulfate is preferred. The cerium complex having the ability to cleave DNA can be obtained, for example, by contacting cerium (IV) with polyamine-N-polycarboxylic acid in water. As the polyamine-N-polycarboxylic acid, those described in “Metal Chelate, I-IV” (Nanedo, issued in 1967) can be used. For example, ethylenediaminetetraacetic acid, 1,3-diaminopropane-N, N, N ′, N′-tetraacetic acid, 1,4-diaminobutane-N, N, N ′, N′-tetraacetic acid, diethylenetriaminepentaacetic acid, Examples include, but are not limited to, triethylenetetramine-N, N, N ′, N ″, N ′ ″, N ′ ″-hexaacetic acid.

核酸複合体をセリウム(IV)イオンまたはセリウム(IV)錯体と接触させることにより、標的DNAは切断される。得られた断片は、必要によりポリアクリルアミドゲル電気泳動、アガロースゲル電気泳動、またはHPLCにより精製できる。また、標的DNAにハイブリダイズしたアンチセンスオリゴヌクレオチドおよびペプチド核酸は慣用方法により分離してもよい。  By contacting the nucleic acid complex with cerium (IV) ions or cerium (IV) complexes, the target DNA is cleaved. The obtained fragment can be purified by polyacrylamide gel electrophoresis, agarose gel electrophoresis, or HPLC, if necessary. Antisense oligonucleotides and peptide nucleic acids hybridized to the target DNA may be separated by conventional methods.

発明の具体的な説明Detailed Description of the Invention

以下に本発明の好ましい使用形態を示す。
(1)標的DNAを、5’末端にリン酸基を含有する相補鎖Aおよび相補鎖Bとハイブリダイズさせて核酸複合体を得、次いで核酸複合体をセリウム(IV)イオンまたはセリウム(IV)錯体と接触させることを含む標的DNAを切断する方法。
(2)標的DNAを、相補鎖Aおよび3’末端にリン酸基を含有する相補鎖Bとハイブリダイズさせて核酸複合体を得、次いで核酸複合体をセリウム(IV)イオンまたはセリウム(IV)錯体と接触させることを含む標的DNAを切断する方法。
(3)標的DNAを、5’末端にリン酸基を含有する相補鎖Aおよび3’末端にリン酸基を含有する相補鎖Bとハイブリダイズさせて核酸複合体を得、次いで核酸複合体をセリウム(IV)イオンまたはセリウム(IV)錯体と接触させることを含む標的DNAを切断する方法。
(4)相補鎖Aがハイブリダイズする標的DNAの5’末端領域と相補鎖Bがハイブリダイズする標的DNAの3’末端領域との間にギャップが存在し、かつ所望の切断点がギャップ中に存在することを特徴とする方法。
(5)該セリウム(IV)が、硫酸二アンモニウムセリウム(IV)水溶液、塩化セリウム(III)水溶液の酸化物であることを特徴とする(1)〜(4)のいずれかに記載のDNAの切断方法。
(6)該セリウム錯体が、セリウム(IV)とポリアミン−N−ポリカルボン酸との錯体であることを特徴とする(1)〜(4)のいずれかに記載のDNAの切断方法。
(7)相補鎖Aがハイブリダイズする標的DNAの5’末端領域と、相補鎖Bがハイブリダイズする標的DNAの3’末端領域との間の距離、すなわちギャップの大きさは典型的には0〜10塩基対、好ましくは2〜5塩基対、より好ましくは2および3塩基対であることを特徴とするDNAの切断方法。
(8)相補鎖AおよびBが少なくとも6塩基対、好ましくは少なくとも9塩基対である(1)〜(7)のDNAの切断方法。
The preferred usage forms of the present invention are shown below.
(1) A target DNA is hybridized with a complementary strand A and a complementary strand B containing a phosphate group at the 5 ′ end to obtain a nucleic acid complex, and then the nucleic acid complex is converted into cerium (IV) ion or cerium (IV). A method of cleaving a target DNA comprising contacting with a complex.
(2) A target DNA is hybridized with a complementary strand A and a complementary strand B containing a phosphate group at the 3 ′ end to obtain a nucleic acid complex, and then the nucleic acid complex is converted into cerium (IV) ion or cerium (IV). A method of cleaving a target DNA comprising contacting with a complex.
(3) The target DNA is hybridized with a complementary strand A containing a phosphate group at the 5 ′ end and a complementary strand B containing a phosphate group at the 3 ′ end to obtain a nucleic acid complex, A method of cleaving a target DNA comprising contacting with cerium (IV) ions or a cerium (IV) complex.
(4) A gap exists between the 5 ′ end region of the target DNA to which the complementary strand A hybridizes and the 3 ′ end region of the target DNA to which the complementary strand B hybridizes, and the desired cleavage point is in the gap. A method characterized in that it exists.
(5) The DNA according to any one of (1) to (4), wherein the cerium (IV) is an oxide of a diammonium cerium (IV) sulfate aqueous solution or a cerium (III) chloride aqueous solution. Cutting method.
(6) The method for cleaving DNA according to any one of (1) to (4), wherein the cerium complex is a complex of cerium (IV) and polyamine-N-polycarboxylic acid.
(7) The distance between the 5 ′ end region of the target DNA to which the complementary strand A hybridizes and the 3 ′ end region of the target DNA to which the complementary strand B hybridizes, that is, the size of the gap is typically 0. A method for cleaving DNA, characterized in that it is 10 to 10 base pairs, preferably 2 to 5 base pairs, more preferably 2 and 3 base pairs.
(8) The method for cleaving DNA according to (1) to (7), wherein the complementary strands A and B are at least 6 base pairs, preferably at least 9 base pairs.

以下のようにDNA切断試験を実施したが、本発明は下記例に限定されるものではない。  Although the DNA cleavage test was carried out as follows, the present invention is not limited to the following examples.

修飾DNAの合成
リン酸修飾DNAの合成
市販試薬(グレンリサーチ社)を用いてDNA自動合成機(アプライドバイオシステムズ社製)により合成した。5’−末端側のリン酸修飾は、化学リン酸化アミダイトモノマーを用いて行った。また、3’−末端側へのリン酸の導入は、リン酸化CPGを固定担体として用いることによって実施した。なお、非修飾DNAはシグマジェノシス社に合成を委託した。
Synthesis of modified DNA Synthesis of phosphoric acid-modified DNA Using a commercially available reagent (Glen Research), the DNA was synthesized by an automatic DNA synthesizer (Applied Biosystems). Phosphoric acid modification on the 5′-terminal side was performed using a chemically phosphorylated amidite monomer. In addition, the introduction of phosphoric acid to the 3′-terminal side was performed by using phosphorylated CPG as a fixed carrier. The unmodified DNA was outsourced to Sigma Genosys.

DNA切断反応
5’−末端を32Pで標識した基質DNA(DNAはシグマジェノシス社に合成を委託した)の1μM溶液(NaCl 100mM,HEPES buffer 8.75mM,pH7)に2本のリン酸修飾DNA水溶液をそれぞれ終濃度2μMとなるように加えた。90℃で1分加熱し、室温まで徐冷して二本鎖を形成させた。ここに、Ce(IV)/EDTA水溶液を終濃度500μMとなるよう加え、37℃で2〜95時間反応させた。分析は、20%変性ポリアクリルアミドゲル電気泳動で基質の切断を確認した。
DNA cleavage reaction Two phosphate modifications in 1 μM solution (NaCl 100 mM, HEPES buffer 8.75 mM, pH 7) of substrate DNA labeled with 32 P at the 5′-end (DNA commissioned for synthesis by Sigma Genosys) The aqueous DNA solution was added to a final concentration of 2 μM. The mixture was heated at 90 ° C. for 1 minute and gradually cooled to room temperature to form a double strand. A Ce (IV) / EDTA aqueous solution was added thereto so as to have a final concentration of 500 μM, and the mixture was reacted at 37 ° C. for 2 to 95 hours. The analysis confirmed the cleavage of the substrate by 20% denaturing polyacrylamide gel electrophoresis.

結果
実験に用いた修飾DNA配列(20mer)およびDNA配列(50〜43mer)は図4に示す通りであった。
Results The modified DNA sequence (20mer) and DNA sequence (50 to 43mer) used in the experiment were as shown in FIG.

図4FIG.

DNA切断試験(1)
下記のDNAを準備し、「II DNA切断反応」に記載された条件に従ってDNA(D50)と反応させた(但し反応時間は15時間であった)。結果は図5に示される通りであった。
DNA cleavage test (1)
The following DNA was prepared and reacted with DNA (D50) according to the conditions described in “II DNA cleavage reaction” (however, the reaction time was 15 hours). The result was as shown in FIG.

図5FIG.

レーン1:未処理、レーン2:Ce(IV)・EDTA錯体のみ、レーン3、Ce(IV)・EDTA錯体の不在のもとでのD20LP+D20RP、レーン4:Ce(IV)・EDTA錯体とD20LP、レーン5:Ce(IV)・EDTA錯体とD20L+D20R、レーン6:Ce(IV)・EDTA錯体とD20LP+D20R、レーン7:Ce(IV)・EDTA錯体とD20L+D20RP、レーン8:Ce(IV)・EDTA錯体とD20LP+D20RP。
2本のリン酸修飾DNAを用いた場合には、ギャップ部分で効率よく切断された(レーン8)(Mのレーンは、合成DNAの5’−末端を32Pで標識した標準物のレーンであり、ギャップの部分はM20とM30の間の部分に相当)。
この切断のバンドを富士フィルム社製イメージングアナライザーFujixFLA−3000Gにて読み取りを行い、解析ソフトでバンドの濃さを計算した。その結果、ギャップでの切断効率は、約10%であった。
また、1本のリン酸修飾DNAと1本を非修飾のDNAを用いた場合においても(レーン6およびレーン7)、2本のリン酸修飾DNAを用いた場合とほぼ同じ強さの切断が観測された。
非修飾DNAを用いた場合(レーン5)では、ギャップ部分での選択的切断は見られるものの、その切断効率は非常に低いものであった。
以上のように、リン酸修飾DNAを用いて、基質DNAのギャップの両端にリン酸を導入することにより、ギャップ部位での切断の特異性が著しく向上する。
以下の理論に拘束されるわけではないが、リン酸部位で効率よくCe(IV)/EDTAを結合するために、ギャップ部位での切断が実現するものと思われる。
Lane 1: untreated, Lane 2: Ce (IV) · EDTA complex only, Lane 3, D20LP + D20RP in the absence of Ce (IV) · EDTA complex, Lane 4: Ce (IV) · EDTA complex and D20LP, Lane 5: Ce (IV) · EDTA complex and D20L + D20R, Lane 6: Ce (IV) · EDTA complex and D20LP + D20R, Lane 7: Ce (IV) · EDTA complex and D20L + D20RP, Lane 8: Ce (IV) · EDTA complex D20LP + D20RP.
When two phosphate-modified DNAs were used, they were efficiently cleaved at the gap portion (lane 8) (the lane M was a standard lane in which the 5′-end of the synthetic DNA was labeled with 32 P. And the gap portion corresponds to the portion between M20 and M30).
The cut band was read with an imaging analyzer FujixFLA-3000G manufactured by Fuji Film, and the density of the band was calculated with analysis software. As a result, the cutting efficiency at the gap was about 10%.
Even when one phosphate-modified DNA and one unmodified DNA are used (lane 6 and lane 7), the cleavage is almost as strong as when two phosphate-modified DNAs are used. Observed.
When unmodified DNA was used (lane 5), selective cleavage at the gap portion was observed, but the cleavage efficiency was very low.
As described above, by introducing phosphate at both ends of the gap of the substrate DNA using phosphate-modified DNA, the specificity of cleavage at the gap site is significantly improved.
Although not bound by the following theory, it is considered that cleavage at the gap site is realized in order to efficiently bind Ce (IV) / EDTA at the phosphate site.

DNA切断実験(2)
下記のDNAを準備し、「II DNA切断反応」に記載された条件に従ってDNA(D45)と反応させた(但し反応時間は95時間であった)。結果は図6に示される通りであった。
DNA cleavage experiment (2)
The following DNA was prepared and reacted with DNA (D45) according to the conditions described in “II DNA cleavage reaction” (however, the reaction time was 95 hours). The result was as shown in FIG.

図6FIG.

レーン1:未処理、レーン2:Ce(IV)・EDTA錯体のみ、レーン3、Ce(IV)・EDTA錯体の不在のもとでのD20L+D20R、レーン4:Ce(IV)・EDTA錯体とD20LS3+D20R、レーン5:Ce(IV)・EDTA錯体とD20L+D20RS3、レーン6:Ce(IV)・EDTA錯体とD20L S3+D20R S3。
末端リン酸とDNAとの間にリンカーを持つリン酸修飾DNAを2本用いてギャップを形成させた場合には、ギャップ部分で効率よく切断された(レーン6)
この切断のバンドを富士フィルム社製イメージングアナライザー FujixFLA−3000Gにて読み取りを行い、解析ソフトでバンドの濃さを計算した。その結果、ギャップでの切断効率は、約25%であった。
また、1本のリン酸修飾DNAと1本を非修飾のDNAを用いた場合においても(レーン4およびレーン5)、ギャップ選択的切断が観測され、その切断効率は15〜20%であった。
一方、非修飾DNAを用いた場合(レーン3)では、ギャップ部分での選択的切断は見られるものの、その切断効率は低く、効率は約5%であった。
以上のように、リンカーの先にリン酸の先にリン酸を導入しても、効率的な切断が実現する。
Lane 1: untreated, Lane 2: Ce (IV) · EDTA complex only, Lane 3, D20L + D20R in the absence of Ce (IV) · EDTA complex, Lane 4: Ce (IV) · EDTA complex and D20LS3 + D20R, Lane 5: Ce (IV) · EDTA complex and D20L + D20RS3, Lane 6: Ce (IV) · EDTA complex and D20L S3 + D20R S3.
When a gap was formed using two phosphate-modified DNAs having a linker between the terminal phosphate and DNA, the gap was efficiently cleaved (lane 6).
The cut band was read with Fujifilm Imaging Analyzer FujiFLA-3000G, and the density of the band was calculated with analysis software. As a result, the cutting efficiency at the gap was about 25%.
In addition, even when one phosphate-modified DNA and one unmodified DNA were used (lanes 4 and 5), gap-selective cleavage was observed, and the cleavage efficiency was 15 to 20%. .
On the other hand, when unmodified DNA was used (lane 3), although selective cleavage at the gap portion was observed, the cleavage efficiency was low, and the efficiency was about 5%.
As described above, even when phosphoric acid is introduced before the linker, efficient cleavage is realized.

DNA切断実験(3)
下記のDNAを準備し、「II DNA切断反応」に記載された条件に従ってDNA(D45)と反応させた(但し反応時間は48時間であった)。結果は図7に示される通りであった。
DNA cleavage experiment (3)
The following DNA was prepared and reacted with DNA (D45) according to the conditions described in “II DNA cleavage reaction” (however, the reaction time was 48 hours). The result was as shown in FIG.

図7FIG.

レーン1:未処理、レーン2:Ce(IV)・EDTA錯体のみ、レーン3、Ce(IV)・EDTA錯体の不在のもとでのD20LP+D20RP、レーン4:Ce(IV)・EDTA錯体とD20LP+D20RP、レーン5:EDTA錯体の不在のもとでのD20LS1+D20R S1、レーン6:Ce(IV)・EDTA錯体とD20LS1+D20R S1。レーン7:EDTA錯体の不在のもとでのD20L S2+D20R S2、レーン8:Ce(IV)・EDTA錯体とD20L S2+D20R S2。レーン9:EDTA錯体の不在のもとでのD20LS1+D20R S1、レーン10:Ce(IV)・EDTA錯体とD20LS1+D20R S1。レーン11:EDTA錯体の不在のもとでのD20LS3+D20R S3、レーン12:Ce(IV)・EDTA錯体とD20LS3+D20R S3。レーン13:EDTA錯体の不在のもとでのD20L S4+D20R S4、レーン14:Ce(IV)・EDTA錯体とD20L S4+D20R S4。
様々なリンカーを用いた場合においても、ギャップ部位での効率的切断が実現した。この切断のバンドを富士フィルム社製イメージングアナライザーFujix FLA−3000Gにて読み取りを行い、解析ソフトでバンドの濃さを計算した。
その結果、ギャップでの切断効率は、約10〜15%であり、いずれのリンカーを用いても同程度の切断効率であった。
以上のように、様々な長さのリンカーの先にリン酸の先にリン酸を導入しても、効率的な切断が実現する。
Lane 1: untreated, Lane 2: Ce (IV) · EDTA complex only, Lane 3, D20LP + D20RP in the absence of Ce (IV) · EDTA complex, Lane 4: Ce (IV) · EDTA complex and D20LP + D20RP, Lane 5: D20LS1 + D20R S1 in the absence of EDTA complex, Lane 6: Ce (IV) .EDTA complex and D20LS1 + D20R S1. Lane 7: D20L S2 + D20R S2 in the absence of EDTA complex, Lane 8: Ce (IV) .EDTA complex and D20L S2 + D20R S2. Lane 9: D20LS1 + D20R S1 in the absence of EDTA complex, Lane 10: Ce (IV) .EDTA complex and D20LS1 + D20R S1. Lane 11: D20LS3 + D20R S3 in the absence of EDTA complex, Lane 12: Ce (IV) .EDTA complex and D20LS3 + D20R S3. Lane 13: D20L S4 + D20R S4 in the absence of EDTA complex, Lane 14: Ce (IV) .EDTA complex and D20L S4 + D20R S4.
Even when various linkers were used, efficient cleavage at the gap site was realized. The cut band was read with an imaging analyzer Fujix FLA-3000G manufactured by Fuji Film Co., Ltd., and the density of the band was calculated with analysis software.
As a result, the cleavage efficiency at the gap was about 10 to 15%, which was comparable with any linker.
As described above, even when phosphoric acid is introduced into the tip of a linker having various lengths, efficient cleavage is realized.

本発明の第一の態様において形成される核酸複合体を示す。2 shows a nucleic acid complex formed in the first embodiment of the present invention. 本発明の第一の態様において形成される核酸複合体であって、標的DNAの5’末端から3’末端までの部分が標的部分であるものを示す。The nucleic acid complex formed in the first embodiment of the present invention, wherein the portion from the 5 'end to the 3' end of the target DNA is the target portion. リン酸基またはその誘導体を相補鎖Aおよび相補鎖Bに結合する形態。A form in which a phosphate group or a derivative thereof is bound to complementary strand A and complementary strand B. 実施例で使用した反応基質DNA、ならびに相補鎖AおよびBの構造。Reaction substrate DNA used in Examples, and structures of complementary strands A and B. DNA切断試験(1)の結果を示す。レーン1:未処理、レーン2:Ce(IV)・EDTA錯体のみ、レーン3、Ce(IV)・EDTA錯体の不在のもとでのD20LP+D20RP、レーン4:Ce(IV)・EDTA錯体とD20LP、レーン5:Ce(IV)・EDTA錯体とD20L+D20R、レーン6:Ce(IV)・EDTA錯体とD20LP+D20R、レーン7:Ce(IV)・EDTA錯体とD20L+D20RP、レーン8:Ce(IV)・EDTA錯体とD20LP+D20RP。The result of DNA cleavage test (1) is shown. Lane 1: untreated, Lane 2: Ce (IV) · EDTA complex only, Lane 3, D20LP + D20RP in the absence of Ce (IV) · EDTA complex, Lane 4: Ce (IV) · EDTA complex and D20LP, Lane 5: Ce (IV) · EDTA complex and D20L + D20R, Lane 6: Ce (IV) · EDTA complex and D20LP + D20R, Lane 7: Ce (IV) · EDTA complex and D20L + D20RP, Lane 8: Ce (IV) · EDTA complex D20LP + D20RP. DNA切断試験(2)の結果を示す。レーン1:未処理、レーン2:Ce(IV)・EDTA錯体のみ、レーン3、Ce(IV)・EDTA錯体の不在のもとでのD20L+D20R、レーン4:Ce(IV)・EDTA錯体とD20LS3+D20R、レーン5:Ce(IV)・EDTA錯体とD20L+D20RS3、レーン6:Ce(IV)・EDTA錯体とD20L S3+D20R S3。The result of DNA cleavage test (2) is shown. Lane 1: untreated, Lane 2: Ce (IV) · EDTA complex only, Lane 3, D20L + D20R in the absence of Ce (IV) · EDTA complex, Lane 4: Ce (IV) · EDTA complex and D20LS3 + D20R, Lane 5: Ce (IV) · EDTA complex and D20L + D20RS3, Lane 6: Ce (IV) · EDTA complex and D20L S3 + D20R S3. DNA切断試験(3)の結果を示す。レーン1:未処理、レーン2:Ce(IV)・EDTA錯体のみ、レーン3、Ce(IV)・EDTA錯体の不在のもとでのD20LP+D20RP、レーン4:Ce(IV)・EDTA錯体とD20LP+D20RP、レーン5:EDTA錯体の不在のもとでのD20LS1+D20R S1、レーン6:Ce(IV)・EDTA錯体とD20LS1+D20R S1。レーン7:EDTA錯体の不在のもとでのD20LS2+D20R S2、レーン8:Ce(IV)・EDTA錯体とD20L S2+D20R S2。レーン9:EDTA錯体の不在のもとでのD20LS1+D20R S1、レーン10:Ce(IV)・EDTA錯体とD20LS1+D20R S1。レーン11:EDTA錯体の不在のもとでのD20LS3+D20R S3、レーン12:Ce(IV)・EDTA錯体とD20LS3+D20R S3。レーン13:EDTA錯体の不在のもとでのD20L S4+D20R S4、レーン14:Ce(IV)・EDTA錯体とD20L S4+D20R S4。The result of DNA cleavage test (3) is shown. Lane 1: untreated, Lane 2: Ce (IV) · EDTA complex only, Lane 3, D20LP + D20RP in the absence of Ce (IV) · EDTA complex, Lane 4: Ce (IV) · EDTA complex and D20LP + D20RP, Lane 5: D20LS1 + D20R S1 in the absence of EDTA complex, Lane 6: Ce (IV) .EDTA complex and D20LS1 + D20R S1. Lane 7: D20LS2 + D20R S2 in the absence of EDTA complex, Lane 8: Ce (IV) .EDTA complex and D20L S2 + D20R S2. Lane 9: D20LS1 + D20R S1 in the absence of EDTA complex, Lane 10: Ce (IV) .EDTA complex and D20LS1 + D20R S1. Lane 11: D20LS3 + D20R S3 in the absence of EDTA complex, Lane 12: Ce (IV) .EDTA complex and D20LS3 + D20R S3. Lane 13: D20L S4 + D20R S4 in the absence of EDTA complex, Lane 14: Ce (IV) .EDTA complex and D20L S4 + D20R S4.

Claims (6)

標的となるDNA(標的DNA)を、標的DNAの標的部分の5’末端領域に相補的な配列を持つ相補鎖Aおよび標的DNAの標的部分の3’末端領域に相補的な配列を持つ相補鎖Bとハイブリダイズさせて核酸複合体を得、次いで核酸複合体をセリウム(IV)イオンまたはセリウム(IV)錯体と接触させることで標的DNAを切断する方法において、相補鎖Aの5’末端および/または相補鎖Bの3’末端にリン酸基またはこれを含有する誘導体が導入されていることを特徴とするDNAの切断方法。  Complementary strand A having target DNA (target DNA) having a sequence complementary to the 5 'end region of the target portion of the target DNA and a sequence complementary to the 3' end region of the target portion of the target DNA In the method of cleaving the target DNA by hybridizing with B to obtain a nucleic acid complex and then contacting the nucleic acid complex with cerium (IV) ion or cerium (IV) complex, the 5 ′ end of the complementary strand A and / or Alternatively, a method for cleaving DNA, wherein a phosphate group or a derivative containing the same is introduced into the 3 ′ end of the complementary strand B. 該相補鎖Aがハイブリダイズする標的DNAの5’末端領域と相補鎖Bがハイブリダイズする標的DNAの3’末端領域との間にギャップが存在し、かつ所望の切断点がギャップ中に存在することを特徴とする請求項1記載のDNAの切断方法。  A gap exists between the 5 ′ end region of the target DNA to which the complementary strand A hybridizes and the 3 ′ end region of the target DNA to which the complementary strand B hybridizes, and a desired cleavage point exists in the gap. 2. The method for cleaving DNA according to claim 1. セリウム(IV)錯体が、セリウム(IV)とポリアミン−N−ポリカルボン酸の錯体であることを特徴とする、請求項1−2記載のDNA切断方法。  The method for cleaving DNA according to claim 1-2, wherein the cerium (IV) complex is a complex of cerium (IV) and polyamine-N-polycarboxylic acid. 該相補鎖Aおよび該相補鎖Bの両方あるいはどちらかがDNAであることを特徴とする、請求項1〜3記載のDNA切断方法。  4. The method for cleaving DNA according to claim 1, wherein both or one of the complementary strand A and the complementary strand B is DNA. 該相補鎖Aおよび該相補鎖Bの両方あるいはどちらかがペプチド核酸(PNA)であることを特徴とする、請求項1〜3記載のDNA切断方法。  4. The method for cleaving DNA according to claim 1, wherein both or one of the complementary strand A and the complementary strand B is a peptide nucleic acid (PNA). 標的となるDNA(標的DNA)を、標的DNAの標的部分の5’末端領域に相補的な配列を持つ相補鎖Aおよび標的DNAの標的部分の3’末端領域に相補的な配列を持つ相補鎖Bとハイブリダイズさせて核酸複合体を得、次いで核酸複合体をセリウム(IV)イオンまたはセリウム(IV)錯体と接触させることで標的DNAを切断する方法において、相補鎖Aの5’末端および/または相補鎖Bの3’末端にリン酸基またはこれを含有する誘導体が導入されていることを特徴とするキット。  Complementary strand A having target DNA (target DNA) having a sequence complementary to the 5 'end region of the target portion of the target DNA and a sequence complementary to the 3' end region of the target portion of the target DNA In the method of cleaving the target DNA by hybridizing with B to obtain a nucleic acid complex and then contacting the nucleic acid complex with cerium (IV) ion or cerium (IV) complex, the 5 ′ end of the complementary strand A and / or Alternatively, a kit wherein a phosphate group or a derivative containing the same is introduced at the 3 ′ end of the complementary strand B.
JP2003421571A 2003-11-17 2003-11-17 Method for cutting dna and kit for the same Pending JP2005143484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003421571A JP2005143484A (en) 2003-11-17 2003-11-17 Method for cutting dna and kit for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003421571A JP2005143484A (en) 2003-11-17 2003-11-17 Method for cutting dna and kit for the same

Publications (1)

Publication Number Publication Date
JP2005143484A true JP2005143484A (en) 2005-06-09

Family

ID=34697304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003421571A Pending JP2005143484A (en) 2003-11-17 2003-11-17 Method for cutting dna and kit for the same

Country Status (1)

Country Link
JP (1) JP2005143484A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066513A1 (en) 2007-11-19 2009-05-28 The University Of Tokyo Method of site-selectively cleaving target nucleic acid
US8318155B2 (en) 2006-03-08 2012-11-27 Kyoto University Nucleic acid cleaving agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318155B2 (en) 2006-03-08 2012-11-27 Kyoto University Nucleic acid cleaving agent
WO2009066513A1 (en) 2007-11-19 2009-05-28 The University Of Tokyo Method of site-selectively cleaving target nucleic acid
JP5502490B2 (en) * 2007-11-19 2014-05-28 国立大学法人 東京大学 Method for cleaving a target nucleic acid regioselectively

Similar Documents

Publication Publication Date Title
US10876158B2 (en) Method for sequencing a polynucleotide template
US10563256B2 (en) Method for sequencing a polynucleotide template
ES2724824T3 (en) Methods for nucleic acid sequencing
EP2191011B1 (en) Method for sequencing a polynucleotide template
ES2855137T3 (en) DNA-encoded libraries that have coding oligonucleotide linkages that cannot be read by polymerases
CA2934126C (en) Production of encoded chemical libraries
EP0964704B1 (en) Compositions for nucleic acid targeting
US20080221315A1 (en) Nucleic acid-based translation system and method for decoding nucleic acid encrypted message
CN111989406B (en) Construction method of sequencing library
JP2005143484A (en) Method for cutting dna and kit for the same
JP5502490B2 (en) Method for cleaving a target nucleic acid regioselectively
Western et al. A novel DNA joining activity catalyzed by T4 DNA ligase
JP2000295993A (en) Specific cleavage of double-stranded dna and kit therefor
US20230265528A1 (en) Methods for targeted depletion of nucleic acids
US20220145359A1 (en) Methods for targeted depletion of nucleic acids
JP2006174702A (en) Method for dna operation
JP2002507126A (en) Methods for mapping restriction sites in polynucleotides
JP2023067467A (en) Method for purifying long-chain nucleic acid using 3&#39;-exonuclease
CA3185063A1 (en) Cleavable dna-encoded library
JPH07255483A (en) Method for cutting ribonucleic acid
Szabó et al. Sequencing of PCR Products
Ernani et al. Bringing cost and process efficiency to next generation sequencing
JPH06315375A (en) Stabilized ribozyme

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013