JP2005141009A - Optical transmission medium having improved quantity of emitted light - Google Patents
Optical transmission medium having improved quantity of emitted light Download PDFInfo
- Publication number
- JP2005141009A JP2005141009A JP2003377606A JP2003377606A JP2005141009A JP 2005141009 A JP2005141009 A JP 2005141009A JP 2003377606 A JP2003377606 A JP 2003377606A JP 2003377606 A JP2003377606 A JP 2003377606A JP 2005141009 A JP2005141009 A JP 2005141009A
- Authority
- JP
- Japan
- Prior art keywords
- transmission medium
- optical transmission
- fiber
- liquid
- fiber bundle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
本発明は、出射光量の改善された光伝送媒体に関し、さらに詳しくは、製造工程でのライン状検査装置の照明用あるいは光硬化性樹脂の硬化用照明等に用いられる光伝送媒体の改良に関する。 The present invention relates to an optical transmission medium having an improved amount of emitted light, and more specifically to an improvement in an optical transmission medium used for illumination of a line inspection apparatus or curing of a photocurable resin in a manufacturing process.
近年、光源からの出射光を伝送する光伝送媒体として、可撓性の中空筒状容器に透明液体を封入して構成された液体ファイバが使用され始めている。この理由は、該液体ファイバの低価格性、高屈曲性、さらには設置の容易性に負うものである。
本出願人は、先に、図3〜図4に示すような光伝送体媒体を提案した。この提案によれば、先ず、一方の端面が円形に集束された光ファイバ素線(2a)束の他方の端に向かって該素線束が独立した少なくとも2群に分岐され且つ個々の分岐側端部(3b)の端面も円形であるような片端分岐の光ファイバ素線束が用いられる(図3)。そして、該素線束の分岐側端部(3b)に装着されたコネクタ(6)内の取付スペース(7)に、図4に示す液体ファイバ(4)の一方の封止栓(4c)の突出部を挿入・接続するものである(特願2003−153812号)。
しかしながら、このような接続方式では、光ファイバ素線束の分岐側端部(3b)の端面と液体ファイバ(4)の封止栓(4c)の端面とが完全に接触するには至らない。そのため、コネクタ(6)内部での接続ロス、さらには液体ファイバ(4)の封止栓(4c)自体の挿入損失により、光量不足になるという問題が発生していた。
In recent years, as an optical transmission medium for transmitting light emitted from a light source, a liquid fiber configured by sealing a transparent liquid in a flexible hollow cylindrical container has begun to be used. This is because of the low cost, high flexibility, and ease of installation of the liquid fiber.
The present applicant has previously proposed an optical transmission medium as shown in FIGS. According to this proposal, first, the bundle of optical fibers (2a) bundled in a circular shape at one end face is branched into at least two independent groups and the individual branch side ends are separated. A single-end branched optical fiber bundle in which the end surface of the portion (3b) is also circular is used (FIG. 3). Then, one sealing plug (4c) of the liquid fiber (4) shown in FIG. 4 protrudes into the mounting space (7) in the connector (6) attached to the branch side end (3b) of the wire bundle. Part is inserted and connected (Japanese Patent Application No. 2003-153812).
However, in such a connection method, the end face of the branch side end (3b) of the optical fiber bundle and the end face of the sealing plug (4c) of the liquid fiber (4) do not come into complete contact. Therefore, there has been a problem that the amount of light is insufficient due to the connection loss inside the connector (6) and the insertion loss of the sealing plug (4c) itself of the liquid fiber (4).
したがって、本発明の課題は、光ファイバ繊維束と液体ファイバとの接続部(コネクタ部)における接続損失および挿入損失の問題を解消することにより、所望の出射光量が得られる光伝送媒体を提供することにある。 Accordingly, an object of the present invention is to provide an optical transmission medium capable of obtaining a desired amount of emitted light by eliminating the problems of connection loss and insertion loss at a connection portion (connector portion) between an optical fiber bundle and a liquid fiber. There is.
本発明者等は、光ファイバ素線束と液体ファイバとの接続部において、光ファイバ素線束の端部を液体ファイバとの直接接続部材、ひいては液体ファイバにおける液体封止栓として機能させることにより、従来の問題を容易に解消するに至った。 The inventors of the present invention have made a conventional technique by causing the end of the optical fiber bundle to function as a direct connection member with the liquid fiber, and thus a liquid sealing plug in the liquid fiber, at the connection between the optical fiber bundle and the liquid fiber. The problem was solved easily.
本発明によれば、従来のように付帯的なコネクタを必要とすることなく、光ファイバ素線束と液体ファイバとが直接接続されるので、従来のような接続ロスおよび挿入ロスによる光量不足の問題が解消される。 According to the present invention, since an optical fiber bundle and a liquid fiber are directly connected without requiring an incidental connector as in the prior art, there is a problem of insufficient light quantity due to connection loss and insertion loss as in the past. Is resolved.
以下、本発明を、片端2分岐の光ファイバ素線束(以下、“2分岐ファイバ束”と略記する)の分岐側のそれぞれの端部と液体ファイバの一方の端部とを一体化した例について、図面を参照しながら説明する。
図1は、本発明の光伝送媒体を示す縦断面図である。
図2は、本発明の光伝送媒体の別の態様を示す縦断面図である。
図3は、従来のコネクタ付き2分岐ファイバ束の縦断面図である。
図4は、上記コネクタに嵌合される液体ファイバの縦断面図である。
図1において、(1)は2分岐ファイバ束、(2a)は2分岐ファイバ束(1)を構成する光ファイバ素線、(3a)は光ファイバ素線束の集束側端部で、その端面は単一の円形端面を形成している。さらに、(3b)は2分岐ファイバ束(1)の分岐側端部で、その端面は集束側端部(3a)の端面より小径の円形を呈している。(4)は液体ファイバ、(4a)は液体ファイバ(4)のコアを形成する透明液体、(4b)は液体ファイバ(4)のクラッドを形成する中空筒状容器、そして、(4c)は封止栓である。この態様においては、2分岐ファイバ束(1)の集束側端部(3a)が該中空筒状容器(4b)の端部中空域(図面に向かって左端)に圧入されて、接続部を形成していることが特徴である。
図2において、符号(1)〜(4c)までは、図1の場合と同じである。ここでは、2分岐ファイバ束(1)の分岐側端部(3b)は止め金(5)で緊締された状態で中空筒状体の一方の端部に圧入されている。
また、図3〜図4については冒頭で述べたように、符号(1)〜(4c)までは図1〜図2の場合と同じである。図3では、付帯的装着具として、2分岐ファイバ束(1)の分岐側端部(3b)にコネクタ(6)が装着されている。また、(7)はコネクタ(6)内部に設けられた取付スペースである。
図4においては、液体ファイバ(4)の両端部に、透明液体(4a)を封入するための封止栓(4c)が設けられている。そして、この封止栓(4c)の一方の突出端部が、図3に示した取付スペース(7)に嵌合される。
なお、以上の例においては通常、集束側端部(3a)の端面に光源装置(図示せず)の出射部が対向設置され、したがって、図面に向かって右端の封止栓(4c)の端面が出射端面となる。もちろん、逆の場合もある。
Hereinafter, the present invention is an example in which each end of the branch side of one-end two-branch optical fiber bundle (hereinafter abbreviated as “two-branch fiber bundle”) and one end of the liquid fiber are integrated. This will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing an optical transmission medium of the present invention.
FIG. 2 is a longitudinal sectional view showing another aspect of the optical transmission medium of the present invention.
FIG. 3 is a longitudinal sectional view of a conventional two-branch fiber bundle with a connector.
FIG. 4 is a longitudinal sectional view of a liquid fiber fitted to the connector.
In FIG. 1, (1) is a two-branch fiber bundle, (2a) is an optical fiber strand constituting the two-branch fiber bundle (1), (3a) is a focusing side end of the optical fiber strand, and its end face is A single circular end face is formed. Further, (3b) is a branch side end portion of the bifurcated fiber bundle (1), and its end surface has a circular shape with a smaller diameter than the end surface of the focusing side end portion (3a). (4) is a liquid fiber, (4a) is a transparent liquid forming the core of the liquid fiber (4), (4b) is a hollow cylindrical container forming the cladding of the liquid fiber (4), and (4c) is a seal. It is a stopcock. In this embodiment, the converging side end (3a) of the bifurcated fiber bundle (1) is press-fitted into the end hollow region (left end as viewed in the drawing) of the hollow cylindrical container (4b) to form a connection portion. It is a feature.
In FIG. 2, the reference numerals (1) to (4c) are the same as those in FIG. Here, the branch side end portion (3b) of the two-branch fiber bundle (1) is press-fitted into one end portion of the hollow cylindrical body in a state of being fastened by a stopper (5).
3 to 4 are the same as those in FIGS. 1 to 2 as described at the beginning. In FIG. 3, the connector (6) is attached to the branch side end (3b) of the two-branch fiber bundle (1) as an incidental attachment tool. (7) is a mounting space provided inside the connector (6).
In FIG. 4, sealing plugs (4c) for sealing the transparent liquid (4a) are provided at both ends of the liquid fiber (4). Then, one protruding end of the sealing plug (4c) is fitted into the mounting space (7) shown in FIG.
In the above example, the light emitting device (not shown) is normally disposed opposite to the end surface of the converging side end (3a). Therefore, the end surface of the right end sealing plug (4c) as viewed in the drawing. Becomes the exit end face. Of course, the reverse is also true.
本発明において、2分岐ファイバ束(1)の集束側端部(3b)の端面が円形であることは、極めて重要である。なぜなら、光ファイバ光源装置では、光源の出射部の形状は一般に円形であるため、集束側端部(3b)の円形端面が光源に対峙するとき、光源からの出射光が最も効率良く入射されるからである。さらに、この端面を、逆に出射端面として利用する際にも、円形の照射スポットが形成され、使い勝手が改善される。同様なことは、分岐側端部(3b)の端面についても言える。
2分岐ファイバ束(1)自体は、2本の光ファイバ素線束を用意し、これらの一方の端部同士を集束して単一の円形端面を形成するか、あるいは一方の端
面が円形に集束された単独の光ファイバ素線束を用意し、その他方の端に向かって該素線束を独立した少なくとも2群に分岐することにより得られる。
本発明の好ましい態様においては、2分岐ファイバ束(1)の集束側端部(3a)の端面近傍および分岐側端部(3b)の端面近傍が熱融着や接着剤により集束される。特に、熱融着は光ファイバ素線束を最密充填状態にもたらすので、接着剤による集束に比べて、端面外径がより小径化できるばかりでなく、これら端面近傍の耐熱性も向上する。この熱融着処理や接着剤処理は、必要に応じて2分岐ファイバ束(1)全体に施してもよい。特に、分岐側端部(3b)を熱融着することは、止め金(5)を採用しない図1の態様において有用である。なお、止め金(5)自体は光の伝送に寄与しないので、極力薄肉、例えば0.2mm以下とすることが好ましい。この止め金(5)の材質は金属、樹脂等適宜選択すればよい。
さらに、2分岐ファイバ束(1)を構成する素線群はランダム配列状態にあることが均一光化の面からより好ましい。ランダム配列化の手段としては、周知の機械あるいはハンドによるランダム編みなどが採用される。
このようなランダム配列化により、2分岐ファイバ束(1)の分岐側端部(3b)からの出射光はそれら端面全体で照度むらもなく均一光化されて液体ファイバ(4)に入射する。その結果、各液体ファイバ(4)からの出射光も照度むらがなくなり、均一光化される。
光ファイバ素線(2a)の材質としては石英ファイバや多成分ガラスファイバが熱融着の点から好ましい。また、ランダム配列のし易さを考慮すると、細径の多成分ガラス等のガラスファイバがより好ましい。このときの素線外径は、出射光の均一化の精度、素線自体の強度および加工性の面から20μm〜230μm、好ましくは30μm〜200μmの範囲にあればよい。また、2分岐ファイバ束(1)自体は、総本数にして100本〜46000本の範囲で構成するのが好ましい。その際、2分岐ファイバ束(1)は一般に50mm〜200mm程度の全長と、集束側端部で3mm〜10mmの端面径を有していればよい。
In the present invention, it is extremely important that the end surface of the converging side end (3b) of the two-branch fiber bundle (1) is circular. This is because in the optical fiber light source device, since the shape of the light emitting portion of the light source is generally circular, the light emitted from the light source is most efficiently incident when the circular end surface of the focusing side end (3b) faces the light source. Because. Furthermore, when this end face is used as the outgoing end face, a circular irradiation spot is formed, improving usability. The same applies to the end face of the branch side end (3b).
The two-branch fiber bundle (1) itself is prepared as two bundles of optical fibers, and one end thereof is converged to form a single circular end face, or one end face is converged into a circle. The obtained single optical fiber bundle is prepared and branched into at least two independent groups toward the other end.
In a preferred embodiment of the present invention, the vicinity of the end face of the converging side end (3a) and the vicinity of the end face of the branching end (3b) of the bifurcated fiber bundle (1) are converged by heat fusion or an adhesive. In particular, since heat fusion brings the optical fiber strands into a close-packed state, not only can the outer diameter of the end faces be reduced, but also the heat resistance in the vicinity of these end faces can be improved as compared to focusing with an adhesive. You may perform this heat sealing | fusion process and an adhesive agent process to the 2 branch fiber bundle (1) whole as needed. In particular, heat-sealing the branch side end (3b) is useful in the embodiment of FIG. 1 that does not employ the clasp (5). In addition, since the clasp (5) itself does not contribute to light transmission, it is preferable to make it as thin as possible, for example, 0.2 mm or less. What is necessary is just to select a metal, resin, etc. suitably for the material of this clasp (5).
Furthermore, it is more preferable from the surface of uniform light-ization that the strand group which comprises 2 branch fiber bundle (1) exists in a random arrangement | sequence state. As a means for random arrangement, a known machine or random knitting by a hand is adopted.
By such random arrangement, the outgoing light from the branch side end portion (3b) of the two-branch fiber bundle (1) is uniformly made uniform with no illuminance on the entire end face and enters the liquid fiber (4). As a result, the emitted light from each liquid fiber (4) also has no illuminance unevenness and is made uniform.
As a material of the optical fiber (2a), quartz fiber and multicomponent glass fiber are preferable from the viewpoint of heat fusion. In consideration of the ease of random arrangement, glass fibers such as small-diameter multicomponent glass are more preferable. The outer diameter of the strand at this time may be in the range of 20 μm to 230 μm, preferably 30 μm to 200 μm, from the viewpoints of uniformity of emitted light, strength of the strand itself, and workability. Further, it is preferable that the two-branch fiber bundle (1) itself is configured in the range of 100 to 46000 in total. At that time, the bifurcated fiber bundle (1) generally has only to have a total length of about 50 mm to 200 mm and an end face diameter of 3 mm to 10 mm at the focusing side end.
次に、液体ファイバ(4)について述べる。
中空筒状体(4b)の材質としては、フッ素樹脂(FEP)、ポリエチレン、ポリスチレン等が、また透明液体(4a)としては、リン酸水素ナトリウム水溶液や塩化カルシウムのような弱酸性水溶液等が用いられる。その際、後者の屈折率が前者の材質の屈折率より高くなるように組み合わされる。ここで、中空筒状体(4b)の内径は、2分岐ファイバ束(1)の端面よりやや小さめにしておくことが透明液体(4a)の封止効果を得る上で肝要である。また、その長さは50mm〜200mm範囲にあればよい。さらに、液体ファイバ(4)の他端すなわち出射端(図面に向かって右端)に適用される封止栓(4c)の材質としては石英ガラスや多成分ガラスなどが挙げられる。
Next, the liquid fiber (4) will be described.
As the material of the hollow cylindrical body (4b), fluororesin (FEP), polyethylene, polystyrene and the like are used, and as the transparent liquid (4a), a weakly acidic aqueous solution such as sodium hydrogenphosphate aqueous solution and calcium chloride is used. It is done. At that time, the latter is combined so that the refractive index of the latter is higher than that of the former material. Here, it is important to obtain the sealing effect of the transparent liquid (4a) that the inner diameter of the hollow cylindrical body (4b) is slightly smaller than the end face of the bifurcated fiber bundle (1). Moreover, the length should just exist in the range of 50 mm-200 mm. Furthermore, examples of the material of the sealing plug (4c) applied to the other end of the liquid fiber (4), that is, the emission end (right end in the drawing) include quartz glass and multicomponent glass.
以上の説明では、2分岐ファイバ束の分岐側端部(3b)と液体ファイバ(4)の一方の端部とを接続する例を示したが、さらに、別の液体ファイバ(4)を集束側端部(3a)にも接続してもよい。同様に、分岐束についても、3分岐以上の多分岐ファイバ束、あるいは両側(両端)分岐ファイバ束を採用してもよい。また、図1の態様は、単一の光源からの出射光を、二等分された2分岐ファイバ束(1)を介して外径が同じ2本の液体ファイバ(4)に均等配分する、いわゆる均等分岐タイプの例であるが、この点は必要に応じて非均等分岐タイプにも適用してもよい。
さらに、2分岐ファイバ束(1)には、その使用・用途に合わせて金属あるいは樹脂材料からなる、可撓性に優れた保護部材を被せてもよい。例えば、厚み0.5mm〜1.0mmのアルミニウムまたはステンレスからなるスパイラル管等で被せればよい。
In the above description, an example in which the branch side end (3b) of the two-branch fiber bundle is connected to one end of the liquid fiber (4) has been shown, but another liquid fiber (4) is connected to the focusing side. You may connect also to an edge part (3a). Similarly, for the branch bundle, a multi-branch fiber bundle having three or more branches, or both side (both ends) branch fiber bundles may be adopted. In the embodiment of FIG. 1, the light emitted from a single light source is equally distributed to two liquid fibers (4) having the same outer diameter via a bifurcated two-branch fiber bundle (1). This is an example of a so-called equal branch type, but this point may be applied to a non-equal branch type as necessary.
Furthermore, the bifurcated fiber bundle (1) may be covered with a protective member made of a metal or a resin material and having excellent flexibility in accordance with its use / use. For example, it may be covered with a spiral tube made of aluminum or stainless steel having a thickness of 0.5 mm to 1.0 mm.
以下に、本発明の光伝送媒体の具体例を図1の場合について示す。
先ず、素線径が50μmの多成分ガラス光ファイバ素線(2a)を11360本束ねて両端面が円形で且つ外径が7mm、全長が100mmの光ファイバ素線束を2本用意した。これら束の一方の端部同士を長さ50mmに亘って機械的にランダム編みして集束し、端面外径が10mmの集束側端部(3a)を有する2分岐ファイバ束(1)を得た。さらに、その集束側端部(3a)の端面から15mmに亘る箇所、および分岐側端部(3b)の端面から10mmに亘る箇所を600℃で30分間熱融着処理した。次いで、この熱融着された分岐側端部(3b)のそれぞれを、図1に示すように、各中空筒状容器(4b)の一方の端部中空域に圧入して、本発明の光伝送媒体を完成した。
このとき、液体ファイバ(4)としては、フッ素樹脂(FEP)からなり、長さが2000mm、外径7.8mm、内径6.8mmの中空筒状体(4b)に、透明液体(4a)として塩化カルシウム10%水溶液を注入封入したものを2本用意した。
透明液体の(4a)の注入にあたっては、各中空筒状体(4b)の他方の端部中空域(出射端)に外径7mm、長さ20mmの石英ガラスからなる封止栓(4c)を挿入してから、この封止部を下にして中空筒状体(4b)を直立させ、上方の開放端(一方の端部)から該液体を注入し、引き続き2分岐ファイバ束(1)の融着分岐側端部(3b)を圧入した。
以上のようにして得られた本発明の光伝送媒体と、従来の光伝送媒体(図3〜図4)との光量比較を行った。
この結果、本発明の光伝送媒体では従来のものと比べて、接続ロスが20%低減されるとともに挿入ロスも10%低減され、全体で30%ものロスが低減できていることが確認された。
さらに、本発明の集束側端部(3a)の端面に出射径が7mmのハロゲンランプ(100W)を対向設置し、ハロゲンランプを点灯した状態で液体ファイバ(4)のそれぞれの出射端(4c)での出射照度バラツキを照度計にて測定した所、その値は2.0%以内であって、出射光が十分に均一化光されていることも確認された。
なお、バラツキは、Rmax/Xa*100%で示され、その際、Rmaxは照度分布における最大照度差、Xaはその平均値とする。
A specific example of the optical transmission medium of the present invention will be described below with reference to FIG.
First, 11360 multicomponent glass optical fiber strands (2a) having a strand diameter of 50 μm were bundled to prepare two bundles of optical fibers having a circular end surface, an outer diameter of 7 mm, and a total length of 100 mm. One end portions of these bundles were mechanically randomly knitted over a length of 50 mm and converged to obtain a bifurcated fiber bundle (1) having a converging side end portion (3a) having an end face outer diameter of 10 mm. . Further, a portion extending 15 mm from the end surface of the converging side end portion (3a) and a portion extending 10 mm from the end surface of the branch side end portion (3b) were subjected to heat fusion treatment at 600 ° C. for 30 minutes. Next, as shown in FIG. 1, each of the heat-sealed branch side end portions (3b) is press-fitted into one end hollow region of each hollow cylindrical container (4b), and the light according to the present invention. Completed the transmission medium.
At this time, the liquid fiber (4) is made of a fluororesin (FEP), and has a length of 2000 mm, an outer diameter of 7.8 mm, and an inner diameter of 6.8 mm as a transparent liquid (4a). Two were prepared by injecting and sealing a 10% aqueous solution of calcium chloride.
When injecting the transparent liquid (4a), a sealing plug (4c) made of quartz glass having an outer diameter of 7 mm and a length of 20 mm is provided in the other end hollow region (outgoing end) of each hollow cylindrical body (4b). After insertion, the hollow cylindrical body (4b) is erected with the sealing portion down, and the liquid is injected from the upper open end (one end), and then the two-branch fiber bundle (1) The fusion branch side end (3b) was press-fitted.
A light amount comparison between the optical transmission medium of the present invention obtained as described above and the conventional optical transmission medium (FIGS. 3 to 4) was performed.
As a result, in the optical transmission medium of the present invention, it was confirmed that the connection loss was reduced by 20% and the insertion loss was reduced by 10% compared to the conventional one, and the loss was reduced by 30% as a whole. .
Further, a halogen lamp (100 W) having an emission diameter of 7 mm is placed opposite to the end surface of the focusing side end (3a) of the present invention, and the respective emission ends (4c) of the liquid fiber (4) in a state where the halogen lamp is turned on. When the variation in the output illuminance was measured with an illuminometer, the value was within 2.0%, and it was also confirmed that the emitted light was sufficiently uniformed.
The variation is indicated by Rmax / Xa * 100%, where Rmax is the maximum illuminance difference in the illuminance distribution and Xa is the average value thereof.
1 片端2分岐の光ファイバ素線束(2分岐ファイバ束)
2a 光ファイバ素線
3a
2分岐ファイバ束(1)の集束側端部
3b 2分岐ファイバ束(1)の分岐側端部
4
液体ファイバ
4a 透明液体(液体ファイバのコア)
4b 中空筒状体(液体ファイバのクラッド)
4c 液体ファイバの封止栓
5 分岐側端部(3b)に装着される止め金
6 コネクタ
7 コネクタ(6)内の取付けスペース
1 One-end, two-branch optical fiber bundle (two-branch fiber bundle)
2a Optical fiber 3a
Convergence side end 3b of the bifurcated fiber bundle (1) Branch side end 4 of the bifurcated fiber bundle (1)
Liquid fiber 4a Transparent liquid (core of liquid fiber)
4b Hollow cylindrical body (clad of liquid fiber)
4c Liquid fiber sealing plug 5 Clasp attached to branch side end (3b) 6 Connector 7 Mounting space in connector (6)
Claims (6)
The optical transmission medium with improved emitted light quantity according to any one of claims 1 to 5, wherein the transparent liquid is a weakly acidic aqueous solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003377606A JP2005141009A (en) | 2003-11-06 | 2003-11-06 | Optical transmission medium having improved quantity of emitted light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003377606A JP2005141009A (en) | 2003-11-06 | 2003-11-06 | Optical transmission medium having improved quantity of emitted light |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005141009A true JP2005141009A (en) | 2005-06-02 |
Family
ID=34688238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003377606A Pending JP2005141009A (en) | 2003-11-06 | 2003-11-06 | Optical transmission medium having improved quantity of emitted light |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005141009A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107741617A (en) * | 2016-06-18 | 2018-02-27 | 钱理 | A kind of joints of optical fibre simple in construction |
CN110556677A (en) * | 2019-09-06 | 2019-12-10 | 沈阳兴华航空电器有限责任公司 | wire harness structure with fireproof and anti-electromagnetic interference functions |
JP2020510191A (en) * | 2017-02-20 | 2020-04-02 | ザ リージェンツ オブ ザ ユニヴァーシティ オブ カリフォルニアThe Regents of the University of California | Highly efficient optical detection of biomolecules in microcapillaries |
US11303089B2 (en) | 2017-02-20 | 2022-04-12 | The Regents Of The University Of California | Physically operable and mechanically reconfigurable light sources |
US12044623B2 (en) | 2017-02-28 | 2024-07-23 | The Regents Of The University Of California | Optofluidic analyte detection systems using multi-mode interference waveguides |
-
2003
- 2003-11-06 JP JP2003377606A patent/JP2005141009A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107741617A (en) * | 2016-06-18 | 2018-02-27 | 钱理 | A kind of joints of optical fibre simple in construction |
JP2020510191A (en) * | 2017-02-20 | 2020-04-02 | ザ リージェンツ オブ ザ ユニヴァーシティ オブ カリフォルニアThe Regents of the University of California | Highly efficient optical detection of biomolecules in microcapillaries |
US11303089B2 (en) | 2017-02-20 | 2022-04-12 | The Regents Of The University Of California | Physically operable and mechanically reconfigurable light sources |
US11549881B2 (en) | 2017-02-20 | 2023-01-10 | The Regents Of The University Of California | High efficiency optical detection of biomolecules in micro-capillaries |
US12044623B2 (en) | 2017-02-28 | 2024-07-23 | The Regents Of The University Of California | Optofluidic analyte detection systems using multi-mode interference waveguides |
CN110556677A (en) * | 2019-09-06 | 2019-12-10 | 沈阳兴华航空电器有限责任公司 | wire harness structure with fireproof and anti-electromagnetic interference functions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080209952A1 (en) | Method of Making Fiber Optic Couplers with Precise Postioning of Fibers | |
JP2011237782A (en) | Optical branch element and optical communication system including the same | |
JP2008529061A (en) | A tight bundle of light guides with a reduced gap area | |
JP6370286B2 (en) | High efficiency pump signal combiner for high power fiber amplifier and laser applications | |
JP2009151307A (en) | Fiber-optic apparatus for receiving emitted radiation of diode laser, and method for producing the fiber-optic apparatus | |
JP2008216506A (en) | Light source unit | |
JP2005141009A (en) | Optical transmission medium having improved quantity of emitted light | |
JP5351867B2 (en) | Bundle fiber and manufacturing method thereof | |
US20090312609A1 (en) | Light guide for endoscopes | |
JP2021162624A (en) | Fiber connection structure and method for connecting multiple coated optical fibers and multi-core fiber | |
JP2004279745A (en) | Tapered photonic crystal fiber, its manufacturing method, and method for splicing photonic crystal fibers | |
US8790332B2 (en) | Laser applicator | |
JP2004354800A (en) | Optical transmission medium | |
JP6835827B2 (en) | Manufacturing of fiber couplers | |
US8422842B2 (en) | Plastic fiber coupler and method of manufacturing thereof | |
JP2018531406A6 (en) | Fiber coupler manufacturing | |
JP2001343538A (en) | Manufacturing method and inserting jig of optical fiber bundle | |
CN115128740B (en) | Signal beam combiner, laser and manufacturing method of signal beam combiner | |
JP5250318B2 (en) | Endoscope light guide | |
JP2009265310A (en) | Optical fiber module | |
JP2003287630A (en) | Light guide | |
JP3522086B2 (en) | Multi-core connector | |
JPS6016893Y2 (en) | fiber optic equipment | |
JPS63136004A (en) | Terminal part of multiple optical fiber | |
JP4251963B2 (en) | Multi-branched liquid fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061027 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090728 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100216 |