JP2005140269A - Cylindrical roller bearing - Google Patents
Cylindrical roller bearing Download PDFInfo
- Publication number
- JP2005140269A JP2005140269A JP2003378487A JP2003378487A JP2005140269A JP 2005140269 A JP2005140269 A JP 2005140269A JP 2003378487 A JP2003378487 A JP 2003378487A JP 2003378487 A JP2003378487 A JP 2003378487A JP 2005140269 A JP2005140269 A JP 2005140269A
- Authority
- JP
- Japan
- Prior art keywords
- cylindrical roller
- axial length
- cage
- cylindrical
- column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004323 axial length Effects 0.000 claims abstract description 71
- 238000005096 rolling process Methods 0.000 claims abstract description 48
- 229920003002 synthetic resin Polymers 0.000 claims abstract description 13
- 239000000057 synthetic resin Substances 0.000 claims abstract description 13
- 230000002093 peripheral effect Effects 0.000 claims description 25
- 230000005489 elastic deformation Effects 0.000 abstract description 26
- 230000002159 abnormal effect Effects 0.000 abstract description 16
- 230000000052 comparative effect Effects 0.000 description 13
- 230000003252 repetitive effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 230000009471 action Effects 0.000 description 8
- 238000005461 lubrication Methods 0.000 description 6
- 238000005315 distribution function Methods 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/49—Cages for rollers or needles comb-shaped
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
本発明は、合成樹脂製の保持器を備えた円筒ころ軸受に係り、例えば、工作機械主軸等のように高速で回転する回転部材の支持に用いられる円筒ころ軸受に関する。 The present invention relates to a cylindrical roller bearing provided with a cage made of synthetic resin, for example, a cylindrical roller bearing used for supporting a rotating member that rotates at high speed such as a main spindle of a machine tool.
周知のように、マシニングセンタ、CNC旋盤、フライス盤等の工作機械においては、主軸はハウジングに対して軸受で回転自在に支持されるのが通例であって、この主軸の向きは、機械形式によって、縦軸(軸線が鉛直方向に向いたもの)と横軸(軸線が水平方向に向いたもの)とに大別される。また、この主軸を支持する軸受の潤滑方式は、使用条件等に応じて、グリース潤滑やエアオイル潤滑等の油潤滑が採用されると共に、その軸受形式としては、組合せアンギュラ玉軸受や円筒ころ軸受が一般に広く使用されている。 As is well known, in a machine tool such as a machining center, a CNC lathe, a milling machine, etc., the main shaft is usually supported rotatably by a bearing with respect to the housing, and the orientation of the main shaft depends on the machine type. It is roughly divided into an axis (the axis is oriented in the vertical direction) and a horizontal axis (the axis is oriented in the horizontal direction). The lubrication system of the bearing that supports the main shaft employs oil lubrication such as grease lubrication or air-oil lubrication according to the usage conditions, and as a bearing type, a combination angular contact ball bearing or cylindrical roller bearing is used. Generally used widely.
この場合、工作機械の主軸の支持に用いられる円筒ころ軸受は、内輪と外輪との相互間に所定間隔おきに複数の円筒ころを保持しておくための保持器を備えているのが通例である。そして、この保持器としては、従来より高力黄銅鋳物のもみ抜き(削り出し)保持器が主に使用されてきたが、運転時の保持器の摩耗粉による潤滑剤劣化の問題や軽量化の点から、近年においては合成樹脂製保持器への切り換えが進むに至っている。 In this case, the cylindrical roller bearing used for supporting the main shaft of the machine tool is usually provided with a cage for holding a plurality of cylindrical rollers at predetermined intervals between the inner ring and the outer ring. is there. And, as this cage, a high-strength brass cast-out (machined) cage has been mainly used conventionally. However, there is a problem of lubricant deterioration due to wear powder of the cage during operation and weight reduction. From this point, in recent years, switching to a synthetic resin cage has progressed.
このような技術の変遷に伴って、現在使用されている円筒ころ軸受の合成樹脂製保持器としては、例えば下記の特許文献1、2に記載されているように、環状部と、環状部の内側面から軸方向の一方に延びた複数の柱部と、円周方向に隣接する柱部の円周方向側面間に形成され、円筒ころを回転自在に保持する複数のポケットとを備えた、所謂くし形と呼ばれる形態の保持器が公知となっている。しかしながら、この形態の合成樹脂製保持器は、柱部の先端が自由端であるため、特に高速回転時では、回転時の遠心力の作用で柱部が外径側に比較的大きく弾性変形して、その円周方向側面の先端側内周部が円筒ころの転動面と強く接触(異常接触)することにより、該接触部分に油膜切れが生じて異常摩耗が発生したり、軸受温度上昇の増大要因になったりする場合がある。 With the transition of such technology, as a synthetic resin cage for cylindrical roller bearings currently used, for example, as described in Patent Documents 1 and 2 below, A plurality of column portions extending in one axial direction from the inner side surface and a plurality of pockets formed between the circumferential side surfaces of the column portions adjacent in the circumferential direction and rotatably holding the cylindrical rollers, A cage having a so-called comb shape is known. However, in this form of the synthetic resin cage, since the tip of the column portion is a free end, the column portion is relatively elastically deformed to the outer diameter side due to the centrifugal force during rotation, particularly at high speed rotation. As a result, the inner peripheral part of the tip side on the circumferential side is in strong contact (abnormal contact) with the rolling surface of the cylindrical roller, causing an oil film breakage at the contact part, resulting in abnormal wear or an increase in bearing temperature. May be an increase factor.
そこで、特許文献1、2によれば、この問題に対応するため、図12に示すように、保持器14の環状部14aから軸方向に延びた柱部14bの円周方向側面14b1を、ポケット14cのポケット中心Oを通るころPCDを境にして、外径側領域と内径側領域に区分し、外径側領域を円筒ころ13の転動面に沿う円弧面(円筒面)14b11に形成すると共に、内径側領域をその軸方向全長さに亘ってポケット中心Oを通る半径線r1と平行なストレート面14b12に形成することにより、回転時の遠心力の作用で柱部14bが外径側に弾性変形したときに、柱部14bの円周方向側面14b1の内径側領域14b12が円筒ころ3の転動面と半径方向の接触圧を生じないようにしている。
工作機械の主軸に要求される主要な特性として、高速回転{通常、dmn値(=転動体のピッチ円径mm×回転数rpm)で100万以上}が可能であることと、非繰り返し振れ(NRRO)が小さいことが挙げられ、この特性は主に主軸を支持する軸受の軸支持機能によって決まる。しかしながら、特許文献1、2に記載された円筒ころ軸受は、次の理由により、工作機械の主軸に要求される非繰り返し振れ(NRRO)を満足することが難しい。 The main characteristics required for the main spindle of a machine tool are that high-speed rotation {usually, dmn value (= 1 million or more of rolling element pitch circle diameter mm × rotational speed rpm) and non-repetitive runout ( NRRO) is small, and this characteristic is mainly determined by the shaft support function of the bearing that supports the main shaft. However, it is difficult for the cylindrical roller bearings described in Patent Documents 1 and 2 to satisfy non-repetitive runout (NRRO) required for the spindle of a machine tool for the following reason.
すなわち、特許文献1、2に記載された円筒ころ軸受の保持器14において、柱部14bの円周方向側面14b1は、上述のように、ころPCDよりも内径側領域がその軸方向全長さに亘ってストレート面14b12に形成されており、回転時の遠心力の作用で柱部14bが外径側に弾性変形したときに、円周方向側面14b1の内径側領域14b12が円筒ころ13の転動面と半径方向の接触圧を生じないようになっている。しかしながら、この構成は、柱部14bの円周方向側面14b1と円筒ころ13の転動面との異常接触を防止する点では効果的であるものの、その反面、柱部14bの円周方向側面14b1の内径側領域を上記のストレート面14b12に形成したことにより、柱部14bの外径側への弾性変形を助長する結果ともなっている。すなわち、柱部14bの円周方向側面14b1の内径側領域を上記のストレート面14b12に形成したことにより、通常のポケット形態(柱部の円周方向側面の全領域を円筒ころの転動面に沿う円弧面に形成したポケット形態)に比較して、柱部14bの外径側への弾性変形を規制する部位がなくなり、また、柱部14bの内径側領域の円周方向肉厚が小さくなって柱部14bの剛性が低下する結果、柱部14bの外径側への弾性変形が助長されている。 In other words, in the cylindrical roller bearing retainer 14 described in Patent Documents 1 and 2, the circumferential side surface 14b1 of the column portion 14b has an axial inner side area that is the entire axial length of the roller PCD as described above. It is formed on the straight surface 14b12, and when the column portion 14b is elastically deformed to the outer diameter side by the action of centrifugal force during rotation, the inner diameter side region 14b12 of the circumferential side surface 14b1 rolls the cylindrical roller 13. No contact pressure in the radial direction with the surface is generated. However, this configuration is effective in preventing abnormal contact between the circumferential side surface 14b1 of the column portion 14b and the rolling surface of the cylindrical roller 13, but on the other hand, the circumferential side surface 14b1 of the column portion 14b. As a result of forming the inner diameter side region of the cylindrical portion on the straight surface 14b12, the result is that the elastic deformation of the column portion 14b toward the outer diameter side is promoted. That is, by forming the inner diameter side region of the circumferential side surface 14b1 of the column part 14b on the straight surface 14b12, the normal pocket configuration (the entire region of the circumferential side surface of the column part is used as the rolling surface of the cylindrical roller). Compared to the pocket shape formed on the arcuate surface, the portion that restricts elastic deformation of the column portion 14b toward the outer diameter side is eliminated, and the circumferential thickness of the inner diameter side region of the column portion 14b is reduced. As a result, the rigidity of the column portion 14b is reduced, and the elastic deformation of the column portion 14b toward the outer diameter side is promoted.
図13は、特許文献1、2に記載された円筒ころ軸受の保持器14の柱部14bが高速回転時の遠心力の作用で外径側に弾性変形した状態(実線)と、変形前の状態(点線)とを模式的にしている。同図に示すように、特許文献1、2に記載された円筒ころ軸受の保持器14では、柱部14bが外径側に弾性変形すると、柱部14bの円周方向側面14b1と円筒ころ13の転動面との間のポケット隙間gが初期隙間(変形前の隙間)よりも増大する。しかも、上述のように、柱部14bの外径側への弾性変形が助長される結果、ポケット隙間gの増大も助長される。そして、このポケット隙間gの増大により、円筒ころの等配機能が低下し、円筒ころの公転中心が振れて、内輪が不安定に振れる非繰り返し振れが発生する。特に、ころ案内形式の保持器では、保持器の半径方向の自由度が増大することにより、ポケット隙間gが増大する箇所と縮小する箇所とができ、しかもこれらの箇所の発生位置が一定しないために、非繰り返し振れの程度が大きくなる。この非繰り返し振れ(NRRO)は、回転数の上昇に比例して増大し、工作機械の主軸に取付けられた工具による加工精度を悪化させる等の原因となる。 FIG. 13 shows a state (solid line) in which the column portion 14b of the retainer 14 of the cylindrical roller bearing described in Patent Documents 1 and 2 is elastically deformed to the outer diameter side by the action of centrifugal force during high-speed rotation (solid line). The state (dotted line) is schematically shown. As shown in the figure, in the cage 14 of the cylindrical roller bearing described in Patent Documents 1 and 2, when the column portion 14b is elastically deformed to the outer diameter side, the circumferential side surface 14b1 of the column portion 14b and the cylindrical roller 13 are shown. The pocket gap g between the first and second rolling surfaces is larger than the initial gap (gap before deformation). Moreover, as described above, the elastic deformation of the column part 14b toward the outer diameter side is promoted, and as a result, the pocket gap g is also increased. Then, due to the increase in the pocket gap g, the equal distribution function of the cylindrical roller is lowered, the revolution center of the cylindrical roller is shaken, and non-repetitive shake is generated in which the inner ring is shaken in an unstable manner. In particular, in a roller guide type cage, the degree of freedom in the radial direction of the cage is increased, so that a portion where the pocket gap g is increased and a portion where the pocket gap g is reduced can be formed, and the occurrence positions of these portions are not constant. In addition, the degree of non-repetitive shake increases. This non-repetitive run-out (NRRO) increases in proportion to the increase in the number of revolutions, and causes a reduction in machining accuracy by a tool attached to the main spindle of the machine tool.
図14は、特許文献1、2に記載された円筒ころ軸受における円筒ころ13に対する保持器14の環状部14a及び柱部14bの相対的寸法関係を示す代表的な要部縦断面図(特許文献1の図1)であって、この図14に代表されるように、保持器14の環状部14aの軸方向長さ(厚み)Taは、円筒ころ13の軸方向長さTdの約25%程度に設定されている。すなわち、特許文献1、2の他の各図からも把握できるように、既に公知となっている従来の合成樹脂製保持器においては、上記の寸法関係が約25%程度に設定されているのが通例であった。このような設定がなされる理由は、内輪11及び外輪12の軸方向長さTeと、円筒ころ13の軸方向長さTdとの関係は、円筒ころ軸受の機能を考慮すれば大略一義的に決まるものであり、これと保持器14の樹脂材料の特性とに基づいて設計をすれば、保持器14の環状部14aの軸方向長さTaは、自ずと、円筒ころ13の軸方向長さTdの約25%程度にせざるを得なくなること等によるものである。 FIG. 14 is a typical longitudinal cross-sectional view showing a relative dimensional relationship between the annular portion 14a and the column portion 14b of the retainer 14 with respect to the cylindrical roller 13 in the cylindrical roller bearing described in Patent Literatures 1 and 2 (Patent Literature). As shown in FIG. 14, the axial length (thickness) Ta of the annular portion 14 a of the cage 14 is about 25% of the axial length Td of the cylindrical roller 13. Is set to about. That is, as can be understood from the other drawings of Patent Documents 1 and 2, the above-described dimensional relationship is set to about 25% in the known conventional synthetic resin cage. Was customary. The reason why such a setting is made is that the relationship between the axial length Te of the inner ring 11 and the outer ring 12 and the axial length Td of the cylindrical roller 13 is approximately unambiguous considering the function of the cylindrical roller bearing. If it is designed based on this and the characteristics of the resin material of the cage 14, the axial length Ta of the annular portion 14 a of the cage 14 is naturally the axial length Td of the cylindrical roller 13. This is due to the fact that it must be about 25% of the above.
しかしながら、このような従来設計による円筒ころ軸受は、低中回転数領域ではその機能を十分に発揮できるものの、高回転数領域では保持器14の柱部14bの弾性変形に起因して軸受温度が不当に上昇するおそれがある。また、特許文献1、2に開示のように、保持器14の柱部14bに既述のストレート面14b12を形成する手法を採用したとしても、上記の従来設計をしていたのでは、例えば13000rpm又はその付近の回転数を超える高回転数領域(或いはdmn値が165万又はその付近を超える領域)において不当に軸受温度が上昇する場合がある。このような現象が生じる原因も、保持器14の柱部14bが遠心力の作用によって外径側に大きく弾性変形することが根本にあると言える。 However, although the cylindrical roller bearing according to the conventional design can sufficiently perform its function in the low and medium rotational speed region, the bearing temperature is increased due to the elastic deformation of the column portion 14b of the cage 14 in the high rotational speed region. May rise unjustly. Moreover, even if it employ | adopts the method of forming the straight surface 14b12 as stated above in the pillar part 14b of the holder | retainer 14 as disclosed in patent document 1, 2, if it was said conventional design, for example, 13000rpm Alternatively, the bearing temperature may unduly increase in a high rotation speed region exceeding the rotation speed in the vicinity thereof (or in a region where the dmn value exceeds 1,650,000 or in the vicinity thereof). It can be said that the cause of such a phenomenon is that the pillar portion 14b of the cage 14 is largely elastically deformed to the outer diameter side by the action of centrifugal force.
そして、このように保持器14の柱部14bに円筒ころ13との接触防止対策を講じた場合であっても、柱部14bの弾性変形に起因して極めて高い回転数領域で軸受温度が不当に上昇するという現象が生じ得るのは、保持器14の環状部14aの軸方向長さTaに大きく由来しているということを、本発明者等は知見するに至った。したがって、保持器14の環状部14aの軸方向長さTaと、円筒ころ13の軸方向長さTdとの寸法関係を、従来のように設定していたのでは、極めて大きな遠心力の作用による柱部14bの弾性変形を的確に低減させる上で、大きな妨げとなることが危惧される。 Even when measures are taken to prevent contact between the column 14b of the cage 14 and the cylindrical roller 13 in this way, the bearing temperature is improper in a very high rotational speed region due to elastic deformation of the column 14b. The present inventors have found that the phenomenon that the phenomenon of rising in the vertical direction can occur is largely derived from the axial length Ta of the annular portion 14a of the retainer 14. Therefore, if the dimensional relationship between the axial length Ta of the annular portion 14a of the cage 14 and the axial length Td of the cylindrical roller 13 is set as in the prior art, it is due to the action of a very large centrifugal force. There is a concern that it will be a major obstacle in accurately reducing the elastic deformation of the column portion 14b.
本発明の課題は、所謂くし形の合成樹脂製保持器を備えた円筒ころ軸受において、高速回転時における柱部の弾性変形、及びこれに起因する柱部の先端と円筒ころの転動面との異常接触を防止して、保持器の異常摩耗の防止と軸受温度上昇の抑制を図ると同時に、非繰り返し振れ(NRRO)を低減することである。 An object of the present invention is to provide a cylindrical roller bearing provided with a so-called comb-shaped cage made of synthetic resin, elastic deformation of the column portion during high-speed rotation, and the leading end of the column portion and the rolling surface of the cylindrical roller resulting therefrom. This is to prevent abnormal contact of the cage, to prevent abnormal wear of the cage and to suppress a rise in bearing temperature, and to reduce non-repetitive runout (NRRO).
上記技術的課題を解決するためになされた本発明は、内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円筒ころと、合成樹脂製の保持器とを備え、該保持器は、環状部と、該環状部の内側面から軸方向の一方に延びた複数の柱部と、円周方向に隣接する前記柱部の円周方向側面間に形成され、前記円筒ころを回転自在に保持する複数のポケットとを備えている円筒ころ軸受において、前記保持器の環状部の軸方向長さを、前記円筒ころの軸方向長さの30〜40%に設定したことを特徴とするものである。 The present invention made in order to solve the above technical problem includes an inner ring, an outer ring, a plurality of cylindrical rollers arranged to roll between the inner ring and the outer ring, and a cage made of synthetic resin. The retainer is formed between an annular portion, a plurality of column portions extending in one axial direction from an inner surface of the annular portion, and a circumferential side surface of the column portion adjacent in the circumferential direction, In the cylindrical roller bearing having a plurality of pockets for rotatably holding the cylindrical roller, the axial length of the annular portion of the cage is set to 30 to 40% of the axial length of the cylindrical roller. It is characterized by this.
このような構成によれば、合成樹脂製の保持器の柱部を片持ち支持している環状部の軸方向長さが、円筒ころの軸方向長さの30〜40%に設定されていることから、すなわち従来の寸法比率である約25%程度よりも的確に大きく設定されていることから、環状部の剛性が柱部と比較して相対的に高められる。したがって、柱部は相対的に剛性の高い環状部に支持されて、その支持剛性が高められていることになるため、柱部が回転時の遠心力により外径側に弾性変形しようとしても、柱部の基端部(柱部の根元部)に不当に大きな弾性変形が生じることを阻止でき、ひいては柱部全体の弾性変形を抑制することが可能となる。この場合、環状部の軸方向長さが、円筒ころの軸方向長さの30%未満であると、環状部の剛性ひいては環状部による柱部の支持剛性が不足がちとなり、特に高回転数領域での柱部の外径側への弾性変形量が大きくなるため、柱部の先端側内周部と円筒ころの転動面との異常接触が生じ、例えば13000rpm又はその付近の回転数を超えた段階(或いはdmn値が165万又はその付近の値を超えた段階)で、保持器の異常摩耗や軸受温度の急上昇が生じる原因になると共に、非繰り返し振れ(NRRO)が生じる原因にもなる。これに対して、環状部の軸方向長さが、円筒ころの軸方向長さの40%を超えていると、円筒ころを外輪及び内輪に対して軸方向に不当に長い距離に亘って位置変更させる必要性が生じることから、外輪及び内輪の軸方向長さが不足するなどして、構造上の根本的な問題が生じる。加えて、上記両者の寸法関係が同様に40%を超えていると、円筒ころの軸方向長さが相対的に短尺になり、負荷容量が減少する。したがって、上記両者の寸法関係が30〜40%の数値範囲内にあれば、これらの不具合は生じないことになる。 According to such a configuration, the axial length of the annular portion that cantilever-supports the column portion of the synthetic resin cage is set to 30 to 40% of the axial length of the cylindrical roller. In other words, the rigidity of the annular portion is relatively higher than that of the column portion because it is set to be appropriately larger than the conventional size ratio of about 25%. Therefore, since the column part is supported by the relatively rigid annular part and the support rigidity is increased, even if the column part tries to elastically deform to the outer diameter side due to the centrifugal force during rotation, It is possible to prevent an unreasonably large elastic deformation from occurring at the base end portion of the column portion (the base portion of the column portion), thereby suppressing the elastic deformation of the entire column portion. In this case, if the axial length of the annular portion is less than 30% of the axial length of the cylindrical roller, the rigidity of the annular portion, and thus the supporting rigidity of the column portion by the annular portion tends to be insufficient, particularly in the high rotation speed region. Since the amount of elastic deformation of the column portion toward the outer diameter side increases, abnormal contact occurs between the inner peripheral portion on the tip side of the column portion and the rolling surface of the cylindrical roller, for example, exceeding 13000 rpm or the number of rotations in the vicinity thereof. In this stage (or when the dmn value exceeds 1.65 million or a value close to it), abnormal wear of the cage and sudden rise in bearing temperature may occur, and non-repetitive runout (NRRO) may also occur. . In contrast, when the axial length of the annular portion exceeds 40% of the axial length of the cylindrical roller, the cylindrical roller is positioned over an unreasonably long distance in the axial direction with respect to the outer ring and the inner ring. Since the necessity to change arises, the fundamental problem on a structure arises, for example, the axial direction length of an outer ring and an inner ring is insufficient. In addition, if the dimensional relationship between the two exceeds 40%, the axial length of the cylindrical rollers becomes relatively short, and the load capacity is reduced. Therefore, if the dimensional relationship between the two is within a numerical range of 30 to 40%, these problems do not occur.
以上の構成において、前記保持器の柱部の軸方向長さは、前記円筒ころの軸方向長さの65〜75%に設定されていることが好ましい。 In the above configuration, the axial length of the column portion of the cage is preferably set to 65 to 75% of the axial length of the cylindrical roller.
すなわち、柱部の軸方向長さが、円筒ころの軸方向長さの65%未満であると、回転時特に高速回転時に円筒ころを柱部が適切に保持できなくなり、円筒ころの姿勢に不当な狂いが生じるため、柱部の弾性変形を抑制することができても、本来的な円筒ころの保持機能が阻害される。これに対して、柱部の軸方向長さが、円筒ころの軸方向長さの75%を超えていると、環状部の軸方向長さを既述のように相対的に長尺にしてその剛性及び柱部の支持剛性を高めても、高速回転時の弾性変形を充分に抑制できない程度まで柱部の軸方向長さが長尺になってしまうおそれがある。したがって、両者の寸法関係を上記の65〜75%に設定しておけば、これらの不具合が生じなくなるばかりでなく、既述のように環状部の軸方向長さを円筒ころの軸方向長さの30〜40%に設定するという技術的思想が、より重要な意義及び効果をもたらすことになる。 That is, if the axial length of the column portion is less than 65% of the axial length of the cylindrical roller, the column portion cannot be properly held by the column roller during rotation, particularly during high-speed rotation, and the posture of the cylindrical roller is inappropriate. Therefore, even if the elastic deformation of the column portion can be suppressed, the original holding function of the cylindrical roller is hindered. On the other hand, when the axial length of the column portion exceeds 75% of the axial length of the cylindrical roller, the axial length of the annular portion is relatively long as described above. Even if the rigidity and the support rigidity of the column portion are increased, the axial length of the column portion may become long to such an extent that the elastic deformation during high-speed rotation cannot be sufficiently suppressed. Therefore, if the dimensional relationship between the two is set to 65 to 75% as described above, not only these problems do not occur, but also the axial length of the annular portion is set to the axial length of the cylindrical roller as described above. The technical idea of setting to 30 to 40% of the above will bring more important significance and effect.
また、以上の構成において、前記内輪及び/又は外輪における円筒ころが転動する軌道面の軸方向外側に面取り部が形成されると共に、円筒ころの転動面全域が、前記軌道面と面取り部との境界位置よりも軸方向内側に配設されていることが好ましい。 Further, in the above configuration, a chamfered portion is formed on the outer side in the axial direction of the raceway surface on which the cylindrical roller in the inner ring and / or the outer ring rolls, and the entire rolling surface of the cylindrical roller has the raceway surface and the chamfered portion. It is preferable that it is arrange | positioned axially inside rather than the boundary position.
すなわち、保持器の環状部の軸方向長さを上記のように長尺にすれば、これに対応する寸法だけ円筒ころを軸方向外側に位置させる必要があるが、その場合に、内輪及び/又は外輪における軌道面の軸方向外側に面取り部が形成されていると、円筒ころの転動面が、軌道面と面取り部との境界位置を跨いだ状態でその境界位置に接するという事態を招くおそれがある。この場合、円筒ころの転動面が、軌道面と面取り部との境界位置を跨いだ状態で、その円筒ころが転動した場合には、該円筒ころの転動面に境界位置から局部的な応力(エッジ応力)が作用し、この種の円筒ころ軸受の本来的な機能が阻害される。しかしながら、本発明のように円筒ころの転動面全域が、軌道面と面取り部との境界位置よりも軸方向内側に配設されていれば、このような不具合は生じなくなる。 That is, if the axial length of the annular portion of the cage is elongated as described above, it is necessary to position the cylindrical roller on the outer side in the axial direction by a size corresponding to this, in which case the inner ring and / or Or, if the chamfered portion is formed on the outer side of the raceway surface in the outer ring, the rolling surface of the cylindrical roller may come into contact with the boundary position across the boundary position between the raceway surface and the chamfered portion. There is a fear. In this case, when the cylindrical roller rolls in a state where the rolling surface of the cylindrical roller straddles the boundary position between the raceway surface and the chamfered portion, the rolling surface of the cylindrical roller is locally moved from the boundary position to the rolling surface. Stress (edge stress) acts, and the essential function of this type of cylindrical roller bearing is hindered. However, if the entire rolling surface of the cylindrical roller is disposed on the inner side in the axial direction than the boundary position between the raceway surface and the chamfered portion as in the present invention, such a problem does not occur.
このような構成において、前記面取り部は、前記軌道面により構成される円筒面に対して10〜30°の傾斜角度をもって形成されていることが好ましい。 In such a configuration, the chamfered portion is preferably formed with an inclination angle of 10 to 30 ° with respect to the cylindrical surface constituted by the raceway surface.
すなわち、面取り部(テーパ面部)の傾斜角度が10%未満であると、NN形の円筒ころ軸受では、軸受側面の入口径(リードインチャンファー径と称される)が小さくなることから、組み込みの際に、円筒ころの端面と外輪の幅面との干渉が生じ易くなり、スムーズな組み込みが困難となる(NNU形の円筒ころ軸受も同様)。これに対して、面取り部の傾斜角度が30%を超えた場合であっても、円筒ころ軸受の組立時に、面取り部の傾斜が大きいことに起因して、円筒ころをスムーズに組み込むことが困難となる。したがって、面取り部の傾斜角度を、10〜30°の範囲内としておけば、このような不具合は生じなくなる。 That is, if the angle of inclination of the chamfered portion (tapered surface portion) is less than 10%, in the NN type cylindrical roller bearing, the inlet diameter (referred to as the lead-in chamfer diameter) on the bearing side surface becomes small. In this case, interference between the end face of the cylindrical roller and the width of the outer ring is likely to occur, and smooth assembly becomes difficult (the same applies to the NNU type cylindrical roller bearing). On the other hand, even when the inclination angle of the chamfered portion exceeds 30%, it is difficult to smoothly incorporate the cylindrical roller due to the large inclination of the chamfered portion when assembling the cylindrical roller bearing. It becomes. Therefore, if the inclination angle of the chamfered portion is set within a range of 10 to 30 °, such a problem does not occur.
以上の構成において、前記保持器の柱部の円周方向側面は、その基端側内周部に、前記円筒ころの転動面に沿う円弧面として形成され、前記柱部が回転時の遠心力によって外径側に弾性変形したときに、前記円筒ころの転動面を案内するころ案内部を有すると共に、その先端側内周部に、前記ころ案内部よりも前記柱部の円周方向中心側に退避し、前記柱部が回転時の遠心力によって外径側に弾性変形したときに、前記円筒ころの転動面と半径方向の接触圧を生じない逃げ部を有することが好ましい。 In the above configuration, the circumferential side surface of the column portion of the cage is formed as an arc surface along the rolling surface of the cylindrical roller at the proximal end side inner peripheral portion, and the column portion is centrifuged during rotation. A roller guide portion that guides the rolling surface of the cylindrical roller when elastically deformed to the outer diameter side by force, and a circumferential direction of the column portion at the tip end side inner peripheral portion rather than the roller guide portion It is preferable to have a relief portion that retracts to the center side and does not generate a contact pressure in the radial direction with the rolling surface of the cylindrical roller when the column portion is elastically deformed to the outer diameter side by centrifugal force during rotation.
このようにすれば、柱部が回転時の遠心力により外径側に弾性変形した場合、柱部の円周方向側面の基端側内周部に円筒ころの転動面に沿う円弧面として形成されたころ案内部が、円筒ころの転動面との間のポケット隙間が減少する方向(外径側)に変位して、円筒ころの転動面を案内する。そのため、円筒ころの良好な等配機能が確保され、高速回転時における非繰り返し振れ(NRRO)が問題のない程度まで低減される。なお、柱部の弾性変形量は基端側が先端側よりも小さくなるため、基端側内周部のころ案内部で円筒ころを案内する構成としても、両者の異常接触は発生しない。一方、柱部の円周方向側面の先端側内周部には、ころ案内部よりも柱部の円周方向中心側に退避した逃げ部が設けられているので、円周方向側面の先端側内周部は円筒ころの転動面と非接触になるか、或いは、接触する場合でも半径方向の接触圧を生じない程度の軽い接触となる。そのため、高速回転時における円周方向側面の先端側内周部と円筒ころの転動面との異常接触が回避され、先端側内周部の異常摩耗が防止されると共に、軸受温度上昇が抑制される。 In this way, when the column portion is elastically deformed to the outer diameter side due to the centrifugal force during rotation, an arc surface along the rolling surface of the cylindrical roller is provided on the inner peripheral portion on the proximal side of the circumferential side surface of the column portion. The formed roller guide portion is displaced in a direction (outer diameter side) in which the pocket gap between the cylindrical roller and the rolling surface of the cylindrical roller is reduced, and guides the rolling surface of the cylindrical roller. Therefore, a good even distribution function of the cylindrical roller is ensured, and non-repetitive runout (NRRO) during high-speed rotation is reduced to a level where there is no problem. Note that the elastic deformation amount of the column portion is smaller on the proximal end side than on the distal end side, so that the abnormal contact between the two does not occur even when the cylindrical roller is guided by the roller guide portion on the inner circumferential portion on the proximal end side. On the other hand, the inner circumferential portion on the distal end side of the circumferential side surface of the column portion is provided with a relief portion that is retracted closer to the circumferential center side of the column portion than the roller guide portion, so the distal end side of the circumferential side surface The inner peripheral portion is not in contact with the rolling surface of the cylindrical roller, or is light enough to cause no contact pressure in the radial direction even when contacting. As a result, abnormal contact between the inner circumferential portion on the circumferential side surface and the rolling surface of the cylindrical roller during high-speed rotation is avoided, abnormal wear on the inner circumferential portion on the distal end is prevented, and a rise in bearing temperature is suppressed. Is done.
さらに、円周方向側面の基端側内周部に上記のようなころ案内部を設けることにより、柱部の基端側内周部の円周方向肉厚が増大して、柱部の剛性が向上する。そのため、回転時の遠心力や円筒ころからの荷重による柱部の外径方向及び円周方向への弾性変形量が小さくなる。これにより、円筒ころの良好な等配機能が維持される。 Furthermore, by providing the roller guide portion as described above at the proximal side inner peripheral portion of the circumferential side surface, the circumferential thickness of the proximal end side inner peripheral portion of the column portion is increased, and the rigidity of the column portion is increased. Will improve. Therefore, the amount of elastic deformation in the outer diameter direction and the circumferential direction of the column portion due to the centrifugal force during rotation and the load from the cylindrical roller is reduced. Thereby, the favorable equal distribution function of a cylindrical roller is maintained.
上記構成において、逃げ部の軸方向長さは円筒ころの軸方向長さの10%〜35%であることが好ましい。また、逃げ部の半径方向の開始位置とポケットのポケット中心とを結ぶ線が、ポケットのポケット中心におけるポケットPCDの接線に対して、内径側に20度以下の角度をなすように、逃げ部の半径方向の開始位置を設定することが好ましい。これらの基準に基づいて逃げ部を形成することにより、工作機械主軸で要求される高速回転域において、上記の効果を発揮することができる。 In the above configuration, the axial length of the relief portion is preferably 10% to 35% of the axial length of the cylindrical roller. In addition, the line connecting the radial start position of the relief portion and the pocket center of the pocket forms an angle of 20 degrees or less on the inner diameter side with respect to the tangent to the pocket PCD at the pocket center of the pocket. It is preferable to set a starting position in the radial direction. By forming the relief portion based on these standards, the above-described effects can be exhibited in the high-speed rotation range required for the machine tool spindle.
また、逃げ部の円周方向側面は柱部の円周方向中心線と平行なストレート面とすることが好ましい。逃げ部の円周方向側面をポケット中心を通る半径線と平行なストレート面とする場合に比べて、同様の効果を得つつ、柱部の先端側内周部の円周方向肉厚を厚くして、柱部の剛性を高めることができる。 Moreover, it is preferable that the circumferential side surface of the relief portion is a straight surface parallel to the circumferential center line of the column portion. Compared to the case where the circumferential side surface of the relief portion is a straight surface parallel to the radial line passing through the center of the pocket, the circumferential thickness of the inner peripheral portion on the tip side of the column portion is increased while obtaining the same effect. Thus, the rigidity of the column portion can be increased.
あるいは、逃げ部の円周方向側面を柱部の円周方向中心線に近づく方向に傾斜した傾斜面としても良い。これにより、高速回転時における柱部の円周方向側面の先端側内周部と円筒ころの転動面との異常接触をより確実に回避することできると共に、逃げ部の潤滑剤溜りとしての機能を高めることができる。 Alternatively, the circumferential side surface of the relief portion may be an inclined surface that is inclined in a direction approaching the circumferential center line of the column portion. As a result, abnormal contact between the inner circumferential portion on the circumferential side surface of the column portion and the rolling surface of the cylindrical roller during high-speed rotation can be avoided more reliably, and the function as a lubricant reservoir in the escape portion Can be increased.
そして、本発明は、円筒ころが複数列で配列されている複列円筒ころ軸受に特に好適である。この場合、円筒ころの各列をそれぞれ上記の保持器によって個別的に保持する構成とするのが好ましい。より好ましくは、円筒ころの各列を保持する上記の保持器の環状部同士を軸受中央側で相互に付き合わせた状態で配置する。 The present invention is particularly suitable for a double row cylindrical roller bearing in which cylindrical rollers are arranged in a plurality of rows. In this case, it is preferable that each row of cylindrical rollers is individually held by the above cage. More preferably, it arrange | positions in the state which mutually attached the cyclic | annular parts of said holder | retainer holding each row | line | column of a cylindrical roller on the bearing center side.
以上のように本発明に係る円筒ころ軸受によれば、所謂くし形の合成樹脂製保持器を備えた円筒ころ軸受において、前記保持器の環状部の軸方向長さを、円筒ころの軸方向長さの30〜40%に設定したから、柱部は相対的に剛性の高い環状部に支持されて、その支持剛性が高められることになるため、柱部が回転時の遠心力により外径側に弾性変形しようとしても、柱部の基端部に不当に大きな弾性変形が生じることを阻止でき、ひいては柱部全体の弾性変形を抑制することが可能となる。これにより、回転時における柱部の先端と円筒ころの転動面との異常接触を防止して、保持器の異常摩耗の防止と軸受温度上昇の抑制を図ることが可能となると同時に、非繰り返し振れ(NRRO)を低減することも可能となる。 As described above, according to the cylindrical roller bearing according to the present invention, in the cylindrical roller bearing provided with the so-called comb-shaped synthetic resin cage, the axial length of the annular portion of the cage is set to the axial direction of the cylindrical roller. Since the column portion is set to 30 to 40% of the length, the column portion is supported by an annular portion having a relatively high rigidity, and the support rigidity is increased. Even if it is going to be elastically deformed to the side, it is possible to prevent an unreasonably large elastic deformation from occurring at the base end portion of the column portion, and consequently to suppress the elastic deformation of the entire column portion. As a result, abnormal contact between the tip of the column portion and the rolling surface of the cylindrical roller during rotation can be prevented, thereby preventing abnormal wear of the cage and suppressing increase in bearing temperature, and at the same time, non-repetitive. It is also possible to reduce runout (NRRO).
以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、第1の実施形態に係る複列円筒ころ軸受を示している。この複列円筒ころ軸受は、工作機械の主軸装置において、高速で回転駆動される主軸をハウジングに対して回転自在に支持するもので、複列の軌道面1aを有する内輪1と、複列の軌道面2aを有する外輪2と、内輪1の軌道面1a及び外輪2の軌道面2aの相互間に転動自在に配された複列の円筒ころ3と、各列の円筒ころ3をそれぞれ保持する一対の合成樹脂製の保持器4とで構成される。この場合、内輪1の軸方向中央部には中鍔1bが設けられ、両端部には外鍔1cが設けられている。 FIG. 1 shows a double-row cylindrical roller bearing according to the first embodiment. This double-row cylindrical roller bearing is a spindle device of a machine tool that supports a main shaft that is driven to rotate at a high speed with respect to a housing. The double-row cylindrical roller bearing includes an inner ring 1 having a double-row raceway surface 1a, An outer ring 2 having a raceway surface 2a, a double-row cylindrical roller 3 disposed between the raceway surface 1a of the inner ring 1 and the raceway surface 2a of the outer ring 2, and a cylindrical roller 3 in each row are held. And a pair of synthetic resin cages 4. In this case, an inner collar 1b is provided at the central portion in the axial direction of the inner ring 1, and outer collars 1c are provided at both ends.
外輪2の軌道面2aの軸方向両外側にはそれぞれ面取り部2bが形成されると共に、内輪1の軌道面1aの軸方向両外側にもそれぞれ相対的に小さな面取り部1dが形成されている。この場合、外輪2の面取り部2bの傾斜角度α、すなわち外輪2の軌道面2aにより構成される円筒面に対する面取り部2bの傾斜角度αは、10〜30°とされている。そして、円筒ころ3の転動面全域は、外輪2の軌道面2aと面取り部2bとの境界位置Xよりも軸方向内側に配置されている。また、内輪1は主軸の外周に嵌合され、外輪2はハウジングの内周に嵌合されている。そして、この複列円筒ころ軸受は、例えば、エアオイルやグリース等の微量の潤滑剤で潤滑され、ラジアル内部隙間が負、すなわちラジアル方向の予圧を付与した状態で運転されることが多い。なお、内輪1の内径面はテーパ形状であっても良く、したがってこの内輪1は、テーパ形状に形成した主軸の外周面、あるいは、主軸の外周に嵌合したテーパ状スリーブの外周面に嵌合されるものであっても良い。 Chamfered portions 2b are respectively formed on both outer sides in the axial direction of the raceway surface 2a of the outer ring 2, and relatively small chamfered portions 1d are also formed on both outer sides in the axial direction of the raceway surface 1a of the inner ring 1. In this case, the inclination angle α of the chamfered portion 2b of the outer ring 2, that is, the inclination angle α of the chamfered portion 2b with respect to the cylindrical surface constituted by the raceway surface 2a of the outer ring 2 is set to 10 to 30 °. The entire rolling surface of the cylindrical roller 3 is arranged on the inner side in the axial direction from the boundary position X between the raceway surface 2a of the outer ring 2 and the chamfered portion 2b. The inner ring 1 is fitted on the outer circumference of the main shaft, and the outer ring 2 is fitted on the inner circumference of the housing. The double-row cylindrical roller bearing is often operated in a state where the radial internal gap is negative, that is, a radial preload is applied, for example, with a small amount of lubricant such as air oil or grease. The inner ring 1 may have a tapered inner diameter surface. Therefore, the inner ring 1 is fitted to the outer peripheral surface of the main shaft formed in a tapered shape or the outer peripheral surface of the tapered sleeve fitted to the outer periphery of the main shaft. It may be.
図2及び図3に拡大して示すように、保持器4は、例えば、ポリエーテルエーテルケトン樹脂(PEEK)、ポリアミド樹脂(PA:PA66、PA46)、ポリフェニレンサルファイド樹脂(PPS)等の自己潤滑性を有する合成樹脂(必要に応じてカーボンファイバ(CF)、グラスファイバ(GF)等の充填材を所要量配合する。)を射出成形して形成され、環状部4aと、環状部4aの内側面4a1から軸方向の一方に一体に連続して延びた複数の柱部4bと、円周方向に隣接する柱部4bの円周方向側面4b1間に形成され、円筒ころ3を回転自在に保持する複数のポケット4cとを備えている。複数の柱部4bは円周等配位置に配列されている。各ポケット4cは円周方向に隣接する柱部4bの円周方向側面4b1と環状部4aの内側面4a1とで三方から囲まれ、軸方向の一方に向かって開口している。 As shown in FIGS. 2 and 3 in an enlarged manner, the cage 4 has a self-lubricating property such as polyether ether ketone resin (PEEK), polyamide resin (PA: PA66, PA46), polyphenylene sulfide resin (PPS), and the like. A synthetic resin (if necessary, a required amount of filler such as carbon fiber (CF) and glass fiber (GF) is blended) is formed by injection molding, and the annular portion 4a and the inner surface of the annular portion 4a 4a1 is formed between a plurality of pillars 4b extending continuously in one axial direction from 4a1 and a circumferential side surface 4b1 of pillars 4b adjacent in the circumferential direction, and holds cylindrical roller 3 rotatably. And a plurality of pockets 4c. The plurality of column portions 4b are arranged at circumferentially equidistant positions. Each pocket 4c is surrounded from three sides by the circumferential side surface 4b1 of the column part 4b adjacent in the circumferential direction and the inner side surface 4a1 of the annular part 4a, and is open toward one side in the axial direction.
この場合、図1及び図3(a)に示すように、保持器4における環状部4aの軸方向長さ(厚み)Taは、円筒ころ3の軸方向長さTdの30%〜40%、この第1実施形態では30%に設定されている。また、保持器4における柱部4bの軸方向長さTbは、円筒ころ3の軸方向長さTdの65〜75%、この第1実施形態では70%に設定されている。 In this case, as shown in FIGS. 1 and 3A, the axial length (thickness) Ta of the annular portion 4a in the cage 4 is 30% to 40% of the axial length Td of the cylindrical roller 3, In this first embodiment, it is set to 30%. In addition, the axial length Tb of the column portion 4b in the cage 4 is set to 65 to 75% of the axial length Td of the cylindrical roller 3, and is set to 70% in this first embodiment.
一方、図3(a)、(b)に示すように、保持器4における柱部4bの円周方向両側面4b1は、ポケット4cのポケット中心Oを通るポケットPCD(同図に示す例では、ポケットPCDは円筒ころ3の中心を通るころPCDと等しい。)から内径側及び外径側に亘って形成された円弧面(円筒面)4b11と、先端側内周部に設けられた逃げ部4b12とを備えている。 On the other hand, as shown in FIGS. 3 (a) and 3 (b), both side surfaces 4b1 in the circumferential direction of the column part 4b in the retainer 4 are pocket PCDs (in the example shown in FIG. The pocket PCD is the same as the roller PCD passing through the center of the cylindrical roller 3.) An arc surface (cylindrical surface) 4b11 formed from the inner diameter side to the outer diameter side, and a relief portion 4b12 provided at the inner peripheral portion on the front end side. And.
詳述すると、柱部4bの円弧面4b11は、例えば、ポケット中心Oを中心とし、円筒ころ3の半径(D/2)の1.005〜1.1倍の半径の円弧で描かれており、その外径端は、ポケット中心Oを通る半径線r1と平行なストレート面4b13と連続している。円周方向に相対向するストレート面4b13間の離間距離W1は円筒ころ3の直径Dよりも小さく、これにより、ポケット4cに対する円筒ころ3の外径側への抜けが規制される。円弧面4b11の内径端は、基端側においては柱部4bの内径端まで延び、先端側においては内周部の逃げ部4b12に連続している。円周方向に相対向する円弧面4b11の基端側内周部4b14間の最小離間距離W2は円筒ころ3の直径Dよりも小さい。この基端側内周部4b14は、柱部4bが回転時の遠心力によって外径側に弾性変形したときに、円筒ころ3の転動面を案内するころ案内部となる。 Specifically, the circular arc surface 4b11 of the column part 4b is drawn with an arc having a radius 1.005 to 1.1 times the radius (D / 2) of the cylindrical roller 3 with the pocket center O as the center. The outer diameter end is continuous with the straight surface 4b13 parallel to the radial line r1 passing through the pocket center O. The separation distance W1 between the straight surfaces 4b13 opposed to each other in the circumferential direction is smaller than the diameter D of the cylindrical roller 3, thereby restricting the cylindrical roller 3 from slipping out of the pocket 4c to the outer diameter side. The inner diameter end of the arcuate surface 4b11 extends to the inner diameter end of the column portion 4b on the base end side, and is continuous with the escape portion 4b12 on the inner peripheral portion on the distal end side. The minimum separation distance W2 between the base end side inner peripheral portions 4b14 of the circular arc surfaces 4b11 facing each other in the circumferential direction is smaller than the diameter D of the cylindrical roller 3. The base end side inner peripheral portion 4b14 serves as a roller guide portion that guides the rolling surface of the cylindrical roller 3 when the column portion 4b is elastically deformed to the outer diameter side by centrifugal force during rotation.
先端側内周部の逃げ部4b12は、柱部4bの先端から軸線方向に沿って基端部に至る途中部分まで形成され、基端側内周部4b14よりも柱部4bの円周方向中心線r2の側に退避するように肉取りされている。逃げ部4b12の軸方向長さL1は円筒ころ3の軸方向長さTdの10%〜35%であり、逃げ部4b12の半径方向の開始位置はポケット中心OにおけるポケットPCDの接線m1を基準として内径側にθ≦20°となるように設定される。角度θは、逃げ部4b12の半径方向の開始位置とポケット中心Oとを結ぶ線m2が接線m1となす角度である。また、逃げ部4b12の円周方向側面は、柱部4bの円周方向中心線r2と平行なストレート面に形成されている。このような態様で形成された逃げ部4b12は、低速回転時においては円筒ころ3の転動面との間に潤滑剤溜りとなる空間部を形成し、柱部4bが高速回転時の遠心力の作用で円周方向中心線r2に沿って外径側に弾性変形したときにおいても、円筒ころ3の転動面とは接触しなくなる。尚、円周方向に相対向する逃げ部4b12の円周方向側面間の最小離間距離は円筒ころ3の直径Dよりも若干小さいが、逃げ部4b12は円周方向中心線r2に沿って外径側に変位するため、円筒ころ3の転動面とは接触しない。このように、逃げ部4b12の円周方向側面を円周方向中心線r2と平行なストレート面に形成することにより、半径線r1と平行なストレート面に形成する場合に比べ、柱部4bの先端側内周部の円周方向肉厚を厚くして、柱部4bの剛性を高めることができる。 The clearance part 4b12 of the distal end side inner peripheral part is formed from the distal end of the column part 4b to the middle part from the distal end along the axial direction to the proximal end part, and the circumferential center of the column part 4b is more than the proximal end inner peripheral part 4b14. The meat is cut so as to retract to the line r2. The axial length L1 of the escape portion 4b12 is 10% to 35% of the axial length Td of the cylindrical roller 3, and the radial start position of the escape portion 4b12 is based on the tangent m1 of the pocket PCD at the pocket center O. It is set so that θ ≦ 20 ° on the inner diameter side. The angle θ is an angle formed by a line m2 connecting the starting position in the radial direction of the relief portion 4b12 and the pocket center O with the tangent line m1. Further, the circumferential side surface of the relief portion 4b12 is formed on a straight surface parallel to the circumferential center line r2 of the column portion 4b. The relief portion 4b12 formed in such a manner forms a space portion that becomes a lubricant reservoir between the rolling surface of the cylindrical rollers 3 at the time of low speed rotation, and the column portion 4b has a centrifugal force at the time of high speed rotation. Even when elastically deforming toward the outer diameter side along the circumferential center line r <b> 2 by the above action, it does not come into contact with the rolling surface of the cylindrical roller 3. In addition, although the minimum separation distance between the circumferential direction side surfaces of the relief portion 4b12 opposed to each other in the circumferential direction is slightly smaller than the diameter D of the cylindrical roller 3, the relief portion 4b12 has an outer diameter along the circumferential center line r2. Since it is displaced to the side, it does not contact the rolling surface of the cylindrical roller 3. In this way, by forming the circumferential side surface of the relief portion 4b12 on a straight surface parallel to the circumferential center line r2, the tip of the column portion 4b is formed compared to the case where it is formed on a straight surface parallel to the radial line r1. The rigidity of the column part 4b can be increased by increasing the circumferential thickness of the side inner peripheral part.
図1に示すように、この第1実施形態において、保持器4は転動体案内形式のものであり、軸受回転時、保持器4は柱部4bの円周方向側面4b1を円筒ころ3の転動面に接触案内されながら回転する。そして、軸受の回転が所定の高速回転域に達し、柱部4bが高速回転時の遠心力により外径側に弾性変形すると、柱部4bの円周方向側面4b1の基端側内周部(ころ案内部)4b14が円筒ころ3の転動面との間のポケット隙間が減少する方向(円周方向中心線r2に沿って外径側)に変位して、円筒ころ3の転動面を案内する。この場合、円筒ころ3の軸方向長さTdに対する環状部4aの軸方向長さTaの寸法比率は30%とされ、従来の寸法比率(約25%程度)よりも大きく設定されているので、環状部4aの円筒ころ3に対する相対的な厚みが厚くなっている。したがって、図4に示す柱部4bの先端の外径側への弾性変形量δが低減される。詳述すると、上記の寸法比率が30%であると、環状部4aの剛性ひいては環状部4aの柱部4bに対する支持剛性が高められることになるため、柱部4bが高速回転時の遠心力によって外径側に弾性変形した場合であっても、柱部4bの先端の弾性変形量δは僅かなものとなる。これにより、円筒ころ3の転動面との接触が適度に回避されると共に、円筒ころ3の良好な等配機能が確保され、高速回転時における非繰り返し振れ(NRRO)が問題のない程度まで低減される。 As shown in FIG. 1, in the first embodiment, the cage 4 is of a rolling element guide type, and the cage 4 rotates the circumferential side surface 4b1 of the column portion 4b on the rolling of the cylindrical roller 3 when the bearing rotates. It rotates while being guided by contact with the moving surface. Then, when the rotation of the bearing reaches a predetermined high-speed rotation region and the column portion 4b is elastically deformed to the outer diameter side by the centrifugal force at the time of high-speed rotation, the proximal end side inner peripheral portion of the circumferential side surface 4b1 of the column portion 4b ( The roller guide portion) 4b14 is displaced in the direction in which the pocket gap between the rolling contact surface of the cylindrical roller 3 is reduced (on the outer diameter side along the circumferential center line r2) and the rolling contact surface of the cylindrical roller 3 is changed. invite. In this case, the dimensional ratio of the axial length Ta of the annular portion 4a to the axial length Td of the cylindrical roller 3 is set to 30%, which is set larger than the conventional dimensional ratio (about 25%). The relative thickness of the annular portion 4a with respect to the cylindrical roller 3 is increased. Therefore, the amount of elastic deformation δ toward the outer diameter side of the tip of the column part 4b shown in FIG. 4 is reduced. More specifically, if the dimensional ratio is 30%, the rigidity of the annular portion 4a and thus the supporting rigidity of the annular portion 4a with respect to the column portion 4b are increased. Therefore, the column portion 4b is caused by centrifugal force during high-speed rotation. Even when elastically deforming to the outer diameter side, the amount of elastic deformation δ at the tip of the column portion 4b is small. As a result, contact with the rolling surface of the cylindrical roller 3 is appropriately avoided, a good equal distribution function of the cylindrical roller 3 is ensured, and non-repetitive runout (NRRO) during high-speed rotation is not problematic. Reduced.
また、柱部4bの軸方向長さTbは、円筒ころ3の軸方向長さTdの70%という適切な長さに設定されていることから、柱部4bの軸方向長さTbが不当に短いことにより円筒ころ3を正規の姿勢で保持する機能が阻害されるという不具合が回避されると共に、柱部4bの軸方向長さTbが不当に長いことにより柱部4bの弾性変形量δを低減させることが困難になるという不具合も回避される。これにより、既述のように円筒ころ3の軸方向長さTdに対する環状部4aの軸方向長さTaの寸法比率を30%としたことによる利点が、より一層確実に得られることになる。 Further, since the axial length Tb of the column portion 4b is set to an appropriate length of 70% of the axial length Td of the cylindrical roller 3, the axial length Tb of the column portion 4b is unreasonably set. The shortage prevents the problem of hindering the function of holding the cylindrical roller 3 in the normal posture, and the axial length Tb of the column 4b is unduly long, so that the amount of elastic deformation δ of the column 4b is reduced. The problem that it is difficult to reduce is also avoided. Thereby, as described above, the advantage obtained by setting the dimensional ratio of the axial length Ta of the annular portion 4a to the axial length Td of the cylindrical roller 3 to 30% can be obtained more reliably.
しかも、柱部4bの円周方向側面4b1の先端側内周部は逃げ部4b12が設けられていることから、円筒ころ3の転動面との接触がより確実に回避される。そのため、高速回転時における円周方向側面4b1の先端側内周部の異常摩耗が防止されると共に、軸受温度上昇が抑制される。 And since the escape side 4b12 is provided in the front end side inner peripheral part of the circumferential direction side surface 4b1 of the pillar part 4b, a contact with the rolling surface of the cylindrical roller 3 is avoided more reliably. Therefore, abnormal wear of the inner peripheral portion on the distal end side of the circumferential side surface 4b1 during high-speed rotation is prevented, and an increase in bearing temperature is suppressed.
さらに、円周方向側面4b1の基端側内周部(ころ案内部)4b14を円筒ころ3の転動面に沿う円弧面とすることにより、柱部4bの基端側内周部4b14の円周方向肉厚が増大して、柱部4bの剛性が向上する。そのため、高速回転時の遠心力や円筒ころ3からの荷重による柱部4bの外径方向及び円周方向への弾性変形量が小さくなり、これにより、円筒ころ3の良好な等配機能が維持される。 Furthermore, the base end side inner peripheral portion (roller guide portion) 4b14 of the circumferential side surface 4b1 is an arc surface along the rolling surface of the cylindrical roller 3, so that the base end side inner peripheral portion 4b14 of the column portion 4b has a circle. The circumferential thickness is increased, and the rigidity of the column portion 4b is improved. Therefore, the amount of elastic deformation in the outer diameter direction and the circumferential direction of the column portion 4b due to the centrifugal force at the time of high-speed rotation and the load from the cylindrical roller 3 is reduced, thereby maintaining a good even distribution function of the cylindrical roller 3. Is done.
また、円筒ころ3の転動面全域が、外輪2の軌道面2aと面取り部2bとの境界位置Xよりも軸方向内側に配設されていることから、円筒ころ3の転動面が、境界位置Xを跨いだ状態で接することにより局部的な応力(エッジ応力)が作用するという事態が生じなくなり、円筒ころ軸受の本来的な機能阻害が生じる余地はなくなる。この場合、軌道面2aと面取り部2bとの境界位置Xは、取り付け誤差や主軸の熱膨張による内外輪1、2の軸方向相対移動量を考慮して設定する必要がある。 Further, since the entire rolling surface of the cylindrical roller 3 is disposed on the inner side in the axial direction than the boundary position X between the raceway surface 2a and the chamfered portion 2b of the outer ring 2, the rolling surface of the cylindrical roller 3 is By contacting in a state of straddling the boundary position X, a situation in which local stress (edge stress) is applied does not occur, and there is no room for the inherent functional hindrance of the cylindrical roller bearing. In this case, it is necessary to set the boundary position X between the raceway surface 2a and the chamfered portion 2b in consideration of the amount of relative movement in the axial direction of the inner and outer rings 1 and 2 due to mounting errors and thermal expansion of the main shaft.
さらに、面取り部2bは、軌道面2aにより構成される円筒面Aに対して10〜30°の傾斜角度をもって形成されていることから、円筒ころ軸受の組立時に、円筒ころ3をスムーズに組み込むことが可能となる。 Further, since the chamfered portion 2b is formed with an inclination angle of 10 to 30 ° with respect to the cylindrical surface A constituted by the raceway surface 2a, the cylindrical roller 3 can be smoothly incorporated when the cylindrical roller bearing is assembled. Is possible.
図5に示す本発明の第2実施形態に係る保持器4は、円筒ころ3の軸方向長さTdに対する環状部4aの軸方向長さTaの寸法比率を35%としたものである。その他の構成要素及び作用効果は、第1実施形態に準じるので、両者に共通の構成要素について図5に同一符号を付し、重複する説明を省略する。 The cage 4 according to the second embodiment of the present invention shown in FIG. 5 is such that the dimensional ratio of the axial length Ta of the annular portion 4a to the axial length Td of the cylindrical roller 3 is 35%. Since the other components and operational effects are the same as those in the first embodiment, the same reference numerals are assigned to the components common to the both in FIG.
図6に示す本発明の第3実施形態に係る保持器4は、円筒ころ3の軸方向長さTdに対する環状部4aの軸方向長さTaの寸法比率を40%としたものである。その他の構成要素及び作用効果は、第1実施形態に準じるので、両者に共通の構成要素について図6に同一符号を付し、重複する説明を省略する。 The cage 4 according to the third embodiment of the present invention shown in FIG. 6 is such that the dimensional ratio of the axial length Ta of the annular portion 4a to the axial length Td of the cylindrical roller 3 is 40%. Since the other components and operational effects are the same as those in the first embodiment, the same reference numerals are given to the components common to both of them in FIG.
図11に示す保持器4は、円筒ころ3の軸方向長さTdに対する環状部4aの軸方向長さTaの寸法比率を45%としたものであって、本発明の趣旨を逸脱するものである。すなわち、この保持器4は、環状部4aの厚みが過度に厚くなっていることから、円筒ころ3の転動面が、外輪2の軌道面2aと面取り部2bとの境界位置Xを跨いで接している。このような構成であると、円筒ころ3の転動面に境界位置Xから局部的な応力(エッジ応力)が作用し、円筒ころ軸受の機能面において根本的な問題が生じる。 The cage 4 shown in FIG. 11 has a dimensional ratio of the axial length Ta of the annular portion 4a to the axial length Td of the cylindrical roller 3 set to 45%, and departs from the spirit of the present invention. is there. That is, in this cage 4, since the annular portion 4 a is excessively thick, the rolling surface of the cylindrical roller 3 straddles the boundary position X between the raceway surface 2 a of the outer ring 2 and the chamfered portion 2 b. It touches. With such a configuration, local stress (edge stress) acts on the rolling surface of the cylindrical roller 3 from the boundary position X, and a fundamental problem occurs in the functional surface of the cylindrical roller bearing.
図7に示す本発明の第4実施形態に係る保持器4は、柱部4bの逃げ部4b12を、その外径端が柱部4bの先端から基端部に向かって内径側に傾斜するように形成したものである。その他の構成要素及び作用効果は、第1実施形態または第2実施形態もしくは第3実施形態に準じるので、これらとの共通の構成要素について図7に同一符号を付し、重複する説明を省略する。 The retainer 4 according to the fourth embodiment of the present invention shown in FIG. 7 is configured such that the outer diameter end of the escape portion 4b12 of the column portion 4b is inclined toward the inner diameter side from the distal end of the column portion 4b toward the base end portion. Is formed. Since other components and operational effects are the same as those in the first embodiment, the second embodiment, or the third embodiment, the same components as those in FIG. .
図8に示す本発明の第5実施形態に係る保持器4は、柱部4bの逃げ部4b12を、その円周方向側面が柱部4bの円周方向中心線r2に近づく方向に傾斜した傾斜面となるように形成したものである。この第5実施形態は、第4実施形態と組み合わせても良い。その他の構成要素及び作用効果は、第1実施形態または第2実施形態もしくは第3実施形態に準じるので、これらとの共通の構成要素について図8に同一符号を付し、重複する説明を省略する。 The cage 4 according to the fifth embodiment of the present invention shown in FIG. 8 has an inclination in which the relief portion 4b12 of the column portion 4b is inclined in a direction in which the circumferential side surface approaches the circumferential center line r2 of the column portion 4b. It is formed to be a surface. This fifth embodiment may be combined with the fourth embodiment. Since other components and operational effects are the same as those in the first embodiment, the second embodiment, or the third embodiment, the same components as those in FIG. .
尚、以上の第1〜第5実施形態において、保持器の案内形式は、転動体案内に限らず、外輪案内や内輪案内でも良い。すなわち、本発明は保持器の案内形式の如何を問わない。また、図1、図5及び図6には、NN形の複列円筒ころ軸受を例示しているが、本発明はNNU形、その他の軸受形式の複列円筒ころ軸受にも同様に適用可能である。さらに、本発明は複列円筒ころ軸受に限らず、単列円筒ころ軸受や多列円筒ころ軸受にも同様に適用可能である。また、以上の第1〜第5実施形態は、環状部4aから軸方向の一方に一体に連続して延びた複数の柱部4bの全てに逃げ部4b12が形成されてなる保持器4に本発明を適用したものであるが、この複数の柱部4bの一つおき或いは二つおき等に逃げ部4b12が形成されている保持器4についても、同様にして本発明を適用することが可能である。 In the first to fifth embodiments described above, the guide type of the cage is not limited to the rolling element guide, but may be an outer ring guide or an inner ring guide. That is, this invention does not ask | require the any guide form of a holder | retainer. 1, 5, and 6 exemplify NN type double row cylindrical roller bearings, the present invention can be similarly applied to NNU type and other bearing type double row cylindrical roller bearings. It is. Furthermore, the present invention is not limited to double-row cylindrical roller bearings but can be similarly applied to single-row cylindrical roller bearings and multi-row cylindrical roller bearings. Moreover, the above 1st-5th embodiment is this to the holder | retainer 4 by which escape part 4b12 is formed in all the some pillar parts 4b integrally extended to one side of the axial direction from the annular part 4a. Although the present invention is applied, the present invention can be similarly applied to the cage 4 in which the escape portions 4b12 are formed in every other or every second column portion 4b. It is.
図1に示す円筒ころ3の軸方向長さTdに対する環状部4aの軸方向長さTaの寸法比率を30%とした複列円筒ころ軸受(実施例1)と、図5に示す上記の寸法比率を35%とした複列円筒ころ軸受(実施例2)と、上記の寸法比率を25%とした従来の複列円筒ころ軸受(比較例1)とを作製し、エアオイル潤滑下で運転して外輪の温度上昇を比較した。その試験結果を図9に示す。 A double row cylindrical roller bearing (Example 1) in which the dimensional ratio of the axial length Ta of the annular portion 4a to the axial length Td of the cylindrical roller 3 shown in FIG. 1 is 30%, and the above dimensions shown in FIG. A double-row cylindrical roller bearing with a ratio of 35% (Example 2) and a conventional double-row cylindrical roller bearing with a dimensional ratio of 25% (Comparative Example 1) were produced and operated under air-oil lubrication. The temperature rise of the outer ring was compared. The test results are shown in FIG.
試験条件は下記のとおりである。
軸受品番:NN3020K
保持器の材質:樹脂
組み込み後のラジアル内部隙間:−5μm
円筒ころ:ころ径φ11mm、ころ長さ11mm、ころPCDφ126mm
潤滑条件:エア量30NL/min、潤滑量0.02ml/20min、潤滑油粘度VG32、ハウジング冷却有り
The test conditions are as follows.
Bearing product number: NN3020K
Cage material: Radial internal gap after resin assembly: -5 μm
Cylindrical roller: Roller diameter φ11mm, Roller length 11mm, Roller PCDφ126mm
Lubrication conditions: Air amount 30NL / min, Lubricating amount 0.02ml / 20min, Lubricating oil viscosity VG32, With housing cooling
図9に示すように、軸受回転数が6000rpm(dmn=76万)以下の回転数領域では、実施例1、2と、比較例1とでは、外輪温度上昇に大きな差異は見られなかったが、軸受回転数が7000rpm(dmn=88万)付近から11000rpm(dmn=138万)付近までの回転数領域では、実施例1、2と、比較例1とでは、外輪温度上昇に僅かな差異が現れ、特に軸受回転数が13000rpm(dmn=165万)を超えると、実施例1、2と、比較例1とでは、外輪温度上昇に顕著な差が現れた。すなわち、実施例1,2は、軸受回転数が13000rpm(dmn=165万)を超えても、それよりも低い回転数領域での勾配と略同一の勾配で外輪温度が上昇するのに対して、比較例1は、軸受回転数が13000rpm(dmn=165万)を超えた時点で、外輪温度が急激に上昇した。この結果から、比較例1は、高回転数領域において、適切な使用が困難になる場合があるとの結論を得た。なお、実施例1と実施例2とを比較すると、実施例2は、軸受回転数が15000rpm(dmn=189万)を超えても、それよりも低い回転数領域での勾配と略同一の勾配で外輪温度が上昇するのに対して、実施例1は、軸受回転数が15000rpm(dmn=189万)を超えた時点で、外輪温度が急激に上昇した。したがって、実施例2は、実施例1よりも更なる高回転領域での良好な使用が可能である。 As shown in FIG. 9, in the rotation speed region where the bearing rotation speed is 6000 rpm (dmn = 760,000) or less, there was no significant difference in the outer ring temperature rise between Examples 1 and 2 and Comparative Example 1. In the rotation speed range from around 7000 rpm (dmn = 880,000) to 11,000 rpm (dmn = 1.38 million), there is a slight difference in the increase in outer ring temperature between Examples 1 and 2 and Comparative Example 1. In particular, when the bearing rotational speed exceeded 13000 rpm (dmn = 1.65 million), there was a significant difference in the temperature increase of the outer ring between Examples 1 and 2 and Comparative Example 1. That is, in the first and second embodiments, even when the bearing rotational speed exceeds 13000 rpm (dmn = 16.5 million), the outer ring temperature rises with a gradient substantially the same as the gradient in the lower rotational speed region. In Comparative Example 1, the outer ring temperature rapidly increased when the bearing rotation speed exceeded 13000 rpm (dmn = 16.5 million). From this result, it was concluded that Comparative Example 1 may be difficult to use appropriately in the high rotation speed region. In addition, when Example 1 and Example 2 are compared, even if Example 2 exceeds 15000 rpm (dmn = 1.89,000), Example 2 is substantially the same gradient as the gradient in a lower rotational speed region. However, in Example 1, the outer ring temperature rapidly increased when the bearing rotation speed exceeded 15000 rpm (dmn = 1.89 million). Therefore, the second embodiment can be used better in the higher rotation region than the first embodiment.
更に、図1に示す円筒ころ3の軸方向長さTdに対する環状部4aの軸方向長さTaの寸法比率を30%とした複列円筒ころ軸受(実施例1)と、図5に示す上記の寸法比率を35%とした複列円筒ころ軸受(実施例2)と、上記の寸法比率を25%とした従来の複列円筒ころ軸受(比較例1)と、上記の寸法比率を15%とした複列円筒ころ軸受(比較例2)と、図11に示す上記の寸法比率を45%とした複列円筒ころ軸受(比較例3)について、FEM解析を行い、円筒ころ径と、図4に示す柱部4bの第1潤滑剤溜り部4b12における基端側端部位置の点Pの外径方向変形量δとの比をそれぞれ求め、これらを比較した。その比較結果を図10に示す。 Furthermore, a double row cylindrical roller bearing (Example 1) in which the dimensional ratio of the axial length Ta of the annular portion 4a to the axial length Td of the cylindrical roller 3 shown in FIG. A double row cylindrical roller bearing (Example 2) with a dimensional ratio of 35%, a conventional double row cylindrical roller bearing (Comparative Example 1) with a dimensional ratio of 25%, and a dimensional ratio of 15% The double-row cylindrical roller bearing (Comparative Example 2) and the double-row cylindrical roller bearing (Comparative Example 3) in which the dimensional ratio shown in FIG. The ratio of the point P at the base end side end position in the first lubricant reservoir 4b12 of the column part 4b shown in FIG. The comparison result is shown in FIG.
図10に示すように、実施例1,2では、例えば、軸受回転数が14000rpm(dmn=170万)の回転数領域であれば、上記の比が3%以内に収まっているのに対して、比較例1では、軸受回転数が14000rpm(dmn=170万)の回転数領域であると、上記の比が4%を超えてしまい、更に比較例2では、上記の比が7%を超えてしまっている。すなわち、実施例1、2では、軸受回転数が14000rpm(dmn=170万)の回転数領域であっても、保持器の柱部先端の弾性変形量が、使用上問題とならない程度であるのに対して、比較例1,2では、軸受回転数が14000rpm(dmn=170万)の回転数領域であると、保持器の柱部先端の弾性変形量が、使用の困難を余儀なくされる程度となってしまう。なお、比較例3は、保持器の柱部先端の弾性変形量に関しては問題がないが、既に述べたように構造上の問題を招き、使用が困難である。また、図10に示す軸受回転数が10000rpm(dmn=125万)から20000rpm(dmn=250万)までの回転数領域における5種類の特性曲線の勾配は、円筒ころの軸方向長さに対する環状部の軸方向長さの比率が30%以上では緩やかとなっているが、30%未満では急勾配となっている。この事を勘案すれば、上記の比率が30%未満であると、環状部の軸方向長さの設定が、敏感に限界回転数に影響を与えることになるため、上記の比率は30%以上に設定することが好都合である。 As shown in FIG. 10, in Examples 1 and 2, for example, in the case where the rotational speed range of the bearing is 14000 rpm (dmn = 1.700,000), the above ratio is within 3%. In Comparative Example 1, when the bearing rotational speed is 14000 rpm (dmn = 1.700,000), the above ratio exceeds 4%, and in Comparative Example 2, the above ratio exceeds 7%. It has been. That is, in Examples 1 and 2, even when the bearing rotational speed is in the rotational speed region of 14000 rpm (dmn = 1.700,000), the amount of elastic deformation at the tip of the column portion of the cage does not cause a problem in use. On the other hand, in Comparative Examples 1 and 2, if the bearing rotational speed is in the rotational speed region of 14000 rpm (dmn = 1.7 million), the elastic deformation amount at the end of the column portion of the cage is inevitably difficult to use. End up. In Comparative Example 3, there is no problem with the amount of elastic deformation at the end of the column portion of the cage, but as described above, it causes structural problems and is difficult to use. In addition, the gradients of the five characteristic curves in the rotation speed region from 10000 rpm (dmn = 1.25 million) to 20000 rpm (dmn = 2.500,000) shown in FIG. When the ratio of the length in the axial direction is 30% or more, the ratio is gentle, but when the ratio is less than 30%, the slope is steep. Considering this, if the ratio is less than 30%, the setting of the axial length of the annular portion sensitively affects the limit rotational speed, so the ratio is 30% or more. It is convenient to set
1 内輪
2 外輪
2a 外輪の軌道面
2b 外輪の面取り部
3 円筒ころ
4 保持器
4a 環状部
4a1 内側面
4b 柱部
4b1 円周方向側面
4b12 逃げ部
4b14 ころ案内部
Ta 保持器の環状部の軸方向長さ
Tb 保持器の柱部の軸方向長さ
Td 円筒ころの軸方向長さ
DESCRIPTION OF SYMBOLS 1 Inner ring 2 Outer ring 2a Outer ring raceway surface 2b Chamfered portion 3 of outer ring Cylindrical roller 4 Cage 4a Annular portion 4a1 Inner side surface 4b Column portion 4b1 Circumferential side surface 4b12 Escape portion 4b14 Roller guide portion Ta Axial direction of annular portion of cage Length Tb Axial length Td of cage column Axial length of cylindrical roller
Claims (7)
前記保持器の環状部の軸方向長さを、前記円筒ころの軸方向長さの30〜40%に設定したことを特徴とする円筒ころ軸受。 An inner ring, an outer ring, a plurality of cylindrical rollers rotatably disposed between the inner ring and the outer ring, and a synthetic resin cage, the cage comprising: an annular portion; and an inner portion of the annular portion A plurality of column portions extending in one axial direction from the side surface, and a plurality of pockets formed between the circumferential side surfaces of the column portions adjacent in the circumferential direction and rotatably holding the cylindrical rollers. In cylindrical roller bearings,
A cylindrical roller bearing characterized in that the axial length of the annular portion of the cage is set to 30 to 40% of the axial length of the cylindrical roller.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003378487A JP4387162B2 (en) | 2003-11-07 | 2003-11-07 | Cylindrical roller bearing |
DE102004046789.7A DE102004046789B4 (en) | 2003-09-30 | 2004-09-27 | Cylindrical roller bearings |
US10/952,714 US7101088B2 (en) | 2003-09-30 | 2004-09-28 | Cylindrical roller bearing |
CNB2004100806245A CN100386536C (en) | 2003-09-30 | 2004-09-29 | Cylindrical roller bearing |
CN2007101628728A CN101187400B (en) | 2003-09-30 | 2004-09-29 | Cylindrical roller bearing |
CN2007101628709A CN101187399B (en) | 2003-09-30 | 2004-09-29 | Cylindrical roller bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003378487A JP4387162B2 (en) | 2003-11-07 | 2003-11-07 | Cylindrical roller bearing |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009184980A Division JP2009257593A (en) | 2009-08-07 | 2009-08-07 | Cylindrical roller bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005140269A true JP2005140269A (en) | 2005-06-02 |
JP4387162B2 JP4387162B2 (en) | 2009-12-16 |
Family
ID=34688856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003378487A Expired - Lifetime JP4387162B2 (en) | 2003-09-30 | 2003-11-07 | Cylindrical roller bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4387162B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008008370A (en) * | 2006-06-28 | 2008-01-17 | Ntn Corp | Cylindrical roller bearing cage |
WO2010095647A1 (en) | 2009-02-20 | 2010-08-26 | Ntn株式会社 | Holder, rolling bearing, method of manufacturing holder and injection molding die |
JP2011069460A (en) * | 2009-09-28 | 2011-04-07 | Ntn Corp | Roller bearing and cage for roller bearing |
WO2011111729A1 (en) | 2010-03-10 | 2011-09-15 | Ntn株式会社 | Cage and rolling bearing |
WO2013140948A1 (en) * | 2012-03-23 | 2013-09-26 | Ntn株式会社 | Retainer for roller bearing, and roller bearing structure |
WO2016143577A1 (en) * | 2015-03-10 | 2016-09-15 | Ntn株式会社 | Main shaft device |
-
2003
- 2003-11-07 JP JP2003378487A patent/JP4387162B2/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008008370A (en) * | 2006-06-28 | 2008-01-17 | Ntn Corp | Cylindrical roller bearing cage |
WO2010095647A1 (en) | 2009-02-20 | 2010-08-26 | Ntn株式会社 | Holder, rolling bearing, method of manufacturing holder and injection molding die |
US9192986B2 (en) | 2009-02-20 | 2015-11-24 | Ntn Corporation | Cage, rolling bearing, method for manufacturing cage, and injection mold |
JP2011069460A (en) * | 2009-09-28 | 2011-04-07 | Ntn Corp | Roller bearing and cage for roller bearing |
WO2011111729A1 (en) | 2010-03-10 | 2011-09-15 | Ntn株式会社 | Cage and rolling bearing |
US9284982B2 (en) | 2010-03-10 | 2016-03-15 | Ntn Corporation | Cage and rolling bearing |
WO2013140948A1 (en) * | 2012-03-23 | 2013-09-26 | Ntn株式会社 | Retainer for roller bearing, and roller bearing structure |
JP2013199955A (en) * | 2012-03-23 | 2013-10-03 | Ntn Corp | Retainer for roller bearing and roller bearing structure |
US9388857B2 (en) | 2012-03-23 | 2016-07-12 | Ntn Corporation | Cage of roller bearing and roller bearing structure |
WO2016143577A1 (en) * | 2015-03-10 | 2016-09-15 | Ntn株式会社 | Main shaft device |
JP2016165780A (en) * | 2015-03-10 | 2016-09-15 | Ntn株式会社 | Spindle device |
Also Published As
Publication number | Publication date |
---|---|
JP4387162B2 (en) | 2009-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7101088B2 (en) | Cylindrical roller bearing | |
CN104100640B (en) | The resin prong-shaped cage and double-row roller bearing of double-row roller bearing | |
JP5750901B2 (en) | Rolling bearing | |
JP6481717B2 (en) | Ball bearing, motor and spindle device using the same | |
JP2008240796A (en) | Angular contact ball bearing with seal, and spindle device | |
JP6569663B2 (en) | Angular contact ball bearings | |
JP2008151181A (en) | Roller bearing | |
JP2007147056A (en) | Cylindrical roller bearing | |
JP4387162B2 (en) | Cylindrical roller bearing | |
JP5929544B2 (en) | Rolling bearings and spindles for machine tools | |
JP2009257593A (en) | Cylindrical roller bearing | |
JP3814825B2 (en) | Bearing device | |
JP6529209B2 (en) | Angular contact ball bearings | |
JP5982881B2 (en) | Ball bearing, motor and spindle device using the same | |
WO2018225720A1 (en) | Holder for rolling bearing, and rolling bearing | |
JP4122474B2 (en) | Cage | |
JP4322641B2 (en) | Cylindrical roller bearing | |
JP2008169936A (en) | Deep-groove ball bearing | |
JP4322650B2 (en) | Cylindrical roller bearing | |
JP7430983B2 (en) | Angular contact ball bearings and cages for angular contact ball bearings | |
JP5351686B2 (en) | Roller bearing | |
JP2019168020A (en) | Cylindrical roller bearing | |
JP2004301232A (en) | Retainer for cylindrical roller bearing | |
JP2005321078A (en) | Roller bearing and rolling bearing device | |
JP2006002818A (en) | Synthetic resin holder for roller bearing and cylindrical roller bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061024 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090109 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090518 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090810 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090915 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090930 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4387162 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121009 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121009 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131009 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |