JP2005142233A - Orientation control method of liquid crystal compound thin film, film texture of liquid crystal compound thin film formed by using the same, tft, and organic electroluminescent element - Google Patents

Orientation control method of liquid crystal compound thin film, film texture of liquid crystal compound thin film formed by using the same, tft, and organic electroluminescent element Download PDF

Info

Publication number
JP2005142233A
JP2005142233A JP2003374800A JP2003374800A JP2005142233A JP 2005142233 A JP2005142233 A JP 2005142233A JP 2003374800 A JP2003374800 A JP 2003374800A JP 2003374800 A JP2003374800 A JP 2003374800A JP 2005142233 A JP2005142233 A JP 2005142233A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal compound
thin film
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003374800A
Other languages
Japanese (ja)
Inventor
Yuichiro Haramoto
原本雄一郎
Kosei Kato
加藤孝正
Koki Hiroshima
廣嶋綱紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamanashi TLO Co Ltd
Original Assignee
Yamanashi TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamanashi TLO Co Ltd filed Critical Yamanashi TLO Co Ltd
Priority to JP2003374800A priority Critical patent/JP2005142233A/en
Publication of JP2005142233A publication Critical patent/JP2005142233A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means wherein arrangement is controlled arbitrarily without being based on rubbing of an orientation film, and conductivity of the direction of film thickness and conductivity of the specific direction parallel to a film surface are increased remarkably in cylindrical liquid crystal compound. <P>SOLUTION: After oblique evaporation of the cylindrical liquid crystal compound is performed on the surface of a substrate by a PVD method and an evaporated film is formed, the evaporated film is heat-treated in temperature region of smectic phase of this compound. Moreover, oblique evaporation is performed by vacuum vapor deposition as the PVD method. Further, the heat treatment is performed within temperature range which is one half of a high temperature level of the smectic phase temperature region of the liquid crystal compound for depositing. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機薄膜トランジスタや有機エレクトロルミネッセンス素子に用いられる液晶化合物薄膜の膜構造とその形成方法に関し、とくに蒸着法の選択と熱処理により液晶化合物の配向を制御する配向制御方法と、この方法により形成された液晶化合物薄膜の膜構造、薄膜トランジスタ、有機エレクトロルミネッセンス素子に関する。   The present invention relates to a film structure of a liquid crystal compound thin film used for an organic thin film transistor and an organic electroluminescence element and a method for forming the same, and in particular, an alignment control method for controlling the alignment of a liquid crystal compound by selecting a vapor deposition method and heat treatment, and forming by this method The present invention relates to a film structure of a liquid crystal compound thin film, a thin film transistor, and an organic electroluminescence element.

有機半導体素子は、柔軟で衝撃に耐える素子の形成が可能なこと、印刷法等により安価な成膜が可能なこと、有機物特有の機能性が期待されることなどから、大きな注目を集めるようになり、その研究が活発に行われている。有機半導体素子の中で、最も研究が進んでいるのは有機エレクトロルミネッセンス(EL)素子であるが、有機発光ダイオード(LED)や、有機薄膜トランジスタ(TFT)についても研究が進められており、中でもスイッチング素子として用いられることの多い電界効果トランジスタ(FET)について多く研究がなされている。   Organic semiconductor elements are attracting a great deal of attention because they are capable of forming elements that are flexible and can withstand impacts, can be formed at low cost by printing methods, etc., and are expected to have functionality specific to organic matter. The research is being actively conducted. Among organic semiconductor devices, the most advanced research is on organic electroluminescence (EL) devices, but research is also progressing on organic light-emitting diodes (LEDs) and organic thin-film transistors (TFTs). Much research has been conducted on field effect transistors (FETs) that are often used as devices.

かかる有機半導体素子の実現のためには、まず導電性の高い有機材料の開発が重要である。導電性有機材料の開発には多くの努力が積み重ねられ、低分子のものや高分子のものなど種々のものが検討されてきた。近年、液晶性の有機化合物の中で、高い電荷輸送性を有するものが見出され、その応用についても多くの研究がなされるようになってきた。本発明者らも、以前から導電性の高い液晶化合物について種々の研究を行なっており、新規な高分子化合物を多数提案してきた(下記特許文献1,2等)。   In order to realize such an organic semiconductor element, it is important to develop an organic material having high conductivity. Many efforts have been made to develop conductive organic materials, and various materials such as low molecular weight materials and high molecular weight materials have been studied. In recent years, among liquid crystal organic compounds, those having high charge transporting properties have been found, and much research has been conducted on their application. The present inventors have also conducted various studies on liquid crystal compounds with high conductivity for a long time, and have proposed many novel polymer compounds (Patent Documents 1 and 2 below).

本発明者らが注目している液晶化合物は、長い直線的共役構造部分(以下、「コア部分」という)の両側(又は片側)に鎖状のアルキル系炭化水素の枝部分を有する棒状の化合物である。図6は、この液晶化合物の電荷輸送機構の説明図である。この化合物は、鎖状炭化水素部分16の相互作用により、コア部分4が平行に積み重なるように配向し易いという特徴を持っている。コア部分は、芳香環や多重結合により共役系を形成してπ電子が移動可能になっている。したがって、図6に見られるように、コア部分4を平行に配向させることによって、電荷輸送性が顕著に増大するので、この化合物を有機半導体素子として利用するためには、その配向の制御がきわめて重要になっている。   The liquid crystal compound that the present inventors are paying attention to is a rod-like compound having chain-like alkyl hydrocarbon branch portions on both sides (or one side) of a long linear conjugated structure portion (hereinafter referred to as “core portion”). It is. FIG. 6 is an explanatory diagram of the charge transport mechanism of this liquid crystal compound. This compound has a feature that the core portions 4 are easily oriented so as to be stacked in parallel by the interaction of the chain hydrocarbon portions 16. The core portion forms a conjugated system by an aromatic ring or multiple bonds so that π electrons can move. Therefore, as shown in FIG. 6, the charge transportability is remarkably increased by orienting the core portion 4 in parallel. Therefore, in order to use this compound as an organic semiconductor element, the orientation control is extremely difficult. It has become important.

特開2002−356473号公報JP 2002-356473 A 特開2003−055337号公報JP 2003-055337 A 特開2001−167888号公報JP 2001-167888 A

上述のような液晶化合物は、電界印加により導電性を発現する半導体の性質を有し、薄膜トランジスタとしての利用が考えられる。しかし、有機材料の電荷輸送性は、シリコン単結晶に比してはるかに小さく、近年漸くアモルファスシリコンに近い移動度の有機材料が入手可能になってきたという状況である。一般に、移動度が増大すれば、スイッチング素子としての応答性も高速化するから、上述のような液晶化合物も、できるだけその配向を制御して、電荷輸送性を高めることが望ましい。   The liquid crystal compound as described above has a property of a semiconductor that develops conductivity when an electric field is applied, and can be used as a thin film transistor. However, the charge transportability of organic materials is much smaller than that of silicon single crystals, and in recent years, organic materials having mobility close to that of amorphous silicon have become available. In general, as the mobility increases, the responsiveness as a switching element also increases. Therefore, it is desirable to improve the charge transportability of the liquid crystal compound as described above by controlling its orientation as much as possible.

また、この液晶化合物は、図6に示した電荷輸送の機構からも明らかなように、電荷の輸送に異方性があり、電界効果トランジスタの場合には、この異方性を如何に利用するかが課題となる。図7は、従来の電界効果トランジスタ(n型MOS−FET)の構造の説明図である。p型シリコン基板17の一部がn型にドープされてチャネル部10が形成され、その両端にソース電極7とドレイン電極8が設けられている。また、チャネル部10の上に、SiO2の絶縁膜9を介してゲート電極6が設けられている。有機FETの場合には、このチャネル部10に液晶化合物の薄膜が用いられるので、この薄膜の特定の方向、すなわちソース電極7とドレイン電極8とを結ぶ方向の電荷輸送性を高めることが重要である。したがって、前述の液晶化合物のコア部分が、ソースとドレイン電極を結ぶ線に直交して積層されるように、その配向を制御する必要がある。 Further, as is apparent from the charge transport mechanism shown in FIG. 6, this liquid crystal compound has anisotropy in charge transport. In the case of a field effect transistor, this anisotropy is utilized. Is a challenge. FIG. 7 is an explanatory diagram of the structure of a conventional field effect transistor (n-type MOS-FET). A part of the p-type silicon substrate 17 is doped n-type to form a channel portion 10, and a source electrode 7 and a drain electrode 8 are provided at both ends thereof. A gate electrode 6 is provided on the channel portion 10 via an insulating film 9 made of SiO 2 . In the case of an organic FET, since a thin film of a liquid crystal compound is used for the channel portion 10, it is important to improve the charge transport property in a specific direction of the thin film, that is, the direction connecting the source electrode 7 and the drain electrode 8. is there. Therefore, it is necessary to control the orientation of the liquid crystal compound so that the core portion of the liquid crystal compound is stacked perpendicular to the line connecting the source and drain electrodes.

従来から、液晶材料の配向制御には、ポリイミド等の高分子材料の配向膜の表面を一定方向にラビングして、このラビングの方向に沿って、液晶分子を配列させるという方法が多用されてきた。しかし、ラビングで発生する屑による汚染や静電気の問題等から、ラビングによらない配向制御の方法についても種々の検討がされるようになってきている。上記の液晶化合物を有機半導体素子とくに有機薄膜トランジスタとして利用する場合にも、ラビングによらず液晶分子の配向を制御する手段を確立することが望まれる。   Conventionally, in order to control the alignment of a liquid crystal material, a method of rubbing the surface of an alignment film of a polymer material such as polyimide in a certain direction and aligning liquid crystal molecules along the rubbing direction has been frequently used. . However, due to contamination caused by rubbing generated by rubbing, problems of static electricity, and the like, various studies have been made on orientation control methods that do not use rubbing. Even when the above liquid crystal compound is used as an organic semiconductor element, particularly an organic thin film transistor, it is desired to establish means for controlling the alignment of liquid crystal molecules without rubbing.

そこで本発明は、長い直線的共役構造部分を有する棒状液晶化合物において、配向膜のラビングによることなく、この共役構造部分の配列を任意に制御し得る配向制御の手段を提供することを課題としている。これにより、その電荷輸送性を大幅に高めるとともに、この化合物を電界効果トランジスタのチャンネル部に用いる場合に、そのソースとドレイン電極間の電荷輸送性を選択的に高めうる手段を提供することを目的とする。   Therefore, the present invention has an object to provide an alignment control means that can arbitrarily control the alignment of the conjugated structure portion in a rod-like liquid crystal compound having a long linear conjugated structure portion without rubbing the alignment film. . Accordingly, it is an object of the present invention to provide a means by which the charge transporting property between the source and drain electrodes can be selectively enhanced when the charge transporting property is greatly increased and the compound is used in the channel portion of a field effect transistor. And

本発明の液晶化合物薄膜の配向制御方法は、
長い直線的共役構造部分とその両側又は片側に直鎖炭化水素の部分を有する棒状液晶化合物を、基材表面にPVD法により斜方蒸着して蒸着膜を形成した後、該蒸着膜をこの化合物のスメクチック相の温度域で熱処理することを特徴とする。
The alignment control method of the liquid crystal compound thin film of the present invention includes:
A rod-like liquid crystal compound having a long linear conjugated structure portion and a linear hydrocarbon portion on both sides or one side thereof is obliquely deposited on the surface of the substrate by the PVD method to form a deposited film. The heat treatment is performed in the temperature range of the smectic phase.

斜方蒸着は、蒸気流の方向に対して、基材の表面を傾斜させて蒸着する方法で、これにより、棒状液晶化合物が基材表面に対して略一定の角度で傾斜した状態で積み重ねられる。このような状態の蒸着膜を、この化合物のスメクチック相の温度域で熱処理することにより、液晶分子の再配列が起こって、長い直線的共役構造部分(コア部分)が、基材表面に平行に積層されるようになる。その際に、斜方蒸着されているため、コア部分が一定の方向を向いて配列する。すなわち、コア部分が蒸着時の蒸気流(と蒸着点を含む面)に平行に基材上に配列するので、これと直角な方向の電荷輸送性を顕著に向上させることができる。   The oblique deposition is a method in which the surface of the base material is inclined with respect to the direction of the vapor flow, whereby the rod-like liquid crystal compound is stacked in an inclined state with respect to the base material surface. . By heat-treating the deposited film in such a state in the temperature range of the smectic phase of this compound, rearrangement of the liquid crystal molecules occurs, and the long linear conjugated structure portion (core portion) becomes parallel to the substrate surface. Laminated. At that time, since the oblique deposition is performed, the core portions are arranged in a certain direction. That is, since the core portion is arranged on the substrate in parallel with the vapor flow during vapor deposition (and the plane including the vapor deposition point), the charge transport property in the direction perpendicular to this can be remarkably improved.

この配向制御方法においては、前記PVD法が真空蒸着法であることが好ましい。その理由は、蒸着粒子に過大なエネルギーを与えることなく、熱速度程度の運動エネルギーで蒸着を行なった方が、棒状分子を整列させる上で有利になると考えられ、かかる目的には、真空蒸着法が好適なためである。   In this orientation control method, the PVD method is preferably a vacuum deposition method. The reason is that it is considered that it is more advantageous to align the rod-shaped molecules if the deposition is performed with the kinetic energy of about the thermal speed without giving excessive energy to the deposited particles. Is preferable.

また、この配向制御方法においては、前記熱処理を蒸着対象の液晶化合物のスメクチック相温度域の高温側1/2の温度範囲内で行なうことが好ましい。より好ましくは、スメクチック相温度域の高温側1/3の温度範囲内で行なう。これより高温側では、流動性が過度になって、コア部分の配列が乱れるおそれがあり、これより低温側では、流動性不足で液晶分子の再配列が十分進行しないおそれがあるためである。なお、この熱処理は、液晶化合物の変質を避けるため真空又は不活性ガス雰囲気で行なうことが好ましい。後記実施例に示すように、熱処理の有無によって、液晶化合物薄膜の電圧−電流特性とくにその立上り特性が顕著に相違することが確かめられている。   In this orientation control method, it is preferable that the heat treatment is performed within a temperature range that is 1/2 of the high temperature side of the smectic phase temperature range of the liquid crystal compound to be deposited. More preferably, it is performed within the temperature range of 1/3 of the high temperature side of the smectic phase temperature range. This is because the fluidity becomes excessive on the higher temperature side and the alignment of the core portion may be disturbed, and on the lower temperature side, the rearrangement of liquid crystal molecules may not sufficiently proceed due to insufficient fluidity. Note that this heat treatment is preferably performed in a vacuum or an inert gas atmosphere in order to avoid alteration of the liquid crystal compound. As shown in the examples described later, it has been confirmed that the voltage-current characteristics, particularly the rising characteristics, of the liquid crystal compound thin film are remarkably different depending on the presence or absence of heat treatment.

本発明の液晶化合物薄膜の膜構造は、上記のいずれかの配向制御方法を用いて形成されたものであって、前記液晶化合物の直線的共役構造部分が基材表面と平行に積層され、かつその長手方向が蒸着時の蒸気流の方向と平行になるように積層されてなることを特徴とする。このような膜構造にすることにより、該液晶化合物薄膜は、膜厚方向(基材の法線方向)の導電性のみならず、膜面(膜厚方向と直角な面)のある特定の方向、すなわち蒸着時の蒸気流の方向と直角な膜面方向の導電性が顕著に増大する。この後者の導電性は、この薄膜を電界効果トランジスタの導電チャネルとして利用するのに好適な特性である。   The film structure of the liquid crystal compound thin film of the present invention is formed using any one of the above alignment control methods, wherein the linear conjugated structure portion of the liquid crystal compound is laminated in parallel with the substrate surface, and It is characterized by being laminated so that its longitudinal direction is parallel to the direction of vapor flow during vapor deposition. By adopting such a film structure, the liquid crystal compound thin film has not only conductivity in the film thickness direction (normal direction of the base material) but also a specific direction having a film surface (surface perpendicular to the film thickness direction). That is, the conductivity in the film surface direction perpendicular to the direction of the vapor flow during deposition is significantly increased. This latter conductivity is a characteristic suitable for utilizing this thin film as a conductive channel of a field effect transistor.

本発明のスイッチング素子は、一対の電極間の導電チャネルとして、上記の膜構造を有する液晶化合物薄膜が用いられていることを特徴とするものである。   The switching element of the present invention is characterized in that a liquid crystal compound thin film having the above film structure is used as a conductive channel between a pair of electrodes.

本発明の薄膜トランジスタは、ゲート、ソース及びドレインの3電極と、ゲート電極を覆うように形成された絶縁膜と、該絶縁膜の外側に形成されソース及びドレイン電極間を導通せしめるチャネル部とを有する薄膜トランジスタであって、前記チャネル部に上記の膜構造を有する液晶化合物薄膜が用いられていることを特徴とするものである。本発明によれば、チャネル部を形成する棒状液晶化合物のコア部分をソース及びドレイン電極を結ぶ線と直角に積層するように、容易に配向を制御することができ、これによりその電荷輸送性と高速応答性を顕著に改善することができる。   The thin film transistor of the present invention includes a gate, a source, and a drain electrode, an insulating film formed so as to cover the gate electrode, and a channel portion that is formed outside the insulating film and conducts between the source and drain electrodes. A thin film transistor, wherein a liquid crystal compound thin film having the above film structure is used in the channel portion. According to the present invention, the orientation can be easily controlled so that the core portion of the rod-like liquid crystal compound forming the channel portion is laminated at right angles to the line connecting the source and drain electrodes. High-speed response can be remarkably improved.

本発明の有機エレクトロルミネッセンス素子の第一は、一対の電極の間に、発光層及び電荷輸送層を含む複数の層が形成され、少なくともそのうちの1層が、導電性の液晶化合物からなる有機エレクトロルミネッセンス素子であって、該液晶化合物層に上記の膜構造を有する液晶化合物薄膜が用いられていることを特徴とするものである。   The first of the organic electroluminescence elements of the present invention is a plurality of layers including a light-emitting layer and a charge transport layer formed between a pair of electrodes, at least one of which is made of an electroconductive liquid crystal compound. A luminescence device is characterized in that a liquid crystal compound thin film having the above film structure is used for the liquid crystal compound layer.

また、本発明の有機エレクトロルミネッセンス素子の第二は、基板上に陽極層、陽極バッファ層、液晶化合物層、必要に応じて陰極バッファ層及び陰極層が順次積層されてなる有機エレクトロルミネッセンス素子であって、該液晶化合物層に上記の膜構造を有する液晶化合物薄膜が用いられていることを特徴とするものである。この素子においては、前記陽極層がITO(Indium Tin Oxide)で形成され、前記陽極バッファ層がPEDOT−PSS(poly(ethylenedioxythiphene)−polystylene sulphonic acid)で形成されているものであってもよい。   The second of the organic electroluminescent elements of the present invention is an organic electroluminescent element in which an anode layer, an anode buffer layer, a liquid crystal compound layer, and, if necessary, a cathode buffer layer and a cathode layer are sequentially laminated on a substrate. A liquid crystal compound thin film having the above film structure is used for the liquid crystal compound layer. In this element, the anode layer may be formed of ITO (Indium Tin Oxide), and the anode buffer layer may be formed of PEDOT-PSS (poly (ethylenedioxythiphene) -polystylene sulphonic acid).

本発明の有機エレクトロルミネッセンス素子は、液晶化合物薄膜の配向が十分に制御されているため、電荷輸送性がきわめて高い。そのため、作動電圧の低下や素子内部の電圧勾配の低下が可能である。また、この液晶化合物自体が発光性を有し、電荷輸送層と発光層を一体にし得るため素子構造の簡略化が可能である。   The organic electroluminescence device of the present invention has extremely high charge transportability because the orientation of the liquid crystal compound thin film is sufficiently controlled. Therefore, it is possible to reduce the operating voltage and the voltage gradient inside the element. Further, since the liquid crystal compound itself has a light emitting property and the charge transport layer and the light emitting layer can be integrated, the element structure can be simplified.

本発明により、棒状液晶化合物において、配向膜のラビングによることなく、この共役構造部分の配列を任意に制御し得る配向制御の手段を提供することが可能になった。これにより、その電荷輸送性を大幅に高めるとともに、この化合物を電界効果トランジスタのチャンネル部に用いる場合に、そのソースとドレイン電極間の電荷輸送性を選択的に高めことが可能になった。この技術は、スイッチング素子として用いる有機薄膜トランジスタの実現に大きな貢献をするものと言える。   According to the present invention, it is possible to provide an alignment control means that can arbitrarily control the alignment of the conjugated structure portion in the rod-like liquid crystal compound without rubbing the alignment film. As a result, the charge transportability can be greatly enhanced, and when this compound is used in the channel portion of a field effect transistor, the charge transportability between the source and drain electrodes can be selectively enhanced. It can be said that this technology greatly contributes to the realization of an organic thin film transistor used as a switching element.

本発明の液晶化合物薄膜の形成方法は、基材表面に棒状液晶化合物の蒸着膜をの斜方蒸着法により形成し、その後この蒸着膜を所定の温度域で熱処理してなるものである。
まず、本発明で用いる液晶化合物について説明する。この化合物は、長い直線的共役構造部分とその両側又は片側にパラフィン系炭化水素の部分を有するものである。このような液晶化合物として、下式で示されるものが例示される(式中R1,R2はアルキル基)。この化合物は、3個のベンゼン環がそれぞれの間にエチレン基を挟んで直線的に連結され、その両端にアルキル基を有するものである。
In the method for forming a liquid crystal compound thin film of the present invention, a vapor deposition film of a rod-like liquid crystal compound is formed on the surface of a substrate by an oblique vapor deposition method, and then the vapor deposition film is heat-treated in a predetermined temperature range.
First, the liquid crystal compound used in the present invention will be described. This compound has a long linear conjugated structure portion and a paraffinic hydrocarbon portion on both sides or one side thereof. Examples of such a liquid crystal compound include those represented by the following formula (wherein R1 and R2 are alkyl groups). In this compound, three benzene rings are linearly connected with an ethylene group interposed between them, and alkyl groups are present at both ends thereof.

Figure 2005142233
このベンゼン環とエチレン基との部分が直線的共役構造部分(コア部分)であり、この部分を前出の図6のように配列させることにより、共役電子がホッピングして高い導電性を示す。両側のアルキル基は、隣接する分子のアルキル基との相互作用によって、コア部分の配列を促進するもので、片側のみであってもよいが、両側にあることがより好ましい。アルキル基の炭素数はとくに限定を要しないが、5〜20個程度でよい。
Figure 2005142233
The portion of the benzene ring and the ethylene group is a linear conjugated structure portion (core portion). By arranging this portion as shown in FIG. 6 above, conjugated electrons hop and show high conductivity. The alkyl groups on both sides promote the arrangement of the core portion by interaction with the alkyl groups of adjacent molecules, and may be on one side only, but more preferably on both sides. The carbon number of the alkyl group is not particularly limited, but may be about 5 to 20.

基材表面にこの液晶化合物の蒸着膜を形成するにあたっては、PVD法(物理的気相成長法)で斜方蒸着する。斜方蒸着は、蒸気流の方向に対して、基材の表面を傾斜させて蒸着する方法で、磁気記録媒体や液晶のSiO等の配向膜の製造には多用されている。しかし、従来の斜方蒸着は主に粒状の分子に用いられている技術であって、本発明のような棒状液晶化合物の場合に、どのような特性の蒸着膜が得られるかについての知見はほとんどない。   In forming the deposited film of the liquid crystal compound on the substrate surface, oblique deposition is performed by the PVD method (physical vapor deposition method). The oblique vapor deposition is a method in which the surface of the base material is inclined with respect to the direction of the vapor flow, and is often used for the production of alignment films such as magnetic recording media and liquid crystal SiO. However, the conventional oblique deposition is a technique mainly used for granular molecules, and in the case of a rod-like liquid crystal compound as in the present invention, there is no knowledge about what kind of characteristics a deposited film can be obtained. rare.

本発明者らは、棒状の液晶化合物を蒸着すると、その長手方向が蒸気流の方向とおおよそ平行になるように運動するため、これを斜方蒸着すると、棒状化合物が規則性をもって配列した蒸着膜が得られることを知見した。本発明は、この技術とその後の熱処理とを組み合わせて、液晶化合物薄膜の配向を制御し、その導電性を顕著に増大させるとともに、電界効果トランジスタに好適な配向状態を形成することを特徴とするものである。   The inventors of the present invention, when depositing a rod-like liquid crystal compound, moves so that its longitudinal direction is approximately parallel to the direction of the vapor flow. When this is obliquely deposited, the deposited film in which the rod-like compounds are regularly arranged It was found that can be obtained. The present invention is characterized by combining this technique and the subsequent heat treatment to control the alignment of the liquid crystal compound thin film, to remarkably increase its conductivity, and to form an alignment state suitable for a field effect transistor. Is.

図1は、本発明の方法における液晶化合物の配向制御の原理を示す説明図で、図1(a)は液晶分子が空間を移動する状態を示す模式図、図1(b),(c)は蒸着膜の液晶分子の配列を示す模式図で、それぞれ図1(a)のB方向及びA方向から見た図、図1(d),(e)は熱処理後の薄膜の液晶分子の配列を示す模式図で、それぞれ図1(a)のB方向及びA方向から見た図である。   FIG. 1 is an explanatory diagram showing the principle of alignment control of a liquid crystal compound in the method of the present invention. FIG. 1 (a) is a schematic diagram showing a state in which liquid crystal molecules move in space, and FIGS. 1 (b) and 1 (c). Is a schematic diagram showing the arrangement of liquid crystal molecules in the deposited film, and is a view seen from the B direction and the A direction in FIG. 1A, respectively, and FIGS. It is the schematic diagram which shows these, and is the figure seen from the B direction and A direction of Fig.1 (a), respectively.

棒状の液晶化合物は、蒸気流内においては抵抗が小さくなるように、その長軸がおおむね蒸気流の方向と一致するように運動する(真空中でも若干の気体分子は残存しているので、このような運動をすると考えられる)。したがって、斜方蒸着においては、図1(b)に見られるように、液晶分子の長手方向が蒸気流の方向と略平行になるように配列して基材に付着する。なお、図1(c)(A方向から見た側面図)に見られるように、棒状分子は基材表面に対してある程度傾斜して付着していればよく、その傾斜角が必ずしも一定でなくともよい。なお、蒸着時の基材温度は常温に近く、この状態では液晶化合物は固相であり、基材上の液晶分子はある程度空隙を持った状態で付着しているため、蒸着膜の密度は小さい。   The rod-shaped liquid crystal compound moves so that its long axis is generally coincident with the direction of the vapor flow so that the resistance is reduced in the vapor flow (since some gas molecules remain even in vacuum, It is thought that you will do a lot of exercise). Therefore, in oblique vapor deposition, as shown in FIG. 1B, the liquid crystal molecules are aligned and attached to the substrate so that the longitudinal direction of the liquid crystal molecules is substantially parallel to the direction of vapor flow. As shown in FIG. 1 (c) (side view as viewed from the direction A), the rod-like molecules may be attached to the substrate surface with a certain degree of inclination, and the inclination angle is not necessarily constant. Also good. The substrate temperature during vapor deposition is close to room temperature. In this state, the liquid crystal compound is in a solid phase, and the liquid crystal molecules on the substrate are attached with a certain amount of voids, so the density of the deposited film is small. .

次いで、この蒸着膜をこの液晶化合物のスメクチック状態の温度域で熱処理する。これにより、液晶分子の再配列が起こって、図1(e)に見られるように、傾斜して付着していた液晶分子のコア部分が、基材表面に平行に積層されるようになる。その際に、このコア部分が蒸気流の方向に平行に並んでいるため、この平行状態がそのまま維持される(図1(d)。これにより、膜厚方向(基材の法線方向)とともに、整列したコア部分の軸と直角な方向(図1(d)の矢印C方向)の導電性が顕著に増大する。   Next, the deposited film is heat-treated in the temperature range of the smectic state of the liquid crystal compound. As a result, rearrangement of the liquid crystal molecules occurs, and as shown in FIG. 1E, the core portions of the liquid crystal molecules adhering in an inclined manner are stacked in parallel on the substrate surface. At this time, since the core portions are arranged in parallel to the direction of the vapor flow, this parallel state is maintained as it is (FIG. 1 (d). Thereby, along with the film thickness direction (normal direction of the base material) The conductivity in the direction perpendicular to the axis of the aligned core portions (in the direction of arrow C in FIG. 1 (d)) is significantly increased.

スメクチック相の温度域での熱処理の際に、分子を動かす主な駆動力は、コア部分の両側のアルキル基の相互作用、すなわち隣接する分子のアルキル基相互の分子間引力によると考えられる。これにより棒状分子が平行に配列され、コア部分が一定の間隔で積み重なるように積層される。コア部分の長さが一定であれば、その両端がほぼ揃うように積層されると考えられ、これによりコア間の共役電子の移動がきわめて容易になって、積層面と直角な方向の導電性が顕著に増大する。   In the heat treatment in the temperature range of the smectic phase, it is considered that the main driving force for moving the molecule is due to the interaction between the alkyl groups on both sides of the core portion, that is, the intermolecular attractive force between the alkyl groups of adjacent molecules. As a result, the rod-like molecules are arranged in parallel, and the core portions are stacked so as to be stacked at regular intervals. If the length of the core part is constant, it is considered that the layers are laminated so that both ends thereof are almost aligned. This makes it very easy for the conjugate electrons to move between the cores, and the conductivity in the direction perpendicular to the laminated surface. Increases significantly.

前記の特許文献3にも示されているように、一般に液晶化合物をその液晶域の温度まで加熱処理すると、π電子共鳴構造面が電極面と平行に配列することが知られている。しかし、基材表面に棒状液晶化合物をランダムに蒸着した後加熱処理したのでは、コア部分が基材面と平行に積み重なっても、その方向はランダムになり、図1(d)のようにコア部分が一定の方向を向いて配列しない。そのため、膜厚方向の導電性が増大しても、膜面と平行な方向の導電性は増大しない。蒸着膜を斜方蒸着で形成することにより、図1(b)に示すように、棒状液晶化合物が略一様な方向を向いて蒸着されるので、これを熱処理して図1(d)のように配列させ、膜面と平行な特定の方向(図1(d)の矢印C方向)の導電性を高めたことが、本発明の特徴である。   As shown in the above-mentioned Patent Document 3, it is known that when a liquid crystal compound is generally heat-treated up to the temperature of the liquid crystal region, the π-electron resonance structure surface is aligned in parallel with the electrode surface. However, when the rod-like liquid crystal compound is randomly deposited on the surface of the base material and then heat-treated, even if the core portions are stacked in parallel with the base material surface, the direction becomes random, as shown in FIG. 1 (d). The parts do not line up in a certain direction. Therefore, even if the conductivity in the film thickness direction increases, the conductivity in the direction parallel to the film surface does not increase. By forming the deposited film by oblique deposition, as shown in FIG. 1B, the rod-like liquid crystal compound is deposited in a substantially uniform direction. It is a feature of the present invention that the conductivity in a specific direction parallel to the film surface (the direction of arrow C in FIG. 1D) is increased.

本発明において、液晶化合物の蒸着膜を形成する基材は、有機材料例えば高分子の薄膜であってもよく、あるいは無機材料例えばガラスやシリコンの基板やその上に形成された金属電極膜等であってもよい。蒸着方法は、真空蒸着法、分子線エピタキシー(MBE)、イオンプレーティング、スパッタ蒸着法等のPVD法を広く適用可能と考えられる。しかし、本発明者らの知見によれば、蒸着粒子に過大なエネルギーを与えることなく、熱速度程度の運動エネルギーで蒸着を行なった方が、空間を移動する速度が遅くなり、棒状分子の長手方向が蒸気流と平行に整列し易くなると考えられ、このような観点からは、真空蒸着法がとくに好適である。   In the present invention, the base material for forming the vapor deposition film of the liquid crystal compound may be an organic material such as a polymer thin film, or an inorganic material such as a glass or silicon substrate or a metal electrode film formed thereon. There may be. As the vapor deposition method, it is considered that PVD methods such as vacuum vapor deposition, molecular beam epitaxy (MBE), ion plating, and sputter vapor deposition can be widely applied. However, according to the knowledge of the present inventors, if the vapor deposition is performed at a kinetic energy of about the thermal speed without giving excessive energy to the vapor deposition particles, the speed of moving through the space becomes slower, and the length of the rod-like molecule is reduced. It is considered that the direction is easily aligned in parallel with the vapor flow, and from this viewpoint, the vacuum deposition method is particularly suitable.

斜方蒸着における傾斜角度(基板の法線と蒸気流との間の角度)は、必ずしも厳密に限定するを要しないが、これが小さすぎると、棒状分子が基板に直角に近い角度で配列するため、熱処理でこれを一定方向に寝かせることが難しくなる。また傾斜角度が大き過ぎると蒸着ムラが生じ易くなって好ましくない。したがって、傾斜角度は10〜70度程度の範囲が適当と思われる。   The tilt angle in oblique deposition (angle between the normal of the substrate and the vapor flow) does not necessarily need to be strictly limited, but if this is too small, rod-shaped molecules are arranged at an angle close to a right angle to the substrate. It becomes difficult to lay this in a certain direction by heat treatment. Further, if the inclination angle is too large, uneven deposition tends to occur, which is not preferable. Therefore, it seems that the inclination angle is suitably in the range of about 10 to 70 degrees.

本発明の方法においては、熱処理の温度も重要である。等方性液体の温度まで昇温すると、斜方蒸着時の配列が失われて不適切なことは言うまでもないが、本発明者らの知見によれば、ネマチック相の温度でも流動性が過度になって好ましくない。ただし、スメクチック相の温度域の低温側では、流動性不足で適切に配向しない場合が生じる。したがって、熱処理温度は、対象となる液晶化合物のスメクチック相温度域の高温側半分の温度範囲が好ましい。より好ましくは、高温側の1/3の温度範囲とする。なお、熱処理時間はとくに限定を要しないが、上記の温度域で数分乃至数十分程度保定すればよい。   In the method of the present invention, the temperature of the heat treatment is also important. When the temperature is raised to the temperature of the isotropic liquid, it goes without saying that the arrangement during oblique deposition is lost and inappropriate, but according to the knowledge of the present inventors, the fluidity is excessive even at the temperature of the nematic phase. It is not preferable. However, on the low temperature side of the temperature range of the smectic phase, there may be a case where the liquid crystal is insufficient and is not properly oriented. Therefore, the heat treatment temperature is preferably a temperature range that is a half on the high temperature side of the smectic phase temperature range of the liquid crystal compound of interest. More preferably, the temperature range is 1/3 on the high temperature side. The heat treatment time is not particularly limited, but it may be maintained for several minutes to several tens of minutes in the above temperature range.

次ぎに、本発明の薄膜トランジスタについて説明する。図2は、本発明の実施例である薄膜トランジスタの断面模式図である。この薄膜トランジスタは、基板5上に、ゲート電極6を挟んでソース電極7及びドレイン電極8が対向して形成された電界効果トランジスタであり、ゲート6を覆うように絶縁膜9が形成され、絶縁膜9の外側にソース7とドレイン8を導通させるチャネル部10が形成されているが、このチャネル部10に、上述の方法で配向制御された液晶化合物薄膜が用いられていることが特徴である。   Next, the thin film transistor of the present invention will be described. FIG. 2 is a schematic cross-sectional view of a thin film transistor which is an embodiment of the present invention. This thin film transistor is a field effect transistor in which a source electrode 7 and a drain electrode 8 are formed on a substrate 5 with a gate electrode 6 interposed therebetween, and an insulating film 9 is formed so as to cover the gate 6. A channel portion 10 for conducting the source 7 and the drain 8 is formed outside the channel 9. The channel portion 10 is characterized in that a liquid crystal compound thin film whose orientation is controlled by the above-described method is used.

この薄膜トランジスタを製造するには、まず基板5上に金属の蒸着法等によりゲート電極6を形成し、その上に高分子材料等からなる絶縁膜9を、蒸着法やスピンコート法等により形成する。さらにその上に、ゲート電極6を挟んで互いに対向するソース電極7及びドレイン電極8を、金属の蒸着法等により形成する。その後この基材に真空蒸着法により、本発明の対象である棒状液晶化合物を斜方蒸着する。この際、ソース電極7とドレイン電極8を結ぶ線が、蒸気流の方向(蒸発源と蒸着点を結ぶ線)と略直角になるように、基板5をセットする。所定膜厚の蒸着膜が得られたら、これを真空又は不活性ガス雰囲気で所定温度に保定する熱処理を行なえばよい。これにより、棒状液晶化合物のコア部分がソースとドレインを結ぶ線に直角に積層されて、この方向の電荷輸送性が顕著に増大する。   In order to manufacture this thin film transistor, first, a gate electrode 6 is formed on a substrate 5 by a metal vapor deposition method or the like, and an insulating film 9 made of a polymer material or the like is formed thereon by a vapor deposition method or a spin coating method. . Furthermore, a source electrode 7 and a drain electrode 8 facing each other with the gate electrode 6 interposed therebetween are formed by a metal vapor deposition method or the like. Thereafter, the rod-like liquid crystal compound which is the object of the present invention is obliquely vapor-deposited on this substrate by vacuum vapor deposition. At this time, the substrate 5 is set so that the line connecting the source electrode 7 and the drain electrode 8 is substantially perpendicular to the direction of vapor flow (the line connecting the evaporation source and the vapor deposition point). When a vapor-deposited film having a predetermined film thickness is obtained, a heat treatment may be performed by holding it at a predetermined temperature in a vacuum or an inert gas atmosphere. As a result, the core portion of the rod-like liquid crystal compound is laminated at right angles to the line connecting the source and the drain, and the charge transport property in this direction is remarkably increased.

次ぎに、本発明の有機エレクトロルミネッセンス(EL)素子について説明する。図3は、本発明の実施例である有機EL素子の断面模式図である。この素子は、透明基板11上に陽極12、バッファ層13、液晶化合物薄膜14及び陰極15が順次積層されてなるものである。陽極12には、光を取り出すため透明な材料で仕事関数が大きいもの、例えばITO膜が用いられる。陰極15は、仕事関数の小さい金属例えばAl,Ca,FLi(フッ化リチウム),Mgやこれらの合金の薄膜により形成する。   Next, the organic electroluminescence (EL) element of the present invention will be described. FIG. 3 is a schematic cross-sectional view of an organic EL element which is an embodiment of the present invention. In this element, an anode 12, a buffer layer 13, a liquid crystal compound thin film 14, and a cathode 15 are sequentially laminated on a transparent substrate 11. The anode 12 is made of a transparent material having a high work function, for example, an ITO film, for extracting light. The cathode 15 is formed of a thin film of a metal having a low work function, such as Al, Ca, FLi (lithium fluoride), Mg, or an alloy thereof.

本実施例の液晶化合物には、それ自体発光性を有するものが用いられているため、液晶化合物薄膜14は、発光層でありかつキャリア輸送層の機能を有する。バッファ層13は、陽極12からの正孔注入のエネルギー障壁を低下させることを目的とし、例えばPEDOT−PSS(poly(ethylenedioxythiphene)−polystylene sulphonic acid)等を用いる。なお、バッファ層13を必要としない場合もあり、また、必要に応じて陰極15側に電子注入を目的とするバッファ層を設けてもよい。   Since the liquid crystal compound of this example has a light emitting property per se, the liquid crystal compound thin film 14 is a light emitting layer and has a function of a carrier transport layer. The buffer layer 13 is intended to lower the energy barrier for hole injection from the anode 12 and uses, for example, PEDOT-PSS (poly (ethylenedioxythiphene) -polystylene sulphonic acid). The buffer layer 13 may not be required, and a buffer layer for the purpose of electron injection may be provided on the cathode 15 side as necessary.

本発明の有機EL素子は、液晶化合物薄膜14の膜構造・形成方法に特徴を有するものであり、その他の層の形成は従来と同様の方法で行なえばよい。透明基板11上に陽極12、バッファ層13の形成を終えた後、真空蒸着法により、本発明の対象である棒状液晶化合物を斜方蒸着する。この場合は、基板をセットする方向は特定することを要しない。所定膜厚の蒸着膜が得られたら、これを真空又は不活性ガス雰囲気で所定温度に保定する熱処理を行い、さらにその上に蒸着法等により陰極15を形成すればよい。   The organic EL element of the present invention is characterized by the film structure / formation method of the liquid crystal compound thin film 14, and the other layers may be formed by a method similar to the conventional method. After the formation of the anode 12 and the buffer layer 13 on the transparent substrate 11, the rod-like liquid crystal compound that is the subject of the present invention is obliquely deposited by vacuum deposition. In this case, it is not necessary to specify the direction in which the substrate is set. When a vapor deposition film having a predetermined film thickness is obtained, heat treatment is performed to keep the vapor deposition film at a predetermined temperature in a vacuum or an inert gas atmosphere, and the cathode 15 may be formed thereon by vapor deposition or the like.

本発明の有機EL素子の場合は、薄膜トランジスタの場合と相違して、液晶化合物薄膜14の膜厚と直角な特定の方向の導電性を高めることを必要とするわけではない。しかし、本発明者らの知見によれば、蒸着膜が斜方蒸着の場合と非斜方蒸着(垂直蒸着)の場合では、熱処理後の電荷輸送性は前者の方が高いので、本発明の配向制御方法を有機EL素子に適用する意義は十分に大きい。なお、本発明の有機EL素子において、液晶化合物薄膜14を発光層と電荷輸送層の2層に別けてもよく、その場合は、これらの両方又は一方の層が本発明の配向制御方法により形成された液晶化合物薄膜であればよい。   In the case of the organic EL element of the present invention, unlike the case of the thin film transistor, it is not necessary to increase the conductivity in a specific direction perpendicular to the film thickness of the liquid crystal compound thin film 14. However, according to the knowledge of the present inventors, in the case where the deposited film is oblique deposition and non-oblique deposition (vertical deposition), the former has higher charge transportability after the heat treatment. The significance of applying the orientation control method to an organic EL element is sufficiently great. In the organic EL device of the present invention, the liquid crystal compound thin film 14 may be divided into two layers of a light emitting layer and a charge transport layer. In that case, both or one of these layers is formed by the alignment control method of the present invention. Any liquid crystal compound thin film may be used.

透明基板上にPEDOT−PSS薄膜を形成し、さらにその上に本発明の方法により配向制御した液晶化合物薄膜を形成して、この液晶薄膜の偏光特性と電圧−電流特性を調査した。寸法4×4mmのガラス基板を超音波洗浄液(洗浄液:イソプロパノール+アセトン)とUV洗浄で清浄化した後、スピンコート法によりPEDOT−PSS薄膜を形成した。製膜条件は、回転数2000rpm、製膜時間30secとした。製膜後150℃で30分間熱処理してPEDOT−PSS薄膜を硬化させた。   A PEDOT-PSS thin film was formed on a transparent substrate, a liquid crystal compound thin film whose orientation was controlled by the method of the present invention was further formed thereon, and the polarization characteristics and voltage-current characteristics of the liquid crystal thin film were investigated. A glass substrate having a size of 4 × 4 mm was cleaned by ultrasonic cleaning liquid (cleaning liquid: isopropanol + acetone) and UV cleaning, and then a PEDOT-PSS thin film was formed by spin coating. The film forming conditions were a rotation speed of 2000 rpm and a film forming time of 30 sec. After the film formation, the PEDOT-PSS thin film was cured by heat treatment at 150 ° C. for 30 minutes.

このPEDOT−PSS薄膜上に、本発明の方法により液晶化合物薄膜を形成した。用いた液晶化合物は、前記、化1で示される化合物のアルキル基R1及びR2が、ともにC1225で表されるものである。この化合物30mgを、蒸気流の方向に対して45°傾斜させた室温の基材上に、抵抗加熱真空蒸着法により斜方蒸着した。その後、窒素雰囲気下でこの基板を200℃に加熱し、この温度に2分間保持する熱処理を行なった。なお、この化合物のスメクチック相の温度域は、おおよそ100〜250℃である。 A liquid crystal compound thin film was formed on the PEDOT-PSS thin film by the method of the present invention. In the liquid crystal compound used, the alkyl groups R 1 and R 2 of the compound represented by Chemical Formula 1 are both represented by C 12 H 25 . 30 mg of this compound was obliquely deposited by resistance heating vacuum deposition on a room temperature substrate inclined at 45 ° with respect to the direction of vapor flow. Thereafter, the substrate was heated to 200 ° C. in a nitrogen atmosphere, and heat treatment was performed for 2 minutes. In addition, the temperature range of the smectic phase of this compound is approximately 100 to 250 ° C.

このようにして形成された液晶化合物薄膜の配向性を、偏光顕微鏡で観察した結果の例を、図4に示す。図4(a)は、偏光顕微鏡の偏光子の方向と、液晶化合物のコア部分の整列方向(図1(d)の矢印Cと直角な方向)が一致している場合で、視野がかなり暗くなっている。完全な暗視野でないのは、液晶化合物の配列に若干の乱れがあるためと考えられる。一方、図4(b)は、試料をこれと45°回転したときの観察像で、十分に明るい視野になっている。このことから、上記のように作製された液晶化合物薄膜が、図1(d)に示すような配向状態になっていることが窺える。   FIG. 4 shows an example of the result of observing the orientation of the liquid crystal compound thin film thus formed with a polarizing microscope. FIG. 4A shows a case where the direction of the polarizer of the polarization microscope and the alignment direction of the core portion of the liquid crystal compound (direction perpendicular to the arrow C in FIG. 1D) coincide with each other and the field of view is considerably dark. It has become. The reason for not being a complete dark field is thought to be that there is a slight disturbance in the alignment of the liquid crystal compound. On the other hand, FIG. 4B is an observation image when the sample is rotated by 45 ° and has a sufficiently bright field of view. From this, it can be seen that the liquid crystal compound thin film produced as described above is in an alignment state as shown in FIG.

また、上述のように作製した液晶化合物薄膜(+PEDOT−PSS薄膜)の導電性を評価した。基材−ITO電極膜−PEDOT−PSS薄膜−液晶化合物薄膜−金属陰極の構成からなる素子を作製し、両極間の電圧−電流特性を測定した。PEDOT−PSS薄膜及び液晶化合物薄膜の製膜条件は上記と同じである。また、ITO電極膜および金属陰極は、真空蒸着により形成した。また、比較例として、液晶化合物薄膜の熱処理を行なわなかった試料を作製し、熱処理したものとの導電性を比較した。測定結果の例を図5に示す。   Moreover, the electroconductivity of the liquid crystal compound thin film (+ PEDOT-PSS thin film) produced as mentioned above was evaluated. An element composed of a base material-ITO electrode film-PEDOT-PSS thin film-liquid crystal compound thin film-metal cathode was prepared, and voltage-current characteristics between both electrodes were measured. The conditions for forming the PEDOT-PSS thin film and the liquid crystal compound thin film are the same as described above. The ITO electrode film and the metal cathode were formed by vacuum deposition. As a comparative example, a sample in which the liquid crystal compound thin film was not heat-treated was prepared, and the conductivity was compared with that of the heat-treated sample. An example of the measurement result is shown in FIG.

同図において、熱処理したもの(○印)は、印加電圧4V付近から急激な立上りを見せて、電流が急激に増大する。これに対して、熱処理の無い比較例(●印)は、電流の立上り不明瞭で、電流の増大幅も著しく小さい。このことから、この
液晶化合物薄膜の膜厚方向の導電性は、200℃での熱処理によって顕著に増大することが明らかになった。この熱処理材のような急激な立上り特性は、これをスイッチング素子として用いるのに、好適な特性と言える。
In the figure, the heat-treated material (circles) shows a sudden rise from the vicinity of the applied voltage of 4 V, and the current increases rapidly. On the other hand, in the comparative example without the heat treatment (marked with ●), the rise of the current is unclear and the increase in the current is extremely small. From this, it was clarified that the conductivity in the film thickness direction of the liquid crystal compound thin film is remarkably increased by the heat treatment at 200 ° C. It can be said that the rapid rise characteristic like this heat treatment material is suitable for use as a switching element.

本発明の方法における液晶化合物の配向制御の原理を示す説明図である。It is explanatory drawing which shows the principle of the orientation control of the liquid crystal compound in the method of this invention. 本発明の実施例である薄膜トランジスタの断面模式図である。It is a cross-sectional schematic diagram of the thin-film transistor which is an Example of this invention. 本発明の実施例である有機エレクトロルミネッセンス素子の断面模式図である。It is a cross-sectional schematic diagram of the organic electroluminescent element which is an Example of this invention. 本実施例における液晶化合物薄膜の偏光顕微鏡写真の例である。It is an example of the polarization micrograph of the liquid crystal compound thin film in a present Example. 本実施例における電圧−電流特性の測定結果の例を示す図である。It is a figure which shows the example of the measurement result of the voltage-current characteristic in a present Example. 本発明に用いられる液晶化合物の電荷輸送機構の説明図である。It is explanatory drawing of the charge transport mechanism of the liquid crystal compound used for this invention. 従来の電界効果トランジスタの構造を示す説明図である。It is explanatory drawing which shows the structure of the conventional field effect transistor.

符号の説明Explanation of symbols

1 棒状液晶化合物
2 蒸気流
3 基材
4 コア部分
5 基板
6 ゲート電極
7 ソース電極
8 ドレイン電極
9 絶縁膜
10 チャネル部
11 透明基板
12 陽極
13 バッファ層
14 液晶化合物薄膜
15 陰極
16 鎖状炭化水素部分
17 p型シリコン基板
























DESCRIPTION OF SYMBOLS 1 Rod-like liquid crystal compound 2 Vapor flow 3 Base material 4 Core part 5 Substrate 6 Gate electrode 7 Source electrode 8 Drain electrode 9 Insulating film 10 Channel part 11 Transparent substrate 12 Anode 13 Buffer layer 14 Liquid crystal compound thin film 15 Cathode 16 Chain hydrocarbon part 17 p-type silicon substrate
























Claims (9)

基材表面に長い直線的共役構造部分を有する棒状液晶化合物をPVD法により斜方蒸着して蒸着膜を形成した後、該蒸着膜をこの化合物のスメクチック相の温度域で熱処理することを特徴とする液晶化合物薄膜の配向制御方法。   A rod-like liquid crystal compound having a long linear conjugated structure portion on a substrate surface is obliquely deposited by PVD method to form a deposited film, and then the deposited film is heat-treated in the temperature range of the smectic phase of the compound. For controlling the orientation of a liquid crystal compound thin film. 前記PVD法が、真空蒸着法である請求項1記載の配向制御方法。   The orientation control method according to claim 1, wherein the PVD method is a vacuum deposition method. 前記熱処理を、蒸着対象の液晶化合物のスメクチック相温度域の高温側1/2の温度範囲内で行なうことを特徴とする請求項1又は2記載の配向制御方法。   3. The alignment control method according to claim 1, wherein the heat treatment is performed within a temperature range that is 1/2 of the high temperature side of the smectic phase temperature range of the liquid crystal compound to be deposited. 請求項1乃至3のいずれかに記載の配向制御方法により形成された液晶化合物薄膜の膜構造であって、前記液晶化合物の直線的共役構造部分が基材表面と平行に積層され、かつその長手方向が蒸着時の蒸気流の方向と平行になるように積層されてなることを特徴とする膜構造。   A film structure of a liquid crystal compound thin film formed by the alignment control method according to any one of claims 1 to 3, wherein a linear conjugated structure portion of the liquid crystal compound is laminated in parallel with a substrate surface, and the length thereof A film structure characterized by being laminated so that the direction is parallel to the direction of vapor flow during vapor deposition. 一対の電極間の導電チャネルとして、請求項4記載の膜構造を有する液晶化合物薄膜が用いられていることを特徴とするスイッチング素子。   A switching element comprising a liquid crystal compound thin film having a film structure according to claim 4 as a conductive channel between a pair of electrodes. ゲート、ソース及びドレインの3電極と、ゲート電極を覆うように形成された絶縁膜と、該絶縁膜の外側に形成されソース及びドレイン電極間を導通せしめるチャネル部とを有する薄膜トランジスタであって、前記チャネル部に請求項4記載の膜構造を有する液晶化合物薄膜が用いられていることを特徴とする薄膜トランジスタ。   A thin film transistor having three electrodes of a gate, a source and a drain, an insulating film formed so as to cover the gate electrode, and a channel portion formed outside the insulating film and conducting between the source and drain electrodes, 5. A thin film transistor comprising a liquid crystal compound thin film having a film structure according to claim 4 in a channel portion. 一対の電極の間に、発光層及び電荷輸送層を含む複数の層が形成され、少なくともそのうちの1層が、導電性の液晶化合物からなる有機エレクトロルミネッセンス素子であって、該液晶化合物層に請求項4記載の膜構造を有する液晶化合物薄膜が用いられていることを特徴とする有機エレクトロルミネッセンス素子。   A plurality of layers including a light emitting layer and a charge transport layer are formed between a pair of electrodes, at least one of which is an organic electroluminescent element made of a conductive liquid crystal compound, and the liquid crystal compound layer is charged. Item 5. An organic electroluminescence device, wherein a liquid crystal compound thin film having the film structure of Item 4 is used. 基板上に陽極層、陽極バッファ層、液晶化合物層、必要に応じて陰極バッファ層及び陰極層が順次積層されてなる有機エレクトロルミネッセンス素子であって、該液晶化合物層に請求項4記載の膜構造を有する液晶化合物薄膜が用いられていることを特徴とする有機エレクトロルミネッセンス素子。   An organic electroluminescence device comprising an anode layer, an anode buffer layer, a liquid crystal compound layer, and optionally a cathode buffer layer and a cathode layer laminated on a substrate, wherein the film structure according to claim 4 is provided on the liquid crystal compound layer. A liquid crystal compound thin film having an organic electroluminescence device is used. 前記陽極層がITOで形成され、前記陽極バッファ層がPEDOT−PSSで形成されていることを特徴とする請求項8記載の有機エレクトロルミネッセンス素子
9. The organic electroluminescence device according to claim 8, wherein the anode layer is made of ITO, and the anode buffer layer is made of PEDOT-PSS.
JP2003374800A 2003-11-04 2003-11-04 Orientation control method of liquid crystal compound thin film, film texture of liquid crystal compound thin film formed by using the same, tft, and organic electroluminescent element Pending JP2005142233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003374800A JP2005142233A (en) 2003-11-04 2003-11-04 Orientation control method of liquid crystal compound thin film, film texture of liquid crystal compound thin film formed by using the same, tft, and organic electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003374800A JP2005142233A (en) 2003-11-04 2003-11-04 Orientation control method of liquid crystal compound thin film, film texture of liquid crystal compound thin film formed by using the same, tft, and organic electroluminescent element

Publications (1)

Publication Number Publication Date
JP2005142233A true JP2005142233A (en) 2005-06-02

Family

ID=34686404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374800A Pending JP2005142233A (en) 2003-11-04 2003-11-04 Orientation control method of liquid crystal compound thin film, film texture of liquid crystal compound thin film formed by using the same, tft, and organic electroluminescent element

Country Status (1)

Country Link
JP (1) JP2005142233A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007441A1 (en) * 2005-07-14 2007-01-18 Yamanashi University Liquid crystalline organic semiconductor material, and semiconductor element or information recording medium using the same
WO2007138883A1 (en) * 2006-05-31 2007-12-06 Yamanashi University Memory element, data recording method and ic tag
WO2008059817A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008059816A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US7742112B2 (en) 2007-05-23 2010-06-22 Yamanashi University Memory device, data recording method, and IC tag
US8148720B2 (en) 2006-11-24 2012-04-03 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US8203139B2 (en) 2006-11-24 2012-06-19 Idemitsu Kosan Co., Ltd Organic thin film transistor and organic thin film light-emitting transistor using an organic semiconductor layer having an aromatic hydrocarbon group or an aromatic heterocyclic group in the center thereof
US8207525B2 (en) 2006-12-04 2012-06-26 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light emitting transistor
US8330147B2 (en) 2006-12-04 2012-12-11 Idemitsu Kosan, Co., Ltd. Organic thin film transistor and organic thin film light emitting transistor having organic semiconductor compound with divalent aromatic hydrocarbon group and divalent aromatic heterocyclic group

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05173145A (en) * 1991-12-20 1993-07-13 Sharp Corp Production of oriented film for liquid crystal display device
JP2002151267A (en) * 2000-11-15 2002-05-24 Fuji Photo Film Co Ltd Light-emitting element
JP2003068469A (en) * 2000-08-11 2003-03-07 Canon Inc Organic electroluminescence element and its manufacturing method
JP2003215341A (en) * 2002-01-25 2003-07-30 Nippon Oil Corp Circularly polarizing plate and liquid crystal display
WO2003067667A1 (en) * 2002-02-08 2003-08-14 Dai Nippon Printing Co., Ltd. Organic semiconductor structure, process for producing the same, and organic semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05173145A (en) * 1991-12-20 1993-07-13 Sharp Corp Production of oriented film for liquid crystal display device
JP2003068469A (en) * 2000-08-11 2003-03-07 Canon Inc Organic electroluminescence element and its manufacturing method
JP2002151267A (en) * 2000-11-15 2002-05-24 Fuji Photo Film Co Ltd Light-emitting element
JP2003215341A (en) * 2002-01-25 2003-07-30 Nippon Oil Corp Circularly polarizing plate and liquid crystal display
WO2003067667A1 (en) * 2002-02-08 2003-08-14 Dai Nippon Printing Co., Ltd. Organic semiconductor structure, process for producing the same, and organic semiconductor device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8039832B2 (en) 2005-07-14 2011-10-18 Yamanashi University Liquid crystalline organic semiconductor material, and semiconductor element or information recording medium using the same
WO2007007441A1 (en) * 2005-07-14 2007-01-18 Yamanashi University Liquid crystalline organic semiconductor material, and semiconductor element or information recording medium using the same
JPWO2007007441A1 (en) * 2005-07-14 2009-01-29 国立大学法人山梨大学 Liquid crystalline organic semiconductor material and semiconductor element or information recording medium using the same
KR100952031B1 (en) * 2005-07-14 2010-04-08 고꾸리쯔다이가꾸호오징 야마나시다이가꾸 Liquid crystalline organic semiconductor material, and semiconductor element or information recording medium using the same
US7965534B2 (en) 2006-05-31 2011-06-21 Yamanashi University Memory device, data recording method and IC tag
WO2007138883A1 (en) * 2006-05-31 2007-12-06 Yamanashi University Memory element, data recording method and ic tag
US8022401B2 (en) 2006-11-14 2011-09-20 Idemitsu Kosan, Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008059816A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008059817A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US8148720B2 (en) 2006-11-24 2012-04-03 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US8203139B2 (en) 2006-11-24 2012-06-19 Idemitsu Kosan Co., Ltd Organic thin film transistor and organic thin film light-emitting transistor using an organic semiconductor layer having an aromatic hydrocarbon group or an aromatic heterocyclic group in the center thereof
JP5308162B2 (en) * 2006-11-24 2013-10-09 出光興産株式会社 Organic thin film transistor and organic thin film light emitting transistor
US8207525B2 (en) 2006-12-04 2012-06-26 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light emitting transistor
US8330147B2 (en) 2006-12-04 2012-12-11 Idemitsu Kosan, Co., Ltd. Organic thin film transistor and organic thin film light emitting transistor having organic semiconductor compound with divalent aromatic hydrocarbon group and divalent aromatic heterocyclic group
JP5308164B2 (en) * 2006-12-04 2013-10-09 出光興産株式会社 Organic thin film transistor and organic thin film light emitting transistor
US7742112B2 (en) 2007-05-23 2010-06-22 Yamanashi University Memory device, data recording method, and IC tag

Similar Documents

Publication Publication Date Title
Minari et al. Controlled Self‐Assembly of Organic Semiconductors for Solution‐Based Fabrication of Organic Field‐Effect Transistors
Seo et al. Solution‐processed organic light‐emitting transistors incorporating conjugated polyelectrolytes
US7256064B2 (en) Organic semiconductor device
JP5465825B2 (en) Semiconductor device, semiconductor device manufacturing method, and display device
JP4234952B2 (en) Vertical organic transistor
Xu et al. Organic light-emitting diode with liquid emitting layer
JP2003187983A (en) Organic el transistor
TW200810111A (en) Transistor element and its fabrication process, light emitting element, and display
Liu et al. Interfacial electronic structures of buffer-modified pentacene/C60-based charge generation layer
Seo et al. Organic light-emitting field-effect transistors based upon pentacene and perylene
Bai et al. Orientation control of solution-processed organic semiconductor crystals to improve out-of-plane charge mobility
JP2009302328A (en) Organic transistor and organic semiconductor element using the same
JP2005142233A (en) Orientation control method of liquid crystal compound thin film, film texture of liquid crystal compound thin film formed by using the same, tft, and organic electroluminescent element
JP2004335557A (en) Vertical organic transistor
JP2004128028A (en) Vertical organic transistor
Kim et al. Molecular Weight‐Induced Structural Transition of Liquid‐Crystalline Polymer Semiconductor for High‐Stability Organic Transistor
KR101708847B1 (en) Organic light emitting diode display and method for manufacturing the same
Min et al. Synergistic effects of doping and thermal treatment on organic semiconducting nanowires
US20060255336A1 (en) Thin film transistor and method of manufacturing the same
Nakamura et al. Light emission from organic single-crystal field-effect transistors
WO2013122198A1 (en) Organic light-emitting transistor having second gate electrode
JP4030608B2 (en) Organic electroluminescent device and manufacturing method thereof
Zhou et al. A high mobility C60 field-effect transistor with an ultrathin pentacene passivation layer and bathophenanthroline/metal bilayer electrodes
Kajii et al. Top-gate type, ambipolar, phosphorescent light-emitting transistors utilizing liquid-crystalline semiconducting polymers by the thermal diffusion method
JP4673135B2 (en) Method for forming organic semiconductor layer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060925

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060925

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405