JP2005141143A - Tape type coated optical fiber - Google Patents

Tape type coated optical fiber Download PDF

Info

Publication number
JP2005141143A
JP2005141143A JP2003379781A JP2003379781A JP2005141143A JP 2005141143 A JP2005141143 A JP 2005141143A JP 2003379781 A JP2003379781 A JP 2003379781A JP 2003379781 A JP2003379781 A JP 2003379781A JP 2005141143 A JP2005141143 A JP 2005141143A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber core
tape
pmd
coated optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003379781A
Other languages
Japanese (ja)
Other versions
JP3977317B2 (en
Inventor
Hirotoshi Irisawa
大逸 入澤
Koichi Shintomi
浩一 新富
Norimitsu Takaishi
典光 高石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2003379781A priority Critical patent/JP3977317B2/en
Publication of JP2005141143A publication Critical patent/JP2005141143A/en
Application granted granted Critical
Publication of JP3977317B2 publication Critical patent/JP3977317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tape type coated optical fiber which solves problems that the conventional tape type coated optical fiber cannot satisfy PMD (polarization mode dispersion) characteristics because a plurality of coated optical fibers arranged into a tape are not disposed at appropriate intervals and because an overall coating layer covering the fibers is not controlled to proper thickness, which shows satisfied PMD characteristics, and which is small in size and excellent in mechanical strength. <P>SOLUTION: In the tape type coated optical fiber, the interval S μm between the coated optical fiber in both ends in the width direction and the adjacent optical fibers in the inner side of the fibers in the both ends in the width direction, the interval C μm of coated optical fibers adjacent to each other excluding the coated optical fiber on the both ends, and thickness t μm of the overall coating layer satisfy the relation expressed by 0<t≤7 or 25<t≤80, and 10≤(1.8×t-29)<S<(2.9×t+141)<200 and 10≤(1.8×t-29)<C<(2.9×t+141)<200. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光通信線路として用いられるテープ型光ファイバ心線に係るもので、特に通信速度の上限を決定する要因の一つである偏波モード分散(PMD:Polarization Mode Dispersion)を低減させることを意図したものである。   The present invention relates to a tape-type optical fiber used as an optical communication line, and in particular, to reduce Polarization Mode Dispersion (PMD), which is one of the factors that determine the upper limit of communication speed. Is intended.

近年のインターネット利用者の増加を一因とする通信量の急増に伴い、光ファイバ通信における速度の高速化が求められている。例えば40GBPS以上の高速な光ファイバ通信を行う場合に、従来の通信速度では問題にならなかった偏波モードによる分散、いわゆる偏波分散を考慮する必要がある。
偏波モード分散は、光伝送路に加わる応力や湿度変化によって光ファイバ内部に生じる不均一な応力による屈折率分布の変化によって発生する。
With the rapid increase in communication volume due to the increase in the number of Internet users in recent years, it is required to increase the speed in optical fiber communication. For example, when performing high-speed optical fiber communication of 40 GBPS or higher, it is necessary to consider so-called polarization dispersion, which is a polarization mode that has not been a problem at the conventional communication speed.
Polarization mode dispersion is caused by a change in the refractive index distribution due to non-uniform stress generated inside the optical fiber due to stress applied to the optical transmission line or changes in humidity.

テープ型光ファイバ心線では、光ファイバ心線を一括被覆してテープ状に形成する際に、一括被覆材の硬化収縮によって通常の光ファイバ心線よりも不均一な大きな応力がかかり、偏波モード分散値が大きくなる。   In a tape-type optical fiber, when the optical fiber core is collectively coated into a tape, a large amount of non-uniform stress is applied to the polarization due to curing shrinkage of the batch coating material, resulting in polarization. The mode dispersion value increases.

現在、偏波モード分散を補償する装置などの開発が進められているが、テープ型光ファイバ心線自身が生じる偏波モード分散を小さくする試みは行われていない。   Currently, development of an apparatus that compensates for polarization mode dispersion is underway, but no attempt has been made to reduce the polarization mode dispersion produced by the optical fiber core itself.

即ち、従来提案されているテープ型光ファイバ心線は、図15に示すように、複数の光ファイバ心線4を互いの側面が接する(K=0)ように配置して、その上に種々の厚さtで一括被覆層5を形成したものが殆どである。(例えば、特許文献1〜3)   That is, as shown in FIG. 15, a conventionally proposed tape-type optical fiber has a plurality of optical fibers 4 arranged so that their side surfaces are in contact with each other (K = 0), and various types of optical fiber cores are provided on the optical fiber. In most cases, the collective coating layer 5 is formed with a thickness t. (For example, Patent Documents 1 to 3)

また、従来の他のテープ型光ファイバ心線として、図16に示すように、複数の光ファイバ心線4の側面を所定間Kだけ隔離させて配置し、それらの上に所定厚さtの一括被覆層を形成したものが提案されている。(例えば特許文献4〜7)   Further, as another conventional tape-type optical fiber core, as shown in FIG. 16, the side surfaces of a plurality of optical fiber core wires 4 are separated from each other by a predetermined distance K, and a predetermined thickness t is formed thereon. Those having a collective coating layer have been proposed. (For example, Patent Documents 4 to 7)

この内、特許文献4の発明は、一括被覆層の厚さtがゼロで、光ファイバ心線間の間隔Kが50μmや100μmのものである。
また、特許文献5〜6の発明は、光ファイバ心線間の間隔Kが200μm以上に離すというものである。
また、特許文献7の発明は、光ファイバ心線間の間隔Kが50μmで、一括被覆層の厚さtが25μmというものである。
Among these, in the invention of Patent Document 4, the thickness t of the collective coating layer is zero, and the distance K between the optical fiber cores is 50 μm or 100 μm.
In addition, the inventions of Patent Documents 5 to 6 are such that the distance K between the optical fiber cores is set to 200 μm or more.
In the invention of Patent Document 7, the distance K between the optical fiber cores is 50 μm, and the thickness t of the collective coating layer is 25 μm.

特開平11−311726号公報JP 11-31726 A 特開2000−241685号公報Japanese Patent Application Laid-Open No. 2000-241685 特開2002−341201号公報JP 2002-341001 A 特開平5−80238号公報Japanese Patent Laid-Open No. 5-80238 特開2001−208944号公報JP 2001-208944 A 特開2002−250850号公報JP 2002-250850 A 特開平4−268522号公報JP-A-4-268522

しかしながら、特許文献1〜3に記載の発明は、各光ファイバ心線の側面が互いに密着しているため、一括被覆層を押出被覆した後に一括被覆層が硬化する際、互いの光ファイバ心線の相互が一括被覆層によって圧縮応力を受けることになり、PMD特性が悪化する欠点があった。   However, in the inventions described in Patent Documents 1 to 3, since the side surfaces of the optical fiber cores are in close contact with each other, when the collective coating layer is cured after extrusion coating the collective coating layer, the optical fiber core wires of each other Both of them are subjected to compressive stress by the collective coating layer, and the PMD characteristics are deteriorated.

また、特許文献4に記載の発明は、一括被覆層の厚さtがゼロであり、一括被覆層が光ファイバ心線の側面にのみに存在するため、一括被覆層が光ファイバ心線の外周の全体を包み込む構成となっていなく、PMD特性が悪化する欠点があった。   In the invention described in Patent Document 4, since the thickness t of the collective coating layer is zero and the collective coating layer exists only on the side surface of the optical fiber core, the collective coating layer is the outer periphery of the optical fiber core. In other words, the PMD characteristics are deteriorated.

また、特許文献5、6の発明は、光ファイバ心線の間隔を200μmと大きく離れた構造であるために、テープ型光ファイバ心線が嵩張り、これらの複数を集合させて光ケーブル化させたときに光ケーブルを小型に形成できない欠点があった。   Further, since the inventions of Patent Documents 5 and 6 have a structure in which the distance between the optical fiber cores is greatly separated as 200 μm, the tape-type optical fiber cores are bulky, and a plurality of these optical fibers are assembled into an optical cable. At times, optical cables cannot be made small.

また、特許文献7に記載の発明は、光ファイバ心線の間隔が50μmで一括被覆層の厚さtが25μmと比較的適切であるが、もう1歩、一括被覆層の厚さが大きく、PMD値が高めで、しかも各光ファイバ心線間でのPMD値が異なるという欠点があった。   In addition, the invention described in Patent Document 7 is relatively appropriate with the interval between the optical fiber cores being 50 μm and the thickness t of the collective coating layer being 25 μm, but one more step, the thickness of the collective coating layer is large, There was a drawback that the PMD value was high and the PMD value was different between the optical fiber cores.

本発明は、かかる点に鑑みなされたもので、4以上の光ファイバ心線が、その側面を互いに対向して、平面上に互いに間隔を隔てて平行に配設され、これら光ファイバ心線の外周に被覆層がテープ状に形成されて構成されたテープ型光ファイバ心線において、幅方向の両端に位置する光ファイバ心線と前記両端に位置する光ファイバ心線の幅方向内側に隣あう光ファイバ心線との間隔をSμm、前記両端に位置する光ファイバ心線以外の光ファイバ心線が相互に隣あう間隔をCμm、、一括被覆層の厚さをtμmとしたときに、
0<t<=7、または25<t<=80であり
10≦(1.8×t-29)<S<(2.9×t+141)<200
10≦(1.8×t-29)<C<(2.9×t+141)<200
であることを特徴とする。
The present invention has been made in view of the above points, and four or more optical fiber cores are arranged in parallel on the plane with the side surfaces facing each other and spaced apart from each other. In a tape-type optical fiber having a coating layer formed on the outer periphery in a tape shape, the optical fiber cores located at both ends in the width direction are adjacent to the inside in the width direction of the optical fiber cores located at both ends. When the distance between the optical fiber cores is S μm, the distance between the optical fiber cores other than the optical fiber cores located at both ends is C μm, and the thickness of the collective coating layer is t μm,
0 <t <= 7 or 25 <t <= 80
10 ≦ (1.8 × t−29) <S <(2.9 × t + 141) <200
10 ≦ (1.8 × t-29) <C <(2.9 × t + 141) <200
It is characterized by being.

他の本発明は、上記本発明において、(1.9×t-7)μm≦C≦(2.5×t+100)μm(1.9×t-7)μm≦S≦(2.5×t+100)μmであることを特徴とする。   Another aspect of the present invention is the above-described present invention, wherein (1.9 × t−7) μm ≦ C ≦ (2.5 × t + 100) μm (1.9 × t−7) μm ≦ S ≦ (2.5 × t + 100) μm It is characterized by being.

更に他の本発明は、上記本発明において、C=2×t+32μm、S=2×t+32μmであることを特徴とする。   Still another aspect of the present invention is characterized in that, in the present invention, C = 2 × t + 32 μm and S = 2 × t + 32 μm.

本発明は、上述により、PMD特性に優れ、小型で、機械的強度に優れたテープ型光ファイバ心線を提供することができる。   As described above, the present invention can provide a tape-type optical fiber having excellent PMD characteristics, a small size, and excellent mechanical strength.

本発明者は本発明に至るに先立ち、テープ型光ファイバ心線における偏波モード分散値が一括被覆材の厚さや光ファイバ心線の間隔によってどのように変化するかを以下の実験で行った。   Prior to reaching the present invention, the present inventor conducted the following experiment to determine how the polarization mode dispersion value in a tape-type optical fiber changes depending on the thickness of the cover material and the distance between the optical fiber cores. .

図1は実験に使用したテープ型4心光ファイバ心線を示すものであり、1は石英製の裸光ファイバ、2はその上に被覆されたプラスチック樹脂製のプライマリ層、3はプライマリ層2の上に被覆されたプラスチック樹脂製のセカンダリ層であり、これらにより光ファイバ心線4が形成されている。5は光ファイバ心線の側面が互いに対向し、所定間隔隔てて一列に配置された4本の光ファイバ心線に共通に被覆された熱可塑性樹脂の一括被覆層である。   FIG. 1 shows a tape type four-core optical fiber core wire used in the experiment. 1 is a bare optical fiber made of quartz, 2 is a primary layer made of plastic resin coated thereon, and 3 is a primary layer 2. The optical fiber core wire 4 is formed by these layers. Reference numeral 5 denotes a batch coating layer of a thermoplastic resin that is commonly coated on four optical fiber cores that are arranged in a row at predetermined intervals with the side surfaces of the optical fiber cores facing each other.

裸光ファイバ1は直径が125μmに形成されている。裸光ファイバ1は図示されていないが、軸心部に配置された所定屈折率のコア層と、その周りに前記屈折率よりも小さなクラット層とで構成されている。プライマリ層2は直径が205μmに形成され、セカンダリ層3は直径が256μmに形成されている。また、プライマリ層2のヤング率はセカンダリ層3のヤング率よりも小さいもので構成され、裸光ファイバ1を外力から保護する構造になっている。この光ファイバ心線4はノンゼロ型光ファイバ(non zero dispersion shift fiber)心線としての一般的なものである。   The bare optical fiber 1 has a diameter of 125 μm. Although the bare optical fiber 1 is not shown in the figure, it is composed of a core layer having a predetermined refractive index disposed in the axial center portion and a clat layer having a smaller refractive index around the core layer. The primary layer 2 has a diameter of 205 μm, and the secondary layer 3 has a diameter of 256 μm. In addition, the Young's modulus of the primary layer 2 is configured to be smaller than the Young's modulus of the secondary layer 3, and the bare optical fiber 1 is protected from external force. This optical fiber core 4 is a general one as a non-zero optical fiber (non zero dispersion shift fiber) core.

4本の光ファイバ心線4は、幅方向の両端に位置する光ファイバ心線(以下「サイド光ファイバ心線」という)と前記サイド光ファイバ心線の幅方向内側に隣あう光ファイバ心線との間隔をS(μm)(図1中S寸法参照、以下「サイド光ファイバ間隔」という)、前記両端に位置する光ファイバ心線以外の光ファイバ心線(以下「センター光ファイバ心線」という)が相互に隣あう間隔をC(μm)(図1中C寸法参照、以下「センター光ファイバ間隔」という)、一括被覆層の厚さをtμmとして構成されており、本発明においては、一括被覆層の厚さ(以下「リボン厚さ」という)tの値を種々変化させて実験を行った。測定には、光偏波アナライザ(Agilent社製8509B)を使用し、ジョーンズマトリックス法で偏波モード分散を測定した。   The four optical fiber cores 4 are optical fiber cores positioned at both ends in the width direction (hereinafter referred to as “side optical fiber cores”) and optical fiber cores adjacent to the inner side in the width direction of the side optical fiber cores. And S (μm) (see S dimension in FIG. 1, hereinafter referred to as “side optical fiber spacing”), optical fiber cores other than the optical fiber cores positioned at both ends (hereinafter referred to as “center optical fiber core wires”) Is defined as C (μm) (see C dimension in FIG. 1, hereinafter referred to as “center optical fiber interval”), and the thickness of the collective coating layer is t μm. Experiments were performed by varying the thickness t of the collective coating layer (hereinafter referred to as “ribbon thickness”) t. For the measurement, an optical polarization analyzer (Agilent 8509B) was used, and polarization mode dispersion was measured by the Jones matrix method.

図2及び、図3は一括被覆材の厚さtを32μmとした場合にセンター光ファイバ心線間隔Cとサイド光ファイバ心線間隔Sを変えて作製したテープ型4心光ファイバ心線の偏波モード分散分布がどのように変化するかの結果を示したもので、図2はセンター光ファイバ心線の特性を、図3はサイド光ファイバ心線の特性を示す。このことから、サイド光ファイバ心線よりもセンター光ファイバ心線の方が全ての間隔において、偏波モード分散値が大きくなっているのがわかる。従って、テープ型光ファイバ心線では、センター光ファイバ心線の偏波モード分散を低くするような構造を取ることによって、テープ型光ファイバ心線全体としての偏波モード分散値を小さくすることができる。   2 and 3 show the deviation of the tape type four-core optical fiber produced by changing the center optical fiber core spacing C and the side optical fiber core spacing S when the thickness t of the collective covering material is 32 μm. The results of how the wave mode dispersion distribution changes are shown. FIG. 2 shows the characteristics of the center optical fiber and FIG. 3 shows the characteristics of the side optical fiber. From this, it is understood that the polarization mode dispersion value is larger in the center optical fiber core wire than in the side optical fiber core wire at all intervals. Therefore, in the tape type optical fiber, the polarization mode dispersion value of the entire tape type optical fiber can be reduced by adopting a structure that lowers the polarization mode dispersion of the center optical fiber. it can.

図4〜8は、それぞれテープ型光ファイバ心線の一括被覆材の厚さtを16μm、32μm、48μm、64μm、80μmに変化させた場合のセンター光ファイバ心線の偏波モード分散分布を示す。この分布において最も窪んでいる部分が偏波モード分散の最小値となる部分である。一括被覆材の厚さtが大きくなるほどPMD分布が小さくなっている。またPMDの最小値は一括被覆層が厚くなるにつれて、グラフ上で右側(間隔が狭い部分)から左側(間隔が広い部分)へ移動していることがわかる。   4 to 8 show the polarization mode dispersion distributions of the center optical fiber core when the thickness t of the collective covering material of the tape optical fiber core is changed to 16 μm, 32 μm, 48 μm, 64 μm, and 80 μm, respectively. . The most depressed portion in this distribution is the portion where the polarization mode dispersion is minimum. The PMD distribution decreases as the thickness t of the collective covering material increases. It can also be seen that the minimum value of PMD shifts from the right side (part with a narrow interval) to the left side (part with a wide interval) on the graph as the collective coating layer becomes thicker.

図9は前記光ファイバ心線の偏波モード分散分布から得られたリボン厚さtによるPMDの最小値の抽出した近似曲線を示す(近似曲線:PMD最小値=4.82×10-1−1.65×10-2×t+3.06×10-4×t2−2.94×10-6×t3+1.13×10-8×t4)。この式からリボン厚さによって変化するPMD値を推定することができる。 FIG. 9 shows an approximate curve in which the minimum value of PMD is extracted based on the ribbon thickness t obtained from the polarization mode dispersion distribution of the optical fiber (approximate curve: PMD minimum value = 4.82 × 10 −1 −1.65 ×). 10 −2 × t + 3.06 × 10 −4 × t 2 −2.94 × 10 −6 × t 3 + 1.13 × 10 −8 × t 4 ). From this equation, the PMD value that varies depending on the ribbon thickness can be estimated.

図10は上記リボン厚さtに対するPMD値の最小値の特性図を示したものである。このときPMD値の最小値はすべてセンター光ファイバ心線間隔Cとサイド光ファイバ心線間隔Sとが等しい(C=S)場合であった。この図から、PMDが最小となる最適間隔はリボン厚さと比例関係にあることが判った。   FIG. 10 is a characteristic diagram of the minimum PMD value with respect to the ribbon thickness t. At this time, the minimum PMD values were all when the center optical fiber core interval C and the side optical fiber core interval S were equal (C = S). From this figure, it was found that the optimum interval at which PMD is minimized is proportional to the ribbon thickness.

図11は図4〜8の各特性から得られたPMD値が最小となるセンター光ファイバ心線間隔Cに対してサイド間隔Sが変化した場合の偏波モード特性を示すものである。この図11の特性は、PMD値が最小となる近傍において、サイド光ファイバ心線間隔Sが変化した場合、PMD値が緩やかに変化していることを示している。   FIG. 11 shows the polarization mode characteristics when the side interval S changes with respect to the center optical fiber core interval C where the PMD value obtained from each characteristic of FIGS. The characteristics shown in FIG. 11 indicate that the PMD value changes gently when the side optical fiber spacing S changes in the vicinity where the PMD value is minimized.

このことからPMD値が最小となるような光ファイバ心線間隔をとらなくても、それよりも狭い間隔で同程度のPMD値を得ることが可能であることがわかる。即ち、PMD値の低減とテープ型光ファイバ心線の小型化の両立を図ることができる。   From this, it is understood that the same PMD value can be obtained at a narrower interval without taking the optical fiber core wire interval that minimizes the PMD value. That is, it is possible to achieve both a reduction in PMD value and a reduction in the size of the tape-type optical fiber.

これを具体的な数値で見ると、図9に示したPMD分布からその最小値が5、10%増となる光ファイバ心線間隔の範囲を図12、図13に示す。   When this is seen in terms of specific numerical values, the ranges of the optical fiber core distances in which the minimum value is increased by 5 or 10% from the PMD distribution shown in FIG. 9 are shown in FIGS.

このとき各図の上限から下限までの領域内がリボン厚さによってテープ型光ファイバ心線がとることができる光ファイバ心線間隔は以下のC、Sになる。   At this time, the distance between the optical fiber cores that can be taken by the tape-type optical fiber in the region from the upper limit to the lower limit of each figure depending on the ribbon thickness is C and S below.

図12 光ファイバ心線間隔 上限 近似直線:C=S=2.5×t+100
下限 近似直線:C=S=1.9×t-7
Fig. 12 Optical fiber core interval Upper limit Approximate straight line: C = S = 2.5 × t + 100
Lower limit approximate straight line: C = S = 1.9 × t-7

図13 光ファイバ心線間隔 上限 近似直線:C=S=2.9×t+141
下限 近似直線:C=S=1.8×t-22
Fig. 13 Optical fiber core interval Upper limit Approximate straight line: C = S = 2.9 × t + 141
Lower limit approximate straight line: C = S = 1.8 × t-22

以上の結果から、テープ型光ファイバ心線の一括被覆層の硬化収縮によって生じるPMD値を小さくする構造の範囲が明らかになった。   From the above results, the range of the structure in which the PMD value generated by the curing shrinkage of the batch coating layer of the tape type optical fiber core wire is made clear is clarified.

この結果から、本発明はかかる最適なPMD値から10%の範囲でるが、かかる10%の範囲においても、光ファイバ心線間隔が200μm以上であったり、リボン厚さtが20μm以上であると、小型化に寄与することができず、また、光ファイバ心線間隔が10μm以下であったり、リボン厚さtが10μm以下であると、テープ型光ファイバ心線の機械的強度が弱いものになるので、この範囲を除外した図14に示す右下がり斜線を施した範囲である。   From this result, the present invention is in the range of 10% from the optimum PMD value, but even in such a range of 10%, the optical fiber core interval is 200 μm or more, and the ribbon thickness t is 20 μm or more. If the distance between the optical fiber cores is 10 μm or less or the ribbon thickness t is 10 μm or less, the mechanical strength of the tape-type optical fiber is weak. Therefore, it is the range where the downward sloping line shown in FIG.

また、他の本発明は上記範囲の内、最適なPMD値から5%内の範囲である。図14には、この範囲を左下下がりの斜線で示す。これにより、より一層、低PMD値を有するテープ型光ファイバ心線を提供することができる。
また、更に他の本発明は、上記範囲において、C=2×t+32μm、S=2×t+32μmであることを特徴とする。これにより更に低PMD値を確保するテープ型光ファイバ心線を提供することができる。
Moreover, other this invention is the range within 5% from the optimal PMD value within the said range. In FIG. 14, this range is indicated by a diagonal line with a lower left corner. Thereby, it is possible to provide a tape-type optical fiber having a low PMD value.
Yet another aspect of the present invention is characterized in that, in the above range, C = 2 × t + 32 μm and S = 2 × t + 32 μm. As a result, it is possible to provide a tape-type optical fiber core that further secures a low PMD value.

なお、本発明の上記実施の形態では、特定径の光ファイバ心線及びこの光ファイバ心線が4心の場合のテープ型光ファイバ心線のみで説明しているが、本発明は、他の形状の光ファイバ心線及び他の多くの光ファイバ心線を集合したテープ型光ファイバ心線に適用することができる。   In the above-described embodiment of the present invention, only the optical fiber core wire of a specific diameter and the tape type optical fiber core wire in the case where this optical fiber core wire is four cores have been described. The present invention can be applied to a tape-type optical fiber core in which an optical fiber core having a shape and many other optical fiber cores are assembled.

本発明を発明するに当り用いたテープ型光ファイバ心線の端面図。The end view of the tape type optical fiber core wire used in inventing the present invention. リボン厚さtが32μm時におけるセンター光ファイバ心線間隔と、サイド光ファイバ心線間隔と、センター光ファイバ心線のPMDとの関係を示す特性図。The characteristic view which shows the relationship between the center optical fiber core wire | interval when ribbon thickness t is 32 micrometers, the side optical fiber core wire | interval, and PMD of a center optical fiber core wire. リボン厚さtが32μm時におけるセンター光ファイバ心線間隔と、サイド光ファイバ心線間隔と、サイド光ファイバ心線のPMDとの関係を示す特性図。The characteristic view which shows the relationship between the center optical fiber core wire | line space | interval when ribbon thickness t is 32 micrometers, the side optical fiber core wire space | interval, and PMD of a side optical fiber core wire. リボン厚さtが16μm時におけるセンター光ファイバ心線間隔と、サイド光ファイバ心線間隔と、センター光ファイバ心線のPMDとの関係を示す特性図。The characteristic view which shows the relationship between the center optical fiber core wire | line space | interval in case ribbon thickness t is 16 micrometers, the side optical fiber core wire space | interval, and PMD of a center optical fiber core wire. リボン厚さtが32μm時におけるセンター光ファイバ心線間隔と、サイド光ファイバ心線間隔と、センター光ファイバ心線のPMDとの関係を示す特性図。The characteristic view which shows the relationship between the center optical fiber core wire | interval when ribbon thickness t is 32 micrometers, the side optical fiber core wire | interval, and PMD of a center optical fiber core wire. リボン厚さtが48μm時におけるセンター光ファイバ心線間隔と、サイド光ファイバ心線間隔と、センター光ファイバ心線のPMDとの関係を示す特性図。The characteristic view which shows the relationship between the center optical fiber core wire | line space | interval in case ribbon thickness t is 48 micrometers, the side optical fiber core wire space | interval, and PMD of a center optical fiber core wire. リボン厚さtが64μm時におけるセンター光ファイバ心線間隔と、サイド光ファイバ心線間隔と、センター光ファイバ心線のPMDとの関係を示す特性図。The characteristic view which shows the relationship between the center optical fiber core wire | line space | interval in case ribbon thickness t is 64 micrometers, the side optical fiber core wire space | interval, and PMD of a center optical fiber core wire. リボン厚さtが80μm時におけるセンター光ファイバ心線間隔と、サイド光ファイバ心線間隔と、センター光ファイバ心線のPMDとの関係を示す特性図。The characteristic view which shows the relationship between the center optical fiber core wire | line space | interval in case ribbon thickness t is 80 micrometers, the side optical fiber core wire space | interval, and PMD of a center optical fiber core wire. 図4〜8に示される特性の最小PMDと、リボン厚さtとの関係を示す特性図。The characteristic view which shows the relationship between minimum PMD of the characteristic shown by FIGS. 4-8, and ribbon thickness t. リボン厚さtに対する最小PMD値を示す光ファイバ心線間隔を示す特性図。The characteristic view which shows the optical fiber core wire space | interval which shows the minimum PMD value with respect to ribbon thickness t. 図4〜8の各特性から得られたPMD値が最小となるセンター光ファイバ心線間隔Cに対してサイド光ファイバ心線間隔Sが変化した場合の偏波モード特性図。FIG. 9 is a polarization mode characteristic diagram when the side optical fiber core spacing S changes with respect to the center optical fiber core spacing C at which the PMD value obtained from each characteristic of FIGS. 最良PMD値から±10%の範囲を示すリボン厚さtに対する光ファイバ心線間隔の範囲の範囲を示す特性図。The characteristic view which shows the range of the range of the optical fiber core wire distance with respect to ribbon thickness t which shows the range of +/- 10% from the best PMD value. 最良PMD値から±5%の範囲を示すリボン厚さtに対する光ファイバ心線間隔の範囲の範囲を示す特性図。The characteristic view which shows the range of the range of the optical fiber core wire space | interval with respect to ribbon thickness t which shows the range of +/- 5% from the best PMD value. 本発明で用いられる分散補償光ファイバの波長に対する分散の特性図。The dispersion | distribution characteristic figure with respect to the wavelength of the dispersion compensation optical fiber used by this invention. 従来の一例を示す端面図。The end view which shows an example of the past. 従来の他の一例を示す端面図。The end view which shows another example of the past.

符号の説明Explanation of symbols

1 裸光ファイバ
2 プライマリ層
3 セカンダリ層
4 光ファイバ心線
5 一括被覆層
DESCRIPTION OF SYMBOLS 1 Bare optical fiber 2 Primary layer 3 Secondary layer 4 Optical fiber core wire 5 Collective coating layer

Claims (3)

4本以上の光ファイバ心線が、その側面を互いに対向して、平面上に互いに間隔を隔てて平行に配設され、これら光ファイバ心線の外周に被覆層がテープ状に形成されて構成されたテープ型光ファイバ心線において、幅方向の両端に位置する光ファイバ心線と前記両端に位置する光ファイバ心線の幅方向内側に隣あう光ファイバ心線との間隔をSμm、前記両端に位置する光ファイバ心線以外の光ファイバ心線が相互に隣あう間隔をCμm、、一括被覆層の厚さをtμmとしたときに、
0<t<=7、または25<t<=80であり
10≦(1.8×t-29)<S<(2.9×t+141)<200
10≦(1.8×t-29)<C<(2.9×t+141)<200
であることを特徴とするテープ型光ファイバ心線。
Four or more optical fiber cores are arranged with their side surfaces facing each other and arranged in parallel on the plane at intervals, and a coating layer is formed in a tape shape on the outer periphery of these optical fiber core wires In the tape type optical fiber, the distance between the optical fiber cores located at both ends in the width direction and the optical fiber core wires adjacent to the inner side in the width direction of the optical fiber core wires located at both ends is S μm, When the spacing between adjacent optical fiber cores other than the optical fiber cores positioned at C is C μm, and the thickness of the collective coating layer is t μm,
0 <t <= 7 or 25 <t <= 80
10 ≦ (1.8 × t−29) <S <(2.9 × t + 141) <200
10 ≦ (1.8 × t-29) <C <(2.9 × t + 141) <200
A tape-type optical fiber, characterized by being.
(1.9×t-7)μm≦C≦(2.5×t+100)μm
(1.9×t-7)μm≦S≦(2.5×t+100)μm
であることを特徴とする請求項1に記載のテープ型光ファイバ心線。
(1.9 × t-7) μm ≦ C ≦ (2.5 × t + 100) μm
(1.9 × t-7) μm ≦ S ≦ (2.5 × t + 100) μm
The tape-type optical fiber according to claim 1, wherein
C=2×t+32μm
S=2×t+32μm
であることを特徴とする請求項1に記載のテープ型光ファイバ心線。
C = 2 × t + 32μm
S = 2 × t + 32μm
The tape-type optical fiber according to claim 1, wherein
JP2003379781A 2003-11-10 2003-11-10 Tape type optical fiber Expired - Fee Related JP3977317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003379781A JP3977317B2 (en) 2003-11-10 2003-11-10 Tape type optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003379781A JP3977317B2 (en) 2003-11-10 2003-11-10 Tape type optical fiber

Publications (2)

Publication Number Publication Date
JP2005141143A true JP2005141143A (en) 2005-06-02
JP3977317B2 JP3977317B2 (en) 2007-09-19

Family

ID=34689724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003379781A Expired - Fee Related JP3977317B2 (en) 2003-11-10 2003-11-10 Tape type optical fiber

Country Status (1)

Country Link
JP (1) JP3977317B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114486A1 (en) * 2006-03-31 2007-10-11 The Furukawa Electric Co., Ltd. Optical fiber ribbon core and optical fiber cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114486A1 (en) * 2006-03-31 2007-10-11 The Furukawa Electric Co., Ltd. Optical fiber ribbon core and optical fiber cable
US7555183B2 (en) 2006-03-31 2009-06-30 The Furukawa Electric Co., Ltd. Optical fiber ribbon core and optical fiber cable

Also Published As

Publication number Publication date
JP3977317B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
JP5855351B2 (en) Multi-core fiber
JP4612583B2 (en) Optical fiber filter for suppression of amplified spontaneous emission
KR20030061676A (en) Optical fiber, optical fiber tape, optical cable, and optical connector with optical fiber
CN106662705B (en) Optical fiber
WO2021090913A1 (en) Optical fiber
WO2016190228A1 (en) Multi-core fiber
JP2008090040A (en) Coated optical fiber ribbon
JP6334582B2 (en) Multi-core fiber
WO2013051481A1 (en) Optical fiber
JP3977317B2 (en) Tape type optical fiber
JPH08129122A (en) Optical fiber ribbon
JPWO2021090912A1 (en) Optical fiber
US20230185017A1 (en) Multi-core optical fiber and multi-core optical fiber cable
JP6096268B2 (en) Multi-core fiber
JP2009008850A (en) Dual guide optical fiber
JP2005321645A (en) Coated optical fiber ribbon
JP2013109003A (en) Optical cable
JP4134758B2 (en) Metal optical composite cable
JP2020201360A (en) Multi-core fiber
WO2018168170A1 (en) Multi-core fiber
JP2020194065A (en) Optical fiber ribbon and optical fiber cable
EP4206763A1 (en) Multi-core optical fiber
JPH11305086A (en) Optical fiber unit and optical fiber cable using the same
JP4258653B2 (en) Optical fiber cable slot and optical fiber cable
JP2005257961A (en) Tape slot type optical cable

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3977317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees