JP2005139931A - Combustion chamber structure of direct injection internal combustion engine - Google Patents

Combustion chamber structure of direct injection internal combustion engine Download PDF

Info

Publication number
JP2005139931A
JP2005139931A JP2003374776A JP2003374776A JP2005139931A JP 2005139931 A JP2005139931 A JP 2005139931A JP 2003374776 A JP2003374776 A JP 2003374776A JP 2003374776 A JP2003374776 A JP 2003374776A JP 2005139931 A JP2005139931 A JP 2005139931A
Authority
JP
Japan
Prior art keywords
fuel
combustion chamber
inner cavity
internal combustion
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003374776A
Other languages
Japanese (ja)
Inventor
Akihiko Kakuho
章彦 角方
Koji Hiratani
康治 平谷
Eiji Takahashi
英二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003374776A priority Critical patent/JP2005139931A/en
Publication of JP2005139931A publication Critical patent/JP2005139931A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To form proper stratified air-fuel mixture in a combustion chamber of a direct injection internal combustion engine to achieve satisfactory stratified combustion. <P>SOLUTION: An ignition plug 12 and a fuel injection valve 11 are provided in an upper part of the combustion chamber 1. An outer side cavity 41 having substantially circular column shape and another inner side cavity 42 are formed substantially in the vicinity of center of a crest face of a piston 4 and at a position involved in the outer side cavity 41, respectively. The inner side cavity 42 is formed so as to turn/mix air-fuel mixture two-dimensionally when forming air-fuel mixture via the inner side cavity. The outer side cavity 41 is formed so as to turn/mix air-fuel mixture in the direction in which axis becomes an object for fuel spray axis when forming air-fuel mixture via the outer side cavity 41. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃焼室内に直接燃料を噴射する内燃機関の燃焼室構造に関し、特に、成層混合気の形成を良好に行うための技術に関する。   The present invention relates to a combustion chamber structure of an internal combustion engine that directly injects fuel into the combustion chamber, and more particularly to a technique for satisfactorily forming a stratified mixture.

従来の筒内直接噴射式内燃機関として、燃焼室上面のほぼ中央部のシリンダヘッドに燃料噴射弁が装着され、シリンダヘッドの排気側から燃焼室中央部に向かって点火プラグが設けられたセンターインジェクション型筒内噴射式内燃機関において、ピストン上面に排気側にオフセットし、排気側底面が深く形成された略断面円形の成層混合気形成用のキャビティを有する。これにより点火プラグ近傍側のキャビティで燃料を比較的長期に渡って保持することが可能となり、幅広い運転領域で成層燃焼可能な筒内噴射式内燃機関を提供できるとしている(特許文献1)。   As a conventional in-cylinder direct injection internal combustion engine, a fuel injection valve is mounted on the cylinder head at the center of the upper surface of the combustion chamber, and a spark plug is provided from the exhaust side of the cylinder head toward the center of the combustion chamber. The in-cylinder injection internal combustion engine has a cavity for forming a stratified mixture having a substantially circular cross section with an offset on the exhaust side on the upper surface of the piston and a deep bottom surface on the exhaust side. As a result, it is possible to hold the fuel in the cavity near the spark plug for a relatively long period of time, and to provide an in-cylinder injection internal combustion engine capable of stratified combustion in a wide operating range (Patent Document 1).

一方、ピストン上面に中央の深皿部とその周囲の浅皿部からなる成層混合気形成用のキャビティを設け、機関負荷に応じて形成される混合気の大きさを制御することが考えられる。つまり、キャビティの大きさによってピストンを経由して形成される混合気塊の大きさを調整する。この場合、シリンダヘッド下面とピストン冠面上部の間隙によって生起されるスキッシュ流が大きい場合でも、スキッシュを発生させる間隙と点火プラグのスパークギャップ位置を遠ざけることが可能となり、スキッシュ流の影響を受けずに混合気形成が可能となる(特許文献2)。
特開2000−34925号公報 特開2000−265841号公報
On the other hand, it is conceivable to provide a cavity for forming a stratified mixture consisting of a central deep dish portion and a surrounding shallow dish portion on the upper surface of the piston, and to control the size of the mixture formed according to the engine load. In other words, the size of the air-fuel mixture formed via the piston is adjusted according to the size of the cavity. In this case, even when the squish flow generated by the gap between the cylinder head lower surface and the piston crown surface is large, the squish generating gap and the spark plug spark gap position can be moved away from each other and are not affected by the squish flow. In addition, the air-fuel mixture can be formed (Patent Document 2).
JP 2000-34925 A JP 2000-265841 A

しかしながら、上記特許文献1に記載された発明においては、燃料噴射弁の改良により混合気の早期の均質化が可能となっても、ピストンキャビティが1つのキャビティによって形成されているために、機関負荷が変化した場合、特に、負荷が上昇した場合にキャビティ内およびキャビティ上空に形成される混合気が過濃となることが懸念される。一方、負荷が高い場合にキャビティおよびキャビティ上空に形成される混合気濃度がたとえば理論空燃比近傍の適切な濃度となるようキャビティの大きさを規定した場合、負荷の低い場合には、安定した着火が危ぶまれる。   However, in the invention described in Patent Document 1, the piston cavity is formed by one cavity even if the mixture can be homogenized early by improving the fuel injection valve. In particular, there is a concern that the air-fuel mixture formed in the cavity and above the cavity becomes excessive when the load increases. On the other hand, when the size of the cavity is specified so that the concentration of the air-fuel mixture formed in the cavity and over the cavity becomes an appropriate concentration near the stoichiometric air-fuel ratio when the load is high, stable ignition is achieved when the load is low. Is in danger.

より詳細に説明すると、ピストン冠面を経由して点火プラグ近傍に混合気を輸送し、キャビティ内に拡散する以前に着火を行う場合、燃料蒸気の混合が不十分で不均質となり、排気性能を悪化させることが考えられる。つまり、NOxやすすの発生を極力抑制するためには、均質な成層混合気塊を形成し、過濃な部位を少なくすることが望まれる。
この場合、燃料噴射弁の改良により混合気の早期の均質化が可能となっても、シリンダヘッド下面とピストン冠面によって圧縮行程後半に生起されるスキッシュ流によって、点火プラグギャップ近傍の混合気が影響され、過度の拡散による希薄化、または高速のガス流によって点火の吹き消え等によって安定燃焼が不可となることが考えられる。
More specifically, when the air-fuel mixture is transported to the vicinity of the spark plug via the piston crown and ignited before being diffused into the cavity, the fuel vapor mixing becomes insufficient and inhomogeneous, and the exhaust performance is reduced. It can be exacerbated. That is, in order to suppress the generation of NOx and soot as much as possible, it is desired to form a homogeneous stratified air-fuel mixture and to reduce the excessively concentrated sites.
In this case, even if the air-fuel mixture can be homogenized at an early stage by improving the fuel injection valve, the air-fuel mixture near the spark plug gap is caused by the squish flow generated in the latter half of the compression stroke by the cylinder head lower surface and the piston crown surface. It is considered that stable combustion becomes impossible due to dilution due to excessive diffusion or blow-off of ignition by high-speed gas flow.

また、上記特許文献2に記載された発明においては、キャビティの浅皿部はバルブリセス形状をしており、上記バルブリセス形状では、噴射された燃料噴霧がリセスとリセスの間からこぼれ、未燃HCの増加が懸念される。
本発明は、このような従来の課題に着目してなされたもので、キャビティ形状の工夫により、良好な性状の成層混合気を生成できるようにした筒内直接噴射式内燃機関の燃焼室構造を提供することを目的とする。
In the invention described in Patent Document 2, the shallow dish portion of the cavity has a valve recess shape. In the valve recess shape, the injected fuel spray spills between the recesses and the unburned HC. There is concern about the increase.
The present invention has been made paying attention to such a conventional problem, and a combustion chamber structure of a direct injection internal combustion engine in a cylinder which can generate a stratified air-fuel mixture having good properties by devising a cavity shape. The purpose is to provide.

このため本発明は、燃焼室上部に点火プラグと燃料噴射弁を備え、ピストン冠面の略中心付近に略円柱状の外側キャビティと内側キャビティを形成すると共に、前記内側キャビティを、該内側キャビティを経由して混合気形成を行うときに、混合気が2次元的に旋回・混合するように形成し、前記外側キャビティを、該外側キャビティを経由して混合気形成を行うときに、混合気が燃料噴霧軸に対して軸対象な方向に旋回・混合するように形成した構成とした。 For this reason, the present invention includes an ignition plug and a fuel injection valve in the upper part of the combustion chamber, and forms a substantially cylindrical outer cavity and an inner cavity near the approximate center of the piston crown, and the inner cavity is defined as the inner cavity. When the air-fuel mixture is formed via the outer cavity, the air-fuel mixture is formed so as to swirl and mix in two dimensions, and when the air-fuel mixture is formed via the outer cavity, the air-fuel mixture is The fuel spray axis is configured to swirl and mix in the axial direction.

一般的に、均質な混合気の場合、当量比と燃焼性能の関係は図1に示すようになる。つまり、当量比が1付近において燃費、排気性能が最もよくなる。成層燃焼時の混合気も同様であり、混合気分布に大きな分布・バラツキがあると、燃焼性能が悪化する。
一方、当量比が約1の均質な成層混合気を形成しようとすると、噴射した燃料が充分な時間を経て混合する必要がある。噴射された燃料の混合過程に点火を行おうとする場合、燃料噴射弁の特性に依存にした不均質な混合気塊に着火することになり、燃費、排気エミッション等の性能悪化を招くことが考えられる。
In general, in the case of a homogeneous air-fuel mixture, the relationship between the equivalence ratio and the combustion performance is as shown in FIG. That is, fuel efficiency and exhaust performance are best when the equivalence ratio is around 1. The same applies to the air-fuel mixture during stratified combustion. If there is a large distribution or variation in the air-fuel mixture distribution, the combustion performance deteriorates.
On the other hand, in order to form a homogeneous stratified mixture having an equivalent ratio of about 1, the injected fuel needs to be mixed after a sufficient time. When attempting to ignite the mixing process of the injected fuel, it will ignite a heterogeneous air-fuel mixture depending on the characteristics of the fuel injection valve, which may lead to performance degradation such as fuel consumption and exhaust emissions. It is done.

したがって、良好な成層燃焼を行おうとした場合、均質な混合気を形成することが望ましく、この場合混合気塊の大きさを変化させることが最良となるが、混合気塊の大きさはキャビティを経由して混合気形成が行われる場合、キャビティ径に依存する。そのため、上記特許文献1に示されたような1つのキャビティ径で成層混合気を形成する場合を考えると、横軸の当量比を負荷と考えてよいこととなる。つまり、ある決まったキャビティ径では、最適な燃焼性能すなわち最良の燃費が得られる機関負荷がある一定の領域に限定される。すなわち、図2に示すように、キャビティ径ごとに最適な機関負荷領域が異なる。   Therefore, when trying to achieve good stratified combustion, it is desirable to form a homogeneous mixture, and in this case it is best to change the size of the mixture, but the size of the mixture will When the air-fuel mixture is formed via, it depends on the cavity diameter. Therefore, considering the case where the stratified mixture is formed with one cavity diameter as shown in Patent Document 1, the equivalence ratio on the horizontal axis may be considered as a load. That is, with a certain cavity diameter, the engine load is limited to a certain range where the optimum combustion performance, that is, the best fuel consumption is obtained. That is, as shown in FIG. 2, the optimum engine load region differs for each cavity diameter.

キャビティおよびその上空に均質な混合気が形成されるとすると、キャビティ径とボア径の比率(キャビティ径/ボア径)と、最良の燃費が得られる機関負荷とは図3に示すような関係となり、成層燃焼性能を向上するために、均質な混合気分布を形成した場合、1つのキャビティ径では幅広い負荷範囲の燃焼性能を向上するのが難しい。
そこで、上記のように構成した本発明によれば、燃料噴射量が少ない低負荷時に、内側キャビティを経由して小さい混合気塊を形成する場合には、混合気が2次元的に1つの旋回方向に向けて旋回するため混合気が不必要に拡散することがないので、コンパクトな混合気分布を形成することができる。
Assuming that a homogeneous air-fuel mixture is formed in the cavity and above, the ratio between the cavity diameter and the bore diameter (cavity diameter / bore diameter) and the engine load at which the best fuel efficiency can be obtained are as shown in FIG. In order to improve the stratified combustion performance, when a homogeneous mixture distribution is formed, it is difficult to improve the combustion performance over a wide load range with one cavity diameter.
Therefore, according to the present invention configured as described above, when a small air-fuel mixture is formed via the inner cavity at a low load with a small fuel injection amount, the air-fuel mixture is swirled one-dimensionally in two dimensions. Since the air-fuel mixture is swung in the direction, the air-fuel mixture does not diffuse unnecessarily, so a compact air-fuel mixture distribution can be formed.

一方、外側キャビティに燃料を噴射し混合気形成を行う場合には、混合気がキャビティ全周に向けて広がるため、等方的な混合気分布が形成しやすくなる。
つまり、低負荷時には、コンパクトな混合気分布を形成でき、高負荷時には、比較的均質な混合気を形成しやすくなり、負荷の変化に対する燃焼の悪化を確実に防ぐことができる。
On the other hand, when fuel mixture is injected into the outer cavity to form an air-fuel mixture, the air-fuel mixture spreads toward the entire circumference of the cavity, so that an isotropic air-fuel mixture distribution is easily formed.
That is, when the load is low, a compact air-fuel mixture distribution can be formed, and when the load is high, it becomes easy to form a relatively homogeneous air-fuel mixture, and combustion deterioration due to load changes can be reliably prevented.

図4は、本発明にかかる筒内直接噴射式内燃機関の燃焼室構造を示す。
シリンダヘッド2と、シリンダブロック3と、ピストン4とによって燃焼室1が形成され、吸気弁7を介して吸気ポート5と、排気弁8を介して排気ポート6とそれぞれ連通している。吸気弁7と排気弁8は、それぞれ吸気弁用カム9と、排気弁用カム10とによって開閉駆動される。燃焼室1の上面(シリンダヘッド)の略中央付近に燃料噴射弁11と点火プラグ12が近接して配置され、スパークギャップ12aが燃焼室1中央に向けて設置され、コントロールユニット13からの信号に基づいて、燃料噴射および点火が行われる。
FIG. 4 shows a combustion chamber structure of a direct injection type internal combustion engine according to the present invention.
Combustion chamber 1 is formed by cylinder head 2, cylinder block 3, and piston 4, and communicates with intake port 5 via intake valve 7 and exhaust port 6 via exhaust valve 8. The intake valve 7 and the exhaust valve 8 are driven to open and close by an intake valve cam 9 and an exhaust valve cam 10, respectively. A fuel injection valve 11 and a spark plug 12 are arranged close to each other near the center of the upper surface (cylinder head) of the combustion chamber 1, and a spark gap 12 a is installed toward the center of the combustion chamber 1. Based on this, fuel injection and ignition are performed.

ピストン4の冠面には外側キャビティ41と、該外側キャビティ41に内包された位置にもう1つの内側キャビティ42からなる二重キャビティが形成されている。
なお、図4では、燃料噴射弁11と点火プラグ12が、機関の前後方向(吸気側と排気側が並ぶ方向と直交する方向)に併設されたものを図示してある。ただし、本発明は、燃料噴射弁11と点火プラグ12が燃焼室1上部に設けられたものであればよく、その他の配置(例えば吸気側と排気側が並ぶ方向に併設)でも同様の効果を有する。
An outer cavity 41 is formed on the crown surface of the piston 4, and a double cavity comprising another inner cavity 42 is formed at a position enclosed by the outer cavity 41.
In FIG. 4, the fuel injection valve 11 and the spark plug 12 are shown in the front-rear direction of the engine (a direction orthogonal to the direction in which the intake side and the exhaust side are aligned). However, the present invention only requires that the fuel injection valve 11 and the spark plug 12 are provided in the upper part of the combustion chamber 1, and the same effect can be obtained in other arrangements (for example, the intake side and the exhaust side are arranged side by side). .

燃料噴射弁11、点火プラグ12はシリンダ中心軸に対してやや角度を持って取り付けられている(これは、吸気弁7および排気弁8の径を小さくすることなく、燃焼室1上部に両者を取り付けるための一手段であり、限定されるものではない。)
燃料噴霧はシリンダ中心軸と概ね平行に噴射される。つまり、燃料噴射弁軸に対しては傾いた方向に噴射される。
The fuel injection valve 11 and the spark plug 12 are attached with a slight angle with respect to the cylinder central axis (this is because both are placed on the upper part of the combustion chamber 1 without reducing the diameter of the intake valve 7 and the exhaust valve 8. (It is a means for attachment and is not limited.)
The fuel spray is injected substantially parallel to the cylinder central axis. That is, the fuel is injected in a direction inclined with respect to the fuel injection valve shaft.

ここで、外側キャビティ41は、燃料噴霧中心軸に対して軸対象に設置される。
図5に本発明にかかるピストン形状を示す。
外側キャビティ41は、燃料噴霧中心軸に対して軸対象に設置される。
内側キャビティ42は、シリンダヘッド2方向からの上面開口形状が長方形をなすように設定されており、前記燃料噴霧が内側キャビティ42の、燃料噴射弁−点火プラグ並び方向の燃料噴射弁側底面に偏って衝突するように設けられている。
Here, the outer cavity 41 is installed on an axis object with respect to the fuel spray central axis.
FIG. 5 shows the piston shape according to the present invention.
The outer cavity 41 is installed on an axis object with respect to the fuel spray central axis.
The inner cavity 42 is set so that the upper surface opening shape from the direction of the cylinder head 2 forms a rectangle, and the fuel spray is biased toward the bottom surface of the inner cavity 42 in the fuel injection valve-ignition plug side direction. Are provided to collide with each other.

ここで、運転条件毎の燃料噴射方法の概略を述べる。
機関負荷が所定の負荷よりも低い場合、1回のみの噴射を行い、負荷の上昇とともに燃料噴射開始時期を進角させる。その際、燃料噴霧は内側キャビティ42に受け止められるように燃料噴射時期が設定される。機関負荷の増大とともに噴射期間が伸びることで、燃料噴霧が内側キャビティ42で受け止められないような噴射期間となる前に、2回の分割噴射を開始する。
Here, an outline of the fuel injection method for each operating condition will be described.
When the engine load is lower than the predetermined load, injection is performed only once, and the fuel injection start timing is advanced as the load increases. At that time, the fuel injection timing is set so that the fuel spray is received by the inner cavity 42. As the engine load increases, the injection period extends, so that two split injections are started before the injection period during which the fuel spray is not received by the inner cavity 42.

2回の分割噴射を行う場合、2回目の燃料噴射量は1回のみ噴射の場合に対して、燃料噴射開始時期を遅角するとともに、燃料噴射量を減じることで、1回のみ燃料噴射する場合と分割噴射する場合の2回目噴射の噴射終了時期は概ね同じ時期となるように設定する。
分割噴射時は機関負荷の増大に対する燃料噴射量の増加は、1回目の噴射量を増やすことによって対応し、その際、燃料噴射開始時期を進角し、燃料噴射終了時期は概ね同じとする。
When performing split injection twice, the fuel injection amount for the second injection is retarded as compared to the case of only one injection, and the fuel is injected only once by reducing the fuel injection amount. The injection end timing of the second injection in the case of split injection is set so as to be substantially the same timing.
At the time of split injection, the increase in the fuel injection amount corresponding to the increase in engine load is dealt with by increasing the first injection amount. At that time, the fuel injection start timing is advanced, and the fuel injection end timing is substantially the same.

図6に、成層低負荷運転条件における、1回のみ燃料噴射した場合の燃料挙動を示す。
燃料噴射時期は、内側キャビティ42に受け止められるよう設定され、燃料噴霧は内側キャビティ42底面に衝突する。その後噴霧は、噴霧の貫徹力によって内側キャビティ42底面に沿って進行し、燃焼室1上空へと向かう。このとき、噴霧の衝突する内側キャビティ42底面が点火プラグ12へと燃料が指向するよう形成されているため、ピストン4冠面上を燃料噴霧はピストン4に沿って、2次元的に流れるとともに、点火プラグ12方向へと進行し、その進行方向をピストン4によって上側へと変化させるとともに、燃焼室1上空をうずのように旋回しつつ、周囲の空気を巻き込みながら、点火プラグ12近傍の内側キャビティ42上空に成層混合気が生成される。1回のみの燃料噴射を内側キャビティ42に向けて行うことにより、形成される混合気塊は燃焼室1中央よりやや排気側の点火プラグ12近傍に比較的コンパクトに形成できる。
FIG. 6 shows the fuel behavior when the fuel is injected only once under the stratified low load operation condition.
The fuel injection timing is set so as to be received by the inner cavity 42, and the fuel spray collides with the bottom surface of the inner cavity 42. Thereafter, the spray proceeds along the bottom surface of the inner cavity 42 by the penetrating force of the spray, and goes toward the combustion chamber 1. At this time, since the bottom surface of the inner cavity 42 where the spray collides is formed so that the fuel is directed to the spark plug 12, the fuel spray flows two-dimensionally along the piston 4 on the crown surface of the piston 4, It advances in the direction of the spark plug 12, and the direction of travel is changed upward by the piston 4, whilst swirling over the combustion chamber 1, whilst surrounding air is drawn in, the inner cavity in the vicinity of the spark plug 12 A stratified mixture is generated above 42. By performing only one fuel injection toward the inner cavity 42, the air-fuel mixture formed can be formed relatively compactly near the ignition plug 12 on the exhaust side slightly from the center of the combustion chamber 1.

ここで、内側キャビティ42の外周部の略上部に点火プラグ12のスパークギャップ部を配置することにより、燃料噴射量の少ない場合にも、混合気がスパークギャップ部付近に確実に輸送されるため、確実な着火が行える。
また、内側キャビティ42の開口形状を長方形状とすることで、燃料噴射弁11から点火プラグ12へと向かう方向以外の混合気の拡散が確実に抑制される。
Here, by arranging the spark gap portion of the spark plug 12 substantially at the upper portion of the outer peripheral portion of the inner cavity 42, the air-fuel mixture is reliably transported to the vicinity of the spark gap portion even when the fuel injection amount is small. Certain ignition is possible.
Moreover, by making the opening shape of the inner cavity 42 rectangular, diffusion of the air-fuel mixture other than the direction from the fuel injection valve 11 toward the spark plug 12 is reliably suppressed.

また、燃料噴射弁11の噴射方向を、内側キャビティ42の中心から燃料噴射弁11側に偏って設定することによって、燃料の運動方向は燃料噴射弁11側の内側キャビティ42底面から点火プラグ12側の内側キャビティ42方向へと向かうことになるため、アイドリング等の極少噴射量の場合でも確実な可燃混合気の輸送がなされる。
また、内側キャビティ42の底面の深さが、燃料噴霧が衝突する側において、低く設定することにより、圧縮上死点付近での燃料噴射の場合でも、液膜がピストン4に付着することがない。
Further, by setting the injection direction of the fuel injection valve 11 to be deviated from the center of the inner cavity 42 toward the fuel injection valve 11 side, the fuel movement direction is changed from the bottom surface of the inner cavity 42 on the fuel injection valve 11 side to the spark plug 12 side. Therefore, the combustible air-fuel mixture can be reliably transported even in the case of a minimum injection amount such as idling.
Further, by setting the depth of the bottom surface of the inner cavity 42 low on the side where the fuel spray collides, the liquid film does not adhere to the piston 4 even in the case of fuel injection near the compression top dead center. .

一方、成層高負荷運転条件における噴霧挙動は、図7に示すようになる。
成層高負荷では、2回の噴射を行う。まず、圧縮行程の中期付近において、外側キャビティ41を指向して1回目の燃料噴射を行う。成層低負荷時の1回のみ噴射の場合と同様、噴霧は外側キャビティ41底面に衝突し、噴霧の貫徹力によって外側キャビティ41底面を経由して燃焼室1上空へ向かい、周辺空気を巻き込みつつ、均質混合気を形成する。ここで、1回目の燃料噴射により形成される混合気塊の大きさは外側キャビティ41の大きさに依存し、比較的大きな塊となり、かつ燃焼室1中央部分は希薄となる。
On the other hand, the spray behavior under the stratified high load operation condition is as shown in FIG.
At stratified high load, two injections are performed. First, near the middle of the compression stroke, the first fuel injection is performed toward the outer cavity 41. As in the case of one-time injection at the time of stratified low load, the spray collides with the bottom surface of the outer cavity 41, travels to the sky above the combustion chamber 1 via the bottom surface of the outer cavity 41 by the penetration force of the spray, A homogeneous mixture is formed. Here, the size of the air-fuel mixture formed by the first fuel injection depends on the size of the outer cavity 41, becomes a relatively large mass, and the central portion of the combustion chamber 1 becomes lean.

1回目の燃料噴射後、圧縮行程の後半、上死点に近い時期に、2回目の燃料噴射を内側キャビティ42に向けて行う。つまり、2回目の燃料噴射時期は、1回目と同様な噴射角度であっても、噴射角度が筒内圧によって若干狭くなる傾向となり、内側キャビティ42に確実に受け止められるような燃料噴射時期に設定されている。成層低負荷時の1回のみ噴射の場合と同様な混合気形成過程を経て、2回目の燃料噴射により小さな塊の均質混合気が形成され、1回目の燃料噴射によって形成された略ドーナツ状に近い混合気塊と2回目の燃料噴射によって形成されたコンパクトな混合気塊によって点火プラグ12近傍に混合気が輸送され、確実な着火がなされる。また、均質な混合気塊によって排気、燃費性能を損なうことなく成層燃焼を達成することができる。   After the first fuel injection, the second fuel injection is performed toward the inner cavity 42 in the second half of the compression stroke, near the top dead center. That is, the second fuel injection timing is set to such a fuel injection timing that the injection angle tends to be slightly narrowed by the in-cylinder pressure even if the injection angle is the same as that of the first fuel injection, and is reliably received by the inner cavity 42. ing. Through a mixture formation process similar to the case of only one injection at the time of stratified low load, a homogeneous mixture of small lumps is formed by the second fuel injection, and it has a substantially donut shape formed by the first fuel injection. The air-fuel mixture is transported to the vicinity of the spark plug 12 by the close air-fuel mixture and the compact air-fuel mixture formed by the second fuel injection, and reliable ignition is performed. Further, stratified combustion can be achieved without impairing exhaust and fuel consumption performance by a homogeneous air-fuel mixture.

ここで、外側キャビティ41は燃料噴霧軸と同心となるよう設定することにより、ピストン4の上下動に対して、燃料噴霧とピストン4の相対角度が同様に設定され、燃料噴射時期が異なる場合、燃料噴射期間が長い場合でも、外側キャビティ41外への燃料のこぼれが少なくできるため、未燃HCの排出増大を抑制できる。また、外側キャビティ41に衝突した噴霧は概ね等方的に外側キャビティ41から巻き上がり、内側キャビティ42上空に均質な混合気分布を形成しやすい。   Here, by setting the outer cavity 41 to be concentric with the fuel spray axis, the relative angle between the fuel spray and the piston 4 is similarly set with respect to the vertical movement of the piston 4, and the fuel injection timing is different. Even when the fuel injection period is long, spillage of fuel outside the outer cavity 41 can be reduced, so that an increase in the discharge of unburned HC can be suppressed. Further, the spray that has collided with the outer cavity 41 is rolled up from the outer cavity 41 approximately isotropically, and it is easy to form a homogeneous mixture distribution over the inner cavity 42.

また、低負荷時は1回のみの燃料噴射を行うようにし、かつ、噴射した燃料が内側キャビティに入るように燃料噴射時期を設定するようにしたため、機関負荷が低く、総燃料噴射量が少ない場合においても必要以上に稀薄化されることなく、点火栓近傍に均質な混合気塊を形成可能となり、確実に着火可能な混合気が形成され、低負荷時の燃料不安定や排気性能悪化を防ぐことができる。   In addition, when the load is low, only one fuel injection is performed, and the fuel injection timing is set so that the injected fuel enters the inner cavity. Therefore, the engine load is low and the total fuel injection amount is small. In this case, a homogeneous air-fuel mixture can be formed in the vicinity of the spark plug without diluting more than necessary, and an air-fuel mixture that can be ignited reliably is formed, resulting in fuel instability and exhaust performance deterioration at low loads. Can be prevented.

一方、高負荷時には、1回のみの噴射では燃料噴射期間が伸びるため、噴射された燃料が内側キャビティのみならず、外側キャビティにはみ出して受け止められるようになる。微量の燃料のみが外側キャビティに向かうと、外側キャビティを経由して形成された混合気が着火不能な希薄な混合気を形成し、未燃HCとして排出される恐れがある。一方、内側キャビティを経由し、点火栓近傍に形成される混合気の濃度は一定量以上の燃料噴射量では過濃となる恐れがある。   On the other hand, when the load is high, the fuel injection period is extended by only one injection, so that the injected fuel protrudes not only to the inner cavity but also to the outer cavity. When only a small amount of fuel goes to the outer cavity, the air-fuel mixture formed via the outer cavity forms a lean air-fuel mixture that cannot be ignited and may be discharged as unburned HC. On the other hand, the concentration of the air-fuel mixture formed in the vicinity of the spark plug via the inner cavity may become excessive when the fuel injection amount is a certain amount or more.

そこで、高負荷時は、圧縮行程に2回の分割噴射を行うことで、分割された各噴射期間にそれぞれ外側キャビティ41と内側キャビティ42とに適量の燃料噴射を分配することができ、必要以上に稀薄化されたり過濃となったりすることなく良好な成層混合気を形成することができる。
特に、圧縮行程に分割して燃料を噴射する際に、1回目の燃料噴射は噴射した燃料が外側キャビティ41に入るように噴射時期を設定し、2回目の燃料噴射では燃料が内側キャビティ42に入るように噴射時期を設定するようにしたため、内側キャビティ42を経由した燃料は点火プラグ近傍に小さな混合気塊を形成し、確実な着火を可能にするとともに、外側キャビティ42に噴射され、外側キャビティ41を経由した燃料は比較的広い範囲に大きな混合気塊を形成する。1回目の燃料噴射を比較的早い噴射時期に設定することにより、混合気の均質化を図ることができる。
Therefore, when the load is high, by performing the split injection twice in the compression stroke, it is possible to distribute an appropriate amount of fuel injection to the outer cavity 41 and the inner cavity 42 in each divided injection period. A good stratified mixture can be formed without being diluted or excessively concentrated.
In particular, when fuel is injected in the compression stroke, the injection timing is set so that the injected fuel enters the outer cavity 41 in the first fuel injection, and the fuel enters the inner cavity 42 in the second fuel injection. Since the injection timing is set so as to enter the fuel, the fuel that has passed through the inner cavity 42 forms a small air-fuel mixture in the vicinity of the spark plug, enables reliable ignition, and is injected into the outer cavity 42 to be injected into the outer cavity. The fuel passing through 41 forms a large air-fuel mixture in a relatively wide range. By setting the first fuel injection at a relatively early injection timing, the mixture can be homogenized.

図8は、上記実施形態における内側キャビティ42での混合気運動方向の示す。内側キャビティ42内を、2つの小うずとなって対称的に旋回するパターンと、1つのうずとなって旋回するパターンとがある。
なお、図9に示すように、内側キャビティ42の上面開口形状は楕円状でもよい。この場合、点火プラグ12のスパークギャップが設けられている内側キャビティ42の一側での燃料の巻き上がりが、楕円状の内側キャビティ42によって集中しやすくなる。より詳細には、内側キャビティ42の開口形状を楕円にすることで、燃料噴射弁11−点火栓12の並び方向に直交する方向の混合気の運動を抑制しつつ、点火プラグ12下側の内側キャビティ42で混合気を集める作用が働き、点火プラグ12近傍により確実に濃い混合気を集めることができる。このため、アイドリング等の極小量噴射の場合でも混合気の拡散を防ぐことで確実な着火を行える。
FIG. 8 shows the direction of air-fuel mixture movement in the inner cavity 42 in the above embodiment. Within the inner cavity 42, there are a pattern that turns symmetrically as two small vortexes and a pattern that turns as one vortex.
In addition, as shown in FIG. 9, the upper surface opening shape of the inner side cavity 42 may be elliptical. In this case, the winding of the fuel on one side of the inner cavity 42 where the spark gap of the spark plug 12 is provided is easily concentrated by the elliptical inner cavity 42. More specifically, by making the opening shape of the inner cavity 42 an ellipse, while suppressing the movement of the air-fuel mixture in the direction orthogonal to the direction in which the fuel injection valve 11 and the spark plug 12 are arranged, the inner side of the lower side of the spark plug 12 The action of collecting the air-fuel mixture works in the cavity 42, so that the rich air-fuel mixture can be reliably collected near the spark plug 12. For this reason, even in the case of the minimum amount injection such as idling, the ignition can be surely performed by preventing the diffusion of the air-fuel mixture.

また、全負荷等の高出力運転時には、吸気行程中に燃料噴射を行い、十分な混合時間をとることで、筒内混合気分布を均質化する、いわゆる均質燃焼を行う。   Further, during high output operation such as full load, so-called homogeneous combustion is performed, in which fuel injection is performed during the intake stroke and sufficient mixture time is taken to homogenize the in-cylinder mixture distribution.

当量比と燃焼性能の関係を示す図。The figure which shows the relationship between an equivalence ratio and combustion performance. キャビティ径毎の機関負荷と最適燃費の関係を示す図。The figure which shows the relationship between the engine load for every cavity diameter, and optimal fuel consumption. キャビティ径のシリンダボア径に対する比率と、均質混合気形成状態での最適機関負荷との関係を示す図。The figure which shows the relationship between the ratio with respect to the cylinder bore diameter of a cavity diameter, and the optimal engine load in a homogeneous mixture formation state. 本発明の実施形態にかかる筒内直接噴射式内燃機関の燃焼室構造を示す断面図。1 is a cross-sectional view showing a combustion chamber structure of a direct injection type internal combustion engine according to an embodiment of the present invention. 同上実施形態における外側キャビティと内側キャビティの形状を示す図。The figure which shows the shape of the outer side cavity and inner side cavity in embodiment same as the above. 同上実施形態における成層低負荷運転条件における、1回のみ燃料噴射した場合の燃料噴霧の挙動を示す図。The figure which shows the behavior of the fuel spray at the time of fuel injection only once in the stratified low load operation condition in the embodiment same as the above. 成層高負荷運転条件における燃料噴霧の挙動を示す図。The figure which shows the behavior of the fuel spray in a stratified high load operation condition. 上記実施形態における内側キャビティでの混合気運動方向を示す図。The figure which shows the air-fuel | gaseous mixture motion direction in the inner side cavity in the said embodiment. 本発明の第2の実施形態における燃焼室構造を示す平面図。The top view which shows the combustion chamber structure in the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 燃焼室
2 シリンダヘッド
3 シリンダブロック
4 ピストン
11 燃料噴射弁
12 点火プラグ
41 外側キャビティ
42 内側キャビティ
DESCRIPTION OF SYMBOLS 1 Combustion chamber 2 Cylinder head 3 Cylinder block 4 Piston 11 Fuel injection valve 12 Spark plug 41 Outer cavity 42 Inner cavity

Claims (11)

燃焼室上部に点火プラグと燃料噴射弁を備え、ピストン冠面の略中心付近に略円柱状の外側キャビティと、該外側キャビティに内包された位置にもう1つの内側キャビティを形成すると共に、前記内側キャビティを、該内側キャビティを経由して混合気形成を行うときに、混合気が2次元的に旋回・混合するように形成し、前記外側キャビティを、該外側キャビティを経由して混合気形成を行うときに、混合気が燃料噴霧軸に対して軸対象な方向に旋回・混合するように形成したことを特徴とする筒内直接噴射式内燃機関の燃焼室構造。   An ignition plug and a fuel injection valve are provided at the upper part of the combustion chamber, a substantially cylindrical outer cavity is formed near the center of the piston crown surface, and another inner cavity is formed at a position enclosed by the outer cavity. When the mixture is formed through the inner cavity, the mixture is swirled and mixed two-dimensionally, and the outer cavity is formed through the outer cavity. A combustion chamber structure of a direct injection type internal combustion engine, characterized in that the air-fuel mixture swirls and mixes in the axial direction with respect to the fuel spray axis when performing. 前記内側キャビティの、燃料噴射弁と点火プラグとの並び方向への開口部の長さが、前記並び方向と垂直な方向への開口部の長さより長いことを特徴とする請求項1に記載の筒内直接噴射式内燃機関の燃焼室構造。   The length of the opening part of the inner cavity in the direction in which the fuel injection valve and the spark plug are arranged is longer than the length of the opening part in the direction perpendicular to the arrangement direction. A combustion chamber structure of a direct injection type internal combustion engine. 前記内側キャビティの外周部の略上部に、点火プラグのスパークギャップ部を配置したことを特徴とする請求項1または請求項2に記載の筒内直接噴射式内燃機関の燃焼室構造。   3. The combustion chamber structure of a direct injection type internal combustion engine according to claim 1 or 2, wherein a spark gap portion of a spark plug is disposed substantially above the outer peripheral portion of the inner cavity. 前記内側キャビティの開口形状を、略長方形としたことを特徴とする請求項1〜請求項3のいずれか1つに記載の筒内直接噴射式内燃機関の燃焼室構造。   The combustion chamber structure of a direct injection type internal combustion engine according to any one of claims 1 to 3, wherein the opening shape of the inner cavity is substantially rectangular. 前記内側キャビティの開口形状を、楕円状としたことを特徴とする請求項1〜請求項3のいずれか1つに記載の筒内直接噴射式内燃機関の燃焼室構造。   The combustion chamber structure of a direct injection type internal combustion engine according to any one of claims 1 to 3, wherein the opening shape of the inner cavity is elliptical. 燃料噴射弁の噴射方向を、前記内側キャビティの中心より燃料噴射弁側に偏らせたことを特徴とする請求項1〜請求項5のいずれか1つに記載の筒内直接噴射式内燃機関の燃焼室構造。   The direct injection type internal combustion engine according to any one of claims 1 to 5, wherein an injection direction of the fuel injection valve is biased toward the fuel injection valve side from a center of the inner cavity. Combustion chamber structure. 内側キャビティの底面の深さを、燃料噴霧が衝突する側において低く設定したことを特徴とする請求項1〜請求項6のいずれか1つに記載の筒内直接噴射式内燃機関の燃焼室構造。   The combustion chamber structure of a direct injection type internal combustion engine according to any one of claims 1 to 6, wherein the depth of the bottom surface of the inner cavity is set low on the side where the fuel spray collides. . 外側キャビティを、燃料噴霧軸と同心となるよう設定したことを特徴とする請求項1〜請求項7のいずれか1つに記載の筒内直接噴射式内燃機関の燃焼室構造。   The combustion chamber structure of a direct injection type internal combustion engine according to any one of claims 1 to 7, wherein the outer cavity is set to be concentric with the fuel spray axis. 所定の機関負荷より低負荷時には、圧縮行程に1回のみ噴射し、所定の負荷以上では圧縮行程に2回の分割噴射を行うことを特徴とする請求項1〜請求項8のいずれか1つに記載の筒内直接噴射式内燃機関の燃焼室構造。   9. The fuel injection according to claim 1, wherein the injection is performed only once in the compression stroke when the load is lower than the predetermined engine load, and the divided injection is performed twice in the compression stroke when the load is higher than the predetermined load. The combustion chamber structure of the direct injection type internal combustion engine described in 1. 圧縮行程に分割して燃料を噴射する際に、1回目の燃料噴射は噴射した燃料が外側キャビティに入るように噴射時期を設定し、2回目の燃料噴射では燃料が内側キャビティに入るように噴射時期を設定することを特徴とする請求項第1項および第5項記載の筒内直接噴射式内燃機関。   When injecting fuel divided into compression strokes, the first fuel injection sets the injection timing so that the injected fuel enters the outer cavity, and the second fuel injection injects the fuel into the inner cavity. 6. The direct injection type internal combustion engine according to claim 1, wherein the timing is set. 機関負荷が所定値以下で燃料を圧縮行程に1回のみ噴射する場合、噴射した燃料が内側キャビティに入るように燃料噴射時期を設定することを特徴とする請求項第1項および第6項記載の筒内直接噴射式内燃機関の燃焼室構造。   7. The fuel injection timing is set so that the injected fuel enters the inner cavity when the engine load is equal to or less than a predetermined value and fuel is injected only once in a compression stroke. The combustion chamber structure of an in-cylinder direct injection internal combustion engine.
JP2003374776A 2003-11-04 2003-11-04 Combustion chamber structure of direct injection internal combustion engine Pending JP2005139931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003374776A JP2005139931A (en) 2003-11-04 2003-11-04 Combustion chamber structure of direct injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003374776A JP2005139931A (en) 2003-11-04 2003-11-04 Combustion chamber structure of direct injection internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005139931A true JP2005139931A (en) 2005-06-02

Family

ID=34686390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374776A Pending JP2005139931A (en) 2003-11-04 2003-11-04 Combustion chamber structure of direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005139931A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215098A (en) * 2011-03-31 2012-11-08 Mazda Motor Corp Spark-ignition gasoline engine
JP2012241589A (en) * 2011-05-18 2012-12-10 Mazda Motor Corp Gasoline engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215098A (en) * 2011-03-31 2012-11-08 Mazda Motor Corp Spark-ignition gasoline engine
JP2012241589A (en) * 2011-05-18 2012-12-10 Mazda Motor Corp Gasoline engine

Similar Documents

Publication Publication Date Title
JP3741494B2 (en) In-cylinder injection engine
JP4736518B2 (en) In-cylinder direct injection internal combustion engine control device
JP2009197704A (en) Sub-chamber type gas engine
JP4069750B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP2018193909A (en) Multistage injection type diesel engine, machinery provided with the same and control method of multistage injection type diesel engine
KR100579065B1 (en) In-cylinder injection type internal combustion engine and ignition control method thereof
JP2009074488A (en) Control device for internal combustion engine
JP2007138780A (en) Auxiliary chamber type internal combustion engine
JP2009174440A (en) Cylinder injection type spark ignition internal combustion engine
JP2005139931A (en) Combustion chamber structure of direct injection internal combustion engine
JP4428275B2 (en) Direct injection internal combustion engine and method of forming mixture
JP4048937B2 (en) In-cylinder direct injection internal combustion engine
JP2005351200A (en) Direct-injection spark-ignition internal combustion engine
JP2008169695A (en) Internal combustion engine
JP2007146680A (en) Cylinder injection type spark ignition internal combustion engine
JP2005139930A (en) Combustion chamber structure of direct injection internal combustion engine
JP2007303339A (en) Internal combustion engine
JP4126977B2 (en) In-cylinder direct injection internal combustion engine
JP2004162577A (en) Cylinder injection type spark ignition internal combustion engine
JP2006112241A (en) Cylinder direct injection type internal combustion engine
JP2006307825A (en) Cylinder direct injection type internal combustion engine and fuel injection valve
JP2005140006A (en) Cylinder direct injection internal combustion engine
JP2004332554A (en) Direct injection type spark ignition engine
JP3651467B2 (en) In-cylinder injection spark ignition internal combustion engine
JP4016748B2 (en) In-cylinder direct injection spark ignition internal combustion engine