JP2005138547A - Multi-axially reinforced fiber laminate - Google Patents

Multi-axially reinforced fiber laminate Download PDF

Info

Publication number
JP2005138547A
JP2005138547A JP2003380082A JP2003380082A JP2005138547A JP 2005138547 A JP2005138547 A JP 2005138547A JP 2003380082 A JP2003380082 A JP 2003380082A JP 2003380082 A JP2003380082 A JP 2003380082A JP 2005138547 A JP2005138547 A JP 2005138547A
Authority
JP
Japan
Prior art keywords
multiaxial
fiber
reinforcing fiber
reinforcing
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003380082A
Other languages
Japanese (ja)
Other versions
JP4322632B2 (en
Inventor
Masayasu Ishibashi
正康 石橋
Kazunori Morimoto
和令 守本
Koichi Hashimoto
宏一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikibo Ltd
Original Assignee
Shikibo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikibo Ltd filed Critical Shikibo Ltd
Priority to JP2003380082A priority Critical patent/JP4322632B2/en
Publication of JP2005138547A publication Critical patent/JP2005138547A/en
Application granted granted Critical
Publication of JP4322632B2 publication Critical patent/JP4322632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-axially reinforced fiber laminate capable of being easily distorted into a three-dimensional shape. <P>SOLUTION: The multi-axially reinforced fiber laminate 100 is obtained by bonding a plurality of reinforcing fiber layers 1, 3, 5, 7, 9, 11, 13 and 15 regularly in a low density with linear thermoplastic resin fibers c of thermoplastic resin fiber layers 2, 4, 6, 8, 10, 12 and 14 having 1% or less extensibility by weight to the multi-axially reinforced fiber laminate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、三次元形状を有する複合材料のためのプリフォームを得るのに好適な多軸強化繊維積層体に関するものである。   The present invention relates to a multiaxial reinforcing fiber laminate suitable for obtaining a preform for a composite material having a three-dimensional shape.

複雑な三次元形状を持つ複合材料を得るための多軸強化繊維積層体としては、長繊維を製織し、縦糸、横糸によってなる、ある程度変形可能な織物を用いて三次元形状を得る方法がある。この場合は、織物の変形は縦糸と横糸に制限されるため、強化繊維が配向されている方向に対しては変形が難しく、それ以外の方向に変形させることは可能であるが、深絞りを必要とされるような変形には追従させるのが難しかった。また、織物を得るためには製織工程を必要とするし、ある程度厚みを持った繊維構造体や、複雑な繊維配向を持った多軸強化繊維積層体を得るためには、織物をカット、積層する工程が必要となり、非常に高コストとなりがちであった。さらに、織物は縦糸と横糸が上下に交互に折り重なっているため、強化繊維の直線性を出しにくく、強化繊維が直線である場合と比べると強度が劣る場合もあるなどの問題点があった。(例えば、特許文献1参照。)。   As a multiaxial reinforcing fiber laminated body for obtaining a composite material having a complicated three-dimensional shape, there is a method of obtaining a three-dimensional shape using a woven fabric that is formed by weaving long fibers and consisting of warps and wefts, which can be deformed to some extent. . In this case, deformation of the fabric is limited to warp and weft, so it is difficult to deform in the direction in which the reinforcing fibers are oriented, and it is possible to deform in other directions, but deep drawing It was difficult to follow the required deformation. In order to obtain a woven fabric, a weaving process is required. To obtain a fiber structure having a certain thickness and a multiaxial reinforcing fiber laminate having a complicated fiber orientation, the woven fabric is cut and laminated. This requires a process to be performed and tends to be very expensive. Furthermore, in the woven fabric, warp yarns and weft yarns are alternately folded up and down, so that it is difficult to obtain the linearity of the reinforcing fibers, and the strength may be inferior compared to the case where the reinforcing fibers are straight. (For example, refer to Patent Document 1).

また、樹脂を含浸させて半硬化させたプリプレグを裁断し、それを三次元形状に積層し構成する方法などがある(例えば、特許文献2参照。)。これらはいずれも三次元形状を得ることは可能であるが、強化繊維が面内湾曲するような変形には追従が難しいため、強化繊維を裁断する必要が出てくる場合がある。そのような場合には、強化繊維が裁断されているために、強化繊維が連続しているものと比較すると強度が低くなる場合もある。また、プリプレグに含浸してある樹脂のライフ管理との関係で製造工程や製造期間が制約されてしまい、ロス率が多くなる傾向があり、高コストとなりがちである場合もあるなどの問題点もあった。   Further, there is a method in which a prepreg impregnated with a resin and semi-cured is cut and laminated in a three-dimensional shape (see, for example, Patent Document 2). Any of these can obtain a three-dimensional shape, but it may be necessary to cut the reinforcing fiber because it is difficult to follow the deformation in which the reinforcing fiber is curved in-plane. In such a case, since the reinforcing fiber is cut, the strength may be lower than that in which the reinforcing fiber is continuous. In addition, the manufacturing process and the manufacturing period are restricted in relation to the life management of the resin impregnated in the prepreg, and there is a tendency that the loss rate tends to increase and the cost tends to be high. there were.

また、ブレード材を複数枚積層したり、巻回したりして、三次元形状を得る方法もあるが、繊維配向に限界があるし、カットしたり積層したりするし、製織工程を必要とするため、高コストとなりがちであるなどの問題点があった(例えば、特許文献3参照。)。   In addition, there is a method of obtaining a three-dimensional shape by laminating or winding a plurality of blade materials, but there is a limit in fiber orientation, cutting or laminating, and a weaving process is required Therefore, there is a problem that the cost tends to be high (for example, see Patent Document 3).

また、多方向に強化繊維を配向し、それらを無秩序に接着した多軸繊維不織布もあるが、接着するための樹脂の量も多くなりがちであるし、それに応じて含まれる接着剤の水分率も増え、温度変化が激しい環境下での使用が困難な場合もあるなどの問題点があった。(例えば、特許文献4参照)。   In addition, there are multiaxial fiber nonwoven fabrics in which reinforcing fibers are oriented in multiple directions and they are randomly adhered, but the amount of resin to be bonded tends to increase, and the moisture content of the adhesive contained accordingly There is a problem that it may be difficult to use in an environment where the temperature changes rapidly. (For example, refer to Patent Document 4).

特開2002―96413号公報JP 2002-96413 A 特開平7−81566号公報Japanese Patent Laid-Open No. 7-81566 特開平10―290851号公報Japanese Patent Laid-Open No. 10-290851 国際公開WO00/21742号公報International Publication WO00 / 21742

本発明は以上の問題点を解決して、深絞り成形が可能な優れた成形性を有し、強化繊維以外の不純物が少なく大きな機械的強度を有し、取り扱い性に優れ、低価格である複合材料用の多軸強化繊維積層体を提供することを目的とするものである。   The present invention solves the above-mentioned problems, has excellent moldability capable of deep drawing, has few impurities other than reinforcing fibers, has large mechanical strength, has excellent handleability, and is inexpensive. An object of the present invention is to provide a multiaxial reinforcing fiber laminate for a composite material.

前記課題を解決するため本発明は、複合材料用の多軸強化繊維積層体において、強化繊維を任意の繊維配向に等間隔で敷き並べて構成されている多軸強化繊維層の各層間が、隣接する強化繊維層と異なる角度で敷き並べられた、多軸強化繊維積層体に対して重量比で1%未満の伸縮可能な線状の熱可塑性樹脂繊維で接着されていることによって、変形能を有しかつ取り扱い性が良好であることを特徴とする多軸強化繊維積層体とした(請求項1)。   In order to solve the above-mentioned problems, the present invention provides a multiaxial reinforcing fiber laminate for a composite material, in which each layer of a multiaxial reinforcing fiber layer constituted by arranging reinforcing fibers in an arbitrary fiber orientation at equal intervals is adjacent to each other. It is deformed by being bonded to the multiaxial reinforcing fiber laminate, which is laid out at a different angle from the reinforcing fiber layer, with stretchable linear thermoplastic resin fibers having a weight ratio of less than 1%. And a multiaxial reinforcing fiber laminate characterized in that it has good handling properties (claim 1).

ここで、上記の「多軸強化繊維積層体」なる用語は、強化繊維が2軸、3軸、4軸などの多軸に配向された強化繊維積層体を意味する。2軸強化繊維積層体は、強化繊維が経方向に配向された強化繊維層と、強化繊維が緯方向に配向された強化繊維層とを積層したものである。3軸強化繊維積層体は、強化繊維が経方向配向された強化繊維層と、強化繊維が斜交方向に配向された強化繊維層とを積層したものである。4軸強化繊維積層体は、強化繊維が経方向に配向された強化繊維層と、強化繊維が緯方向に配向された強化繊維層と、強化繊維が斜交方向に配向された強化繊維層とを積層したものである。なお、各強化繊維層は、要求される強度などによって任意の積層数とすることができる。さらに、各強化繊維は、マルチフィラメントなどを主に使用する。また、各強化繊維の番手や配向ピッチは、同一でもよいし異なっていてもよい。   Here, the term “multiaxial reinforcing fiber laminate” means a reinforcing fiber laminate in which reinforcing fibers are oriented in multiple axes such as biaxial, triaxial, and tetraaxial. The biaxial reinforcing fiber laminate is obtained by laminating a reinforcing fiber layer in which reinforcing fibers are oriented in the warp direction and a reinforcing fiber layer in which reinforcing fibers are oriented in the weft direction. The triaxial reinforcing fiber laminate is formed by laminating a reinforcing fiber layer in which reinforcing fibers are oriented in the warp direction and a reinforcing fiber layer in which reinforcing fibers are oriented in an oblique direction. The four-axis reinforcing fiber laminate includes a reinforcing fiber layer in which reinforcing fibers are oriented in the warp direction, a reinforcing fiber layer in which reinforcing fibers are oriented in the weft direction, and a reinforcing fiber layer in which reinforcing fibers are oriented in the oblique direction. Are laminated. Each reinforcing fiber layer can have any number of layers depending on required strength. Furthermore, multifilaments etc. are mainly used for each reinforcing fiber. Moreover, the count and orientation pitch of each reinforcing fiber may be the same or different.

また、上記の「隣接する強化繊維層と異なる角度で敷き並べられた多軸強化繊維積層体に対して重量比で1%未満の伸縮可能な線状の熱可塑性樹脂繊維で接着されている、」なる用語は、熱可塑性樹脂繊維が線状の形状を有して、隣接する強化繊維と異なる角度で交差する部分のみが熱可塑性樹脂繊維によって部分的に接着されていることを意味するものである。なお、熱可塑性樹脂繊維は、モノフィラメント、マルチフィラメントのいずれでもよい。また、各強化繊維層間を接着する熱可塑性樹脂繊維の番手や配向ピッチは、同一でもよいし異なっていてもよい。   In addition, the above-mentioned “adjacent reinforcing fiber layers are bonded with a stretchable linear thermoplastic resin fiber having a weight ratio of less than 1% with respect to the multiaxial reinforcing fiber laminate arranged at a different angle, The term "" means that the thermoplastic resin fiber has a linear shape, and only the portion that intersects the adjacent reinforcing fiber at a different angle is partially bonded by the thermoplastic resin fiber. is there. The thermoplastic resin fiber may be either a monofilament or a multifilament. Moreover, the count and orientation pitch of the thermoplastic resin fibers for bonding the reinforcing fiber layers may be the same or different.

なお、伸縮可能な熱可塑性樹脂繊維が、多軸強化繊維積層体の重量に対して1%を超える場合は、熱可塑性樹脂繊維が多くなるので、後に強化繊維積層体を成形した複合材料製品に樹脂を含浸する際に樹脂の流路が妨げられて樹脂の含浸性が悪くなる、熱可塑性樹脂繊維による接着部分が多くなると当然変形量も少なくなって変形性・賦形性が悪くなる、強化繊維の層間に存在する熱可塑性樹脂量が大きくなるので、Vf(多軸強化繊維積層体の容積に対する強化繊維の容積含有率%)が上がらない、などの不都合が生じるので、多軸強化繊維積層体に対する伸縮可能な熱可塑性樹脂繊維の重量比は1%未満に限定される。   When the stretchable thermoplastic resin fiber exceeds 1% with respect to the weight of the multiaxial reinforcing fiber laminate, the amount of the thermoplastic resin fiber increases, so that the composite material product obtained by molding the reinforcing fiber laminate later. When the resin is impregnated, the resin flow path is obstructed, resulting in poor resin impregnation, and as the number of bonded portions with thermoplastic resin fibers increases, naturally the amount of deformation decreases and the deformability and shapeability deteriorate. Since the amount of the thermoplastic resin present between the fiber layers becomes large, problems such as Vf (volume content ratio of reinforcing fibers with respect to the volume of the multiaxial reinforcing fiber laminate) do not increase occur. The weight ratio of the stretchable thermoplastic resin fibers to the body is limited to less than 1%.

また、本発明は、複合材料用の多軸強化繊維積層体において、強化繊維を任意の繊維配向に等間隔で敷き並べて構成されている多軸強化繊維層の各層間のうち、ある層間は介在した線状の熱可塑性樹脂繊維によって任意形状の全面に渡って接着され、またある層間は熱可塑性樹脂繊維によって任意形状の一部分を接着されていることによって、変形能を有しかつ取り扱い性が良好であることを特徴とする多軸強化繊維積層体とした(請求項2)。   In the multiaxial reinforcing fiber laminate for composite materials, the present invention provides an intervening layer among the layers of the multiaxial reinforcing fiber layer configured by arranging reinforcing fibers in an arbitrary fiber orientation at equal intervals. Bonded over the entire surface of an arbitrary shape with a linear thermoplastic resin fiber, and a part of the arbitrary shape is bonded with a thermoplastic resin fiber between certain layers, so that it has deformability and good handleability Thus, a multiaxial reinforcing fiber laminate was obtained (claim 2).

ここで、上記の「任意形状」なる用語は、多軸強化繊維積層体の形状を意味するもので、「熱可塑性樹脂繊維によって任意形状の一部分を接着されている」なる用語は、任意形状の強化繊維層の縁部のみが部分的に接着されている場合や、縁部以外の他の部分、例えば中央部のみが部分的に接着されている場合などを含むものである。変形量が多い部分に関して、取り扱い性を維持し、多軸強化繊維積層体の一体性を保つのに必要な分量と接着位置を設定することで熱可塑性樹脂繊維の量を限界まで減らすことができる。この強化繊維層の一部が接着されている強化繊維層間は、2以上が連続していてもよいし、熱可塑性樹脂繊維を介在して接着する強化繊維層間と交互に配されていてもよい。   Here, the term “arbitrary shape” means the shape of a multiaxial reinforcing fiber laminate, and the term “a part of the arbitrary shape is bonded by a thermoplastic resin fiber” is an arbitrary shape. This includes a case where only the edge portion of the reinforcing fiber layer is partially bonded, and a case where other portions other than the edge portion, for example, only the central portion is partially bonded. The amount of thermoplastic resin fiber can be reduced to the limit by setting the amount and the bonding position necessary to maintain the handleability and maintain the integrity of the multiaxial reinforcing fiber laminate for the part with a large amount of deformation. . Two or more reinforcing fiber layers to which a part of the reinforcing fiber layer is bonded may be continuous, or may be alternately arranged with reinforcing fiber layers bonded via thermoplastic resin fibers. .

また、本発明は、複合材料用の多軸強化繊維積層体において、熱可塑性樹脂繊維の含有率が重量比で0.5%未満であることを特徴とする請求項1または請求項2に記載の多軸強化繊維積層体とした(請求項3)。   In the multiaxial reinforced fiber laminate for composite material according to the present invention, the thermoplastic resin fiber content is less than 0.5% by weight. A multiaxial reinforced fiber laminate was formed (claim 3).

ここで、熱可塑性樹脂繊維の含有率が、重量比で0.5%を超えると、寸法精度と強度が要求され、深絞りが必要な形状に使用する用途に使用することとなった場合に、接着量が多いと十分な変形性が得られず、しかも急激な温度変化によって、熱融着樹脂繊維が膨張、収縮などを起こして、構造材自体の形状変化などが生じ、十分な強度が得られなくなるの場合があるので、熱可塑性樹脂繊維の含有率は、重量比で0.5%未満に限定される。   Here, when the content ratio of the thermoplastic resin fiber exceeds 0.5% by weight, dimensional accuracy and strength are required, and when it is used for applications that require deep drawing. If the amount of adhesion is large, sufficient deformability cannot be obtained, and the heat fusion resin fiber expands and contracts due to a sudden temperature change, resulting in a change in the shape of the structural material itself and sufficient strength. Since it may not be obtained, the content of the thermoplastic resin fiber is limited to less than 0.5% by weight.

また、本発明は、複合材料用の多軸強化繊維積層体において、同方向に強化繊維が配向された状態の隣接する強化繊維層の層間が、隣接する強化繊維層と異なる角度で敷き並べられた熱可塑性樹脂繊維によって接着されていることを特徴とする、請求項1または請求項2に記載の多軸強化繊維積層体とした(請求項4)。   In the multiaxial reinforcing fiber laminate for composite material, the layers of adjacent reinforcing fiber layers in which the reinforcing fibers are oriented in the same direction are laid out at different angles from the adjacent reinforcing fiber layers. The multiaxial reinforced fiber laminate according to claim 1 or 2, wherein the multiaxial reinforced fiber laminate is bonded with thermoplastic resin fibers (claim 4).

なお、本発明で、強化繊維の容積含有率が50%未満であると、強度が必要とされる場合に構造体の弾性が減少してしまうので、強化繊維の容積含有率は50%以上が望ましい。強化繊維の割合が増大するほど、強化繊維積層体を成形して得た複合強化製品の機械的強度が大きくなる。   In the present invention, if the volume content of the reinforcing fibers is less than 50%, the elasticity of the structure decreases when the strength is required, so the volume content of the reinforcing fibers is 50% or more. desirable. As the proportion of the reinforcing fibers increases, the mechanical strength of the composite reinforced product obtained by molding the reinforcing fiber laminate increases.

本発明の多軸強化繊維積層体によれば、強化繊維を複数層に渡って多軸に積層し、各層間をごく微量の樹脂によって規則正しく接着しているために、三次元形状へ変形させる際の変形の自由度が大きく、しかも変形後の強化繊維の配置が規則正しいため、設計の自由度が大きく、強化繊維が持つ強度を十分発揮でき、しかも不純物としての接着樹脂をごく微量しか持たないため、樹脂成形後も強化繊維とマトリックス樹脂の強度を妨げることが無い複合材料用の多軸強化繊維積層体を提供することができる。特に、各強化繊維層間の内のある層間は熱可塑性樹脂繊維で接着し、また、ある層間は熱可塑性樹脂繊維によって任意形状の一部分を接着されていることによって、熱可塑性樹脂繊維による結合部分が少なくなって成形性が向上するとともに、強化繊維積層体における熱可塑性樹脂繊維の比率がさらに低減して、強化繊維積層体の強度を向上することができる。   According to the multiaxial reinforcing fiber laminate of the present invention, the reinforcing fibers are laminated in a multiaxial manner over a plurality of layers, and each layer is regularly bonded with a very small amount of resin. Because the degree of freedom of deformation is large and the arrangement of reinforcing fibers after deformation is regular, the degree of freedom of design is large, the strength of reinforcing fibers can be fully demonstrated, and there is only a very small amount of adhesive resin as an impurity. Further, it is possible to provide a multiaxial reinforcing fiber laminate for a composite material that does not hinder the strength of reinforcing fibers and matrix resin even after resin molding. In particular, a certain layer among the reinforcing fiber layers is bonded with a thermoplastic resin fiber, and a certain layer is bonded with a portion of an arbitrary shape with the thermoplastic resin fiber so that a bonded portion by the thermoplastic resin fiber is bonded. The moldability is reduced and the moldability is improved, and the ratio of the thermoplastic resin fibers in the reinforcing fiber laminate is further reduced, so that the strength of the reinforcing fiber laminate can be improved.

以下に本発明に係る多軸強化繊維積層体について図面を参照して説明する。   The multiaxial reinforcing fiber laminate according to the present invention will be described below with reference to the drawings.

図1は本発明に係る多軸強化繊維積層体100の一例を理解し易いように一面側から各層ごとに段階的に切り開いて模式的に示した部分平面図であり、図2は図1の多軸強化繊維積層体100を製造するための加圧・加熱前の多軸強化繊維積層前駆体100′の一例を理解し易いように一面側から各層ごとに段階的に切り開いて模式的に示した部分平面図である。図2の多軸強化繊維積層前駆体100′は、強化繊維層の一例としての第1〜第8の炭素繊維層1,3,5,7,9,11,13,15と、熱可塑性樹脂繊維層の一例としての第1〜第7のポリアミド樹脂繊維層2,4,6,8,10,12,14とを交互に積層することによって構成されている。この場合に使用される炭素繊維層1〜15の炭素繊維a及びポリアミド樹脂繊維層2〜14の熱可塑性樹脂繊維bの配向、配列ピッチ、各繊維a,bの仕様は、表1に示されるとおりである。   FIG. 1 is a partial plan view schematically showing a multiaxial reinforcing fiber laminate 100 according to the present invention, in which the layers are cut open step by step from one side for easy understanding. FIG. In order to make it easier to understand an example of the multiaxial reinforcing fiber laminate precursor 100 'before pressurization and heating for producing the multiaxial reinforcing fiber laminate 100, it is schematically shown by opening each layer step by step from one side. FIG. 2 includes a first to eighth carbon fiber layers 1, 3, 5, 7, 9, 11, 13, 15 as an example of a reinforcing fiber layer, and a thermoplastic resin. It is comprised by laminating | stacking the 1st-7th polyamide resin fiber layer 2,4,6,8,10,12,14 as an example of a fiber layer by turns. Table 1 shows the orientation of carbon fibers a of the carbon fiber layers 1 to 15 and the thermoplastic resin fibers b of the polyamide resin fiber layers 2 to 14, the arrangement pitch, and the specifications of the fibers a and b used in this case. It is as follows.

すなわち、炭素繊維層1〜15を構成する各炭素繊維aは、比重1.7g/cm3、800texのものを4mmピッチで平行に配置し、ポリアミド樹脂繊維層2〜14を構成する各ポリアミド樹脂繊維bは、30デニール、融点110〜120℃のものを20mmピッチで平行に配置している。図1,図2では、炭素繊維aとポリアミド樹脂繊維bとの番手およびピッチの違いを理解し易いように、炭素繊維aは太く、かつ、小さいピッチで示し、ポリアミド樹脂繊維bは細く、かつ、大きいピッチで示している。 That is, each of the carbon fibers a constituting the carbon fiber layers 1 to 15 has a specific gravity of 1.7 g / cm 3 and 800 tex arranged in parallel at a pitch of 4 mm, and each polyamide resin constituting the polyamide resin fiber layers 2 to 14 Fibers b having 30 deniers and melting points of 110 to 120 ° C. are arranged in parallel at a pitch of 20 mm. In FIG. 1 and FIG. 2, the carbon fiber a is shown with a thick and small pitch, the polyamide resin fiber b is thin, and the difference between the count and the pitch of the carbon fiber a and the polyamide resin fiber b is easy to understand. , Shown with a large pitch.

また、炭素繊維層1〜15を構成する各炭素繊維aおよびポリアミド樹脂繊維層2〜14を構成する各ポリアミド樹脂繊維bは、第1の強化繊維層1は+45°、第1の熱可塑性樹脂繊維層2は90°、第2の強化繊維層3は−45°、第2の熱可塑性樹脂繊維層4は90°、第3の強化繊維層5は0°、第3の熱可塑性樹脂繊維層6は+45°、第4の強化繊維層7は90°、第4の熱可塑性樹脂繊維層8は0°、第5の強化繊維層9は90°、第5の熱可塑性樹脂繊維層10は+45°、第6の強化繊維層11は0°、第6の熱可塑性樹脂繊維層12は90°、第7の強化繊維層13は−45°、第7の熱可塑性樹脂繊維層14は90°、第8の強化繊維層15は+45°にそれぞれ配向されている。   Further, each carbon fiber a constituting the carbon fiber layers 1 to 15 and each polyamide resin fiber b constituting the polyamide resin fiber layers 2 to 14 have a first reinforcing fiber layer 1 of + 45 ° and a first thermoplastic resin. The fiber layer 2 is 90 °, the second reinforcing fiber layer 3 is −45 °, the second thermoplastic fiber layer 4 is 90 °, the third reinforcing fiber layer 5 is 0 °, and the third thermoplastic resin fiber. The layer 6 is + 45 °, the fourth reinforcing fiber layer 7 is 90 °, the fourth thermoplastic fiber layer 8 is 0 °, the fifth reinforcing fiber layer 9 is 90 °, and the fifth thermoplastic fiber layer 10. Is + 45 °, the sixth reinforcing fiber layer 11 is 0 °, the sixth thermoplastic resin fiber layer 12 is 90 °, the seventh reinforcing fiber layer 13 is −45 °, and the seventh thermoplastic fiber layer 14 is The 90 ° and eighth reinforcing fiber layers 15 are oriented at + 45 °, respectively.

表1の繊維層番号順に炭素繊維層1〜15とポリアミド樹脂繊維層2〜14とを交互に敷き並べていき、合計15層の多軸強化繊維積層前駆体100′を得る。この構成によってなる多軸強化繊維積層前駆体100′は、炭素繊維によってなる層が、200g/m2であり、ポリアミド樹脂繊維によってなる層が、0.165g/m2となるので、ポリアミド樹脂繊維の含有率が0.08%と非常に低い。したがって、この多軸強化繊維積層前駆体100′は、強化繊維aの占有率が高く、しかも、各繊維a,bは直線状で、規則正しく等間隔で配置されている。表1は、多々ある積層構成のほんの一例を示したものである。 The carbon fiber layers 1 to 15 and the polyamide resin fiber layers 2 to 14 are alternately laid out in the order of the fiber layer numbers in Table 1 to obtain a total of 15 layers of the multiaxial reinforcing fiber lamination precursor 100 ′. The multiaxial reinforcing fiber laminate precursor 100 ′ having this configuration has a carbon fiber layer of 200 g / m 2 and a polyamide resin fiber layer of 0.165 g / m 2. Is very low at 0.08%. Therefore, this multiaxial reinforcing fiber lamination precursor 100 'has a high occupation ratio of the reinforcing fibers a, and the fibers a and b are linear and regularly arranged at equal intervals. Table 1 shows just one example of many stacked configurations.

表1の構成によって積層された多軸強化繊維積層前駆体100′は、ニップローラーによって、ポリアミド樹脂繊維bの融点以上の温度で加圧・加熱されることによって、ポリアミド樹脂繊維bが溶融される。この場合のニップローラーの加熱温度は110℃〜150℃である。その後、冷却用のニップローラーによって冷却しながら加圧することによって、図1に示すように、上下で交差する炭素繊維a,aどうしが、それらと交差する熱可塑性樹脂繊維bが加圧・加熱溶融された線状の熱可塑性樹脂繊維cによって密接に接着される。   The multiaxial reinforcing fiber lamination precursor 100 ′ laminated according to the configuration of Table 1 is melted by being pressed and heated by a nip roller at a temperature equal to or higher than the melting point of the polyamide resin fiber b. . The heating temperature of the nip roller in this case is 110 ° C to 150 ° C. Thereafter, by applying pressure while cooling with a nip roller for cooling, as shown in FIG. 1, the carbon fibers a and a intersecting with each other vertically, and the thermoplastic resin fiber b intersecting them are pressurized and heated and melted. The linear thermoplastic resin fibers c are closely bonded.

こうして得られた多軸炭素繊維積層体100を図1に示す。図1では、熱可塑性樹脂繊維bが加圧・加熱されて押し広げられた状態を模式的に示すために、熱可塑性樹脂繊維cを図2の熱可塑性樹脂繊維bよりも太く描いている。この多軸炭素繊維積層体100を用いて、図3(A)(B)(C)(D)に示すような平板状の一部に円筒状の深絞り部を有する三次元形状の複合材料プリフォーム200を、図3(E)に示すように多軸炭素繊維積層前駆体100′の周縁部を図示しない治具で固定しておき、凸お椀形の雄型300で加圧・加熱して製造する実験を行った結果、非常に良好な変形性が確認された。しかも、炭素繊維aがポリアミド樹脂繊維cによって規則正しく接着されているために、三次元形状に変形後も各炭素繊維a,a間のピッチの広がりはスムーズであった。こうして得られた複合材料プリフォーム200は、強化繊維aが曲面に沿って規則正しく配置されるため、高強度であり、強度設計の自由度も高い。また、不純物であるポリアミド樹脂繊維bが非常に微量であるために、複合材料プリフォーム200の強度は不純物によって阻害されること無く、大きな機械的強度が得られる。   The multiaxial carbon fiber laminate 100 thus obtained is shown in FIG. In FIG. 1, the thermoplastic resin fiber c is drawn thicker than the thermoplastic resin fiber b of FIG. 2 in order to schematically show a state in which the thermoplastic resin fiber b is pressed and heated and spread. Using this multiaxial carbon fiber laminate 100, a three-dimensional composite material having a cylindrical deep-drawn portion in a part of a flat plate shape as shown in FIGS. 3 (A), (B), (C), and (D) As shown in FIG. 3E, the preform 200 is fixed with a jig (not shown) at the periphery of the multiaxial carbon fiber lamination precursor 100 ′, and is pressed and heated with a convex bowl-shaped male mold 300. As a result of conducting an experiment for manufacturing, very good deformability was confirmed. In addition, since the carbon fibers a are regularly bonded by the polyamide resin fibers c, the pitch spread between the carbon fibers a and a is smooth even after being deformed into a three-dimensional shape. The composite material preform 200 thus obtained has high strength because the reinforcing fibers a are regularly arranged along the curved surface, and has a high degree of freedom in strength design. Further, since the amount of the polyamide resin fiber b which is an impurity is very small, the strength of the composite material preform 200 is not hindered by the impurity, and a large mechanical strength can be obtained.

なお、上記実施形態は、本発明の一実施形態を示したものであってこれに限定されるものではなく、本発明の精神を逸脱することなく、各種の変形が可能である。   The above-described embodiment shows an embodiment of the present invention and is not limited to this. Various modifications can be made without departing from the spirit of the present invention.

例えば、上記実施形態では、強化繊維として炭素繊維、熱可塑性樹脂繊維としてポリアミド樹脂繊維を用いる場合について説明したが、強化繊維としては炭素繊維の他にガラス繊維、アラミド繊維、その他の強化繊維を用いることができ、熱可塑性樹脂繊維としてはポリアミド樹脂繊維の他にポリエステル、ポリプロピレン、その他の伸縮性を有する樹脂繊維を用いることができる。   For example, in the above embodiment, the case where carbon fiber is used as the reinforcing fiber and polyamide resin fiber is used as the thermoplastic resin fiber has been described. However, as the reinforcing fiber, glass fiber, aramid fiber, or other reinforcing fiber is used in addition to the carbon fiber. In addition to polyamide resin fibers, polyester, polypropylene, and other resin fibers having elasticity can be used as the thermoplastic resin fibers.

また、強化繊維層1〜15の強化繊維aや熱可塑性樹脂繊維層2〜14の熱可塑性樹脂繊維bの配向方向は、上記以外の配向方向であっても良い。例えば、上記実施形態は各繊維a,bを典型的な+45°、−45°、90°、0°に配向する場合について説明したが、それぞれ+25°〜+65°、−25°〜−65°、70°〜110°、+20°〜−20°の範囲内で任意に設定することができる。要は、隣接する層の強化繊維aまたは熱可塑性樹脂繊維bの配向と異なる角度で交差するような角度で配向すればよい。   Moreover, the orientation directions of the reinforcing fiber a of the reinforcing fiber layers 1 to 15 and the thermoplastic resin fiber b of the thermoplastic resin fiber layers 2 to 14 may be other orientation directions. For example, although the said embodiment demonstrated the case where each fiber a and b was orientated to typical +45 degrees, -45 degrees, 90 degrees, and 0 degrees, +25 degrees-+65 degrees and -25 degrees--65 degrees, respectively. , 70 ° to 110 °, and + 20 ° to −20 °. In short, it may be oriented at an angle that intersects at an angle different from the orientation of the reinforcing fiber a or the thermoplastic resin fiber b in the adjacent layer.

同様に、強化繊維層1〜15の強化繊維aや熱可塑性樹脂繊維層2〜14の熱可塑性樹脂繊維bの配向順序は、隣接する層の強化繊維aまたは熱可塑性樹脂繊維bの配向と異なる角度で交差するような順序であれば、任意の配向順序とすることができる。   Similarly, the orientation order of the reinforcing fibers a of the reinforcing fiber layers 1 to 15 and the thermoplastic resin fibers b of the thermoplastic resin fiber layers 2 to 14 is different from the orientation of the reinforcing fibers a or the thermoplastic resin fibers b of the adjacent layers. Any order of orientation can be employed as long as the order intersects at an angle.

また、表1に示される構成で得られた多軸強化繊維積層体100は、前述のとおり十分な変形性を備えているが、さらに複雑で大きな変形が必要とされる場合には、熱可塑性樹脂繊維層2,6,10,14の中の少なくとも1つの熱可塑性樹脂繊維層を省略した構成にすることで、さらに大きな変形性が得られる。熱可塑性樹脂繊維層2,6,10,14のすべてを省略した構成にした場合、強化繊維層1と3、強化繊維層5と7、強化繊維層9と11、強化繊維層13と15間の熱可塑性樹脂繊維cが存在しないため、熱可塑性樹脂繊維の含有率は強化繊維積層体100に対して重量比で0.5%未満に低減することができ、三次元形状へ変形させる際の変形の自由度がさらに大きく、しかも変形後の強化繊維の配置が規則正しいため、設計の自由度が大きく、強化繊維が持つ強度を十分発揮でき、しかも不純物としての接着樹脂をごく微量しか持たないため、樹脂成形後も強化繊維とマトリックス樹脂の強度を妨げることが無い複合材料用の多軸強化繊維積層体を提供することができる。なお、強化繊維層1と3、強化繊維層5と7、強化繊維層9と11、強化繊維層13と15層間の熱可塑性樹脂繊維cを省略することにより層間の接着が無くなり、取り扱い性が悪くなる恐れがあるが、多軸強化繊維積層前駆体100′の外縁にごく微量のポリアミド樹脂繊維を配置しておくことで、強化繊維層の端部どうしが接着されて、良好な取り扱い性を維持することができる。縁部の代りに、強化繊維層間の他の部分,例えば中央部の一部分のみを接着することによっても、同様の結果を得ることができる。   Further, the multiaxial reinforcing fiber laminate 100 obtained in the configuration shown in Table 1 has sufficient deformability as described above, but if more complex and large deformation is required, thermoplasticity is required. By adopting a configuration in which at least one thermoplastic resin fiber layer in the resin fiber layers 2, 6, 10, and 14 is omitted, even greater deformability can be obtained. When all the thermoplastic resin fiber layers 2, 6, 10, and 14 are omitted, the reinforcing fiber layers 1 and 3, the reinforcing fiber layers 5 and 7, the reinforcing fiber layers 9 and 11, and the reinforcing fiber layers 13 and 15 are provided. Since the thermoplastic resin fiber c is not present, the content of the thermoplastic resin fiber can be reduced to less than 0.5% by weight with respect to the reinforced fiber laminate 100, and is transformed into a three-dimensional shape. Because the degree of freedom of deformation is even greater, and the arrangement of reinforcing fibers after deformation is regular, the degree of freedom of design is great, the strength of reinforcing fibers can be fully demonstrated, and there is only a very small amount of adhesive resin as an impurity. Further, it is possible to provide a multiaxial reinforcing fiber laminate for a composite material that does not hinder the strength of reinforcing fibers and matrix resin even after resin molding. By omitting the reinforcing fiber layers 1 and 3, the reinforcing fiber layers 5 and 7, the reinforcing fiber layers 9 and 11, and the reinforcing fiber layers 13 and 15 between the thermoplastic resin fibers c, there is no adhesion between the layers, and handling properties are improved. Although there is a risk of deterioration, by arranging a very small amount of polyamide resin fiber on the outer edge of the multiaxial reinforcing fiber laminate precursor 100 ′, the ends of the reinforcing fiber layers are bonded to each other, and good handling properties are obtained. Can be maintained. Similar results can be obtained by bonding other portions of the reinforcing fiber layer, for example, only a portion of the central portion, instead of the edge portion.

また、上記実施形態では、複合材料プリフォームとして、深絞り状の3次元形状について説明したが、図4(A)に示すI形複合材料プリフォーム201、図4(B)に示すJ形複合材料プリフォーム202、図4(C)に示す変形C形複合材料プリフォーム203、図4(D)に示すお椀形複合材料プリフォーム204、図4(E)に示す三角錐形複合材料プリフォーム205、その他の任意の形状にすることができる。   In the above embodiment, the three-dimensional shape of deep drawing was described as the composite material preform. However, the I-shaped composite material preform 201 shown in FIG. 4A and the J-type composite shown in FIG. Material preform 202, deformed C-shaped composite material preform 203 shown in FIG. 4 (C), bowl-shaped composite material preform 204 shown in FIG. 4 (D), and triangular pyramid-shaped composite material preform shown in FIG. 4 (E) 205, can be any other shape.

図4(A)に示すI形複合材料プリフォーム201は、図5(A)に示すように本発明の複数枚の多軸強化繊維積層体100a,100bを重ね合わせて、それぞれの両端を互いに反対方向に90°折り曲げて製造することができる。図4(B)のJ形複合材料プリフォーム202は、図5(B)に示すように本発明の複数枚の多軸強化繊維積層体100a,100bを重ね合わせて、それぞれの一方端を互いに反対方向に90°折り曲げるとともに、他方端を同一方向に90°折り曲げることによって製造することができる。図4(C)の変形C形複合材料プリフォーム203は、図5(C)に示すように本発明の1枚または複数枚の多軸強化繊維積層体100(または100aおよび100b)の両端を同一方向に90°折り曲げ、さらにその一部を90°折り曲げることによって製造することができる。また、図4(C)の形状を持つダイを使用して連続的に引き抜き樹脂成形を行うことも可能である。図4(D)に示すお椀形複合材料プリフォーム204は、図5(D)に示すように本発明の多軸強化繊維積層体100を凸お椀形の雄型310と凹お椀形の雌型320とで加圧・加熱して製造することができる。図4(E)に示す三角錐形複合材料プリフォーム205は、図5(E)に示すように本発明の多軸強化繊維積層体100を凸三角錐形の雄型330と凹三角錐形の雌型340とで加圧・加熱して製造することができる。なお、図5(D)(E)において、多軸強化繊維積層体100を張設している場合は、雌型320,340を省略することができる。また、多軸強化繊維積層体を凸三角錐形の雌型340に巻きつけることによって、ノズル状の多軸強化繊維積層体を得ることができる。   As shown in FIG. 5 (A), the I-type composite material preform 201 shown in FIG. 4 (A) is formed by superimposing a plurality of multiaxial reinforcing fiber laminates 100a and 100b of the present invention, and both ends are mutually attached. It can be produced by bending 90 ° in the opposite direction. As shown in FIG. 5 (B), the J-shaped composite material preform 202 in FIG. 4 (B) is formed by superposing a plurality of multiaxial reinforcing fiber laminates 100a and 100b of the present invention, and one end of each is mutually connected. It can be manufactured by bending 90 ° in the opposite direction and bending the other end by 90 ° in the same direction. As shown in FIG. 5C, the deformed C-shaped composite material preform 203 shown in FIG. 4C has one or more multiaxial reinforcing fiber laminates 100 (or 100a and 100b) at both ends. It can be manufactured by bending 90 ° in the same direction and further bending a part thereof by 90 °. Further, it is possible to continuously perform drawing resin molding using a die having the shape of FIG. A bowl-shaped composite material preform 204 shown in FIG. 4 (D) includes a convex bowl-shaped male mold 310 and a concave bowl-shaped female mold 100 as shown in FIG. 5 (D). 320 and can be manufactured by pressurizing and heating. As shown in FIG. 5E, the triangular pyramid-shaped composite material preform 205 shown in FIG. 4E comprises a multiaxial reinforcing fiber laminate 100 according to the present invention having a convex triangular pyramid male 330 and a concave triangular pyramid. It can be manufactured by pressurizing and heating with the female mold 340. 5D and 5E, the female molds 320 and 340 can be omitted when the multiaxial reinforcing fiber laminate 100 is stretched. In addition, by winding the multiaxial reinforcing fiber laminate around the convex triangular pyramidal female die 340, a nozzle-like multiaxial reinforcing fiber laminate can be obtained.

本発明の実施形態の多軸強化繊維積層体を各層ごとに段階的に切り開いて示した部分平面図である。It is the fragmentary top view which cut and opened the multiaxial reinforcement fiber laminated body of embodiment of this invention for every layer in steps. 本発明の実施形態の多軸強化繊維積層体を製造するための加圧・加熱前の多軸強化繊維積層前駆体を各層ごとに段階的に切り開いて示した部分平面図である。It is the fragmentary top view which cut and opened the multiaxial reinforcement fiber lamination precursor before the pressurization and heating for manufacturing the multiaxial reinforcement fiber laminated body of embodiment of this invention for every layer stepwise. (A)は本発明の多軸強化繊維積層体の斜視図、(B)は(A)の本発明の多軸強化繊維積層体のA視正面図、(C)は本発明の多軸強化繊維積層体によって成形した3次元形状を有する複合材料プリフォームの斜視図、(D)は(C)の複合材料プリフォームのB視正面図、(E)は本発明の多軸強化繊維積層体によって3次元形状を有する複合材料プリフォームを製造する工程を模式的に示す断面図である。(A) is a perspective view of a multiaxial reinforcing fiber laminate of the present invention, (B) is a front view of the multiaxial reinforcing fiber laminate of (A) according to the present invention, and (C) is a multiaxial reinforcing of the present invention. A perspective view of a composite preform having a three-dimensional shape formed by a fiber laminate, (D) is a front view of the composite preform of (C) as viewed from B, and (E) is a multiaxial reinforcing fiber laminate of the present invention. It is sectional drawing which shows typically the process of manufacturing the composite material preform which has a three-dimensional shape by. (A)(B)(C)は本発明の多軸強化繊維積層体によって製造可能な他の複合材料プリフォームの正面図、(D)(E)は同じく斜視図である。(A), (B), and (C) are front views of other composite material preforms that can be produced by the multiaxial reinforcing fiber laminate of the present invention, and (D) and (E) are perspective views. (A)(B)(C)(D)(E)はそれぞれ図4(A)(B)(C)(D)(E)の複合材料プリフォームの製造過程における正面図または断面図である。(A), (B), (C), (D), and (E) are respectively a front view or a cross-sectional view in the manufacturing process of the composite material preform of FIGS. 4 (A), (B), (C), (D), and (E). .

符号の説明Explanation of symbols

1,3,5,7,9,11,13,15 強化繊維層(炭素繊維層)
2,4,6,8,10,12,14 熱可塑性樹脂繊維層(ポリアミド樹脂繊維層)
100 多軸強化繊維積層体(多軸炭素繊維積層体)
100′ 多軸強化繊維積層前駆体(多軸炭素繊維積層前駆体)
200,201,202,203,204,205 複合材料プリフォーム
a 強化繊維
b 加圧・加熱前の熱可塑性樹脂繊維
c 加圧・加熱後の熱可塑性樹脂繊維
1, 3, 5, 7, 9, 11, 13, 15 Reinforcing fiber layer (carbon fiber layer)
2, 4, 6, 8, 10, 12, 14 Thermoplastic resin fiber layer (polyamide resin fiber layer)
100 Multiaxial reinforced fiber laminate (multiaxial carbon fiber laminate)
100 'multiaxial reinforcing fiber lamination precursor (multiaxial carbon fiber lamination precursor)
200, 201, 202, 203, 204, 205 Composite material preform a Reinforcing fiber b Thermoplastic resin fiber before pressing and heating c Thermoplastic resin fiber after pressing and heating

Claims (4)

複合材料用の多軸強化繊維積層体において、強化繊維を任意の繊維配向に等間隔で敷き並べて構成されている多軸強化繊維層の各層間が、隣接する強化繊維層と異なる角度で敷き並べられた、多軸強化繊維積層体に対して重量比で1%未満の伸縮可能な線状の熱可塑性樹脂繊維で接着されていることによって、変形能を有しかつ取り扱い性が良好であることを特徴とする多軸強化繊維積層体。   In a multiaxial reinforcing fiber laminate for composite materials, each layer of a multiaxial reinforcing fiber layer configured by arranging reinforcing fibers at equal intervals in an arbitrary fiber orientation is arranged at an angle different from that of the adjacent reinforcing fiber layer. It is deformable and has good handleability by being bonded to the multiaxial reinforced fiber laminate with a linear thermoplastic resin fiber that is less than 1% stretchable by weight. A multiaxial reinforcing fiber laminate characterized by the above. 複合材料用の多軸強化繊維積層体において、強化繊維を任意の繊維配向に等間隔で敷き並べて構成されている多軸強化繊維層の各層間のうち、ある層間は介在した線状の熱可塑性樹脂繊維によって任意形状の全面に渡って接着され、またある層間は熱可塑性樹脂繊維によって任意形状の一部分を接着されていることによって、変形能を有しかつ取り扱い性が良好であることを特徴とする多軸強化繊維積層体。   In a multiaxial reinforced fiber laminate for composite materials, linear thermoplasticity in which a certain layer is interposed among the layers of the multiaxial reinforced fiber layer configured by laying reinforcing fibers in an arbitrary fiber orientation at equal intervals. It is characterized in that it has deformability and good handleability by being bonded over the entire surface of an arbitrary shape by resin fibers, and a part of the arbitrary shape is bonded between thermoplastic resin fibers between certain layers. Multiaxial reinforced fiber laminate. 複合材料用の多軸強化繊維積層体において、熱可塑性樹脂繊維の含有率が重量比で0.5%未満であることを特徴とする請求項1または請求項2に記載の多軸強化繊維積層体。   The multiaxial reinforcing fiber laminate for composite materials, wherein the thermoplastic resin fiber content is less than 0.5% by weight, and the multiaxial reinforcing fiber laminate according to claim 1 or 2 body. 複合材料用の多軸強化繊維積層体において、強化繊維が同方向に配向された隣接する強化繊維層の層間が、前記隣接する強化繊維層と異なる角度で敷き並べられた熱可塑性樹脂繊維によって接着されていることを特徴とする、請求項1または請求項2に記載の多軸強化繊維積層体。   In a multiaxial reinforcing fiber laminate for a composite material, the layers of adjacent reinforcing fiber layers in which reinforcing fibers are oriented in the same direction are bonded by thermoplastic resin fibers laid out at different angles from the adjacent reinforcing fiber layers. The multiaxial reinforcing fiber laminate according to claim 1 or 2, wherein the multiaxial reinforcing fiber laminate is provided.
JP2003380082A 2003-11-10 2003-11-10 Multiaxial reinforced fiber laminate Expired - Fee Related JP4322632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380082A JP4322632B2 (en) 2003-11-10 2003-11-10 Multiaxial reinforced fiber laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003380082A JP4322632B2 (en) 2003-11-10 2003-11-10 Multiaxial reinforced fiber laminate

Publications (2)

Publication Number Publication Date
JP2005138547A true JP2005138547A (en) 2005-06-02
JP4322632B2 JP4322632B2 (en) 2009-09-02

Family

ID=34689939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380082A Expired - Fee Related JP4322632B2 (en) 2003-11-10 2003-11-10 Multiaxial reinforced fiber laminate

Country Status (1)

Country Link
JP (1) JP4322632B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132650A (en) * 2006-11-28 2008-06-12 Toray Ind Inc Reinforcing fiber laminate and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132650A (en) * 2006-11-28 2008-06-12 Toray Ind Inc Reinforcing fiber laminate and its manufacturing method

Also Published As

Publication number Publication date
JP4322632B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
CN101310053B (en) Hybrid three-dimensional woven/laminated struts for composite structural applications
JP4779754B2 (en) Prepreg laminate and fiber reinforced plastic
US9534322B2 (en) Fabric for carbon fiber reinforced composite material and method of manufacturing the same
WO2003046057A1 (en) Fiber-reinforced thermoplastic resin sheet, structural material comprising the same, and process for producing fiber-reinforced thermoplastic resin sheet
US11173687B2 (en) Reinforced substrate for composite material, composite material, and method for manufacturing reinforced substrate for composite material
JP2007160587A (en) Multilayered base material, preform and manufacturing method of preform
KR102307989B1 (en) Fiber reinforced composite material having a hollow section and method for manufacturing the same
JP5552655B2 (en) Preform of fiber reinforced composite material and method for producing the same
EP2802445A1 (en) Woven fabric preforms and process for making the same
JP4867259B2 (en) Preform and method for manufacturing preform
JP4517483B2 (en) Composite reinforcing fiber substrate and preform
JP2008132775A (en) Multilayer substrate and preform
US20210370620A1 (en) Semi-Finished Product And Method For Producing A Structural Component
WO2017195710A1 (en) Reinforcement fiber structure and method for producing same
TWI708799B (en) CFRP sheet, laminates using CFRP sheet, and manufacturing method of CFRP sheet
JP4322632B2 (en) Multiaxial reinforced fiber laminate
JP4962632B2 (en) Multilayer substrate, preform, and preform manufacturing method
JP2008307818A (en) Multiaxial material for fiber-reinforced thermoplastic resin, and molded product
JP4019822B2 (en) Manufacturing method of fiber reinforced composite material
JP3915614B2 (en) Fiber structure and composite material having deformed portion
AU2020383077A1 (en) Carbon fiber tape material, and reinforced fiber laminate and molded article using same
WO2012014613A1 (en) Fiber substrate and fiber-reinforced composite material
JP4376118B2 (en) Multi-axis fabric, preform material, and fiber reinforced plastic molding
JP6832536B2 (en) Pre-preg laminate and its manufacturing method
KR102401275B1 (en) Fiber reinforced composite material having a hollow section and methode for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060602

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090123

A521 Written amendment

Effective date: 20090318

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090603

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees