JP2005140559A - Sample tube for nuclear magnetic resonance system - Google Patents

Sample tube for nuclear magnetic resonance system Download PDF

Info

Publication number
JP2005140559A
JP2005140559A JP2003375103A JP2003375103A JP2005140559A JP 2005140559 A JP2005140559 A JP 2005140559A JP 2003375103 A JP2003375103 A JP 2003375103A JP 2003375103 A JP2003375103 A JP 2003375103A JP 2005140559 A JP2005140559 A JP 2005140559A
Authority
JP
Japan
Prior art keywords
tube
sample
bottomed
magnetic resonance
nuclear magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003375103A
Other languages
Japanese (ja)
Inventor
Masahiro Shigesane
正博 重実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIGEMI KK
Original Assignee
SHIGEMI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIGEMI KK filed Critical SHIGEMI KK
Priority to JP2003375103A priority Critical patent/JP2005140559A/en
Publication of JP2005140559A publication Critical patent/JP2005140559A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sample tube for nuclear magnetic resonance system made capable of repeatable measurement by keeping constant the distance between an inner tube and an outer tube and minimizing sample volume, and provided with the function of suppressing the volumetric convection of the sample. <P>SOLUTION: In the sample tube for nuclear magnetic resonance system consisting of an inner tube with bottom 1 and an outer tube with a bottom 5, the bottom of the inner tube with bottom 1 constituted freely fitting in the outer tube with the bottom 5 is formed to two different outer diameters. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超伝導磁石を用いて微量試料を分析する核磁気共鳴(NMR)装置の技術分野で利用されるものであって、具体的には、核磁気共鳴装置に使用して好適な試料管に関するものである。   The present invention is used in the technical field of a nuclear magnetic resonance (NMR) apparatus for analyzing a small amount of sample using a superconducting magnet, and specifically, a sample suitable for use in a nuclear magnetic resonance apparatus. It is about the tube.

核磁気共鳴装置において、微量試料の分析を行う場合には、試料管が磁場の一様性を乱さないようにする必要がある。そこで従来は、(イ)内管を肉薄(0.25mm程度)の微量体積の容器に構成して、その内部に試料を収納するもの。(ロ)試料管を肉薄のキャピラリー状に形成して、その内部又は外部に試料を収納するもの。(ハ)本出願人による特許文献1の図3と図4に見られるように、磁化率を調整した材質から成る外管の内底面と内管の底面を平行に構成して、その間に試料を挟み込むようにしたものがあった。   When analyzing a small amount of sample in a nuclear magnetic resonance apparatus, it is necessary that the sample tube does not disturb the uniformity of the magnetic field. Therefore, conventionally, (a) the inner tube is configured as a thin container (about 0.25 mm) with a very small volume, and a sample is stored in the container. (B) A sample tube is formed in a thin capillary shape, and the sample is stored inside or outside thereof. (C) As shown in FIGS. 3 and 4 of Patent Document 1 by the present applicant, the inner bottom surface of the outer tube and the bottom surface of the inner tube made of a material with adjusted magnetic susceptibility are configured in parallel, and the sample is placed between them. There was something that was sandwiched.

添付した図3は、上記(ハ)に記載した特許文献1に記載された試料管の構成を説明したものであって、図中、10は一端を開口した有底の内管、13は開口した一端を差込口13Hとして有底の外管で、11は内管10の細径部、12は試料STの磁化率に近似する磁化率を有するガラス物質を用いて構成した肉厚の内芯部、12Aは平面状に形成した内芯部12の底面を示す。   Attached FIG. 3 illustrates the configuration of the sample tube described in Patent Document 1 described in (c) above, in which 10 is an inner tube with a bottom having one end open, and 13 is an open tube. One end is an outer tube having a bottom as an insertion port 13H, 11 is a thin-diameter portion of the inner tube 10, and 12 is a wall thickness formed using a glass material having a magnetic susceptibility approximate to the magnetic susceptibility of the sample ST. A core portion, 12A, indicates the bottom surface of the inner core portion 12 formed in a planar shape.

更に図3において、15は上記内芯部12と同じガラス物質を用いて上記外管13の底面部に肉厚に構成した外芯部、14は外芯部15の上側部に形成した試料STの収容室で、この収容室14を構成する外芯部15の内底部14Aと、これに対向する内芯部12の底面12Aが平行に構成されている。
特開平7−84023号公報
Further, in FIG. 3, reference numeral 15 denotes an outer core portion formed thick on the bottom surface portion of the outer tube 13 using the same glass substance as the inner core portion 12, and 14 denotes a sample ST formed on the upper portion of the outer core portion 15. In this storage chamber, the inner bottom portion 14A of the outer core portion 15 constituting the storage chamber 14 and the bottom surface 12A of the inner core portion 12 opposed thereto are configured in parallel.
JP-A-7-84023

ところが、上記(イ)と(ロ)で述べた従来の試料管は、管軸に対して直交方向に磁界を加える電磁石型のNMRでは比較的よい分解能のスペクトルが得られるが、管軸に対して平行に磁場を加える超伝導磁石を使用するNMRでは、上部と底部の境界面の影響が著しく、高分解能が得られない問題があった。   However, the conventional sample tubes described in (a) and (b) above can obtain a spectrum with a relatively good resolution in electromagnetism NMR, in which a magnetic field is applied in a direction perpendicular to the tube axis. In NMR using a superconducting magnet that applies a magnetic field in parallel, there is a problem that the effect of the interface between the top and bottom is significant, and high resolution cannot be obtained.

また、上記(ハ)で述べた特許文献1及び図3に記載の従来の試料管は、外管13と内管10との間の距離、具体的には、外芯部15の内底面14Aと内芯部12の底面12Aとの間の距離によって試料STの容積が変化するため、再現性ある測定が困難であると共に、試料容積の微量化に一定の限界があった。   Further, the conventional sample tube described in Patent Document 1 and FIG. 3 described in (c) above is the distance between the outer tube 13 and the inner tube 10, specifically, the inner bottom surface 14A of the outer core portion 15. Since the volume of the sample ST changes depending on the distance between the inner core 12 and the bottom surface 12A of the inner core portion 12, reproducible measurement is difficult, and there is a certain limit in reducing the volume of the sample.

そこで本発明の技術的課題は、外管と内管との間の距離を一定にして、再現性のある測定を可能にすると共に、試料容積の微量化を可能にし、且つ、試料の体積対流を抑える機能を備えた核磁気共鳴装置用試料管を提供することである。   Therefore, the technical problem of the present invention is that the distance between the outer tube and the inner tube is made constant, enabling reproducible measurement, enabling a small sample volume, and volume convection of the sample. It is an object to provide a sample tube for a nuclear magnetic resonance apparatus having a function of suppressing the above.

(1) 上記の技術的課題を解決するために、本発明の請求項1に係る核磁気共鳴装置用試料管は、一端を開口した有底外管と、この有底外管の内部に嵌込み自在に構成した有底内管とから成る核磁気共鳴装置用試料管であって、少くとも上記有底内管の底部を2つの異なる外径に構成して、これ等有底外管の内底面と有底内管の底部との間に形成される隙間に試料溶媒を挟み込んで使用することを特徴としている。 (1) In order to solve the above technical problem, a sample tube for a nuclear magnetic resonance apparatus according to claim 1 of the present invention is fitted with a bottomed outer tube having an open end and an inside of the bottomed outer tube. A sample tube for a nuclear magnetic resonance apparatus comprising a bottomed inner tube configured to be freely inserted, wherein at least the bottom of the bottomed inner tube is configured to have two different outer diameters. The sample solvent is used by being sandwiched in a gap formed between the inner bottom surface and the bottom of the bottomed inner tube.

(2) また、本発明の請求項2に係る核磁気共鳴装置用試料管は、前記有底内管の2つの異なる外径のうち、外径の大きい方は有底外管の内径とほぼ等しく構成し、外径の小さい方の先端は、有底外管の内底面と密接する形状を有することを特徴としている。 (2) Further, in the sample tube for a nuclear magnetic resonance apparatus according to claim 2 of the present invention, of the two different outer diameters of the bottomed inner tube, the larger outer diameter is substantially equal to the inner diameter of the bottomed outer tube. It is characterized by the fact that the tips of the smaller outer diameters are configured to be in close contact with the inner bottom surface of the bottomed outer tube.

(3) 更に本発明の請求項3に係る核磁気共鳴装置用試料管は、前記有底外管の底面部を肉厚の外芯部とし、前記有底内管の底面部を肉厚の内芯部とすると共に、これ等外芯部の内底面と内芯部の底面を平行に構成して、内芯部の底面に、内芯部よりも細い径の突子を軸線方向に突設したことを特徴としている。 (3) Further, in the sample tube for a nuclear magnetic resonance apparatus according to claim 3 of the present invention, the bottom surface portion of the bottomed outer tube is a thick outer core portion, and the bottom surface portion of the bottomed inner tube is thick. In addition to the inner core portion, the inner bottom surface of these outer core portions and the bottom surface of the inner core portion are configured in parallel, and a protrusion with a smaller diameter than the inner core portion projects in the axial direction on the bottom surface of the inner core portion. It is characterized by having installed.

上記(1)〜(3)で述べた手段によれば、ガラスの材質を調整し、磁化率を試料と合わせることにより、試料周りの磁気的環境が磁場方向に対して高い対称性を有し、超伝導磁石を用いた場合においても高い分解能を得ることができた。   According to the means described in the above (1) to (3), the magnetic environment around the sample has high symmetry with respect to the magnetic field direction by adjusting the material of the glass and matching the magnetic susceptibility with the sample. Even when a superconducting magnet was used, high resolution could be obtained.

更に上記の手段によれば、有底内管の外径を2重にすることにより、有底外管内側面と有底内管の間に存在する試料の容積がさらに減少し、且つ、試料がNMRの検出コイルに更に近接することにより、感度の高い部分のみを利用することができると共に、内管底部を外管内側底部に密接して使うことにより試料の容積を常に一定にして測定することを可能にする。また、この2つの効果により、従来電磁エネルギー損失により測定が著しく困難であった電解質溶液や拡散の測定を可能にする。更にまた、上記の手段によれば−40〜100℃の広い温度範囲で、対流効果を削減することを可能にしている。   Further, according to the above means, by making the outer diameter of the bottomed inner tube double, the volume of the sample existing between the inner surface of the bottomed outer tube and the bottomed inner tube is further reduced, and the sample is By closer to the NMR detection coil, only the highly sensitive part can be used, and the inner tube bottom is in close contact with the inner inner bottom of the outer tube to measure the sample volume constantly. Enable. In addition, these two effects make it possible to measure an electrolyte solution and diffusion that have been extremely difficult to measure due to electromagnetic energy loss. Furthermore, according to the above means, the convection effect can be reduced in a wide temperature range of −40 to 100 ° C.

以上述べた次第で、本発明に係る核磁気共鳴装置用試料管よれば、試料を、外管内に挿入された上部内管および下部内管の間で、かつ上部内管の外側と下部外管の内側に押し込められることにより、管軸方向を向いた磁場に対する磁気的環境を一様にし、高分解能を得ることができると共に、従来の半分以下の試料の量で測定を可能にする。また、本発明によれば−40〜100℃の広い温度範囲で、対流効果の無視できる自己拡散が測定できることが可能になった。   As described above, according to the sample tube for a nuclear magnetic resonance apparatus according to the present invention, the sample is placed between the upper inner tube and the lower inner tube inserted into the outer tube, and outside the upper inner tube and the lower outer tube. As a result, the magnetic environment with respect to the magnetic field directed in the direction of the tube axis can be made uniform, high resolution can be obtained, and measurement can be performed with less than half the amount of the sample. In addition, according to the present invention, self-diffusion with negligible convection effect can be measured in a wide temperature range of −40 to 100 ° C.

以下に、上述した本発明に係る核磁気共鳴装置用試料管の実施の形態を図面と共に説明すると、図1(イ)は本発明を分解して示した一部断面正面図、図1(ロ)は本発明の使用例を示した要部の拡大断面図であって、これ等の図面に於いて、1は一端を開口した有底内管、5は開口した一端をこの有底内管1を嵌込むための挿入口5Hとした有底外管で、全体が断面略円筒状を成すこれ等内管1と外管5は、各々通常のガラス物質を用いて構成されている。   The embodiment of the sample tube for a nuclear magnetic resonance apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 (a) is a partially sectional front view showing the present invention in an exploded manner, and FIG. ) Is an enlarged cross-sectional view of a main part showing an example of use of the present invention. In these drawings, reference numeral 1 denotes a bottomed inner tube having an open end, and 5 denotes an end of the open inner tube. The inner tube 1 and the outer tube 5 each having a bottomed outer tube having an insertion port 5H for fitting 1 and having a substantially cylindrical cross-section as a whole are made of a normal glass material.

更に図中、2は上記内管1の下側部に形成した細径管部で、この細径管部2の下側が、試料(試料溶媒ST)の磁化率に近似する磁化率を有するガラス物質を用いて肉厚に形成した内芯部3に成っている。4は平面状に形成したこの内芯部3の底面3′の中心に突出形成した突子で、軸線方向に突設されたこの突子4は、内芯部3と同じガラス物質を用いて構成され、且つ、内芯部3よりも細い径に形成されている。4Aは上記突子4の先端面で、全体を円柱状に形成したこの突子4の直径は2mm、長さ(L)は、例えば2mm、3mm、4mm、5mmのものが予め用意されている。   Further, in the figure, reference numeral 2 denotes a thin tube portion formed on the lower portion of the inner tube 1, and the lower tube portion 2 has a magnetic susceptibility that approximates the magnetic susceptibility of the sample (sample solvent ST). It consists of the inner core part 3 formed thick using a substance. Reference numeral 4 denotes a protrusion formed in the center of the bottom surface 3 ′ of the inner core portion 3 formed in a flat shape. The protrusion 4 protruding in the axial direction is made of the same glass material as the inner core portion 3. The diameter is smaller than that of the inner core portion 3. Reference numeral 4A denotes the tip surface of the protrusion 4, and the protrusion 4 formed in a cylindrical shape as a whole has a diameter of 2 mm and a length (L) of, for example, 2 mm, 3 mm, 4 mm, and 5 mm. .

また、上記有底外管5の内部に嵌込み自在に構成したこの有底内管1の外径は、外径を例えば5mmに形成した有底外管5の内径とほぼ同じに形成され、且つ、上記内芯部3の外径も有底内管1の外径と同一に形成されているが、上述した各寸法はいずれも実施の一例であることは勿論である。   Further, the outer diameter of the bottomed inner tube 1 configured to be freely fitted into the bottomed outer tube 5 is formed to be substantially the same as the inner diameter of the bottomed outer tube 5 having an outer diameter of 5 mm, for example. And although the outer diameter of the said inner core part 3 is formed identically with the outer diameter of the bottomed inner pipe 1, it is needless to say that each of the dimensions described above is an example of implementation.

更に、図面において7は上記有底外管5の底面部に肉厚に形成した外芯部を示す。外芯部7は上記内芯部3と同じガラス物質を用いて構成され、その内底面6Aは内芯部3の底面3′と平行な平面状に形成されていて、上記突子4の先端面4Aが密接するように構成されている。   Further, in the drawings, reference numeral 7 denotes an outer core portion formed thick on the bottom surface of the bottomed outer tube 5. The outer core portion 7 is formed using the same glass material as the inner core portion 3, and the inner bottom surface 6 </ b> A is formed in a planar shape parallel to the bottom surface 3 ′ of the inner core portion 3. The surface 4A is configured to be in close contact.

6は有底外管5の底部に形成した試料ST(溶媒試料)の収容室で、試料STは先ず有底外管5の挿入口5Hを通してこの収容室6内に注入され、次いで、有底内管1を上記有底外管5の内部に対して、上記突子4の先端面4Aが上記外芯部7の内底面6Aに密接するまで嵌込んで、試料STを有底内管1の内芯部3の底面3′と、有底外管5の内底面6Aとの間に押し込めた状態に収容することができる。   Reference numeral 6 denotes a storage chamber for a sample ST (solvent sample) formed at the bottom of the bottomed outer tube 5. The sample ST is first injected into the storage chamber 6 through the insertion port 5H of the bottomed outer tube 5, and then the bottomed. The inner tube 1 is fitted into the bottomed outer tube 5 until the tip surface 4A of the protrusion 4 is in close contact with the inner bottom surface 6A of the outer core portion 7, and the sample ST is inserted into the bottomed inner tube 1. It can be accommodated in a state of being pushed in between the bottom surface 3 ′ of the inner core portion 3 and the inner bottom surface 6 A of the bottomed outer tube 5.

その結果、試料ST周りの磁気的環境が磁場方向に対して高い対称性を有することに成るため、超伝導磁石を用いた場合において高い分解能が得られると共に、上記突子4の存在が試料STの容積を減少し、且つ、試料STの体積対流を防止できることは、前述した通りである。更に、試料STをNMRの検出コイルに近接させて感度の高い部分のみを利用できると共に、突子4の先端面4Aを有底外管5の内底面6Aに密接して使うことにより、試料STの容積(収容室6の容積)を常に一定にして測定することを可能にしたことにより、従来電磁エネルギー損失により測定が著しく困難であった電解質溶液や拡散の測定が可能に成ったことも、前述した通りである。   As a result, the magnetic environment around the sample ST has high symmetry with respect to the direction of the magnetic field, so that high resolution can be obtained when a superconducting magnet is used, and the presence of the protrusions 4 indicates that the sample ST is present. As described above, the volume of the sample ST can be reduced and volume convection of the sample ST can be prevented. Further, the sample ST can be brought close to the NMR detection coil so that only a highly sensitive portion can be used, and the tip surface 4A of the protrusion 4 is used in close contact with the inner bottom surface 6A of the bottomed outer tube 5, thereby allowing the sample ST to be used. It has become possible to measure the electrolyte solution and diffusion, which has been extremely difficult to measure due to electromagnetic energy loss. As described above.

次に、上記本発明に係る試料管を用いた実験例と、その実験結果を説明する。
NMR測定は4.7TワイドボアSCMに日本電子製のコンソールとPFG用プローブ(H/multiとH/Fの2本)とアンプ、TecMag製のRFユニットとNTNMRを装備して行った。温度変化は日本電子製の温度コントローラを用いた。自己拡散測定は一番単純なHahnのechoのパルス系列にPFGを挿入した系列を用いた。PFGの間隔Δは30,50,100,200msの4点で測定した。PFGの大きさを一定にして、PFGに長さδを0.01〜1msの範囲で変えて拡散プロットを行った。
Next, experimental examples using the sample tube according to the present invention and the experimental results will be described.
The NMR measurement was performed with a 4.7T wide bore SCM equipped with a JEOL console, PFG probe (H / multi and H / F) and an amplifier, a TecMag RF unit and NTNMR. A temperature controller made by JEOL was used for temperature change. For the self-diffusion measurement, the simplest sequence of Hahn's echo pulse sequence with PFG inserted was used. The PFG interval Δ was measured at four points of 30, 50, 100, and 200 ms. Diffusion plots were performed by changing the length δ of the PFG in the range of 0.01 to 1 ms while keeping the size of the PFG constant.

DGのneatサンプルおよびLiN(SO2CF3)2(LiTFSlと略す)をDGの酸素とLiの割合20:1の濃度でドープしたDGの電解液を用いた。DGはC6H14O3(MW=134.2)fp=−64℃、bp=160℃、25℃の粘度=0.989cPである。   A DG neat sample and an electrolyte solution of DG doped with LiN (SO2CF3) 2 (abbreviated as LiTFSl) at a DG oxygen / Li ratio of 20: 1 were used. DG is C6H14O3 (MW = 13.4) fp = −64 ° C., bp = 160 ° C., viscosity at 25 ° C. = 0.989 cP.

一般に均一な液体における自己拡散係数Dに対する対流効果の影響は、Δを変化した時にDの観測値が一致すれば対流効果は小さいと考えられる。我々の経験では30℃に温度設定した場合には、均一系液体ではサンプル高さを5mmにしても、Δ=30,50,100,200msでは常に同じDが求められる。しかしながら温度を上げて行くとΔが大きくなるにつれてDの観測値は大きくなり、1桁のオーダーの相違が生じることもある。図2にDGのDを各種の試料管を用いたときの観測値の温度変化をプロットした。通常の2重管で内管の突子なし、サンプル高さ5mmの測定データを示す。ここではΔ=30mと50mで測定したデータのみプロットしてある。温度が上がると共に見かけのDは60℃くらいから急激におおきくなり、その度合いはΔ=50msの方が顕著である。Δを長くすればさらに顕著なDの増大が見られる。低温では対流効果が顕著に観測されることはなかった。   In general, the influence of the convection effect on the self-diffusion coefficient D in a uniform liquid is considered to be small if the observed value of D coincides when Δ is changed. In our experience, when the temperature is set to 30 ° C., even if the sample height is 5 mm in the homogeneous liquid, the same D is always required at Δ = 30, 50, 100, and 200 ms. However, as the temperature is increased, the observed value of D increases as Δ increases, and a one-digit order difference may occur. FIG. 2 plots changes in temperature of observed values when D of DG is used for various sample tubes. The measurement data of the normal double pipe without the protrusion of the inner pipe and the sample height of 5 mm are shown. Here, only data measured at Δ = 30 m and 50 m are plotted. As the temperature rises, the apparent D increases abruptly from about 60 ° C., and the degree is more remarkable when Δ = 50 ms. If Δ is lengthened, a more remarkable increase in D is observed. At low temperatures, no convective effect was observed.

これに対して、突子4の長さが4mmの本発明の試料管では、80℃以上においてΔの差によるD観測値の差が生じた。突子4の長さが3mmと2mmの試料管ではΔを変えてもD観測値に相違は無かった。図2の右上の窓の中に2mmの試料管を用いて−40℃〜100℃の温度範囲でΔ=50、30msで測定したDをプロットしてある。活性化エネルギーは高音領域で13.3±0.1kJ/mol、低温領域で18.6±0.2kJ/molである。低温領域でサンプル高さ5mm、突子無しで測定した値は良く一致している。なおT1の測定を5mmと2mmの試料管で行った。高音領域で両者は一致し、低温領域では2mmの試料管から僅かに長いT1値が得られた。   On the other hand, in the sample tube of the present invention in which the length of the protrusion 4 is 4 mm, a difference in the D observation value due to the difference in Δ occurred at 80 ° C. or higher. In the sample tube with the length of the protrusion 4 of 3 mm and 2 mm, there was no difference in the D observation value even when Δ was changed. In the upper right window of FIG. 2, D measured by Δ = 50 and 30 ms in a temperature range of −40 ° C. to 100 ° C. using a 2 mm sample tube is plotted. The activation energy is 13.3 ± 0.1 kJ / mol in the high sound region and 18.6 ± 0.2 kJ / mol in the low temperature region. The values measured with a sample height of 5 mm and no protrusions in the low temperature region agree well. T1 was measured with 5 mm and 2 mm sample tubes. Both coincided in the high sound region, and a slightly longer T1 value was obtained from the 2 mm sample tube in the low temperature region.

(イ)は本発明に係る核磁気共鳴装置用試料管を分解して示した一部断面正面図、(ロ)はその使用時の状態を示した要部の拡大断面図。(A) is a partial cross-sectional front view showing an exploded sample tube for a nuclear magnetic resonance apparatus according to the present invention, and (b) is an enlarged cross-sectional view of a main part showing a state in use. NMR測定の実験データを示したグラフ。The graph which showed the experimental data of NMR measurement. (イ)は従来例に係る試料管を分解して示した一部断面正面図、(ロ)はその使用時の状態を示した要部の拡大断面図。(A) is a partial cross-sectional front view showing a sample tube according to a conventional example in an exploded manner, and (B) is an enlarged cross-sectional view of a main part showing a state in use.

符号の説明Explanation of symbols

1 有底内管
3 内芯部
3′ 底面
4 突子
4A 先端面
5 有底外管
6 収容室
6A 内底面
7 外芯部
ST 試料
DESCRIPTION OF SYMBOLS 1 Bottomed inner pipe 3 Inner core part 3 'Bottom face 4 Projection 4A Tip surface 5 Bottomed outer pipe 6 Storage chamber 6A Inner bottom face 7 Outer core part ST Sample

Claims (3)

一端を開口した有底外管と、この有底外管の内部に嵌込み自在に構成した有底内管とから成る核磁気共鳴装置用試料管であって、
少くとも上記有底内管の底部を2つの異なる外径に構成して、これ等有底外管の内底面と有底内管の底部との間に形成される隙間に試料溶媒を挟み込んで使用することを特徴とする核磁気共鳴装置用試料管。
A sample tube for a nuclear magnetic resonance apparatus comprising a bottomed outer tube having an open end and a bottomed inner tube configured to be freely fitted into the bottomed outer tube,
At least the bottom of the above-mentioned bottomed inner tube is configured to have two different outer diameters, and the sample solvent is sandwiched between gaps formed between the inner bottom surface of these bottomed outer tubes and the bottom of the bottomed inner tube. A sample tube for a nuclear magnetic resonance apparatus characterized by being used.
前記有底内管の2つの異なる外径のうち、外径の大きい方は有底外管の内径とほぼ等しく構成し、外径の小さい方の先端は、有底外管の内底面と密接する形状を有することを特徴とする請求項1に記載の核磁気共鳴装置用試料管。 Of the two different outer diameters of the bottomed inner tube, the larger outer diameter is configured to be approximately equal to the inner diameter of the bottomed outer tube, and the tip having the smaller outer diameter is in close contact with the inner bottom surface of the bottomed outer tube. The sample tube for a nuclear magnetic resonance apparatus according to claim 1, wherein the sample tube has a shape to be formed. 前記有底外管の底面部を肉厚の外芯部とし、前記有底内管の底面部を肉厚の内芯部とすると共に、これ等外芯部の内底面と内芯部の底面を平行に構成して、内芯部の底面に、内芯部よりも細い径の突子を軸線方向に突設したことを特徴とする請求項1又は2に記載の核磁気共鳴装置用試料管。 The bottom surface of the bottomed outer tube is a thick outer core portion, the bottom surface portion of the bottomed inner tube is a thick inner core portion, and the inner bottom surface of these outer core portions and the bottom surface of the inner core portion The sample for a nuclear magnetic resonance apparatus according to claim 1, wherein a projecting portion having a diameter smaller than that of the inner core portion is provided in the axial direction on the bottom surface of the inner core portion. tube.
JP2003375103A 2003-11-05 2003-11-05 Sample tube for nuclear magnetic resonance system Pending JP2005140559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003375103A JP2005140559A (en) 2003-11-05 2003-11-05 Sample tube for nuclear magnetic resonance system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003375103A JP2005140559A (en) 2003-11-05 2003-11-05 Sample tube for nuclear magnetic resonance system

Publications (1)

Publication Number Publication Date
JP2005140559A true JP2005140559A (en) 2005-06-02

Family

ID=34686559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003375103A Pending JP2005140559A (en) 2003-11-05 2003-11-05 Sample tube for nuclear magnetic resonance system

Country Status (1)

Country Link
JP (1) JP2005140559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278699A (en) * 2006-04-03 2007-10-25 Masatsune Kaiso Sample tube for nuclear magnetic resonance system
JP2008020401A (en) * 2006-07-14 2008-01-31 Jeol Ltd High-resolution nmr probe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278699A (en) * 2006-04-03 2007-10-25 Masatsune Kaiso Sample tube for nuclear magnetic resonance system
JP2008020401A (en) * 2006-07-14 2008-01-31 Jeol Ltd High-resolution nmr probe

Similar Documents

Publication Publication Date Title
US10460906B2 (en) Method for monitoring environmental states of a microscope sample with an electron microscope sample holder
BR112016021536B1 (en) CORE SAMPLE HOLDER FOR USE WITH A NUCLEAR MAGNETIC RESONANCE SPECTROMETER OR MAGNETIC RESONANCE IMAGING INSTRUMENT
JPH01501414A (en) Tilt sensor and how to measure tilt
JPH03245504A (en) Magnet for critical magnetic field measuring device
US7830148B2 (en) NMR sample tube
Gulsu et al. Minkowski-like fractal resonator-based dielectric sensor for estimating the complex permittivity of binary mixtures of ethanol, methanol and water
JPH0784023A (en) Sample tube for nuclear magnetic resonance apparatus
JP2005140559A (en) Sample tube for nuclear magnetic resonance system
Fang et al. Improved accuracy and precision in electrophoretic NMR experiments. Current control and sample cell design
Mazur A dozen useful tips on how to minimise the influence of sources of error in quantitative electron paramagnetic resonance (EPR) spectroscopy—a review
CN102262113A (en) Multifunctional probe for unicellular detection
JPH05249214A (en) Nmr sample shaper
JP3298815B2 (en) Method and apparatus for measuring electrical characteristics
JP2005265773A (en) Nuclear magnetic resonance equipment and method
US8287705B2 (en) Temperature compensation for ion-selective electrodes
US8153084B2 (en) Reduction in eddy current losses in electrically conducting sample materials with the assistance of special NMR sample tubes
Körber et al. Reorientational dynamics in highly asymmetric binary low-molecular mixtures—A quantitative comparison of dielectric and NMR spectroscopy results
Rowley et al. Verification of iodine cells for stabilized lasers using the Hanle effect
Introini et al. Centripetal nuclear shape fluctuations associate with chromatin condensation in early prophase
WO2006057046A1 (en) Sample container for solid magnetic resonance apparatus
US20080083620A1 (en) Micro ph electrode (reference electrode)
US7274839B2 (en) Measuring device
US4882571A (en) Sensor used for electrical heating measurement
Drobakhin et al. Measurement of dielectric material properties using coupled biconical resonators
Kohane et al. Measurement of microwave resistivity by eddy current loss in spheres

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610