JP2005139030A - Gel-like clay containing no water, method of manufacturing gel-like clay, and polar organic solvent prepared using gel-like clay and gel-like clay composition dispersed and thickened in polar organic solvent - Google Patents

Gel-like clay containing no water, method of manufacturing gel-like clay, and polar organic solvent prepared using gel-like clay and gel-like clay composition dispersed and thickened in polar organic solvent Download PDF

Info

Publication number
JP2005139030A
JP2005139030A JP2003377428A JP2003377428A JP2005139030A JP 2005139030 A JP2005139030 A JP 2005139030A JP 2003377428 A JP2003377428 A JP 2003377428A JP 2003377428 A JP2003377428 A JP 2003377428A JP 2005139030 A JP2005139030 A JP 2005139030A
Authority
JP
Japan
Prior art keywords
clay
gel
polar organic
organic solvent
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003377428A
Other languages
Japanese (ja)
Inventor
Masanobu Onigata
正伸 鬼形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hojo Co Ltd
Original Assignee
Hojo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hojo Co Ltd filed Critical Hojo Co Ltd
Priority to JP2003377428A priority Critical patent/JP2005139030A/en
Publication of JP2005139030A publication Critical patent/JP2005139030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide gel-like clay which can be dispersed and thickened in a polar organic solvent and contains no water by adding an inorganic electrolyte into clay preliminarily swelled in formamide or N-methyl formamide and mixing, a method of manufacturing the same and the composition of the clay dispersed in the polar organic solvent. <P>SOLUTION: The gel-like clay which can be dispersed and thickened in the polar organic solvent and containing no water is obtained by adding the inorganic electrolyte comprising the mixture of one or more kinds of salts, bases, and acids into the clay preliminarily swelled in formamide or N-methyl formamide and mixing. A thickener for the polar organic solvent which contains the gel-like clay is obtained. The clay composition prepared by dispersing the gel-like clay in the polar organic solvent is obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、極性有機溶剤(本明細書では、段落番号〔0045〕で挙げたものをいう。以下同じ。)中で分散し、水を含有しない増粘剤として有用なゲル状粘土及びゲル状粘土の製造方法並びにゲル状粘土で生成されてなる極性有機溶剤及び極性有機溶剤中で分散し増粘させたゲル状粘土組成物に関する。   The present invention relates to a gel-like clay and a gel-form which are dispersed in a polar organic solvent (herein, those mentioned in paragraph [0045], hereinafter the same) and are useful as a thickener containing no water. The present invention relates to a method for producing clay, a polar organic solvent formed from gelled clay, and a gelled clay composition dispersed and thickened in the polar organic solvent.

粘土は天然に大量に産出され比較的安価な無機材料であり、古くから農耕、土木、建築、陶磁器材料等として広く利用されてきた。粘土、特にスメクタイトの代表的な粘土鉱物であるモンモリロナイトは、1nmの薄いアルミノシリケートからなる板状結晶が積み重なった層状構造を形成しており、水中でその層状結晶構造の層間に水が挿入(インターカレート)して膨潤し、また各種化学物質を吸着、イオン交換する等、無機物質としては特異な多機能を有している。このため、今日、種々な工業分野で、例えば、鋳物における石英砂の粘結剤、土木におけるレオロジー性、泥壁形成性および潤滑性付与剤、農薬におけるキャリアー剤、塗料、印刷インキにおけるチキソトロピック剤および増粘剤、化粧品における乳化剤、油吸着剤、廃棄物処分における遮水材、食品における清澄剤として汎用されており、また最近ではプラスチックにおける機能性フィラー材等、化学工業に利用される分野は多岐に渡っている。   Clay is a relatively inexpensive inorganic material that is produced in large quantities naturally and has been widely used as an agricultural, civil engineering, architectural, ceramic material, etc. since ancient times. Montmorillonite, a typical clay mineral of clay, especially smectite, has a layered structure in which plate-like crystals of 1 nm thin aluminosilicate are stacked, and water is inserted between the layers of the layered crystal structure in the water. The inorganic substance has unique multi-functions such as calcare) and swelling, and adsorption and ion exchange of various chemical substances. For this reason, in today's various industrial fields, for example, binders of quartz sand in castings, rheological properties in civil engineering, mud wall forming and lubricity imparting agents, carrier agents in agricultural chemicals, paints, thixotropic agents in printing inks. It is widely used as a thickener, an emulsifier in cosmetics, an oil adsorbent, a water shielding material in waste disposal, a fining agent in foods, and recently used in the chemical industry as a functional filler material in plastics. There are a wide variety.

モンモリロナイトの結晶層面はマイナスの永久層電荷を帯びているため、その電荷を補償するために、結晶層間には交換性の Na、 Kのようなアルカリ金属や Ca2+、 Mg2+のようなアルカリ土類金属の交換性陽イオンが、水分子を水和した状態で存在している。無水状態でのモンモリロナイトの結晶同士の間隔は9.8Åであるが、水と接触すると層間の交換性陽イオンに水分子が次々に水和するため、その間隔は40Å以上に増加しオスモチック膨潤を示す。更に水中で分散させた後、静置すると、マイナスの電荷を有する結晶層表面とプラスに帯電する結晶端面がお互いに引き合い、立体的な会合構造(カードハウス構造)を形成することによって増粘し、構造粘性(チキソトロピー性)を発現するため、水系の増粘剤、垂れ防止剤、顔料の沈降防止剤等に利用されている。また、水以外でモンモリロナイトをオスモチック膨潤させる有機溶剤としては、ホルムアミド、N −メチルホルムアミドが知られている。しかし、メタノール、エタノール、エチレングリコールのようなアルコールではオスモチック膨潤を示さない。これはアルコールの持つ水酸基の酸素原子が交換性陽イオンと配位結合するとともに、水酸基の水素原子がアルミノシリケートの結晶層表面の酸素原子と水素結合(R−O−H …O−Si)して安定な構造を形成するため、アルコールの層間へのインターカレートが制限されると考えられている。このため、モンモリロナイト水分散液中にアルコールが混入されると、アルコール濃度の増加とともに粘性が低下し、アルコール100%でのモンモリロナイト分散液中ではモンモリロナイトは全く膨潤せず、凝集、沈殿するため工業的な利用はできなかった。 Since the crystal layer surface of montmorillonite has a negative permanent layer charge, exchangeable alkali metals such as Na + and K + and Ca 2+ and Mg 2+ are used between the crystal layers to compensate for the charge. Alkaline earth metal exchangeable cations are present in a hydrated state of water molecules. The space between montmorillonite crystals in an anhydrous state is 9.8cm, but when they come into contact with water, water molecules hydrate one after another to exchangeable cations between layers, so the distance increases to more than 40cm and osmotic swelling occurs. Show. Further, after dispersing in water and standing still, the crystal layer surface having a negative charge and the positively charged crystal end surface attract each other to form a three-dimensional association structure (card house structure), thereby increasing the viscosity. In order to express structural viscosity (thixotropic properties), it is used as an aqueous thickener, anti-sagging agent, pigment anti-settling agent, and the like. As organic solvents that osmotically swell montmorillonite other than water, formamide and N-methylformamide are known. However, alcohols such as methanol, ethanol and ethylene glycol do not show osmotic swelling. This is because the hydroxyl atom of the alcohol has a coordinate bond with the exchangeable cation, and the hydrogen atom of the hydroxyl group forms a hydrogen bond (R-O-H ... O-Si) with the oxygen atom on the crystal layer surface of the aluminosilicate. In order to form a stable structure, intercalation between alcohol layers is considered to be limited. For this reason, when alcohol is mixed in the montmorillonite aqueous dispersion, the viscosity decreases as the alcohol concentration increases. Could not be used.

ところで、有機溶剤中で分散、増粘する粘土としては、モンモリロナイトを有機カチオン、通常は脂肪ニトリルから生成されるジメチルジアルキルアンモニム塩のような第4級アンモニウムイオンと反応させた有機粘土がある。有機溶剤中で有機粘土は、結晶層表面に吸着している第4級アンモニウムイオンの持つ長鎖アルキル基やベンゼン環に有機溶剤が溶剤和することによって層間に有機溶剤がインターカレートし、層間が広がりオスモチック膨潤する。しかし、有機粘土の分散、増粘可能な有機溶剤は、石油系炭化水素類やベンゼン、トルエン、キシレンのような比較的低極性の有機溶剤であり、アルコール、ケトンのような誘電率の高い極性有機溶剤中では分散、増粘しにくい。これは第4級アンモニウムイオンの長鎖アルキル基と極性有機溶剤との相溶性が異なるため、長鎖アルキル基との溶剤和がしにくいためと考えられる。また、上述したように、アルコールのような水酸基を持つ極性有機溶剤は、その水酸基の水素原子がモンモリロナイトのアルミノシリケートの結晶層表面の酸素原子との水素結合により、極性有機溶剤の更なる層間へのインターカレートが制限され、その膨潤性は低下する。このような理由のため、有機粘土は、極性有機溶剤中では分散、増粘しにくい。そこで、極性有機溶剤中で分散、増粘する有機粘土として特許文献1では、ひま−脂肪族プロピルアミドベンジルアルキルアンモニウム化合物とスメクタイト型粘土との反応生成物が、特許文献2では、スメクタイト型の粘土鉱物をジ(低級アルキル)アリールキル(高級アルコール)アンモニウム化合物及びジ(低級アルキル)ジ(高級アルコール)アンモニウム化合物の混合物で処理し、この混合物を乾燥固体1Kg当たり少なくとも100 KJのエネルギーで高速剪断混合した有機粘土が、特許文献3では、スメクタイト型粘土の層間にトリオクチルメチルアンモニウムイオンを導入し、極性有機溶剤に親和性を有する粘土有機複合体が、特許文献4では、膨潤性層状ケイ酸塩の層間に酸化エチレンを付加した第4級アンモニウムイオンを導入した粘土有機複合体等が提案されている。しかし、極性有機溶剤に相溶性の良い官能基を持った上記第4級アンモニムイオンを修飾した有機粘土は、極性有機溶剤中で分散はするものの、有機粘土を10重量%以上添加しないと増粘性が発現せず、数%の添加量ではほとんど粘性の増加は見られない。また、親水基等を有する第4級アンモニウムイオンであるため有機粘土の製造工程中での脱水作業が困難で、価格的にも高いため工業的に使用しにくい、という問題を有していた。 By the way, an example of clay that is dispersed and thickened in an organic solvent is an organic clay obtained by reacting montmorillonite with an organic cation, usually a quaternary ammonium ion such as a dimethyldialkylammonium salt formed from a fatty nitrile. In the organic solvent, the organic clay intercalates between the layers by the solvation of the organic solvent with the long-chain alkyl group or benzene ring of the quaternary ammonium ions adsorbed on the crystal layer surface. Spreading and osmotic swelling. However, organic solvents that can disperse and thicken organic clay are petroleum solvents, relatively low polarity organic solvents such as benzene, toluene and xylene, and polarities with a high dielectric constant such as alcohol and ketone. Difficult to disperse and thicken in organic solvents. This is presumably because the long-chain alkyl group of the quaternary ammonium ion and the polar organic solvent are different in compatibility, so that solvation with the long-chain alkyl group is difficult. In addition, as described above, a polar organic solvent having a hydroxyl group such as an alcohol has a hydrogen atom of the hydroxyl group bonded to an oxygen atom on the surface of the crystal layer of the montmorillonite aluminosilicate, thereby further entering the interlayer of the polar organic solvent. Intercalation is limited, and its swellability decreases. For these reasons, organoclay is difficult to disperse and thicken in a polar organic solvent. Therefore, as an organic clay dispersed and thickened in a polar organic solvent, Patent Document 1 discloses a reaction product of a castor-aliphatic propylamidobenzylalkylammonium compound and a smectite type clay, and Patent Document 2 discloses a smectite type clay. The mineral was treated with a mixture of di (lower alkyl) arylkyl (higher alcohol) ammonium compound and di (lower alkyl) di (higher alcohol) ammonium compound, and the mixture was high-speed shear mixed at an energy of at least 100 KJ / kg dry solid. In Patent Document 3, the organic clay is a clay-organic complex having an affinity for a polar organic solvent by introducing trioctylmethylammonium ions between layers of smectite-type clay. Quaternary ammonium ion with ethylene oxide added between the layers Input clay organic composite and the like have been proposed. However, the organic clay modified with the quaternary ammonium ion having a functional group that is compatible with the polar organic solvent is dispersed in the polar organic solvent. However, if the organic clay is not added in an amount of 10% by weight or more, the viscosity increases. No increase in viscosity is observed at an addition amount of several percent. Moreover, since it is a quaternary ammonium ion having a hydrophilic group or the like, it has been difficult to perform dehydration work in the production process of the organic clay, and it is expensive and difficult to use industrially.

また、上記従来の粘土及び有機粘土では、極性有機溶剤中で全く分散せず、凝集、沈殿してしまう。さらに、極性有機溶剤に相溶性の良い官能基を持った第4級アンモニムイオンを修飾した有機粘土は、極性有機溶剤中で分散はするが10重量%以上添加しないと増粘性が発現しにくいため、増粘剤としての機能を発揮することができず、極性有機溶剤中で増粘する材料が求められていた。 In addition, the conventional clay and the organic clay are not dispersed at all in the polar organic solvent, but are aggregated and precipitated. Furthermore, organoclay modified with a quaternary ammonium ion having a functional group compatible with polar organic solvent is dispersed in polar organic solvent, but if it is not added in an amount of 10% by weight or more, thickening is unlikely to occur. Therefore, there has been a demand for a material that cannot function as a thickener and that thickens in a polar organic solvent.

このため本発明者は、特許文献5で示すように、予め水で粘土を膨潤させた後に、無機電解質を添加、混合してなるゲル状粘土が、極性有機溶剤中で分散、増粘することを見出し、これを先に提案した。しかし、工業的に水を添加できない用途もあり、そのような分野における利用が制限された。このため高極性有機溶剤中で分散、増粘する水を含まない増粘剤が求められていた。 For this reason, as shown in Patent Document 5, the present inventor, after swelling clay with water in advance, the gelled clay formed by adding and mixing the inorganic electrolyte is dispersed and thickened in a polar organic solvent. And proposed this first. However, there are applications where water cannot be added industrially, and its use in such fields has been limited. For this reason, there has been a demand for a thickener that does not contain water that disperses and thickens in a highly polar organic solvent.

特開公昭54−14381号公報Japanese Laid-Open Patent Publication 54-143481

特開公昭62−46917号公報JP-A-62-46917

特開公平5−163014号公報Japanese Patent Laid-Open No. 5-163041

特開公平6−287014号公報Japanese Patent Publication No. 6-287014

特願2003−366164号Japanese Patent Application No. 2003-366164

本発明者は、粘土及び有機粘土に様々な化合物を複合して極性有機溶剤の増粘剤として有用な材料開発の検討を行ってきた。具体的には、粘土に親水性有機ポリマーを複合してそのレオロジー特性を評価したところ、親水性有機ポリマーを複合するとアルコール中での増粘性は発現するが、チキソトロピー性が低いために比重の大きい顔料、砥粒等の沈降防止効果は十分ではなく、また、温度の上昇や高剪断による分散処理により粘性の低下が生じた。更に石油系炭化水素類や低極性の有機溶剤中で有機粘土を使用する時に、有機粘土の分散性向上、有機粘土の結晶同士の会合を促進する目的で、メタノール、エタノール、プロピレンカーボネートのような極性活性剤を少量添加する場合がある。極性有機溶剤中でも同様な効果を期待して、これらの極性活性剤の添加を試みたが、極性有機溶剤中ではその効果は全くみられなかった。このため、極性有機溶剤における有機粘土の新規な分散剤及び会合促進剤の探索のために各種化合物、例えば、水、ホルムアミドのようなアルコールよりも更に極性の高い溶剤や様々なカチオン系、アニオン系、ノニオン系の界面活性剤等を添加、混合してレオロジー特性の評価を行ったが、その増粘性の発現は見られなかった。 The present inventor has studied the development of materials useful as thickeners for polar organic solvents by combining various compounds with clay and organic clay. Specifically, when a rheological property was evaluated by combining a hydrophilic organic polymer with clay, thickening in alcohol would occur when the hydrophilic organic polymer was combined, but the specific gravity was large due to low thixotropic properties. The effect of preventing settling of pigments, abrasive grains, etc. was not sufficient, and the viscosity decreased due to dispersion treatment due to temperature increase or high shear. Furthermore, when using organic clay in petroleum hydrocarbons or low polarity organic solvents, it is possible to improve the dispersibility of the organic clay and promote the association of the organic clay crystals, such as methanol, ethanol, and propylene carbonate. A small amount of polar activator may be added. The addition of these polar activators was attempted in anticipation of the same effect even in polar organic solvents, but no such effect was observed in polar organic solvents. For this reason, in order to search for new dispersants and association promoters for organoclays in polar organic solvents, various compounds, for example, solvents having higher polarity than alcohols such as water and formamide, and various cationic and anionic systems The rheological properties were evaluated by adding and mixing nonionic surfactants, etc., but no increase in viscosity was observed.

また、本発明者は、予め水で粘土を膨潤させた後に、無機電解質を添加、混合してなるゲル状粘土が、極性有機溶剤中で分散、増粘することを見出し、これを先に提案した。しかし、工業的に水を添加できない用途もあり、その利用分野が制限される場合があった。 In addition, the present inventor found that gel clay formed by adding and mixing an inorganic electrolyte after swelling the clay with water in advance disperses and thickens in a polar organic solvent. did. However, there are applications where water cannot be added industrially, and there are cases where the field of use is limited.

本発明者らは、上記増粘性、水を含有しない材料の課題を解決すべく鋭意研究したところ、水の代わりにホルムアミド又はN−メチルホルムアミドで粘土を膨潤させた後に、無機電解質を添加、混合したゲル状粘土が極性有機溶剤中で分散、増粘することを見出した。 The inventors of the present invention have eagerly studied to solve the above-mentioned problems of thickening and water-free materials. After swelling clay with formamide or N-methylformamide instead of water, an inorganic electrolyte is added and mixed. It was found that the gelled clay was dispersed and thickened in a polar organic solvent.

モンモリロナイトがホルムアミド、N−メチルホルムアミドで膨潤することは、 S. Oljnic, A. M. Posner and J. P. Quirk(Clays and Clay Miner, 22, 361-364 (1974).)らによって既に論文発表がなされている。この論文では、モンモリロナイト結晶層間の交換性陽イオンの種類と各種極性有機溶剤の比誘電率のような物理的特性値との関係からその膨潤メカニズムを論じており、モンモリロナイトと極性有機溶剤との配合比率や混合の方法等については具体的には述べられてはいない。Oljnicらは、極性有機溶剤中でのモンモリロナイトの膨潤メカミズムを理解するためにNorrishによって提案された膨潤指数U ε/νを導入した。ここで、Uは溶媒和エネルギー、εは極性溶剤の比誘電率、νは陽イオンの電荷である。与えられた電荷において、 Uとεが大きくなる程、粘土はより膨潤する傾向となる。この指数は、高い比誘電率を持つ水(ε=80.1)、ホルムアミド(ε=108.7)、N−メチルホルムアミド(ε=186.9 )のオスモチック膨潤を説明することはできても、N−メチルアセトアミド(ε=171.7)のような、同じように高い比誘電率を持つメチル置換溶剤分子におけるNaモンモリロナイトの限定した膨潤を理論的に説明することができていなかった。そこで、M. Onikata, M. Kondo, and S. Yamanaka(Clays and Clay Miner., 47, 678-681 (1999).)らは、水、ホルムアミド、N−メチルホルムアミドのようにモンモリロナイトをオスモチック膨潤することができる極性溶剤は、電子対供与性と授与性を合わせ持った二官能性分子であり、極性溶剤の物理的特性値である双極子モーメント、ドナー数、比誘電率とは関係が無いことを述べている。このようにこれらの論文は、モンモリロナイトがホルムアミド、N−メチルホルムアミドで膨潤する機構について述べている論文であり、ホルムアミド、N−メチルホルムアミドで膨潤した粘土の工業的な利用方法、製造方法等については全く論じられてはおらず、また、ホルムアミド、N−メチルホルムアミドで膨潤した粘土に無機電解質を添加、混合したゲル状粘土が極性有機溶剤中で分散し、増粘剤として工業的に有用であることは今までわからなかった。 Swelling of montmorillonite with formamide and N-methylformamide has already been published by S. Oljnic, AM Posner and JP Quirk (Clays and Clay Miner, 22, 361-364 (1974).). In this paper, the swelling mechanism is discussed from the relationship between the type of exchangeable cations between montmorillonite crystal layers and the physical property values such as the relative dielectric constant of various polar organic solvents, and the combination of montmorillonite and polar organic solvents. The ratio and mixing method are not specifically described. Oljnic et al. Introduced the swelling index U ε / ν 2 proposed by Norrish to understand the swelling mechanism of montmorillonite in polar organic solvents. Here, U is the solvation energy, ε is the relative permittivity of the polar solvent, and ν is the charge of the cation. For a given charge, the larger U and ε, the more the clay tends to swell. This index can explain the osmotic swelling of water (ε = 80.1), formamide (ε = 108.7), N-methylformamide (ε = 186.9) with high dielectric constant, but N-methylacetamide ( The limited swelling of Na montmorillonite in methyl-substituted solvent molecules with the same high dielectric constant, such as ε = 171.7), could not be theoretically explained. Therefore, M. Onikata, M. Kondo, and S. Yamanaka (Clays and Clay Miner., 47, 678-681 (1999).) Et al. Osmotically swell montmorillonite like water, formamide, and N-methylformamide. The polar solvent that can be used is a bifunctional molecule that combines electron-donating and conferring properties, and has no relation to the dipole moment, the number of donors, and the relative dielectric constant, which are physical properties of the polar solvent. States. Thus, these papers describe the mechanism by which montmorillonite swells with formamide and N-methylformamide. Regarding industrial use and production methods of clay swollen with formamide and N-methylformamide, etc. It is not discussed at all, and an inorganic electrolyte is added to clay swollen with formamide and N-methylformamide, and the mixed gel clay is dispersed in a polar organic solvent and is industrially useful as a thickener. I didn't know until now.

従来より、NaClのような無機電解質は、アルコールと同様に、粘土の膨潤性を低下させ、凝集、沈殿を促進する材料と考えられ、粘土にとって無機電解質は一種の配合禁種の材料であった。本発明者は、長年誠意研究を重ねた結果、予めホルムアミド又はN−メチルホルムアミドに膨潤させた粘土に、膨潤を阻害すると考えられていた無機電解質を添加、混合したゲル状粘土が極性有機溶剤中で分散し、増粘することを見出した。   Conventionally, inorganic electrolytes such as NaCl have been considered to be a material that reduces the swelling property of clay and promotes aggregation and precipitation, like alcohol. . As a result of many years of sincerity research, the present inventor added an inorganic electrolyte that had been thought to inhibit swelling to clay previously swollen in formamide or N-methylformamide, and the mixed gel clay was in a polar organic solvent. Was found to disperse and thicken.

本発明は、かかる知見に基づき創案されたものであって、その目的とするところは、今まで使用できなかった極性有機溶剤中で数重量%の添加で分散、増粘し、チキソトロピー性を発現させることで、極性有機溶剤のレオロジーコントロール剤として期待でき、しかも、水を含有していないため、水を添加できない用途でも使用が可能となり、コスト的に安価で製造できるので、工業に使用可能であるゲル状粘土及びゲル状粘土の製造方法並びにゲル状粘土で生成されてなる極性有機溶剤及び極性有機溶剤中で分散し増粘させたゲル状粘土組成物を提供しようとするものである。    The present invention was devised based on such knowledge, and the object of the present invention is to disperse and thicken by adding several weight% in a polar organic solvent that could not be used until now, and to exhibit thixotropic properties. It can be expected as a rheology control agent for polar organic solvents, and since it does not contain water, it can be used even in applications where water cannot be added, and can be manufactured at low cost, so it can be used industrially. An object of the present invention is to provide a certain gel-like clay, a method for producing the gel-like clay, a polar organic solvent produced from the gel-like clay, and a gel-like clay composition dispersed and thickened in the polar organic solvent.

上記目的を達成するため、請求項1に記載の発明は、予めホルムアミド又はN−メチルホルムアミドで粘土を膨潤させた後に、無機電解質を添加、混合したゲル状粘土を特徴とする。   In order to achieve the above object, the invention according to claim 1 is characterized by a gel clay in which an inorganic electrolyte is added and mixed after the clay is swollen in advance with formamide or N-methylformamide.

請求項2に記載の発明は、請求項1に記載の粘土を、ベントナイト、モンモリロナイト、バイデライト、へクトライト、サポナイト、スチブンサイト、ソーコナイト、ノントロナイト等のスメクタイト系粘土、または、バーミキュライト、ハロイサイト、膨潤性マイカなどの天然粘土又は合成粘土若しくはこれらの混合物から生成したことを特徴とする。   The invention described in claim 2 is the smectite clay such as bentonite, montmorillonite, beidellite, hectorite, saponite, stevensite, soconite, nontronite, etc., or vermiculite, halloysite, swelling property. It is produced from natural clay such as mica or synthetic clay or a mixture thereof.

請求項3に記載の発明は、請求項1に記載のホルムアミド又はN−メチルホルムアミドの添加量が、粘土に対し100重量%〜5000重量%、好ましくは300重量%〜1000重量%であることを特徴とする。   The invention according to claim 3 is that the amount of formamide or N-methylformamide according to claim 1 is 100% by weight to 5000% by weight, preferably 300% by weight to 1000% by weight, based on the clay. Features.

請求項4に記載の発明は、請求項1に記載の無機電解質が、塩、塩基、酸の1種又は2種以上の混合物であることを特徴とする。   The invention according to claim 4 is characterized in that the inorganic electrolyte according to claim 1 is one kind or a mixture of two or more kinds of salt, base and acid.

請求項5に記載の発明は、請求項4に記載の塩が、塩化アルミニウム、塩化バリウム、塩化カルシウム、塩化カリウム、塩化リチウム、塩化マグネシウム、塩化アンモニウム、塩化ナトリウム、硝酸アルミニウム、硝酸バリウム、硝酸カルシウム、硝酸カリウム、硝酸リチウム、硝酸マグネシウム、硝酸アンモニウム、硝酸ナトリウム、硫酸アルミニウム、硫酸バリウム、硫酸カルシウム、硫酸カリウム、硫酸リチウム、硫酸マグネシウム、硫酸アンモニウム、硫酸ナトリウム、炭酸カルシウム、炭酸カリウム、炭酸リチウム、炭酸マグネシウム、炭酸水素アンモニウム、炭酸ナトリウム、燐酸カリウム、燐酸ナトリウムのいずれか一種若しくはこれら塩の複数種の混合塩であることを特徴とする。   According to a fifth aspect of the present invention, the salt according to the fourth aspect of the invention is prepared by using the aluminum chloride, barium chloride, calcium chloride, potassium chloride, lithium chloride, magnesium chloride, ammonium chloride, sodium chloride, aluminum nitrate, barium nitrate, calcium nitrate. , Potassium nitrate, lithium nitrate, magnesium nitrate, ammonium nitrate, sodium nitrate, aluminum sulfate, barium sulfate, calcium sulfate, potassium sulfate, lithium sulfate, magnesium sulfate, ammonium sulfate, sodium sulfate, calcium carbonate, potassium carbonate, lithium carbonate, magnesium carbonate, carbonate Any one of ammonium hydrogen, sodium carbonate, potassium phosphate and sodium phosphate, or a mixed salt of a plurality of these salts.

請求項6に記載の発明は、請求項4に記載の塩基が、水酸化カリウム、水酸化リチウム、水酸化ナトリウム、水酸化バリウム、水酸化カルシウムのいずれか一種若しくはこれら塩基の複数種の混合塩基であることを特徴とする。   In the invention described in claim 6, the base described in claim 4 is any one of potassium hydroxide, lithium hydroxide, sodium hydroxide, barium hydroxide, calcium hydroxide, or a mixed base of a plurality of these bases. It is characterized by being.

請求項7に記載の発明は、請求項4に記載の酸が、塩酸、フッ化水素、硝酸、硫酸、燐酸のいずれか一種若しくはこれら酸の複数種の混合酸であることを特徴とする。   The invention described in claim 7 is characterized in that the acid described in claim 4 is any one of hydrochloric acid, hydrogen fluoride, nitric acid, sulfuric acid, and phosphoric acid, or a mixed acid of a plurality of these acids.

請求項8に記載の発明は、請求項1乃至請求項7のいずれかに記載の無機電解質の添加量が、粘土に対し0.1〜50重量%、好ましくは1〜25重量%であることを特徴とする。   In the invention according to claim 8, the amount of the inorganic electrolyte according to any one of claims 1 to 7 is 0.1 to 50% by weight, preferably 1 to 25% by weight, based on the clay. It is characterized by.

請求項9に記載の発明は、請求項1に記載のゲル状粘土が、予めホルムアミド又はN −メチルホルムアミドで粘土を膨潤させた後に、無機電解質を添加、混合したゲル状粘土の製造方法である。   The invention according to claim 9 is a method for producing a gel clay in which the gel clay according to claim 1 is pre-swelled with formamide or N-methylformamide and then added and mixed with an inorganic electrolyte. .

請求項10に記載の発明は、請求項1乃至請求項8のいずれかに記載のゲル状粘土を含有してなる極性有機溶剤用増粘剤であることを特徴とする。この請求項10に記載の極性有機溶剤用増粘剤は、請求項11に記載したように、メタノール、エタノール、2−プロパノール等の低級1価アルコール類、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3−ブチレングリコール、ぺンタメチレングリコール、ジエチレングリコール、ポリエチレングリコール等の2価アルコール類、グリセリン等の3価アルコール類、N,N−ジメチルホルムアミド等のアミド類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチルのようなエステル類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、メチルカルビトール、エチルカルビトール等のカルビトール類、N−メチル−2−ピロリジノンであることを特徴とする。   The invention described in claim 10 is a thickener for a polar organic solvent comprising the gel clay according to any one of claims 1 to 8. The thickener for polar organic solvent according to claim 10 is, as described in claim 11, lower monohydric alcohols such as methanol, ethanol, 2-propanol, ethylene glycol, propylene glycol, trimethylene glycol, Divalent alcohols such as 1,3-butylene glycol, pentamethylene glycol, diethylene glycol and polyethylene glycol, trihydric alcohols such as glycerin, amides such as N, N-dimethylformamide, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc. And ketones, esters such as ethyl acetate, cellosolves such as methyl cellosolve and ethyl cellosolve, carbitols such as methyl carbitol and ethyl carbitol, and N-methyl-2-pyrrolidinone.

請求項12に記載の発明は、請求項1乃至請求項8のいずれかに記載の粘土を、請求項11に記載の極性有機溶剤に分散させた粘土組成物であることを特徴とする。   The invention according to claim 12 is a clay composition in which the clay according to any one of claims 1 to 8 is dispersed in the polar organic solvent according to claim 11.

本発明によれば、従来の粘土及び有機粘土では、今まで使用できなかった極性有機溶剤中で数重量%の添加で分散、増粘してチキソトロピー性を発現し、極性有機溶剤のレオロジーコントロール剤として期待できる。   According to the present invention, conventional clays and organic clays can be dispersed and thickened by addition of several weight% in a polar organic solvent that could not be used until now to develop thixotropic properties. As expected.

また、本発明のゲル状粘土は、水を含有しておらず、工業的に水を添加できない用途でも使用が可能となる。   The gel clay of the present invention does not contain water and can be used even in applications where water cannot be added industrially.

更には、特殊な有機物を複合しておらず、単に予めホルムアミド又はN−メチルホルムアミドで粘土を膨潤させた後に、無機電解質を添加、混合すれば良いためコスト的に安価で製造できる。   Furthermore, since no special organic substance is compounded and the clay is simply swollen beforehand with formamide or N-methylformamide, an inorganic electrolyte may be added and mixed, so that it can be manufactured at low cost.

更には、水を含有しておらずゲル状粘土が腐敗しにくい等の幾多の優れた効果が得られる。   Furthermore, a number of excellent effects are obtained, for example, the gel-like clay does not contain water and is not easily spoiled.

以下に示す発明の実施例1に基づいてこの発明を詳細に説明する。   The present invention will be described in detail based on the first embodiment of the present invention described below.

以下に示す発明の実施例1に基づいてこの発明を詳細に説明する。本発明の実施に当たっては、先ず、定法により粘土の重量に対してホルムアミド又はN−メチルホルムアミドを100重量%〜5000重量%、好ましくは300重量%〜1000重量%添加、混合して膨潤した粘土を生成する。   The present invention will be described in detail based on the first embodiment of the present invention described below. In practicing the present invention, first, formamide or N-methylformamide is added in an amount of 100% to 5000% by weight, preferably 300% to 1000% by weight, and mixed and swollen by a conventional method. Generate.

次に、ホルムアミド又はN−メチルホルムアミドにて膨潤した粘土に粘土の固形分量に対して0.1〜50重量%、好ましくは1〜25重量%の無機電解質を添加、混合したゲル状粘土を得る。 Next, 0.1 to 50% by weight, preferably 1 to 25% by weight of an inorganic electrolyte is added to the clay swollen with formamide or N-methylformamide, and a mixed gel clay is obtained. .

ここで、本発明に使用できる粘土としては、ベントナイト、モンモリロナイト、バイデライト、へクトライト、サポナイト、スチブンサイト、ソーコナイト、ノントロナイト等のスメクタイト系粘土の他、バーミキュライト、ハロイサイト、膨潤性マイカなどの天然粘土や合成粘土或はこれらの混合物があげられる。   Here, as clay that can be used in the present invention, in addition to smectite clay such as bentonite, montmorillonite, beidellite, hectorite, saponite, stevensite, soconite, nontronite, natural clay such as vermiculite, halloysite, swelling mica, Synthetic clay or a mixture thereof can be mentioned.

上記ホルムアミド又はN−メチルホルムアミドの添加量は、その添加量が少ないと無機電解質の溶解度が低下して溶解できなかった無機電解質が残存し、極性有機溶剤中での増粘性は低下する。一方、添加量が多いとゲル状粘土中の粘土の固形分が少なくなるため、極性有機溶剤中でのゲル状粘土のある程度の濃度を得るためにゲル状粘土の添加量を増加しなければならず、容積が増え作業性が悪くなる。さらに、本発明のゲル状粘土の形状がスラリー状になるため、輸送コストが増加する。このため、ホルムアミド又はN −メチルホルムアミドの添加量は粘土に対し100重量%〜5000重量%、好ましくは300重量%〜1000重量%である。   If the amount of formamide or N-methylformamide added is small, the solubility of the inorganic electrolyte decreases and the inorganic electrolyte that could not be dissolved remains, and the viscosity increase in the polar organic solvent decreases. On the other hand, if the amount added is large, the solid content of the clay in the gel-like clay decreases, so the amount of gel-like clay added must be increased in order to obtain a certain concentration of the gel-like clay in the polar organic solvent. Therefore, the volume increases and the workability deteriorates. Furthermore, since the gel-like clay of the present invention is in the form of a slurry, the transportation cost increases. Therefore, the amount of formamide or N-methylformamide added is 100% to 5000% by weight, preferably 300% to 1000% by weight, based on the clay.

また、本発明に使用できる無機電解質としては、塩、塩基、酸の1種又は2種以上の混合物があげられる。   In addition, examples of the inorganic electrolyte that can be used in the present invention include one kind or a mixture of two or more kinds of salts, bases, and acids.

本発明に使用できる塩としては、塩化アルミニウム、塩化バリウム、塩化カルシウム、塩化カリウム、塩化リチウム、塩化マグネシウム、塩化アンモニウム、塩化ナトリウム、硝酸アルミニウム、硝酸バリウム、硝酸カルシウム、硝酸カリウム、硝酸リチウム、硝酸マグネシウム、硝酸アンモニウム、硝酸ナトリウム、硫酸アルミニウム、硫酸バリウム、硫酸カルシウム、硫酸カリウム、硫酸リチウム、硫酸マグネシウム、硫酸アンモニウム、硫酸ナトリウム、炭酸カルシウム、炭酸カリウム、炭酸リチウム、炭酸マグネシウム、炭酸水素アンモニウム、炭酸ナトリウム、燐酸カリウム、燐酸ナトリウムのいずれか一種若しくはこれら塩の複数種の混合塩があげられる。これ以外の塩はホルムアミド又はN−メチルホルムアミドに対する溶解度が低いために溶解できなかった塩が残存し、極性有機溶剤中での増粘性は低下する。   Salts that can be used in the present invention include aluminum chloride, barium chloride, calcium chloride, potassium chloride, lithium chloride, magnesium chloride, ammonium chloride, sodium chloride, aluminum nitrate, barium nitrate, calcium nitrate, potassium nitrate, lithium nitrate, magnesium nitrate, Ammonium nitrate, sodium nitrate, aluminum sulfate, barium sulfate, calcium sulfate, potassium sulfate, lithium sulfate, magnesium sulfate, ammonium sulfate, sodium sulfate, calcium carbonate, potassium carbonate, lithium carbonate, magnesium carbonate, ammonium bicarbonate, sodium carbonate, potassium phosphate, One kind of sodium phosphate or a mixed salt of a plurality of these salts can be mentioned. Other salts have low solubility in formamide or N-methylformamide, so that salts that could not be dissolved remain, and the viscosity increase in the polar organic solvent decreases.

また、本発明に使用できる塩基としては、水酸化カリウム、水酸化リチウム、水酸化ナトリウム、水酸化バリウム、水酸化カルシウムのいずれか一種若しくはこれら塩基の複数種の混合塩基があげられる。これ以外の塩はホルムアミド又は N−メチルホルムアミドに対する溶解度が低いために溶解できなかった塩基が残存し、極性有機溶剤中での増粘性は低下する。   Examples of the base that can be used in the present invention include potassium hydroxide, lithium hydroxide, sodium hydroxide, barium hydroxide, calcium hydroxide, or a mixed base of a plurality of these bases. Other salts have low solubility in formamide or N-methylformamide, so that a base that could not be dissolved remains, and the viscosity increase in a polar organic solvent decreases.

さらに、本発明に使用できる酸としては、塩酸、フッ化水素、硝酸、硫酸、燐酸のいずれか一種若しくはこれら酸の複数種の混合酸があげられる。   Furthermore, examples of the acid that can be used in the present invention include hydrochloric acid, hydrogen fluoride, nitric acid, sulfuric acid, phosphoric acid, or a mixed acid of a plurality of these acids.

上記無機電解質の添加量は、その添加量が少ないと極性有機溶剤中での増粘性は低下し、添加量を多くすると粘土に予め添加されるホルムアミド又はN−メチルホルムアミドへの溶解度が低下して溶解できなかった無機電解質が残存し、極性有機溶剤中での増粘性は低下する。このため粘土に対し0.1〜50重量%、好ましくは1〜25重量%である。   When the amount of the inorganic electrolyte added is small, the viscosity increase in the polar organic solvent is lowered, and when the amount added is increased, the solubility in formamide or N-methylformamide previously added to the clay is lowered. The inorganic electrolyte that could not be dissolved remains, and the viscosity increase in the polar organic solvent decreases. For this reason, it is 0.1 to 50 weight% with respect to clay, Preferably it is 1 to 25 weight%.

また、この発明にあっては、予めホルムアミド又はN −メチルホルムアミドに溶解させた所定量の無機電解質を粘土に添加、混合したのでは、極性有機溶剤中での増粘性の発現は見られず、凝集、沈殿してしまう。このため、配合順序は、予めホルムアミド又はN−メチルホルムアミドにて粘土を膨潤させた後に、無機電解質を添加、混合しなければならない。 Further, in the present invention, when a predetermined amount of an inorganic electrolyte previously dissolved in formamide or N-methylformamide is added to and mixed with clay, no expression of thickening in a polar organic solvent is observed, Aggregates and precipitates. For this reason, as for the blending order, the inorganic electrolyte must be added and mixed after the clay is swollen in advance with formamide or N-methylformamide.

本発明のゲル状粘土を極性有機溶剤の増粘剤として使用するには、ゲル状粘土を極性有機溶剤に添加、混合することによって分散させる。ゲル状粘土の添加量は用途によっても異なるが、0.1重量%から10重量%である。 In order to use the gel-like clay of the present invention as a thickener for a polar organic solvent, the gel-like clay is added to and mixed with the polar organic solvent. The amount of gel-like clay added varies depending on the application, but is 0.1 wt% to 10 wt%.

本発明のゲル状粘土は、極性有機溶剤に分散させてゲル状粘土組成物とすることができる。極性有機溶剤としては、例えば、メタノール、エタノール、2−プロパノール等の低級1価アルコール類、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3−ブチレングリコール、ぺンタメチレングリコール、ジエチレングリコール、ポリエチレングリコール等の2価アルコール類、グリセリン等の3価アルコール類、N,N−ジメチルホルムアミド等のアミド類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチルのようなエステル類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、メチルカルビトール、エチルカルビトール等のカルビトール類、N−メチル−2−ピロリジノン等が挙げられる。 The gel clay of the present invention can be dispersed in a polar organic solvent to form a gel clay composition. Examples of the polar organic solvent include lower monohydric alcohols such as methanol, ethanol and 2-propanol, ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, pentamethylene glycol, diethylene glycol and polyethylene glycol. Dihydric alcohols, trihydric alcohols such as glycerin, amides such as N, N-dimethylformamide, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, esters such as ethyl acetate, methyl cellosolve, ethyl cellosolve And the like, carbitols such as methyl carbitol and ethyl carbitol, N-methyl-2-pyrrolidinone and the like.

[実験例1]ゲル状粘土分散液の作製
乳鉢にホルムアミド(FA)10mlとモンモリロナイト((株)ホージュン製ベンゲルHVP)2.0gを添加、混合してホルムアミドに膨潤した粘土を作製した。この膨潤した粘土にNaClを0.1gを添加、混合してゲル状粘土を作製した。次に、このゲル状粘土に粘土の固形分が2重量%になるように、プロピレングリコール(PG)90mlを添加して、分散機(日本精機製作所製エクセルオートホモジナイザー250)にて回転数10000rpm、10分間分散して、ゲル状粘土のプロピレングリコール分散液を作製した。
※比較例A〜比較例O
ホルムアミド無添加及び10ml、モンモリロナイト((株)ホージュン製ベンゲルHVP)2.0g、NaClを無添加及び0.1g、プロピレングリコール90mlを、上記実験例1以外の配合順序にて、乳鉢及び分散機を用いて比較例 Aから比較例O のプロピレングリコール分散液を作製した。
※粘性試験
上記ゲル状粘土及び比較例Aから比較例Oのプロピレングリコール分散液を23℃に静置後、回転粘度計(東京計器(株)製B型粘度計)を用い、6rpm及び60rpmにおける見掛粘度(mPa値=6rpm/60rpm)を測定した。
※分散性試験
上記ゲル状粘土及び比較例Aから比較例Oのプロピレングリコール分散液を23℃にて1週間静置し、その分散性を肉眼にて測定した。分散状態を以下の基準にて表した。
完全に分散:A、やや沈降:B、完全に沈降:C
その結果を表1に示す。
[Experimental Example 1] Preparation of gel-like clay dispersion 10 ml of formamide (FA) and 2.0 g of montmorillonite (Hogel Co., Ltd. Bengel HVP) were added to a mortar and mixed to prepare clay swollen in formamide. 0.1 g of NaCl was added to this swollen clay and mixed to prepare a gel clay. Next, 90 ml of propylene glycol (PG) is added to the gel clay so that the solid content of the clay becomes 2% by weight, and the number of revolutions is 10,000 rpm with a disperser (Excel Auto Homogenizer 250 manufactured by Nippon Seiki Seisakusho). The dispersion was carried out for 10 minutes to prepare a propylene glycol dispersion of gelled clay.
* Comparative Example A to Comparative Example O
10 ml of formamide added and 10 ml of montmorillonite (Bengel HVP manufactured by Hojun Co., Ltd.), no added NaCl, 0.1 g, and 90 ml of propylene glycol were mixed in a blending order other than the above Experimental Example 1, The propylene glycol dispersions of Comparative Example A to Comparative Example O were used.
* Viscosity test After the gel clay and the propylene glycol dispersions of Comparative Examples A to O are allowed to stand at 23 ° C., using a rotational viscometer (B-type viscometer manufactured by Tokyo Keiki Co., Ltd.) at 6 rpm and 60 rpm. Apparent viscosity (mPa value = 6 rpm / 60 rpm) was measured.
* Dispersibility test The above-described gel clay and the propylene glycol dispersions of Comparative Examples A to O were allowed to stand at 23 ° C for 1 week, and the dispersibility was measured with the naked eye. The dispersion state was expressed by the following criteria.
Completely dispersed: A, Slightly settled: B, Completely settled: C
The results are shown in Table 1.

Figure 2005139030
Figure 2005139030

上記表1からも明らかなように、ゲル状粘土のプロピレングリコール分散液は、高い粘性、チキソトロピー性、良好な分散性を示した。実験例1以外の配合順序にて作製した比較例Aから比較例Oのプロピレングリコール分散液は、殆どが分散直後で凝集、沈殿した。 As is clear from Table 1 above, the propylene glycol dispersion of gel clay showed high viscosity, thixotropy, and good dispersibility. Most of the propylene glycol dispersions of Comparative Examples A to O prepared in the blending order other than Experimental Example 1 were aggregated and precipitated immediately after dispersion.

[実験例2]
乳鉢にホルムアミド10mlとモンモリロナイト((株)ホージュン製ベンゲルHVP)2.0gを添加、混合してホルムアミドに膨潤した粘土を作製した。この膨潤した粘土にNaClを無添加、0.1g、0.3g、0.5g添加、混合してゲル状粘土を作製した。次に、 NaCl添加量の異なるゲル状粘土に粘土の固形分が2重量%になるように、プロピレングリコール90mlを添加して、実験例1と同様な方法でゲル状粘土のプロピレングリコール分散液を作製し、粘性試験、分散性試験を行った。その結果を表2に示す。
[Experiment 2]
Into a mortar, 10 ml of formamide and 2.0 g of montmorillonite (Hogel Co., Ltd. Bengel HVP) were added and mixed to prepare a clay swollen in formamide. No gelatin was added to the swollen clay, and 0.1 g, 0.3 g, and 0.5 g were added and mixed to prepare a gel clay. Next, 90 ml of propylene glycol was added to gel clay with different amounts of NaCl so that the solid content of the clay would be 2% by weight, and a propylene glycol dispersion of gel clay was prepared in the same manner as in Experimental Example 1. This was prepared and subjected to a viscosity test and a dispersibility test. The results are shown in Table 2.

Figure 2005139030
Figure 2005139030

表2からわかるように、ゲル状粘土のプロピレングリコール分散液の粘性、チキソトロピー性はNaClの添加量の増大とともに増加し、 NaClの添加量が0.1g並びに0.3gで最大値を示し、良好な分散性を示した。  As can be seen from Table 2, the viscosity and thixotropy of the propylene glycol dispersion of gelled clay increased with the increase in the amount of NaCl added, showing the maximum values when the amounts of NaCl added were 0.1 g and 0.3 g. Dispersibility.

[実験例3]
実験例2と同様な方法にて、ホルムアミドに膨潤した粘土を作製した。この膨潤した粘土にNaClを0.1g添加、混合してゲル状粘土を作製した。このゲル状粘土に粘土の固形分が2重量%になるように、メタノール、エタノール、2−プロパノール、エチレングリコール、プロピレングリコール、ジエチレングルコール、1,3−ブタンジオール、ポリエチレングルコール、エチレングリコールジグリシジルエーテル、グリセリン、N,N−ジメチルホルムアミド、N−メチル−2−ピロリジノン90mlを添加して、実験例1と同様な方法でゲル状粘土の極性有機溶剤分散液を作製し、粘性試験、分散性試験を行った。その結果を表3に示す。
[Experiment 3]
A clay swollen in formamide was prepared in the same manner as in Experimental Example 2. 0.1 g of NaCl was added to this swollen clay and mixed to prepare a gel clay. Methanol, ethanol, 2-propanol, ethylene glycol, propylene glycol, diethylene glycol, 1,3-butanediol, polyethylene glycol, ethylene glycol diethylene glycol so that the solid content of the clay is 2% by weight. Glycidyl ether, glycerin, N, N-dimethylformamide, 90 ml of N-methyl-2-pyrrolidinone were added, and a polar organic solvent dispersion of gel clay was prepared in the same manner as in Experimental Example 1, followed by viscosity test and dispersion. A sex test was performed. The results are shown in Table 3.

Figure 2005139030
Figure 2005139030

表3からもわかるように、低級1価アルコール、2価アルコール、3価アルコール、N,N−ジメチルホルムアミド、N−メチル−2−ピロリジノンにて高い粘性、チキソトロピー性、良好な分散性を示した。  As can be seen from Table 3, the lower monohydric alcohol, dihydric alcohol, trihydric alcohol, N, N-dimethylformamide, and N-methyl-2-pyrrolidinone showed high viscosity, thixotropic properties, and good dispersibility. .

[実験例 4]
乳鉢にN −メチルホルムアミド10mlとモンモリロナイト((株)ホージュン製ベンゲルHVP)2.0gを添加、混合してN−メチルホルムアミドに膨潤した粘土を作製した。この膨潤した粘土にNaCl を無添加、0.1g、0.3g、0.5g添加、混合してゲル状粘土を作製した。次に、 NaCl添加量の異なるゲル状粘土に粘土の固形分が2重量%になるように、プロピレングリコール90mlを添加して、実験例1と同様な方法でゲル状粘土のプロピレングリコール分散液を作製し、粘性試験、分散性試験を行った。その結果を表4に示す。
[Experiment 4]
Into a mortar, 10 ml of N-methylformamide and 2.0 g of montmorillonite (Hogel Co., Ltd. Bengel HVP) were added and mixed to prepare a clay swollen in N-methylformamide. No gel was added to the swollen clay, and 0.1 g, 0.3 g, and 0.5 g were added and mixed to prepare a gel clay. Next, 90 ml of propylene glycol was added to gel clay with different amounts of NaCl so that the solid content of the clay would be 2% by weight, and a propylene glycol dispersion of gel clay was prepared in the same manner as in Experimental Example 1. This was prepared and subjected to a viscosity test and a dispersibility test. The results are shown in Table 4.

Figure 2005139030
Figure 2005139030

表4からわかるように、ゲル状粘土のプロピレングリコール分散液の粘性、チキソトロピー性はNaClの添加量の増大とともに増加し、 NaClの添加量が0.1g並びに0.3gで最大値を示し、良好な分散性を示した。 As can be seen from Table 4, the viscosity and thixotropy of the propylene glycol dispersion of gelled clay increased with the increase in the amount of NaCl added, and the maximum values were good when the amount of NaCl added was 0.1 g and 0.3 g. Dispersibility.

Claims (12)

予めホルムアミド又はN−メチルホルムアミドで粘土を膨潤させた後に、無機電解質を添加、混合したゲル状粘土。   Gel-like clay in which an inorganic electrolyte is added and mixed after the clay is swollen with formamide or N-methylformamide in advance. 請求項1に記載の粘土が、ベントナイト、モンモリロナイト、バイデライト、へクトライト、サポナイト、スチブンサイト、ソーコナイト、ノントロナイト等のスメクタイト系粘土、または、バーミキュライト、ハロイサイト、膨潤性マイカなどの天然粘土又は合成粘土若しくはこれらの混合物からなるゲル状粘土。   The clay according to claim 1 is a smectite clay such as bentonite, montmorillonite, beidellite, hectorite, saponite, stevensite, soconite, nontronite, or natural clay such as vermiculite, halloysite, swelling mica, or synthetic clay or Gel clay made of a mixture of these. 請求項1に記載のホルムアミド又はN−メチルホルムアミドの添加量が、粘土に対し100重量%〜5000重量%、好ましくは300重量%〜1000重量%であるゲル状粘土。   A gel clay in which the amount of formamide or N-methylformamide according to claim 1 is 100% to 5000% by weight, preferably 300% to 1000% by weight, based on the clay. 請求項1に記載の無機電解質が、塩、塩基、酸の1種又は2種以上の混合物であるゲル状粘土。   Gel-like clay in which the inorganic electrolyte according to claim 1 is one or a mixture of two or more of a salt, a base and an acid. 請求項4に記載の塩が、塩化アルミニウム、塩化バリウム、塩化カルシウム、塩化カリウム、塩化リチウム、塩化マグネシウム、塩化アンモニウム、塩化ナトリウム、硝酸アルミニウム、硝酸バリウム、硝酸カルシウム、硝酸カリウム、硝酸リチウム、硝酸マグネシウム、硝酸アンモニウム、硝酸ナトリウム、硫酸アルミニウム、硫酸バリウム、硫酸カルシウム、硫酸カリウム、硫酸リチウム、硫酸マグネシウム、硫酸アンモニウム、硫酸ナトリウム、炭酸カルシウム、炭酸カリウム、炭酸リチウム、炭酸マグネシウム、炭酸水素アンモニウム、炭酸ナトリウム、燐酸カリウム、燐酸ナトリウムのいずれか一種若しくはこれら塩の複数種の混合塩であるゲル状粘土。 The salt according to claim 4 is aluminum chloride, barium chloride, calcium chloride, potassium chloride, lithium chloride, magnesium chloride, ammonium chloride, sodium chloride, aluminum nitrate, barium nitrate, calcium nitrate, potassium nitrate, lithium nitrate, magnesium nitrate, Ammonium nitrate, sodium nitrate, aluminum sulfate, barium sulfate, calcium sulfate, potassium sulfate, lithium sulfate, magnesium sulfate, ammonium sulfate, sodium sulfate, calcium carbonate, potassium carbonate, lithium carbonate, magnesium carbonate, ammonium bicarbonate, sodium carbonate, potassium phosphate, Gel-like clay which is one kind of sodium phosphate or a mixed salt of a plurality of these salts. 請求項4に記載の塩基が、水酸化カリウム、水酸化リチウム、水酸化ナトリウム、水酸化バリウム、水酸化カルシウムのいずれか一種若しくはこれら塩基の複数種の混合塩基であるゲル状粘土。 Gel-like clay in which the base according to claim 4 is any one of potassium hydroxide, lithium hydroxide, sodium hydroxide, barium hydroxide, calcium hydroxide, or a mixed base of a plurality of these bases. 請求項4に記載の酸が、塩酸、フッ化水素、硝酸、硫酸、燐酸のいずれか一種若しくはこれら酸の複数種の混合酸であるゲル状粘土。 Gel-like clay in which the acid according to claim 4 is any one of hydrochloric acid, hydrogen fluoride, nitric acid, sulfuric acid and phosphoric acid, or a mixed acid of a plurality of these acids. 請求項1乃至請求項7のいずれかに記載の無機電解質の添加量が、粘土に対し0.1〜50重量%、好ましくは1〜25重量%であるゲル状粘土。   A gel-like clay in which the amount of the inorganic electrolyte according to any one of claims 1 to 7 is 0.1 to 50% by weight, preferably 1 to 25% by weight, based on the clay. 請求項1に記載のゲル状粘土が、予めホルムアミド又はN −メチルホルムアミドで粘土を膨潤させた後に、無機電解質を添加、混合したゲル状粘土の製造方法。   A method for producing a gel-like clay comprising the gel-like clay according to claim 1 swelled with formamide or N-methylformamide in advance and then added with an inorganic electrolyte and mixed. 請求項1乃至請求項8のいずれかに記載のゲル状粘土を含有してなる極性有機溶剤用増粘剤。   A thickener for a polar organic solvent comprising the gelled clay according to any one of claims 1 to 8. 請求項10に記載の極性有機溶剤用増粘剤は、メタノール、エタノール、2−プロパノール等の低級1価アルコール類、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3−ブチレングリコール、ぺンタメチレングリコール、ジエチレングリコール、ポリエチレングリコール等の2価アルコール類、グリセリン等の3価アルコール類、N,N−ジメチルホルムアミド等のアミド類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチルのようなエステル類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、メチルカルビトール、エチルカルビトール等のカルビトール類、N−メチル−2−ピロリジノンであることを特徴とする極性有機溶剤用増粘剤。   The thickener for polar organic solvents according to claim 10 is a lower monohydric alcohol such as methanol, ethanol, 2-propanol, ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, pentamethylene. Dihydric alcohols such as glycol, diethylene glycol and polyethylene glycol, trihydric alcohols such as glycerin, amides such as N, N-dimethylformamide, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, esters such as ethyl acetate A thickener for polar organic solvents, characterized in that it is a cellosolve such as methyl cellosolve or ethyl cellosolve, a carbitol such as methylcarbitol or ethylcarbitol, or N-methyl-2-pyrrolidinone. 請求項1乃至請求項8のいずれかに記載の粘土を、請求項11に記載の極性有機溶剤に分散させた粘土組成物。 A clay composition in which the clay according to any one of claims 1 to 8 is dispersed in the polar organic solvent according to claim 11.
JP2003377428A 2003-11-06 2003-11-06 Gel-like clay containing no water, method of manufacturing gel-like clay, and polar organic solvent prepared using gel-like clay and gel-like clay composition dispersed and thickened in polar organic solvent Pending JP2005139030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003377428A JP2005139030A (en) 2003-11-06 2003-11-06 Gel-like clay containing no water, method of manufacturing gel-like clay, and polar organic solvent prepared using gel-like clay and gel-like clay composition dispersed and thickened in polar organic solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003377428A JP2005139030A (en) 2003-11-06 2003-11-06 Gel-like clay containing no water, method of manufacturing gel-like clay, and polar organic solvent prepared using gel-like clay and gel-like clay composition dispersed and thickened in polar organic solvent

Publications (1)

Publication Number Publication Date
JP2005139030A true JP2005139030A (en) 2005-06-02

Family

ID=34688151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003377428A Pending JP2005139030A (en) 2003-11-06 2003-11-06 Gel-like clay containing no water, method of manufacturing gel-like clay, and polar organic solvent prepared using gel-like clay and gel-like clay composition dispersed and thickened in polar organic solvent

Country Status (1)

Country Link
JP (1) JP2005139030A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280656A (en) * 2008-05-20 2009-12-03 Adeka Corp Viscosity modifier composition, viscosity modifying method for aqueous solution using the same, and gel preparation method
JP2010006978A (en) * 2008-06-27 2010-01-14 Kunimine Industries Co Ltd Gel-like thickening composition
CN101982435A (en) * 2010-11-05 2011-03-02 中材高新材料股份有限公司 Method for preparing low-temperature lead-free near zero expansion microcrystalline ceramic coating
JP2012087215A (en) * 2010-10-20 2012-05-10 Kri Inc Method of producing composite material
JP2012201550A (en) * 2011-03-25 2012-10-22 Kunimine Industries Co Ltd Organification-treated clay dispersion, and method for producing the same
CN113429146A (en) * 2021-05-14 2021-09-24 深圳大学 Lithium carbonate-halloysite nanotube and preparation method and application thereof
CN114180592A (en) * 2022-01-21 2022-03-15 苏州中材非金属矿工业设计研究院有限公司 Modified bentonite inorganic gel and modification method
CN114436606A (en) * 2020-11-06 2022-05-06 必照岩土科技(南京)有限公司 Reinforced adsorption type rigid vertical barrier material and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280656A (en) * 2008-05-20 2009-12-03 Adeka Corp Viscosity modifier composition, viscosity modifying method for aqueous solution using the same, and gel preparation method
JP2010006978A (en) * 2008-06-27 2010-01-14 Kunimine Industries Co Ltd Gel-like thickening composition
JP2012087215A (en) * 2010-10-20 2012-05-10 Kri Inc Method of producing composite material
CN101982435A (en) * 2010-11-05 2011-03-02 中材高新材料股份有限公司 Method for preparing low-temperature lead-free near zero expansion microcrystalline ceramic coating
JP2012201550A (en) * 2011-03-25 2012-10-22 Kunimine Industries Co Ltd Organification-treated clay dispersion, and method for producing the same
CN114436606A (en) * 2020-11-06 2022-05-06 必照岩土科技(南京)有限公司 Reinforced adsorption type rigid vertical barrier material and preparation method thereof
CN113429146A (en) * 2021-05-14 2021-09-24 深圳大学 Lithium carbonate-halloysite nanotube and preparation method and application thereof
CN114180592A (en) * 2022-01-21 2022-03-15 苏州中材非金属矿工业设计研究院有限公司 Modified bentonite inorganic gel and modification method
CN114180592B (en) * 2022-01-21 2023-10-03 苏州中材非金属矿工业设计研究院有限公司 Modified bentonite inorganic gel and modification method

Similar Documents

Publication Publication Date Title
Sun et al. Surface modification of natural Na-montmorillonite in alkane solvents using a quaternary ammonium surfactant
AU2009228982B2 (en) A particle with bipolar topospecific characteristics and process for preparation thereof
CA2631090A1 (en) Organophilic clay additives and oil well drilling fluids with less temperature dependent rheological properties
JPH0723211B2 (en) Modified bentonite
JPH0621027B2 (en) Method for producing organic smectite by solid-state reaction
Michael et al. Zirconia/graphene nanocomposites effect on the enhancement of thermo-mechanical stability of polymer hydrogels
JP2722177B2 (en) Method for activating clay and its product
JP2005139030A (en) Gel-like clay containing no water, method of manufacturing gel-like clay, and polar organic solvent prepared using gel-like clay and gel-like clay composition dispersed and thickened in polar organic solvent
Geng et al. Rheological study on the invert emulsion fluids with organoclay at high aged temperatures
Baruah et al. The effect of particle size of clay on the viscosity build up property of mixed metal hydroxides (MMH) in the low solid-drilling mud compositions
JP2005126301A (en) Gel-like clay, production method for gel-like clay, polar organic solvent formed by gel-like clay, and gel-like clay composition prepared by dispersing and thickening in polar organic solvent
Msadok et al. Synthesis and characterization of Tunisian organoclay: Application as viscosifier in oil drilling fluid
Li et al. Dispersion and rheology of polypropylene/organoclay nanocomposites: effect of cation exchange capacity and number of alkyl tails
JP6197019B2 (en) Organic clay and method for producing the same
JP6708332B1 (en) Thixotropic agent
Ece et al. Influences of electrolytes, polymers and a surfactant on rheological properties of bentonite–water systems
CA3021332A1 (en) Organoclay compositions and oil-based drilling fluid comprising the clays
JP2636178B2 (en) Synthetic mixed-layer silicate and method for producing the same
JP2003238819A (en) Heat-resistant filler
JP2514780B2 (en) New organoclay complex
JPH07187656A (en) New clay-organic composite
WO1993008230A1 (en) Cellulose ether thickening compositions
Fan et al. Mechanism of high temperature induced destabilization of nonpolar organoclay suspension
JPH0723212B2 (en) Clay-organic complex
Hauser The colloid science of important clay minerals

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080229

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080703