JP2005140215A - Hydraulic control of automatic transmission - Google Patents

Hydraulic control of automatic transmission Download PDF

Info

Publication number
JP2005140215A
JP2005140215A JP2003376330A JP2003376330A JP2005140215A JP 2005140215 A JP2005140215 A JP 2005140215A JP 2003376330 A JP2003376330 A JP 2003376330A JP 2003376330 A JP2003376330 A JP 2003376330A JP 2005140215 A JP2005140215 A JP 2005140215A
Authority
JP
Japan
Prior art keywords
hydraulic
speed
valve
pressure
speed stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003376330A
Other languages
Japanese (ja)
Other versions
JP4480384B2 (en
Inventor
Kazuyuki Noda
和幸 野田
Naoyuki Fukaya
直幸 深谷
Masahiko Ando
雅彦 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2003376330A priority Critical patent/JP4480384B2/en
Publication of JP2005140215A publication Critical patent/JP2005140215A/en
Application granted granted Critical
Publication of JP4480384B2 publication Critical patent/JP4480384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide hydraulic control of an automatic transmission for driving a vehicle by achieving a specified transmission step, while avoiding interlock from occurring in the transmission mechanism. <P>SOLUTION: The hydraulic control of an automatic transmission comprises a solenoid valve SL1 for making a switching operation between a low-speed step selector-valve 51 and a high-speed step selector-valve 52. When the high-speed step is achieved, an engagement element C-2 is engaged all the time with the low-speed step selector-valve and the high-speed step selector-valve. At the time when a hydraulic-pressure detector S/W detects a hydraulic-pressure of a hydraulic-servo of at least three engagement elements, which cause interlock by application of hydraulic pressure of a hydraulic-servo 82 of the engagement element C-2, the solenoid valve is actuated to carry out a gear-shift, that is, when low-speed step is achieved, valve-selection is made to a specified transmission step on the side of the low-speed step, and when high-speed step is achieved, the valve-selection is made to a specified transmission step on the side of the high-speed step. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、車両に搭載される自動変速機に関し、特に、その変速機構中の係合要素を制御する油圧制御装置に関する。   The present invention relates to an automatic transmission mounted on a vehicle, and more particularly to a hydraulic control device that controls an engagement element in the transmission mechanism.

車両に搭載される自動変速機において、ラビニョタイプのプラネタリギヤユニットに減速回転と非減速回転を入力し、4つのクラッチと2つのブレーキからなる6つの係合要素のうちの2つを同時係合させることで前進8速の多段変速を達成するものがある(特許文献1参照)。
特開2001−182785号公報
In an automatic transmission mounted on a vehicle, a reduced speed rotation and a non-reduced speed rotation are input to a Ravigneaux type planetary gear unit, and two of six engagement elements including four clutches and two brakes are simultaneously engaged. There is one that achieves multi-speed shifting at eight forward speeds (see Patent Document 1).
JP 2001-182785 A

また、自動変速機の油圧制御装置において、全ての係合要素の油圧サーボに油圧検出スイッチを付設して、該油圧検出スイッチにより係合要素の異常なタイアップを検出し、変速機構のインターロックを回避する制御を行うものがある(特許文献2参照)。
特許第2668359号公報
Further, in the hydraulic control device of the automatic transmission, a hydraulic pressure detection switch is attached to the hydraulic servos of all the engagement elements, and abnormal tie-ups of the engagement elements are detected by the hydraulic pressure detection switch to interlock the transmission mechanism. There is one that performs control to avoid this (see Patent Document 2).
Japanese Patent No. 2668359

ところで、前記従来の油圧制御においては、低速段達成用の係合要素が係合状態にフェールした場合、過大なエンジンブレーキ作動が生じることでエンジンオーバレブが発生しないように、所定の車速までニュートラル状態にする制御を行う必要があり、この間、駆動力が得られない問題点がある。   By the way, in the conventional hydraulic control, when the engagement element for achieving the low speed stage fails to the engaged state, the neutral speed up to a predetermined vehicle speed is prevented so that an engine overrev is not generated due to an excessive engine brake operation. There is a problem that the driving force cannot be obtained during this period.

そこで、本発明は、係合要素のタイアップによる変速機構のインターロックを回避しながら、所定の変速段の達成による車両走行を可能とする自動変速機の油圧制御装置を提供することを概括的な目的とする。更に、本発明は、所定の変速段を達成する際に、極端なアップシフト変速やダウンシフト変速が生じないようにすることを目的とする。   SUMMARY OF THE INVENTION Accordingly, the present invention generally provides a hydraulic control device for an automatic transmission that enables vehicle travel by achieving a predetermined shift stage while avoiding interlocking of the speed change mechanism due to tie-up of an engagement element. With a purpose. Another object of the present invention is to prevent an extreme upshift or downshift from occurring when a predetermined shift speed is achieved.

上記の目的を達成するため、本発明は、複数の変速段を達成するために選択的に係合される複数の係合要素と、該係合要素のそれぞれの油圧サーボに油圧を供給するソレノイド作動の制御弁と、それぞれの油圧サーボの油圧を検出する油圧検出手段を備える自動変速機の油圧制御装置において、低速段側の所定の変速段を達成するために係合される2つの係合要素の油圧サーボへの油圧の供給・遮断を切り換える低速段用切換弁と、高速段側の所定の変速段を達成するために係合される2つの係合要素の油圧サーボへの油圧の供給・遮断を切り換える高速段用切換弁と、前記低速段用切換弁と高速段用切換弁を切換作動させるソレノイド弁とを備えてなり、前記低速段用切換弁と高速段用切換弁に、高速段達成時に常時係合される係合要素の油圧サーボの油圧を印加することによって、3つ以上の係合要素の油圧サーボの油圧を前記油圧検出手段が検出したときに、前記ソレノイド弁を作動させ、低速段達成時には前記低速段側の所定の変速段に切り換え、高速段達成時には前記高速段側の所定の変速段に切り換えることを特徴とする。   To achieve the above object, the present invention provides a plurality of engagement elements that are selectively engaged to achieve a plurality of shift speeds, and a solenoid that supplies hydraulic pressure to the respective hydraulic servos of the engagement elements. In a hydraulic control device for an automatic transmission comprising an operation control valve and a hydraulic pressure detecting means for detecting the hydraulic pressure of each hydraulic servo, two engagements engaged to achieve a predetermined gear position on the low speed stage side Supply of hydraulic pressure to the hydraulic servo of the two engagement elements engaged to achieve a predetermined shift speed on the high speed stage side, and a low speed switching valve for switching supply / cutoff of hydraulic pressure to the hydraulic servo of the element A high-speed stage switching valve for switching off and a solenoid valve for switching the low-speed stage switching valve and the high-speed stage switching valve are provided, and the low-speed stage switching valve and the high-speed stage switching valve are provided with a high-speed switching valve. Of the engaging element that is always engaged when the stage is achieved By applying the hydraulic pressure of the pressure servo, the solenoid valve is actuated when the hydraulic pressure detection means detects the hydraulic pressure of the hydraulic servo of three or more engagement elements. And when the high speed is achieved, the speed is switched to a predetermined speed on the high speed side.

上記本発明の構成によれば、高速段達成時に常時係合される係合要素の油圧サーボの油圧を低速段用切換弁と高速段用切換弁に印加しておき、該両切換弁をソレノイド弁により選択的に切換作動させることにより、低速段達成時には低速段側の所定の変速段に切り換え、高速段達成時には高速段側の所定の変速段に切り換えることができる。したがって、この構成によれば、変速機構のインターロックを回避しながら、所定の変速段による車両の走行が可能となる。また、所定の変速段への変速の際に、極端な変速が生じないようにすることができる。更に、高速段のみでなく低速段を達成することができるため、車両の再発進時の駆動力も十分に確保することができる。   According to the configuration of the present invention, the hydraulic servo hydraulic pressure of the engaging element that is always engaged when the high speed stage is achieved is applied to the low speed stage switching valve and the high speed stage switching valve, and both the switching valves are connected to the solenoid. By selectively switching with the valve, it is possible to switch to a predetermined shift stage on the low speed stage when the low speed stage is achieved, and to switch to a predetermined shift stage on the high speed stage when the high speed stage is achieved. Therefore, according to this configuration, the vehicle can be driven at a predetermined shift stage while avoiding the interlock of the transmission mechanism. Further, it is possible to prevent an extreme shift from occurring when shifting to a predetermined shift stage. Furthermore, since not only the high speed stage but also the low speed stage can be achieved, the driving force when the vehicle restarts can be sufficiently secured.

本発明の適用に係る変速機構は、低速段達成時に常時係合状態を維持する低速段用クラッチと、高速段達成時に常時係合状態を維持する高速段用クラッチを係合要素として備えるものとされる。そして、低速段用切換弁は、低速段用クラッチ油圧サーボの供給油路に配置され、高速段用切換弁は、高速段用クラッチ油圧サーボの供給油路に配置される。   A speed change mechanism according to the application of the present invention includes, as an engagement element, a low speed stage clutch that maintains a constant engagement state when a low speed stage is achieved, and a high speed stage clutch that maintains a constant engagement state when a high speed stage is achieved. Is done. The low speed stage switching valve is arranged in the supply oil path of the low speed stage clutch hydraulic servo, and the high speed stage switching valve is arranged in the supply oil path of the high speed stage clutch hydraulic servo.

以下、図面に沿い、本発明の実施例を説明する。図1は本発明の一適用対象としての前進8速・後進1速の自動変速機のギヤトレインをスケルトンで示す。図に示すように、この自動変速機は、フロントエンジン・リヤドライブ用の縦置式とされ、ロックアップクラッチ付のトルクコンバータ2と遊星歯車変速装置1とで構成されている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a skeleton of a gear train of an automatic transmission of 8 forward speeds and 1 reverse speed as one application object of the present invention. As shown in the figure, this automatic transmission is a vertical type for a front engine and a rear drive, and includes a torque converter 2 with a lock-up clutch and a planetary gear transmission 1.

遊星歯車変速装置1は、ラビニヨタイプのプラネタリギヤユニットGと、プラネタリギヤユニットGに減速回転を入力する減速用のプラネタリギヤG1とで構成されている。プラネタリギヤユニットGは、大径のサンギヤS2と、小径のサンギヤS3と、互いに噛合して且つ小径のサンギヤS3に噛合するショートピニオンP3と、大径のサンギヤS2に噛合するロングピニオンP2と、それら一対のピニオンを支持するキャリアC3と、ロングピニオンP2に噛合するリングギヤR3から構成されている。また、減速用のプラネタリギヤG1は、サンギヤS1と、それに噛合するピニオンP1と、ピニオンP1に噛合するピニオンP1’と、両ピニオンP1,P1’を支持するキャリアC1と、ピニオンP1’に噛合するリングギヤR1の3要素かなるダブルピニオンプラネタリギヤから構成されている。   The planetary gear transmission 1 is composed of a Ravigneaux type planetary gear unit G and a planetary gear G1 for speed reduction that inputs a reduced speed rotation to the planetary gear unit G. The planetary gear unit G includes a large-diameter sun gear S2, a small-diameter sun gear S3, a short pinion P3 that meshes with each other and meshes with the small-diameter sun gear S3, a long pinion P2 that meshes with the large-diameter sun gear S2, and a pair thereof. The carrier C3 that supports the pinion and the ring gear R3 that meshes with the long pinion P2. The planetary gear G1 for reduction includes a sun gear S1, a pinion P1 meshed with the sun gear S1, a pinion P1 ′ meshed with the pinion P1, a carrier C1 supporting both the pinions P1 and P1 ′, and a ring gear meshed with the pinion P1 ′. It consists of a double pinion planetary gear consisting of three elements R1.

プラネタリギヤユニットGにおける、小径のサンギヤS3は、第1のクラッチC−1(以下、C1クラッチと略記する)により減速プラネタリギヤG1のリングギヤR1に連結されている。大径のサンギヤS2は、第3のクラッチC−3(以下、C3クラッチと略記する)により減速プラネタリギヤG1の同じくリングギヤR1に連結されるとともに、第4のクラッチC−4(以下、C4クラッチと略記する)により減速プラネタリギヤG1のキャリアC1に連結され、更に第1のブレーキB−1(以下、B1ブレーキと略記する)によりケース10に係止可能とされている。また、キャリアC3は、第2のクラッチC−2(以下、C2クラッチと略記する)により入力軸11に連結されるとともに、第2のブレーキB−2(以下、B2ブレーキと略記する)によりケース10に係止可能とされ、更にB2ブレーキと並列配置のワンウェイクラッチF−1によりケース10に一方向回転係止可能とされている。そして、リングギヤR3は、出力軸19に連結されている。減速プラネタリギヤG1は、そのサンギヤS1を変速機ケース10に固定され、キャリアC1を入力軸11に連結されるとともにC4クラッチを介してプラネタリギヤユニットGの大径サンギヤS2に連結され、リングギヤR1をC1クラッチを介してプラネタリギヤユニットGの小径のサンギヤS3に連結され、かつC3クラッチを介してプラネタリギヤユニットGの大径のサンギヤS2に連結されている。   The small-diameter sun gear S3 in the planetary gear unit G is connected to the ring gear R1 of the reduction planetary gear G1 by a first clutch C-1 (hereinafter abbreviated as C1 clutch). The large-diameter sun gear S2 is connected to the ring gear R1 of the reduction planetary gear G1 by a third clutch C-3 (hereinafter abbreviated as C3 clutch), and a fourth clutch C-4 (hereinafter referred to as C4 clutch). It is connected to the carrier C1 of the reduction planetary gear G1 by abbreviation) and can be locked to the case 10 by a first brake B-1 (hereinafter abbreviated as B1 brake). Further, the carrier C3 is connected to the input shaft 11 by a second clutch C-2 (hereinafter abbreviated as C2 clutch), and a case by a second brake B-2 (hereinafter abbreviated as B2 brake). 10 can be locked to the case 10 by a one-way clutch F-1 arranged in parallel with the B2 brake. The ring gear R3 is connected to the output shaft 19. The reduction planetary gear G1 has its sun gear S1 fixed to the transmission case 10, the carrier C1 is connected to the input shaft 11, and is connected to the large-diameter sun gear S2 of the planetary gear unit G via the C4 clutch, and the ring gear R1 is connected to the C1 clutch. Is connected to the small-diameter sun gear S3 of the planetary gear unit G, and is connected to the large-diameter sun gear S2 of the planetary gear unit G via the C3 clutch.

このように構成された遊星歯車変速装置1の上記各クラッチ及びブレーキは、周知のように、それぞれ摩擦部材とそれらを係合・解放操作するピストン・シリンダ機構からなる油圧サーボを備えており、図示しない電子制御装置と後記する油圧制御装置とによる制御で、運転者により選択されたレンジに応じた変速段の範囲で車両負荷に基づき、変速機ケース10に付設した油圧制御装置による各油圧サーボに対する油圧の給排で摩擦部材が係合・解放されて変速が行われる。   As described above, each of the clutches and brakes of the planetary gear transmission 1 configured as described above includes a hydraulic servo including a friction member and a piston / cylinder mechanism that engages / releases them. The control by the electronic control device and the hydraulic control device which will be described later is applied to each hydraulic servo by the hydraulic control device attached to the transmission case 10 based on the vehicle load in the speed range corresponding to the range selected by the driver. The friction member is engaged / released by the supply / discharge of hydraulic pressure, and the speed is changed.

図2は遊星歯車変速装置1の上記各クラッチ及びブレーキ並びにワンウェイクラッチの係合・解放による作動を速度線図で示す。この速度線図は、縦軸でそれらの上部に記す各変速要素を示し、縦軸間相互の幅でギヤ比を示し、縦軸方向の長さで遊星歯車変速装置1への入力回転速度を1とする速度比を示す。図に●印でその直近に記す係合要素の係合を表し、○印で遊星歯車変速装置1の出力回転速度比を表す。   FIG. 2 is a speed diagram illustrating the operation of the planetary gear transmission 1 by engaging and releasing the clutches and brakes and the one-way clutch. In this speed diagram, the vertical axis indicates each shift element described above them, the gear ratio is indicated by the mutual width between the vertical axes, and the input rotational speed to the planetary gear transmission 1 is indicated by the length in the vertical axis direction. A speed ratio of 1 is shown. In the figure, the mark ● represents the engagement of the engagement element immediately indicated, and the mark ○ represents the output rotational speed ratio of the planetary gear transmission 1.

このギヤトレインでは、本実施例において第1〜4速となる低速段側の変速段がC1クラッチの係合による小径サンギヤS3への減速回転の入力の基に、他の係合要素を選択的に同時係合させることで達成される。すなわち、第1速(1ST)は、B2ブレーキの係合に相当するワンウェイクラッチF−1の自動係合により達成される。この場合、図1を参照して、入力軸11から減速プラネタリギヤG1を経て減速された回転がC1クラッチ経由で小径サンギヤS3に入力され、ワンウェイクラッチF−1の係合により係止されたキャリアC3に反力を取って、図2に示すようにリングギヤR3の最大ギヤ比の減速回転が出力軸19に出力される。   In this gear train, in the present embodiment, the lower gear stage, which is the first to fourth gears, selectively selects other engagement elements based on the input of the reduced speed rotation to the small-diameter sun gear S3 by the engagement of the C1 clutch. This is achieved by simultaneously engaging the two. That is, the first speed (1ST) is achieved by automatic engagement of the one-way clutch F-1 corresponding to the engagement of the B2 brake. In this case, referring to FIG. 1, the rotation decelerated from the input shaft 11 via the reduction planetary gear G1 is input to the small-diameter sun gear S3 via the C1 clutch and is locked by the engagement of the one-way clutch F-1. As shown in FIG. 2, the reduced rotation with the maximum gear ratio of the ring gear R 3 is output to the output shaft 19.

次に、第2速(2ND)は、B1ブレーキの同時係合により達成される。この場合、図1を参照して、入力軸11から減速プラネタリギヤG1を経て減速された回転がC1クラッチ経由で小径サンギヤS3に入力され、B1ブレーキの係合により係止された大径サンギヤS2に反力を取って、リングギヤR3の減速回転が出力軸19に出力される。このときの減速比は、図2に示すように第1速(1ST)より小さくなる。   Next, the second speed (2ND) is achieved by simultaneous engagement of the B1 brake. In this case, referring to FIG. 1, the rotation reduced from the input shaft 11 via the reduction planetary gear G1 is input to the small-diameter sun gear S3 via the C1 clutch, and is applied to the large-diameter sun gear S2 locked by the engagement of the B1 brake. Taking the reaction force, the reduced rotation of the ring gear R3 is output to the output shaft 19. The reduction ratio at this time is smaller than the first speed (1ST) as shown in FIG.

また、第3速(3RD)は、C3クラッチの同時係合により達成される。この場合、図1を参照して、入力軸11から減速プラネタリギヤG1を経て減速された回転がC1クラッチとC3クラッチ経由で同時に大径サンギヤS2と小径サンギヤS3に入力され、プラネタリギヤユニットGが直結状態となるため、両サンギヤへの入力回転と同速のリングギヤR3の回転が、図2に示すように入力回転(速度比=1)に対しては減速された回転としてリングギヤR3から出力される。   The third speed (3RD) is achieved by simultaneous engagement of the C3 clutch. In this case, referring to FIG. 1, the rotation reduced from input shaft 11 via reduction planetary gear G1 is simultaneously input to large-diameter sun gear S2 and small-diameter sun gear S3 via C1 clutch and C3 clutch, and planetary gear unit G is directly connected. Therefore, the rotation of the ring gear R3 having the same speed as the input rotation to both sun gears is output from the ring gear R3 as a reduced rotation with respect to the input rotation (speed ratio = 1) as shown in FIG.

更に、第4速(4TH)は、C4クラッチの同時係合により達成される。この場合、図1を参照して、一方で入力軸11から減速プラネタリギヤG1を経て減速された回転がC1クラッチ経由で小径サンギヤS3に入力され、他方で入力軸11からC4クラッチ経由で入力された非減速回転が大径サンギヤS2に入力され、2つの入力回転の中間速度の回転が、図2に示すように減速用のプラネタリギヤの減速回転に対しては僅かに増速されたリングギヤR3の回転として出力される。   Further, the fourth speed (4TH) is achieved by simultaneous engagement of the C4 clutch. In this case, referring to FIG. 1, the rotation decelerated from the input shaft 11 via the reduction planetary gear G1 is input to the small-diameter sun gear S3 via the C1 clutch, and is input from the input shaft 11 via the C4 clutch on the other hand. The non-decelerated rotation is input to the large-diameter sun gear S2, and the rotation of the ring gear R3 in which the rotation of the intermediate speed between the two input rotations is slightly increased as compared with the decelerated rotation of the planetary gear for deceleration as shown in FIG. Is output as

次に、本実施例において第5〜8速となる高速段側の変速段は、C2クラッチの係合によるキャリアC3への非減速回転の入力の基に、他の係合要素を選択的に同時係合させることで達成される。すなわち、第5速(5TH)は、C1クラッチの同時係合により達成される。この場合、図1を参照して、一方で入力軸11から減速プラネタリギヤG1を経て減速された回転がC1クラッチ経由で小径サンギヤS3に入力され、他方で入力軸11からC2クラッチ経由で入力された非減速回転がキャリアC3に入力され、2つの入力回転の中間速度の回転が、図2に示すように入力回転に対しては僅かに減速されたリングギヤR3の回転として出力される。   Next, in the present embodiment, the gear stage on the high speed side, which is the fifth to eighth speeds, selectively selects other engagement elements based on the input of non-decelerated rotation to the carrier C3 due to the engagement of the C2 clutch. This is achieved by simultaneous engagement. That is, the fifth speed (5TH) is achieved by simultaneous engagement of the C1 clutch. In this case, referring to FIG. 1, the rotation decelerated from the input shaft 11 via the reduction planetary gear G1 is input to the small-diameter sun gear S3 via the C1 clutch, and is input from the input shaft 11 via the C2 clutch on the other hand. The non-decelerated rotation is input to the carrier C3, and the rotation at an intermediate speed between the two input rotations is output as the rotation of the ring gear R3 slightly decelerated with respect to the input rotation as shown in FIG.

次に、第6速(6TH)は、C4クラッチの同時係合により達成される。この場合、図1を参照して、一方で入力軸11からC4クラッチ経由で入力された非減速回転が大径サンギヤS2に入力され、他方で入力軸11からC2クラッチ経由で入力された非減速回転がキャリアC3に入力され、プラネタリギヤユニットGが直結状態となるため、サンギヤS2及びキャリアC3への入力回転と同速のリングギヤR3の回転が、図2に示すように入力回転(速度比=1)と同速の回転として、リングギヤR3に出力される。   Next, the sixth speed (6TH) is achieved by simultaneous engagement of the C4 clutch. In this case, referring to FIG. 1, non-decelerated rotation input from the input shaft 11 via the C4 clutch is input to the large-diameter sun gear S2, and on the other hand, non-decelerated input from the input shaft 11 via the C2 clutch. Since the rotation is input to the carrier C3 and the planetary gear unit G is directly connected, the rotation of the ring gear R3 at the same speed as the input rotation to the sun gear S2 and the carrier C3 is the input rotation (speed ratio = 1) as shown in FIG. ) Is output to the ring gear R3.

更に、第7速(7TH)は、C3クラッチの同時係合により達成される。この場合、図1を参照して、一方で入力軸11から減速プラネタリギヤG1を経て減速された回転がC3クラッチ経由で大径サンギヤS2に入力され、他方で入力軸11からC2クラッチ経由で入力された非減速回転がキャリアC3に入力され、図2に示すようにリングギヤR3の回転が入力回転より僅かに増速された回転として出力される。   Further, the seventh speed (7TH) is achieved by simultaneous engagement of the C3 clutch. In this case, referring to FIG. 1, the rotation reduced on the one hand from the input shaft 11 via the reduction planetary gear G1 is inputted to the large-diameter sun gear S2 via the C3 clutch, and on the other hand, inputted from the input shaft 11 via the C2 clutch. The non-decelerated rotation is input to the carrier C3, and the rotation of the ring gear R3 is output as a rotation slightly increased from the input rotation as shown in FIG.

そして、第8速(8TH)は、B1ブレーキの同時係合により達成される。この場合、図1を参照して、入力軸11からC2クラッチ経由で非減速回転がキャリアC3にのみ入力され、B1ブレーキの係合により係止された大径サンギヤS2に反力を取る図2に示すようなリングギヤR3の更に増速された回転が出力される。   The eighth speed (8TH) is achieved by simultaneous engagement of the B1 brake. In this case, referring to FIG. 1, non-decelerated rotation is input from the input shaft 11 via the C2 clutch only to the carrier C3, and a reaction force is applied to the large-diameter sun gear S2 locked by the engagement of the B1 brake. The further increased rotation of the ring gear R3 as shown in FIG.

なお、後進(R)は、B2ブレーキの係合を基本として達成される。この場合、同時係合させる他の係合要素としては、C3クラッチとC4クラッチのいずれかをリバースギヤ比の設定に応じて選択することができる。C3クラッチを同時係合要素とした場合、図1を参照して、入力軸11から減速プラネタリギヤG1を経て減速された回転がC3クラッチ経由で大径サンギヤS2に入力され、B2ブレーキの係合により係止されたキャリアC3に反力を取るリングギヤR3のギヤ比の大きな逆回転が出力軸に出力される。また、C4クラッチを同時係合要素とした場合、図2を参照して分かるように、大径サンギヤS2に入力される回転が非減速回転となる分だけリバース速度比は逆回転方向に大きくなるが、入出力要素の関係は同様である。   The reverse (R) is achieved based on the engagement of the B2 brake. In this case, as another engagement element to be simultaneously engaged, either the C3 clutch or the C4 clutch can be selected according to the setting of the reverse gear ratio. When the C3 clutch is a simultaneous engagement element, referring to FIG. 1, the rotation reduced from the input shaft 11 via the reduction planetary gear G1 is input to the large-diameter sun gear S2 via the C3 clutch, and the B2 brake is engaged. A reverse rotation having a large gear ratio of the ring gear R3 taking a reaction force on the locked carrier C3 is output to the output shaft. Further, when the C4 clutch is a simultaneous engagement element, as can be seen with reference to FIG. 2, the reverse speed ratio increases in the reverse rotation direction by the amount that the rotation input to the large-diameter sun gear S2 becomes the non-deceleration rotation. However, the relationship between input and output elements is the same.

次に示す図3は、遊星歯車変速装置1中の各クラッチ及びブレーキの作動とそれにより達成される変速段との前記した関係をまとめて図表化して示す。図において○印は係合、×印は解放を表す。なお、この図表では、後進(R)時の同時係合要素としてC3クラッチが用いられている。   Next, FIG. 3 shows the above-described relationship between the operation of the clutches and brakes in the planetary gear transmission 1 and the shift speed achieved thereby. In the figure, ◯ indicates engagement, and X indicates release. In this chart, a C3 clutch is used as a simultaneous engagement element during reverse (R).

次に、図1に示すギヤトレインにおいて,図3の作動図表に示す各変速段を達成するための油圧制御装置の構成について説明する。図4は油圧制御装置を模式化した回路図で示す。この油圧回路は、油圧源としての図示しないオイルポンプにより吸い上げられ、ライン圧油路に吐出される油圧をレギュレータバルブにより調圧して、車両の走行負荷に応じた係合要素の係合維持に必要なライン圧PLを作りだし、該ライン圧を制御の基圧として直接又はマニュアルバルブを介して各係合要素の油圧サーボ81〜86に給排する回路を構成している。図4に示す油圧回路は、上記各バルブの図示を省略し、ライン圧油路に通じる油路から直接供給される油圧をPL、マニュアルバルブの“D”レンジポートに通じる油路から供給される油圧をD、同じく“R”ポートに通じる油路から供給される油圧をRとして示す。   Next, in the gear train shown in FIG. 1, the configuration of the hydraulic control device for achieving each of the shift speeds shown in the operation chart of FIG. 3 will be described. FIG. 4 is a circuit diagram schematically showing the hydraulic control device. This hydraulic circuit is sucked up by an oil pump (not shown) as a hydraulic power source, and the hydraulic pressure discharged to the line pressure oil passage is regulated by a regulator valve, and is necessary for maintaining the engagement of the engagement element according to the running load of the vehicle A line pressure PL is created, and a circuit for supplying and discharging the line pressure to the hydraulic servos 81 to 86 of each engagement element directly or via a manual valve as a control base pressure is configured. The hydraulic circuit shown in FIG. 4 omits the illustration of each of the above valves, and supplies the hydraulic pressure directly supplied from the oil passage leading to the line pressure oil passage through the oil passage leading to the “D” range port of the manual valve. The oil pressure is indicated by D, and the oil pressure supplied from the oil passage leading to the “R” port is indicated by R.

図4に示すように、この油圧回路は、C1〜C4クラッチの油圧サーボ81〜84と、それぞれの油圧サーボへの供給油圧を制御するソレノイド作動の制御弁としてのソレノイド信号無印加時最大出力となるリニアソレノイド弁SLC1〜SLC4と、B1ブレーキの油圧サーボ85と、該油圧サーボへの供給油圧を制御する同じくソレノイド作動の制御弁としてのソレノイド信号印加時出力状態となるリニアソレノイド弁SLB1と、B2ブレーキの油圧サーボ86と、低速段用切換弁51と、高速段用切換弁52と、これら両切換弁の切換のための信号圧を出力する常閉形のオンオフソレノイド弁SL1と、各油圧サーボに付設された油圧センサとしての油圧スイッチS/Wを主要な構成要素として備え、その他に、B2ブレーキへの油圧供給経路を第1速のエンジンブレーキ達成時とリバース達成時とで切換える切換弁53と、その切換のためのソレノイド信号圧を出力する常閉形のオンオフソレノイド弁SL2と、高速段用切換弁52に印加する信号圧を選択するシャトル弁54とを備える。   As shown in FIG. 4, this hydraulic circuit includes C1-C4 clutch hydraulic servos 81-84 and a maximum output when no solenoid signal is applied as a solenoid-operated control valve for controlling the hydraulic pressure supplied to each hydraulic servo. Linear solenoid valves SLC1 to SLC4, B1 brake hydraulic servo 85, linear solenoid valves SLB1 which are in an output state when a solenoid signal is applied as a solenoid operated control valve for controlling the hydraulic pressure supplied to the hydraulic servo, and B2 A brake hydraulic servo 86, a low speed switching valve 51, a high speed switching valve 52, a normally closed on / off solenoid valve SL1 that outputs a signal pressure for switching both switching valves, and each hydraulic servo An oil pressure switch S / W as an attached oil pressure sensor is provided as a main component. A switching valve 53 that switches the supply path between when the first-speed engine brake is achieved and when the reverse is achieved, a normally-closed on-off solenoid valve SL2 that outputs a solenoid signal pressure for switching, and a high-speed switching valve 52 And a shuttle valve 54 for selecting a signal pressure to be applied.

具体的には、C1クラッチの油圧サーボ81への供給油路は、リニアソレノイド弁SLC1を経て低速段用切換弁51のアウトポートに接続されている。この低速段用切換弁51は、スプール弁で構成され、スプールの一端(図において下端)へのライン圧PLの印加に対する他端(図において上端)へのC2クラッチサーボ圧PC2(後に記すC2クラッチの油圧サーボ82への供給油圧)及びソレノイド弁SL1が出力する信号圧の重畳印加並びにリターンスプリング荷重の負荷(荷重の作用方向を点線矢印で示す。この表記方法は他の各弁について同様である。)で切換作動する。低速段用切換弁51のインポートへはDレンジ圧が供給される。この接続関係と信号圧印加の関係により、低速段用切換弁は、第1〜4速時は常時Dレンジ圧の連通状態(図に右上がりの斜線でポート連通の状態を示す)を維持し、第5〜8速のC2クラッチサーボ圧PC2及びソレノイドSL1信号圧の重畳印加時には、ライン圧PLの印加に抗して切換え作動し、Dレンジ圧の供給を遮断してアウトポートをドレンEX連通に切り換える(図に右下がりの斜線でこのときのポート連通状態を示す)。   Specifically, the oil supply path to the hydraulic servo 81 of the C1 clutch is connected to the out port of the low speed stage switching valve 51 via the linear solenoid valve SLC1. The low speed switching valve 51 is constituted by a spool valve, and C2 clutch servo pressure PC2 (the C2 clutch described later) to the other end (upper end in the figure) with respect to the application of the line pressure PL to one end (lower end in the figure) of the spool. The hydraulic pressure supplied to the hydraulic servo 82 and the signal pressure output from the solenoid valve SL1 are superimposed and the return spring load is applied (the direction of the load is indicated by a dotted arrow. This notation is the same for the other valves. )). The D range pressure is supplied to the import of the switching valve 51 for the low speed stage. Due to the relationship between this connection and the application of signal pressure, the low-speed stage switching valve always maintains the D range pressure communication state at the 1st to 4th speeds (the port communication state is indicated by a diagonal line rising to the right in the figure). When the 5th to 8th speed C2 clutch servo pressure PC2 and solenoid SL1 signal pressure are applied, the switching operation is performed against the application of the line pressure PL, the supply of the D range pressure is cut off, and the out port is connected to the drain EX. (The port communication state at this time is indicated by the slanting line on the right in the figure).

C4クラッチの油圧サーボ84への供給油路もリニアソレノイド弁SLC4を経て、同様に低速段用切換弁51のアウトポートに接続されている。したがって、低速段用切換弁経由のDレンジ圧の供給及び遮断は、リニアソレノイド弁SLC1とリニアソレノイド弁SLC4について同時に行われる。   The oil supply path to the hydraulic servo 84 of the C4 clutch is also connected to the out port of the low speed stage switching valve 51 through the linear solenoid valve SLC4. Accordingly, the supply and shutoff of the D range pressure via the low speed stage switching valve are performed simultaneously for the linear solenoid valve SLC1 and the linear solenoid valve SLC4.

C2クラッチの油圧サーボ82への供給油路は、高速段用切換弁52とそれより上流のリニアソレノイド弁SLC2を経てDレンジ圧の供給油路に接続されている。この高速段用切換弁52は、スプール弁で構成され、スプールの一端(図において下端)にシャトル弁54を経て選択的に印加されるC2クラッチサーボ圧PC2又はリバース圧R及びリターンスプリング荷重に対向する他端(図において上端)側へのソレノイド弁SL1信号圧の印加で切換作動する。高速段用切換弁52は、上記C2クラッチの油圧サーボ82のリニアソレノイド弁SLC2への連通と、C2クラッチの油圧サーボ82のドレンのためのインポート、アウトポート及びドレンポートを含めて、3つのインポートと4つのアウトポートと4つのドレンEXポートを備える構成とされている。この高速段用切換弁52のソレノイド弁SL1信号圧無印加時のポート連通状態を右下がりの斜線で示し、ソレノイド弁SL1信号圧印加時のポート連通状態を右上がりの斜線で示す。   The oil supply path to the hydraulic servo 82 of the C2 clutch is connected to the oil supply path for the D range pressure via the high speed stage switching valve 52 and the linear solenoid valve SLC2 upstream thereof. The high-speed switching valve 52 is constituted by a spool valve, and is opposed to the C2 clutch servo pressure PC2 or reverse pressure R and the return spring load that are selectively applied to one end (lower end in the figure) of the spool via the shuttle valve 54. The switching operation is performed by applying the signal pressure of the solenoid valve SL1 to the other end (upper end in the figure). The high speed stage switching valve 52 has three imports including the communication of the C2 clutch hydraulic servo 82 to the linear solenoid valve SLC2, the import for the drain of the hydraulic servo 82 of the C2 clutch, the outport and the drain port. And four out ports and four drain EX ports. The port communication state of the high-speed switching valve 52 when the solenoid valve SL1 signal pressure is not applied is indicated by a right-downward oblique line, and the port communication state when the solenoid valve SL1 signal pressure is applied is indicated by a right-upward oblique line.

C3クラッチの油圧サーボ83への供給油路は、リニアソレノイド弁SLC3を経て高速段用切換弁52のアウトポートに接続されており、このアウトポートにつながるインポートはライン圧PLの供給油路に接続されている。この接続関係により、C3クラッチの油圧サーボ83の油圧を制御するリニアソレノイド弁SLC3へのライン圧PLの供給は、ソレノイド弁SL1信号圧の印加による高速段用切換弁52の切換時を除き常時行われる。   The oil supply path to the hydraulic servo 83 of the C3 clutch is connected to the out port of the high speed switching valve 52 via the linear solenoid valve SLC3, and the import connected to this out port is connected to the supply oil path of the line pressure PL. Has been. With this connection, the line pressure PL is always supplied to the linear solenoid valve SLC3 that controls the hydraulic pressure of the hydraulic servo 83 of the C3 clutch except when the high-speed switching valve 52 is switched by applying the solenoid valve SL1 signal pressure. Is called.

B1ブレーキの油圧サーボ85への供給油路は、リニアソレノイド弁SLB1を経て高速段用切換弁52のアウトポートに接続されており、このアウトポートにつながるインポートは、Dレンジ圧の供給油路に接続されている。この接続関係により、B1ブレーキの油圧サーボの油圧を制御するリニアソレノイド弁SLB1へのDレンジ圧の供給は、ソレノイド弁SL1信号圧の印加による高速段用切換弁52の切換時を除き常時行われる。ただし、リニアソレノイド弁SLB1は、他のクラッチ用のリニアソレノイド弁と異なりリニアソレノイド信号を遮断した時に油圧の出力を遮断する常閉形の弁であるため、高速段用切換弁52の経由のDレンジ圧の供給が直ちに油圧サーボ85への油圧供給とはならない。   The supply oil path to the hydraulic servo 85 of the B1 brake is connected to the out port of the high speed switching valve 52 via the linear solenoid valve SLB1, and the import leading to this out port is connected to the supply oil path of the D range pressure. It is connected. Due to this connection relationship, the supply of the D range pressure to the linear solenoid valve SLB1 that controls the hydraulic pressure of the hydraulic servo of the B1 brake is always performed except when the high speed stage switching valve 52 is switched by the application of the solenoid valve SL1 signal pressure. . However, since the linear solenoid valve SLB1 is a normally closed valve that shuts off the hydraulic pressure output when the linear solenoid signal is cut off, unlike the linear solenoid valve for other clutches, the D range via the high speed switching valve 52 is used. The supply of pressure does not immediately become the supply of hydraulic pressure to the hydraulic servo 85.

B2ブレーキの油圧サーボ86への供給油路は、切換弁53を経てリバースレンジ圧Rの供給油路と高速段用切換弁52のアウトポートに接続されている。この切換弁53は、リターンスプリングの荷重に対向するオンオフソレノイド弁SL2信号圧の印加で切換わるスプール弁とされている。この接続関係により、B2ブレーキの油圧サーボ86へは、切換弁53へのソレノイド弁SL2信号圧の印加時には、リバースレンジ圧Rが供給され、ソレノイド弁SL2信号圧の無印加時には、高速段用切換弁52経由で供給されるリニアソレノイド弁SLC2により調圧された出力油圧が供給される。また、所定の車速(例えば、7km/h以上)で前進走行中に、後進段が選択された際に後進段の達成を禁止する図2に示す後進禁止(R禁止)は、オンオフソレノイド弁SL2信号圧を無印加状態とすることによって、リバースレンジ圧RをB2ブレーキの油圧サーボ86への供給を遮断することによって達成される。   The supply oil path to the hydraulic servo 86 of the B2 brake is connected to the supply oil path of the reverse range pressure R and the out port of the high speed stage switching valve 52 via the switching valve 53. The switching valve 53 is a spool valve that is switched by applying an on / off solenoid valve SL2 signal pressure that opposes the load of the return spring. With this connection relationship, the reverse range pressure R is supplied to the hydraulic servo 86 of the B2 brake when the solenoid valve SL2 signal pressure is applied to the switching valve 53, and the high speed stage switching is performed when the solenoid valve SL2 signal pressure is not applied. The output hydraulic pressure regulated by the linear solenoid valve SLC2 supplied via the valve 52 is supplied. Further, the reverse prohibition (R prohibition) shown in FIG. 2 that prohibits the achievement of the reverse gear when the reverse gear is selected during forward travel at a predetermined vehicle speed (for example, 7 km / h or more) is the on / off solenoid valve SL2. The reverse range pressure R is achieved by shutting off the supply of the B2 brake to the hydraulic servo 86 by making the signal pressure non-applied.

前記の構成からなる油圧回路は、第1〜4速の達成状態では、低速段用切換弁51のポート連通が図示右上がりの斜線の連通状態、高速段用切換弁52のポート連通状態はリターンスプリングの荷重のみで図示右下がりの斜線状態となっている。この状態では、全てのリニアソレノイド弁への油圧供給がなされている。したがって、この状態の下にリニアソレノイド弁SLC1のみをソレノイド信号の印加で調圧状態とすることで第1速が達成され、これに加えて、同様にリニアソレノイド弁SLB1を調圧状態とすることで、2要素係合による第2速が達成され、リニアソレノイド弁SLC3を調圧状態とすることで、同じく2要素係合による第3速が達成され、リニアソレノイド弁SLC4を調圧状態とすることで、同じく2要素係合による第4速が達成される。   In the hydraulic circuit having the above-described configuration, when the first to fourth speeds are achieved, the port communication of the low-speed stage switching valve 51 is in the state of communication with the diagonal line rising to the right in the figure, and the port communication state of the high-speed stage switching valve 52 is the return. Only the load of the spring is in the state of slanting lines in the lower right direction in the figure. In this state, hydraulic pressure is supplied to all linear solenoid valves. Therefore, under this state, only the linear solenoid valve SLC1 is brought into a pressure regulation state by applying a solenoid signal to achieve the first speed, and in addition, the linear solenoid valve SLB1 is similarly brought into a pressure regulation state. Thus, the second speed by the two-element engagement is achieved, and the linear solenoid valve SLC3 is brought into the pressure regulation state, so that the third speed by the two-element engagement is also achieved, and the linear solenoid valve SLC4 is brought into the pressure regulation state. Thus, the fourth speed is also achieved by the two-element engagement.

これらいずれの場合にも、上記2要素に加えて他の係合要素のサーボ圧が生じた場合、これがその油圧サーボの油圧スイッチS/Wにより検出され、それに基づきソレノイド弁SL1がオンのソレノイド信号圧出力状態とされる。この信号圧出力で高速段用切換弁52が切換作動し、油圧供給が遮断され、3要素以上の係合によるインターロックが防止される。一方、低速段用切換弁51は、ソレノイド弁SL1のソレノイド信号圧を印加されるものの、高速段係合要素であるC2クラッチの油圧サーボ圧PC2が印加されていないので、対向するライン圧PLの印加に打ち勝つことができないため、当初の状態を維持する。したがって、この状態がリニアソレノイド信号のフェールにより生じた場合、C1クラッチとC4クラッチの同時係合による第4速が達成される。この状態は、ソレノイド弁SL1を含む全てのソレノイド信号がオフフェールした場合にも成立する。したがって、ソレノイド信号オールフェール時は、自ずと第4速が達成され、その変速段による車両走行が可能となる。また、この状態は油路接続のみにより達成されるため、車両の再発進時にも確立される。   In any of these cases, when the servo pressure of the other engaging element is generated in addition to the above two elements, this is detected by the hydraulic switch S / W of the hydraulic servo, and the solenoid signal that the solenoid valve SL1 is turned on based on this is detected. Pressure output state. With this signal pressure output, the high-speed switching valve 52 is switched, the hydraulic pressure supply is cut off, and the interlock due to the engagement of three or more elements is prevented. On the other hand, although the low speed stage switching valve 51 is applied with the solenoid signal pressure of the solenoid valve SL1, the hydraulic servo pressure PC2 of the C2 clutch, which is the high speed stage engagement element, is not applied. Since the application cannot be overcome, the initial state is maintained. Therefore, when this state occurs due to the failure of the linear solenoid signal, the fourth speed is achieved by simultaneous engagement of the C1 clutch and the C4 clutch. This state is also established when all solenoid signals including the solenoid valve SL1 are off-failed. Therefore, at the time of solenoid signal all-fail, the fourth speed is naturally achieved, and the vehicle can be driven by the gear position. Further, since this state is achieved only by connecting the oil passage, it is established when the vehicle restarts.

一方、第5〜8速の達成状態では、低速段用切換弁51のポート連通が図示右上がりの斜線の連通状態、高速段用切換弁52のポート連通状態は、C2クラッチサーボ圧PC2の印加とリターンスプリングの荷重負荷で図示右下がりの斜線状態となっている。この状態でも、全てのリニアソレノイド弁への油圧供給がなされている。したがって、この状態の下にリニアソレノイド弁SLC2へのソレノイド信号の印加で調圧状態を保持し、これに加えて、同様にリニアソレノイド弁SLC1を調圧状態とすることで、2要素係合による第5速が達成され、リニアソレノイド弁SLC4を調圧状態とすることで、同じく2要素係合による第6速が達成され、リニアソレノイド弁SLC3を調圧状態とすることで、同じく2要素係合による第7速が達成され、リニアソレノイド弁SLB1を調圧状態とすることで、同じく2要素係合による第8速が達成される。   On the other hand, in the achieved state of the fifth to eighth speeds, the port communication of the low-speed stage switching valve 51 is in the state of the oblique line in the upper right direction in the figure, and the port communication state of the high-speed stage switching valve 52 is the application of the C2 clutch servo pressure PC2. And the load of the return spring is in the state of slanting lines in the lower right of the figure. Even in this state, hydraulic pressure is supplied to all the linear solenoid valves. Therefore, under this state, the pressure regulation state is maintained by applying a solenoid signal to the linear solenoid valve SLC2, and in addition to this, the linear solenoid valve SLC1 is similarly brought into the pressure regulation state. When the fifth speed is achieved and the linear solenoid valve SLC4 is in the pressure regulation state, the sixth speed is also achieved by the two-element engagement, and when the linear solenoid valve SLC3 is in the pressure regulation state, the two-element engagement is also achieved. The seventh speed is achieved, and the linear solenoid valve SLB1 is brought into the pressure regulation state, whereby the eighth speed is also achieved by the two-element engagement.

これらいずれの場合にも、上記2要素に加えて他の要素のサーボ圧が生じた場合、これがその油圧サーボの油圧スイッチS/Wにより検出され、それに基づきソレノイド弁SL1がオンのソレノイド信号圧出力状態とされる。この場合、低速段達成時とは異なり、高速段用切換弁52にC2クラッチサーボ圧PC2が印加されているため、高速段用切換弁52はソレノイド弁SL1によるソレノイド信号圧出力によっては切換わらない。一方、低速段用切換弁51は、既に印加されているC2クラッチサーボ圧PC2にソレノイド弁SL1のソレノイド信号圧が重畳印加されるため、対向するライン圧PLの印加に打ち勝って切換わり、油圧供給遮断状態となる。したがって、この状態がリニアソレノイド信号のフェールにより生じた場合、B1ブレーキの油圧サーボ82については、自身のリニアソレノイド弁SLB1の閉鎖によりDレンジ圧の供給が断たれるため、C2クラッチとC3クラッチの同時係合による第7速が達成される。この状態は、全てのソレノイド信号がオフフェールした場合にも成立する。したがって、ソレノイド信号オールフェール時は、自ずと第7速が達成され、その変速段による車両走行が可能となる。ただし、この状態はC2クラッチサーボ圧の印加状態を前提として成立するため、一旦C2クラッチサーボ圧が低下した後の車両の再発進時には維持されず、先述の理由から第4速が確立されることになる。   In any of these cases, when a servo pressure of another element is generated in addition to the above two elements, this is detected by the hydraulic switch S / W of the hydraulic servo, and based on that, the solenoid valve SL1 is turned on to output a solenoid signal pressure. State. In this case, unlike when the low speed stage is achieved, the C2 clutch servo pressure PC2 is applied to the high speed stage switching valve 52, so that the high speed stage switching valve 52 is not switched by the solenoid signal pressure output from the solenoid valve SL1. . On the other hand, since the solenoid signal pressure of the solenoid valve SL1 is superimposed and applied to the already applied C2 clutch servo pressure PC2, the low-speed stage switching valve 51 is switched over by overcoming the application of the opposing line pressure PL to supply hydraulic pressure. It becomes a cut-off state. Therefore, when this state occurs due to the failure of the linear solenoid signal, the supply of the D range pressure is cut off for the hydraulic servo 82 of the B1 brake by closing the linear solenoid valve SLB1 of the B1 brake. The seventh speed is achieved by simultaneous engagement. This state is also established when all solenoid signals fail off. Therefore, at the time of solenoid signal all-fail, the seventh speed is naturally achieved, and the vehicle can be driven by the shift speed. However, since this state is established on the assumption that the C2 clutch servo pressure is applied, it is not maintained when the vehicle restarts after the C2 clutch servo pressure has once decreased, and the fourth speed is established for the reason described above. become.

かくしてこの実施例によれば、第5〜8速の高速段達成時に常時係合されるC2クラッチの油圧サーボ82の油圧を低速段用切換弁51と高速段用切換弁52に印加しておき、該両切換弁をソレノイド弁SL1により選択的に切換作動させることにより、第1〜4速の低速段達成時には低速段側の所定の変速段としての第4速に切り換え、高速段達成時には高速段側の所定の変速段としての第7速に切り換えることができる。したがって、この構成によれば、変速機構のインターロックを回避しながら、第4速又は第7速の変速段による車両の走行が可能となる。また、第4速への変速は第1〜第3速殻なされ、第7速への変速は第5〜第8速からなされるため、極端な変速が生じないようにすることができる。更に、高速段の第7速みでなく低速段の第4速を達成することができるため、車両の再発進時の駆動力も第4速の確立ににより十分に確保することができる。   Thus, according to this embodiment, the hydraulic pressure of the hydraulic servo 82 of the C2 clutch which is always engaged when the fifth to eighth speeds are achieved is applied to the low speed switching valve 51 and the high speed switching valve 52 in advance. The two switching valves are selectively switched by the solenoid valve SL1 to switch to the fourth speed as a predetermined shift stage on the low speed stage side when the first to fourth speeds are achieved, and to the high speed when the high speed stage is achieved. It is possible to switch to the seventh speed as a predetermined gear position on the stage side. Therefore, according to this configuration, the vehicle can travel at the fourth speed or the seventh speed while avoiding interlocking of the speed change mechanism. Further, since the shift to the fourth speed is made from the first to third speed shells, and the shift to the seventh speed is made from the fifth to eighth speeds, it is possible to prevent an extreme shift from occurring. Furthermore, since the fourth speed of the low speed stage can be achieved instead of the seventh speed of the high speed stage, the driving force when the vehicle restarts can be sufficiently secured by establishing the fourth speed.

以上、本発明を一実施例を挙げて詳説したが、本発明の思想の適用対象は、例示の変速機構や油圧回路に限定されるものではなく、広く一般的な変速機構の油圧制御に適用可能なものである。   Although the present invention has been described in detail with reference to one embodiment, the scope of application of the idea of the present invention is not limited to the illustrated transmission mechanism and hydraulic circuit, but is widely applied to hydraulic control of a general transmission mechanism. It is possible.

本発明の実施例に係る油圧制御装置により制御される8速自動変速機のギヤトレーンを示すスケルトン図である。It is a skeleton figure which shows the gear train of the 8-speed automatic transmission controlled by the hydraulic control apparatus based on the Example of this invention. ギヤトレーンの作動を示す速度線図である。It is a speed diagram which shows the action | operation of a gear train. 油圧制御装置によるギヤトレーンの作動を示す作動図表である。It is an action | operation chart which shows the action | operation of the gear train by a hydraulic control apparatus. 油圧制御装置の回路図である。It is a circuit diagram of a hydraulic control device.

符号の説明Explanation of symbols

C−1 C1クラッチ(係合要素)
C−2 C2クラッチ(係合要素)
C−3 C3クラッチ(係合要素)
C−4 C4クラッチ(係合要素)
B−1 B1ブレーキ(係合要素)
B−2 B2ブレーキ(係合要素)
51 低速段用切換弁
52 高速段用切換弁
SL1 ソレノイド弁
81〜86 油圧サーボ
S/W 油圧スイッチ(油圧検出手段)
C-1 C1 clutch (engagement element)
C-2 C2 clutch (engagement element)
C-3 C3 clutch (engagement element)
C-4 C4 clutch (engagement element)
B-1 B1 brake (engaging element)
B-2 B2 brake (engaging element)
51 Low-speed stage switching valve 52 High-speed stage switching valve SL1 Solenoid valve 81-86 Hydraulic servo S / W Hydraulic switch (hydraulic detection means)

Claims (1)

複数の変速段を達成するために選択的に係合される複数の係合要素と、該係合要素のそれぞれの油圧サーボに油圧を供給するソレノイド作動の制御弁と、それぞれの油圧サーボの油圧を検出する油圧検出手段を備える自動変速機の油圧制御装置において、
低速段側の所定の変速段を達成するために係合される2つの係合要素の油圧サーボへの油圧の供給・遮断を切り換える低速段用切換弁と、
高速段側の所定の変速段を達成するために係合される2つの係合要素の油圧サーボへの油圧の供給・遮断を切り換える高速段用切換弁と、
前記低速段用切換弁と高速段用切換弁を切換作動させるソレノイド弁とを備えてなり、 前記低速段用切換弁と高速段用切換弁に、高速段達成時に常時係合される係合要素の油圧サーボの油圧を印加することによって、3つ以上の係合要素の油圧サーボの油圧を前記油圧検出手段が検出したときに、前記ソレノイド弁を作動させ、低速段達成時には前記低速段側の所定の変速段に切り換え、高速段達成時には前記高速段側の所定の変速段に切り換えることを特徴とする自動変速機の油圧制御装置。
A plurality of engagement elements selectively engaged to achieve a plurality of shift speeds, a solenoid-operated control valve for supplying hydraulic pressure to the respective hydraulic servos of the engagement elements, and the hydraulic pressures of the respective hydraulic servos In a hydraulic control device for an automatic transmission provided with a hydraulic pressure detecting means for detecting
A low-speed stage switching valve that switches between supplying and shutting off the hydraulic pressure to the hydraulic servo of the two engagement elements engaged to achieve a predetermined gear position on the low-speed stage side;
A high-speed stage switching valve that switches between supply and cut-off of hydraulic pressure to the hydraulic servo of two engagement elements engaged to achieve a predetermined shift stage on the high-speed stage side;
An engagement element that is always engaged with the low-speed stage switching valve and the high-speed stage switching valve when the high-speed stage is achieved. When the hydraulic pressure detecting means detects the hydraulic pressure of the hydraulic servos of three or more engaging elements, the solenoid valve is operated, and when the low speed stage is achieved, the low speed stage side is applied. A hydraulic control device for an automatic transmission, wherein the automatic transmission hydraulic pressure control device switches to a predetermined gear position, and switches to the predetermined gear position on the high speed side when the high speed stage is achieved.
JP2003376330A 2003-11-05 2003-11-05 Hydraulic control device for automatic transmission Expired - Fee Related JP4480384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003376330A JP4480384B2 (en) 2003-11-05 2003-11-05 Hydraulic control device for automatic transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003376330A JP4480384B2 (en) 2003-11-05 2003-11-05 Hydraulic control device for automatic transmission

Publications (2)

Publication Number Publication Date
JP2005140215A true JP2005140215A (en) 2005-06-02
JP4480384B2 JP4480384B2 (en) 2010-06-16

Family

ID=34687402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003376330A Expired - Fee Related JP4480384B2 (en) 2003-11-05 2003-11-05 Hydraulic control device for automatic transmission

Country Status (1)

Country Link
JP (1) JP4480384B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336817A (en) * 2005-06-06 2006-12-14 Honda Motor Co Ltd Speed control device for automatic transmission
JP2007040346A (en) * 2005-08-01 2007-02-15 Toyota Motor Corp Hydraulic control device of automatic transmission for vehicle
JP2007046746A (en) * 2005-08-11 2007-02-22 Hyundai Motor Co Ltd Hydraulic control system of 7-speed automatic transmission for vehicle
JP2008025826A (en) * 2006-07-19 2008-02-07 Hyundai Motor Co Ltd Hydraulic control system of 7-speed automatic transmission for vehicle
JP2009063133A (en) * 2007-09-07 2009-03-26 Aisin Aw Co Ltd Hydraulic control device for automatic transmission
CN102588575A (en) * 2011-01-10 2012-07-18 通用汽车环球科技运作有限责任公司 Hydraulic control system for a transmission having a manual valve with a two gear default strategy
KR101295903B1 (en) 2013-03-19 2013-08-12 김경성 Shift interlock device of transmission for a car
CN107588188A (en) * 2016-07-08 2018-01-16 广州汽车集团股份有限公司 The hydraulic gear-shifting control system of double-clutch automatic gearbox

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223156A (en) * 1992-02-12 1993-08-31 Toyota Motor Corp Gear shift control device for shift-by wire automatic transmission
JP2001050382A (en) * 1999-08-06 2001-02-23 Jatco Transtechnology Ltd Trouble detecting device for automatic transmission
JP2003269602A (en) * 2002-03-18 2003-09-25 Aisin Aw Co Ltd Control device of automatic transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223156A (en) * 1992-02-12 1993-08-31 Toyota Motor Corp Gear shift control device for shift-by wire automatic transmission
JP2001050382A (en) * 1999-08-06 2001-02-23 Jatco Transtechnology Ltd Trouble detecting device for automatic transmission
JP2003269602A (en) * 2002-03-18 2003-09-25 Aisin Aw Co Ltd Control device of automatic transmission

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336817A (en) * 2005-06-06 2006-12-14 Honda Motor Co Ltd Speed control device for automatic transmission
JP2007040346A (en) * 2005-08-01 2007-02-15 Toyota Motor Corp Hydraulic control device of automatic transmission for vehicle
JP4577138B2 (en) * 2005-08-01 2010-11-10 トヨタ自動車株式会社 Hydraulic control device for automatic transmission for vehicle
JP2007046746A (en) * 2005-08-11 2007-02-22 Hyundai Motor Co Ltd Hydraulic control system of 7-speed automatic transmission for vehicle
JP2008025826A (en) * 2006-07-19 2008-02-07 Hyundai Motor Co Ltd Hydraulic control system of 7-speed automatic transmission for vehicle
JP2009063133A (en) * 2007-09-07 2009-03-26 Aisin Aw Co Ltd Hydraulic control device for automatic transmission
CN102588575A (en) * 2011-01-10 2012-07-18 通用汽车环球科技运作有限责任公司 Hydraulic control system for a transmission having a manual valve with a two gear default strategy
CN102588575B (en) * 2011-01-10 2014-12-17 通用汽车环球科技运作有限责任公司 Hydraulic control system for a transmission having a manual valve with a two gear default strategy
KR101295903B1 (en) 2013-03-19 2013-08-12 김경성 Shift interlock device of transmission for a car
CN107588188A (en) * 2016-07-08 2018-01-16 广州汽车集团股份有限公司 The hydraulic gear-shifting control system of double-clutch automatic gearbox
CN107588188B (en) * 2016-07-08 2023-03-10 广州汽车集团股份有限公司 Hydraulic gear-shifting control system of double-clutch automatic transmission

Also Published As

Publication number Publication date
JP4480384B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP4263210B2 (en) Automatic transmission
JP4333632B2 (en) Hydraulic control device for automatic transmission
JP4253899B2 (en) Hydraulic control device for automatic transmission
JP2004036674A (en) Hydraulic control device for automatic transmission
JP5152107B2 (en) Control device for automatic transmission
JP2010084871A (en) Hydraulic control device for automatic transmission
JP2010084872A (en) Hydraulic control device for multiple-speed automatic transmission
JP5304690B2 (en) Hydraulic control device for automatic transmission
JP2005344741A (en) Hydraulic control device for vehicular automatic transmission
JP2001248718A (en) Hydraulic control device for automatic transmission
JP4480384B2 (en) Hydraulic control device for automatic transmission
JP2001090829A (en) Control device for automatic transmission
JP2005003191A (en) Hydraulic pressure control system of six speed reduction automatic transmission for vehicle
JP2003049937A (en) Hydraulic pressure control device of automatic transmission
JP3991264B2 (en) Control device for automatic transmission
JP2006046387A (en) Hydraulic controller of automatic transmission
JP2005163916A (en) Oil pressure control device for automatic transmission
JP5862607B2 (en) Hydraulic control device for automatic transmission
JP2004028277A (en) Hydraulic control device for automatic transmission
JPH0266373A (en) Hydraulic control device in automatic transmission
JP3789859B2 (en) Hydraulic control device for automatic transmission
JP4904873B2 (en) Hydraulic control device for automatic transmission
JP2003301938A (en) Control device for automatic transmission
JP4954174B2 (en) Hydraulic control device for multi-stage automatic transmission
JP4333631B2 (en) Hydraulic control device for automatic transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees