JP2005138065A - Method of cleaning contaminated soil - Google Patents

Method of cleaning contaminated soil Download PDF

Info

Publication number
JP2005138065A
JP2005138065A JP2003379413A JP2003379413A JP2005138065A JP 2005138065 A JP2005138065 A JP 2005138065A JP 2003379413 A JP2003379413 A JP 2003379413A JP 2003379413 A JP2003379413 A JP 2003379413A JP 2005138065 A JP2005138065 A JP 2005138065A
Authority
JP
Japan
Prior art keywords
soil
contaminated soil
contaminated
quick lime
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003379413A
Other languages
Japanese (ja)
Inventor
Naoya Takada
尚哉 高田
Kensuke Fujii
研介 藤井
Toshihiko Miura
俊彦 三浦
Kazutaka Ide
一貴 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2003379413A priority Critical patent/JP2005138065A/en
Publication of JP2005138065A publication Critical patent/JP2005138065A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means of cleaning contaminants such as VOC and oil contained in contaminated soil without making a heavy metal elute even in a small-scale plant which can be installed in an excavation site or the vicinity. <P>SOLUTION: In order to clean the contaminated soil using the method of cleaning the contaminated soil according to the embodiments of the present invention, first quick lime is added to the contaminated soil with contaminants mixed in to form primary treatment soil (Step 101). Next, the primary treatment soil is thrown in a rotary kiln and heated in an airtight state to form secondary treatment soil (Step 102). In the heating process, the contaminants volatilize and the oxidation reaction is carried out within the range of temperatures which can be controlled. Further, the secondary treatment soil after the heat-treatment is discharged from the rotary kiln, and a hardening material such as quick lime is added as needed, and thereafter, it is recycled as general soil(Step 3). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主として掘削土に含まれる油や揮発性有機化合物を浄化する汚染土壌の浄化方法に関する。   The present invention mainly relates to a method for purifying contaminated soil for purifying oil and volatile organic compounds contained in excavated soil.

工場跡地等で基礎工事を行う場合、燃料油や機械油が掘削土に混じって搬出されることがある。かかる油汚染土をそのまま放置すると、該土に混入している油分が揮発して周囲に拡散し、周辺住民の生活に支障を来すとともに、雨水によって土粒子から遊離した場合には、地下水等に混入して水質を汚濁させる原因ともなる。そのため、かかる油汚染土については、例えば焼却によって油分を除去し環境への拡散を防止する必要がある。   When foundation work is carried out at a factory site, fuel oil and machine oil may be mixed with excavated soil. If such oil-contaminated soil is left as it is, the oil contained in the soil will volatilize and diffuse to the surroundings, which will interfere with the lives of the residents of the surroundings. It becomes a cause to contaminate the water quality by mixing with water. Therefore, for such oil-contaminated soil, it is necessary to remove the oil by, for example, incineration to prevent diffusion to the environment.

また、工場跡地の土壌がトリクロロエチレンやテトラクロロエチレンなどで代表される揮発性有機化合物(VOC)で汚染されていることがあり、かかる汚染物質の拡散防止についても十分な対策が必要となる。   In addition, the soil of the factory site may be contaminated with volatile organic compounds (VOC) typified by trichlorethylene and tetrachlorethylene, and sufficient measures are required to prevent the diffusion of such contaminants.

特開2002−119952号公報JP 2002-119952 A 特開2001−205248号公報JP 2001-205248 A

かかる汚染物質で汚染された汚染土については、従来さまざまな方法で浄化処理が行われており、その代表的なものとして加熱による揮発処理がある。   Contaminated soil contaminated with such pollutants has been subjected to purification treatment by various methods in the past, and a typical example is volatilization treatment by heating.

かかる処理方法においては、汚染土を加熱することによって該汚染土に含まれている油やトリクロロエチレンなどの汚染物質を揮発させ、これを活性炭等に吸着させることで汚染土を浄化する。   In such a treatment method, the contaminated soil is heated to volatilize contaminants such as oil and trichlorethylene contained in the contaminated soil, and adsorbed onto activated carbon or the like to purify the contaminated soil.

しかしながら、このような揮発処理を行うと、加熱前であれば環境基準以下にとどまっていた有害な重金属が、加熱後には環境基準を越えて溶出してしまう事態が発生することがわかった。   However, it has been found that when such a volatilization treatment is performed, a situation occurs in which harmful heavy metals that have remained below the environmental standard before heating are eluted after the heating, exceeding the environmental standard.

かかる事態は、当然ながら放置しておくことはできず、加熱後の処理土に対し重金属の不溶化処理を行う必要があるが、不溶化は浄化とはみなされずに産業廃棄物扱いとなるため、結局、元の汚染土を一般土として有効利用できないという別の問題を生じる。   Of course, such a situation cannot be left unattended, and it is necessary to insolubilize heavy metals to the treated soil after heating. However, insolubilization is not regarded as purification and is treated as industrial waste. Another problem is that the original contaminated soil cannot be effectively used as general soil.

一方、廃棄物を処分するための手段として知られている、例えばロータリーキルンと呼ばれる回転型の燃焼炉で汚染土を焼却処分すれば、かかる燃焼炉が、ダイオキシンの合成を防止すべく、850゜C以上、通常は1000゜C程度で焼却されることが多いため、油やVOCはもちろん、重金属の溶出も防止できるものの、焼却処分という処分方法自体が産業廃棄物として扱われることになるため、汚染土の浄化手段としては採用し難い。   On the other hand, if the contaminated soil is incinerated in a rotary combustion furnace known as a means for disposing of waste, for example, a rotary kiln, the combustion furnace is 850 ° C in order to prevent synthesis of dioxins. As described above, since incineration is usually performed at about 1000 ° C, it is possible to prevent elution of heavy metals as well as oil and VOC, but the disposal method itself of incineration is treated as industrial waste. It is difficult to adopt as soil purification means.

加えて、仮に汚染土を焼却処分した処理土が産業廃棄物として扱われない、換言すれば浄化された土とみなされるとしても、上述した高温加熱を実現するには、当然ながらバーナーの仕様も高くなるとともに燃焼炉についても高い耐熱性が求められることとなり、汚染土壌の浄化プラントはおのずと大規模化を余儀なくされる。   In addition, even if the soil treated by incineration of contaminated soil is not treated as industrial waste, in other words, it can be regarded as purified soil, of course, in order to achieve the high temperature heating described above, the specifications of the burner are of course Higher heat resistance will be required for the combustion furnace as well, and the contaminated soil purification plant will naturally have to be scaled up.

また、実際の掘削現場で汚染土が発生した場合、該汚染土を焼却処分するには、上述した大規模プラントまで搬送しなければならず、搬送距離によっては、汚染物質の浄化処理効率がきわめて低くなるという問題も生じていた。   In addition, when contaminated soil is generated at an actual excavation site, in order to incinerate the contaminated soil, it must be transported to the above-mentioned large-scale plant. Depending on the transport distance, the contaminant purification efficiency is extremely high. There was also a problem of lowering.

本発明は、上述した事情を考慮してなされたもので、掘削現場又はその近くにに設置可能な小規模プラントであっても、重金属を溶出させることなく、汚染土に含まれるVOCや油といった汚染物質を浄化することが可能な汚染土壌の浄化方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and even in a small-scale plant that can be installed at or near an excavation site, VOC and oil contained in contaminated soil without eluting heavy metals. It aims at providing the purification method of the contaminated soil which can purify a pollutant.

上記目的を達成するため、本発明に係る汚染土壌の浄化方法は請求項1に記載したように、揮発性有機化合物及び油の少なくともいずれかからなる汚染物質と重金属とが混入している汚染土に生石灰を添加して一次処理土とし、該一次処理土を前記汚染物質が揮発しかつ酸化反応を制御可能な温度範囲で気密状態にて加熱して二次処理土とし、該二次処理土を一般土として再利用するものである。   In order to achieve the above object, according to the method for purifying contaminated soil according to the present invention, as described in claim 1, a contaminated soil in which a contaminant composed of at least one of a volatile organic compound and oil and a heavy metal are mixed. Quick lime is added to primary treated soil, and the primary treated soil is heated in an airtight state within a temperature range where the contaminants volatilize and the oxidation reaction can be controlled to form secondary treated soil, and the secondary treated soil Is reused as general soil.

本出願人は、揮発性有機化合物や油が汚染物質として混入している汚染土から該汚染物質を除去すべく、小規模プラントを使って加熱温度を200゜C〜800゜Cに設定し浄化処理を試みたが、揮発性有機化合物や油は揮発するものの、汚染土に重金属が含まれていた場合、加熱前には溶出しない状態であったはずの重金属が、加熱後には高い濃度で溶出する状態に変化してしまうことが本出願人の実験・調査で明らかになった。   In order to remove the pollutants from contaminated soil containing volatile organic compounds and oil as pollutants, the present applicant uses a small-scale plant to set the heating temperature to 200 ° C to 800 ° C for purification. When treatment was attempted, but volatile organic compounds and oils volatilized, but heavy metals were included in the contaminated soil, heavy metals that would not have eluted before heating were eluted at a high concentration after heating. The applicant's experiments and investigations revealed that the situation would change.

理由としては、土壌中で鉄やアルミニウムなどの水和酸化物と吸着していたヒ素や鉛が、加熱処理により鉄やアルミニウムが酸化物となることで吸着力が弱まり、溶出量が増加した、加熱処理によりそれまで吸着していた有機物が揮発することで溶出量が増大したといったことが考えられる。   The reason for this is that arsenic and lead adsorbed with hydrated oxides such as iron and aluminum in the soil have weakened the adsorption power due to iron and aluminum becoming oxides by heat treatment, and the amount of elution increased. It is conceivable that the amount of elution increased due to volatilization of the organic matter adsorbed until then by the heat treatment.

かかる状況では、加熱による揮発工程後、重金属を不溶化させる処理を行わねばならなくなるのみならず、たとえ不溶化したとしても、現行の土壌汚染対策法では不溶化は浄化とは認められず、不溶化処理された処理土を一般土壌として有効利用することもできなくなる。   In such a situation, after the volatilization process by heating, not only the process of insolubilizing heavy metals has to be performed, but even if insolubilized, the current soil pollution countermeasures were not recognized as purification and were insolubilized. The treated soil cannot be effectively used as general soil.

そこで、本出願人は、重金属を溶出させることなく揮発性有機化合物や油を小規模プラントで除去するにはどうしたらよいかという点に着眼し、さまざまな実験を繰り返した結果、汚染土に予め生石灰を添加して1次処理土とし、次いで、汚染物質が揮発しかつ酸化反応を制御可能な温度範囲で1次処理土を気密状態にて加熱すれば、プラントを大規模にせずともかつ重金属を溶出させることなく、油やVOCを除去することができるという産業上きわめて有益な知見を得るにいたったものである。   Therefore, the present applicant focused on how to remove volatile organic compounds and oils in a small-scale plant without eluting heavy metals, and as a result of repeating various experiments, If quick lime is added to make the primary treated soil, and then the primary treated soil is heated in an airtight state within a temperature range where the pollutants are volatilized and the oxidation reaction can be controlled, heavy plants can be used without making the plant large-scale. Thus, the present inventors have obtained very useful knowledge in the industry that oil and VOC can be removed without eluting oil.

すなわち、本発明に係る汚染土壌の浄化方法を用いて汚染土壌を浄化するには、まず、汚染物質が混入している汚染土に生石灰を添加して一次処理土とする。   That is, in order to purify contaminated soil using the method for purifying contaminated soil according to the present invention, first, quick lime is added to the contaminated soil in which the pollutant is mixed to obtain primary treated soil.

汚染物質は、トリクロロエチレンやテトラクロロエチレンなどで代表される揮発性有機化合物(VOC)及び油の少なくともいずれかからなり、かかる汚染物質以外に、ヒ素、水銀、鉛などの有害な重金属が汚染土に混入している。   Contaminants consist of at least one of volatile organic compounds (VOC) typified by trichlorethylene and tetrachlorethylene, and oil. In addition to these pollutants, harmful heavy metals such as arsenic, mercury and lead are mixed in the contaminated soil. ing.

汚染土には、工場跡地から掘削によって生じた掘削土が含まれる。   The contaminated soil includes excavated soil generated by excavation from the former factory site.

生石灰は、例えば汚染土とともにミキサー内に投入し、該ミキサー内で攪拌混合すればよい。   Quick lime may be put into a mixer together with contaminated soil, for example, and stirred and mixed in the mixer.

次に、一次処理土を気密状態にて加熱し、これを二次処理土とする。   Next, the primary treated soil is heated in an airtight state, and this is used as the secondary treated soil.

ここで、加熱工程においては、汚染物質が揮発しかつ酸化反応を制御可能な温度範囲で行う。   Here, the heating step is performed in a temperature range in which contaminants are volatilized and the oxidation reaction can be controlled.

次に、二次処理土を一般土として再利用する。なお、一次処理土内から揮発した汚染物質については、例えば焼却処理すればよい。かかる焼却処理においては、ダイオキシンの発生を抑えるため、例えば850゜C程度の温度で燃焼するのが望ましい。焼却するにあたっては、例えば公知の燃焼炉を転用することができる。   Next, the secondary treated soil is reused as general soil. In addition, what is necessary is just to incinerate, for example about the pollutant which volatilized from the primary treatment soil. In such incineration, it is desirable to burn at a temperature of, for example, about 850 ° C. in order to suppress the generation of dioxins. In incineration, for example, a known combustion furnace can be diverted.

酸化反応を制御可能な温度範囲とは、酸化反応、すなわち燃焼が発生したとしても、その燃焼による昇温を制御できる温度範囲をいうものとし、具体的には例えば、上限温度を700゜C以下、望ましくは600゜C以下とし、下限温度を汚染物質に応じた揮発可能温度とする。かかる温度範囲には、燃焼が全く発生しない場合も当然に含まれる。   The temperature range in which the oxidation reaction can be controlled refers to a temperature range in which the temperature rise due to the oxidation reaction, that is, even if combustion occurs, specifically, for example, the upper limit temperature is 700 ° C. or less. Preferably, the temperature is set to 600 ° C. or lower, and the lower limit temperature is set to a volatilizable temperature corresponding to the pollutant. This temperature range naturally includes the case where no combustion occurs.

酸化反応を上述の温度範囲に制御する方法としては任意であるが、例えば、加熱時間の調整や断続の設定調整、加熱空気の流量調整、汚染土の土量調整等が考えられる。   The method for controlling the oxidation reaction within the above-described temperature range is arbitrary. For example, adjustment of heating time, adjustment of intermittent setting, adjustment of flow rate of heated air, adjustment of soil volume of contaminated soil, and the like can be considered.

以下、本発明に係る汚染土壌の浄化方法の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。   Hereinafter, an embodiment of a purification method for contaminated soil according to the present invention will be described with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.

図1は、本実施形態に係る汚染土壌の浄化方法の手順を示したフローチャートである。同図でわかるように、本実施形態に係る汚染土壌の浄化方法を用いて汚染土壌を浄化するには、まず、汚染物質が混入している汚染土に生石灰を添加して一次処理土とする(ステップ101)。   FIG. 1 is a flowchart showing the procedure of the contaminated soil purification method according to this embodiment. As can be seen from the figure, in order to purify the contaminated soil using the method for purifying contaminated soil according to the present embodiment, first, quick lime is added to the contaminated soil mixed with the pollutant to form a primary treated soil. (Step 101).

汚染物質は、トリクロロエチレンやテトラクロロエチレンなどで代表される揮発性有機化合物(VOC)及び油の少なくともいずれかからなり、かかる汚染物質以外に、ヒ素、水銀、鉛などの有害な重金属が汚染土に混入している。なお、本実施形態では、工場跡地から掘削によって生じた掘削土を汚染土とする。   Contaminants consist of at least one of volatile organic compounds (VOC) typified by trichlorethylene and tetrachlorethylene, and oil. In addition to these pollutants, harmful heavy metals such as arsenic, mercury and lead are mixed in the contaminated soil. ing. In this embodiment, the excavated soil generated by excavation from the factory site is used as contaminated soil.

生石灰は、汚染土とともにミキサー内に投入し、該ミキサー内で攪拌混合すればよい。   Quick lime may be put into the mixer together with the contaminated soil, and stirred and mixed in the mixer.

次に、一次処理土をロータリーキルン回転炉に投入し、次いで、一次処理土を気密状態にて加熱し二次処理土とする(ステップ102)。   Next, the primary treated soil is put into a rotary kiln rotary furnace, and then the primary treated soil is heated in an airtight state to form secondary treated soil (step 102).

ここで、加熱工程においては、汚染物質が揮発しかつ酸化反応を制御可能な温度範囲で行う。   Here, the heating step is performed in a temperature range in which contaminants are volatilized and the oxidation reaction can be controlled.

酸化反応を制御可能な温度範囲とは、酸化反応、すなわち燃焼が発生したとしても、その燃焼による昇温を制御できる温度範囲をいうものとし、例えば上限温度を700゜C以下、望ましくは600゜C以下とし、下限温度を汚染物質に応じた揮発可能温度とする。かかる温度範囲には、燃焼が全く発生しない場合も当然に含まれる。   The temperature range in which the oxidation reaction can be controlled means a temperature range in which the temperature rise due to the oxidation reaction, that is, combustion, can be controlled. For example, the upper limit temperature is 700 ° C. or less, preferably 600 ° C. C or less, and the lower limit temperature is a volatilizable temperature corresponding to the pollutant. This temperature range naturally includes the case where no combustion occurs.

かかる温度範囲は、汚染物質に応じた揮発温度を考慮して適宜選択する。例えばそれぞれ種類によるが、VOCであれば200゜C〜500゜C、油であれば200゜C〜600゜C程度に設定すればよい。   Such a temperature range is appropriately selected in consideration of the volatilization temperature corresponding to the contaminant. For example, depending on the type, it may be set to about 200 ° C. to 500 ° C. for VOC and about 200 ° C. to 600 ° C. for oil.

また、酸化反応を上述の上限温度以下に制御するには例えば、加熱時間やその断続の設定、加熱空気の流量、汚染土の土量等を適宜調整すればよい。具体的には、汚染土の油含有量に応じて一次処理土の投入量を調整する、例えば油含有量が多ければ一次処理土の投入量を少なくすることが考えられる。   In order to control the oxidation reaction below the above-mentioned upper limit temperature, for example, the heating time and the intermittent setting thereof, the flow rate of heated air, the amount of soil of contaminated soil, etc. may be appropriately adjusted. Specifically, it is conceivable to adjust the input amount of the primary treated soil according to the oil content of the contaminated soil, for example, to reduce the input amount of the primary treated soil if the oil content is high.

このように汚染土に生石灰を添加して一次処理土とし、該一次処理土をロータリーキルン回転炉に投入した後、上述したように一次処理土を加熱するようにすると、汚染物質である油やVOCが揮発するとともに、一次処理土内の重金属の溶出が防止される。   In this way, quick lime is added to the contaminated soil to form a primary treated soil, and after the primary treated soil is put into a rotary kiln rotary furnace, the primary treated soil is heated as described above. Volatilizes and prevents the elution of heavy metals in the primary treated soil.

これは、重金属が例えばヒ素である場合、最初に添加した生石灰は、ヒ素と化学反応を生じてヒ酸カルシウム等の難溶性物質を形成するためであると考えられる。また、重金属が鉛である場合、上述した難容性物質の形成に加えて、生石灰により一次処理土のpHが9程度に上昇し鉛の溶解度が下がるためであると考えられる。   This is considered to be because, when the heavy metal is, for example, arsenic, the quick lime added first causes a chemical reaction with arsenic to form a hardly soluble substance such as calcium arsenate. In addition, when the heavy metal is lead, in addition to the formation of the above-mentioned difficult-tolerance substance, it is considered that the pH of the primary treated soil is increased to about 9 and the solubility of lead is lowered by quick lime.

次に、加熱処理が終わった二次処理土をロータリーキルン回転炉から排出し、生石灰、セメント等の固化材を必要に応じて添加した後、一般土として再利用する(ステップ103)。なお、かかる固化材は強度改善のためのものであり、ステップ101での生石灰とは目的も作用効果も全く異なるものであることは言うまでもない。   Next, the secondary treated soil after the heat treatment is discharged from the rotary kiln rotary furnace, and a solidifying material such as quick lime and cement is added as necessary, and then reused as general soil (step 103). It should be noted that such a solidified material is for improving the strength, and it goes without saying that the purpose and action effect are completely different from the quick lime in step 101.

一次処理土内から揮発した汚染物質については例えば公知の手順で処理すればよい。例えばまず、ダイオキシンの発生を抑えるべく、850゜C以上、例えば1000゜C程度の温度で燃焼させる。かかる燃焼工程は、例えば公知の燃焼炉を転用することができる。   Contaminants volatilized from the primary treated soil may be treated by, for example, a known procedure. For example, first, in order to suppress the generation of dioxins, combustion is performed at a temperature of 850 ° C. or higher, for example, about 1000 ° C. For this combustion step, for example, a known combustion furnace can be diverted.

次に、燃焼炉からの排ガスをダイオキシンの再合成を防止すべく、200゜C程度に一気に冷却し、これを乾式サイクロンで分離してアンダー分を集塵して特別管理産業廃棄物として取り扱うとともに、オーバー分についてはバグフィルタを通してから大気に放出するようにすればよい。   Next, in order to prevent recombination of dioxins, the exhaust gas from the combustion furnace is cooled to about 200 ° C at once, separated by a dry cyclone and collected as under-dust, and handled as specially controlled industrial waste. The over portion may be released to the atmosphere through a bag filter.

以上説明したように、本実施形態に係る汚染土壌の浄化方法によれば、汚染土に生石灰を添加して一次処理土とし、該一次処理土をロータリーキルン回転炉に投入した後、汚染物質が揮発しかつ酸化反応を制御可能な温度範囲で一次処理土を加熱するようにしたので、汚染物質である油やVOCを揮発させつつ、一次処理土内の重金属の溶出を抑制することが可能となり、重金属の不溶化処理が不要になるのみならず、浄化済みの二次処理土については、一般土と同様、盛土材、埋め戻し材、埋立材などの土木資材として有効利用することができる。   As described above, according to the method for purifying contaminated soil according to the present embodiment, quick lime is added to the contaminated soil to make a primary treated soil, and after the primary treated soil is put into a rotary kiln rotary furnace, the pollutant is volatilized. In addition, since the primary treated soil is heated in a temperature range in which the oxidation reaction can be controlled, it becomes possible to suppress elution of heavy metals in the primary treated soil while volatilizing oil and VOC as contaminants. Not only is the insolubilization treatment of heavy metals unnecessary, but the purified secondary treated soil can be effectively used as civil engineering materials such as embankment materials, backfill materials, and landfill materials, as with general soil.

一方、一次処理土の加熱工程は、酸化反応を制御可能な温度範囲、言い換えれば低温に抑制された温度範囲での加熱となるため、小型のバーナーで足りるとともに、ロータリーキルン回転炉についても高い耐熱性は不要となり、かくしてプラント全体の規模を縮小させ、掘削現場で設置することも可能となる。   On the other hand, the heating process of the primary treated soil is performed in a temperature range in which the oxidation reaction can be controlled, in other words, in a temperature range suppressed to a low temperature. Therefore, a small burner is sufficient, and a rotary kiln rotary furnace has high heat resistance. Thus, the scale of the entire plant can be reduced and installed at the excavation site.

本実施形態では、ロータリーキルン回転炉を用いて汚染土を加熱するようにしたが、どのような手段で加熱するかは任意であることは言うまでもない。   In this embodiment, the contaminated soil is heated using the rotary kiln rotary furnace, but it goes without saying that the heating means is arbitrary.

生石灰添加後の加熱による汚染土の浄化作用を確認するため、以下のように浄化試験を行ったので、その概要及び試験結果を説明する。   In order to confirm the purification action of the contaminated soil by heating after the addition of quicklime, a purification test was conducted as follows, and the outline and test results will be described.

汚染土については、油とヒ素及び鉛を含有する廃白土Hを試料土として用いた。   Regarding the contaminated soil, waste white soil H containing oil, arsenic and lead was used as the sample soil.

廃白土Hの性状は以下の通りであり、ヒ素及び鉛は試験前の状態ですでに環境基準を上回っている。
含水比: 61.5 %
油含有量: 90000 mg/kg-dry
重金属溶出量(環告46号法、):
ヒ素:0.065 (mg/L)
鉛 :0.015 (mg/L)
土壌環境基準値は0.01 (mg/L)以下。
The properties of the waste clay H are as follows, and arsenic and lead have already exceeded the environmental standards before the test.
Water content: 61.5%
Oil content: 90000 mg / kg-dry
Heavy metal elution amount (announcement method 46):
Arsenic: 0.065 (mg / L)
Lead: 0.015 (mg / L)
Soil environmental standard value is 0.01 (mg / L) or less.

試験手順としては、試料土である廃白土Hに生石灰の粉体を添加した場合と添加しない場合についてそれぞれ粒径5mm以下まで土を粉砕しながらミキサーで攪拌混合した後、6時間以上室内にて静置し、次いで、小型キルン、電気マッフル炉及びパイロットプラントを用いてさまざまな温度でそれぞれ加熱し、最後に加熱処理された試料土の分析を行った。   As a test procedure, after adding quick lime powder to waste white clay H which is a sample soil and mixing it with a mixer while crushing the soil to a particle size of 5 mm or less, each room is kept indoors for 6 hours or more. Then, the sample soil was heated at various temperatures using a small kiln, an electric muffle furnace and a pilot plant, and finally the sample soil subjected to the heat treatment was analyzed.

ヒ素に関する試験結果を表1に示す。   The test results for arsenic are shown in Table 1.

Figure 2005138065
Figure 2005138065

表1から以下のことがわかる。   Table 1 shows the following.

(1)小型キルンの試験ケースNo.1,No.2及び電気マッフル炉の試験ケースNo.1.No.2から、設定温度200゜C〜300゜C以下では油臭が残っており、油を十分に揮発させることができない。 (1) From the small kiln test cases No. 1 and No. 2 and the electric muffle furnace test cases No. 1 and No. 2, oil odor remains at the set temperature of 200 ° C to 300 ° C or less. Cannot be volatilized sufficiently.

(2)油を十分に揮発させることができる他の試験ケースにおいて、生石灰を添加しない以下の試験ケースでは、すべてのケースにおいて、ヒ素の溶出量が環境基準を上回った。
小型キルン No.3, 7-10
電気マッフル炉 No.3,4,7,10,13-15
パイロットプラント No.1
(2) In other test cases in which oil can be sufficiently volatilized, in the following test cases where quick lime was not added, the arsenic elution amount exceeded the environmental standard in all cases.
Small kiln No.3, 7-10
Electric muffle furnace No.3,4,7,10,13-15
Pilot plant No.1

一方、生石灰を添加した以下の試験ケースでは、ほぼすべてのケースにおいて、ヒ素の溶出量が環境基準を下回った。
小型キルン No.5-6,12,13
電気マッフル炉 No.5,6,8,9,11,16
パイロットプラント No.2
On the other hand, in the following test cases in which quicklime was added, the arsenic elution amount was lower than the environmental standard in almost all cases.
Small kiln No.5-6,12,13
Electric muffle furnace No.5,6,8,9,11,16
Pilot plant No.2

なお、小型キルンNo.4では0.016となっており、No.11では0.023となっているが、この理由は、生石灰の添加量が5%と少なかったためであろうと考えられる。   The small kiln No. 4 is 0.016 and No. 11 is 0.023. This is probably because the amount of quicklime added was as small as 5%.

(3)考察
廃白土Hは当初から環境基準を上回る溶出量のヒ素を含んでいたが、加熱によってその溶出量は概ね当初の溶出量のままであり、しかも電気マッフル炉No.14,15の結果を見れば、加熱によって当初の溶出量を大幅に上回ることがわかる。
(3) Consideration Waste white clay H contained arsenic in the amount of elution exceeding the environmental standard from the beginning. However, the amount of elution was almost the same as that of the original muffle furnace due to heating. From the results, it can be seen that the initial elution amount is greatly exceeded by heating.

したがって、加熱のみでは、ヒ素の溶出量が低下せずあるいは増加するが、生石灰を予め添加すれば、ヒ素の溶出量を環境基準である0.01以下に抑制可能であることがわかる。   Therefore, it can be seen that the arsenic elution amount does not decrease or increases only by heating, but if quicklime is added in advance, the arsenic elution amount can be suppressed to 0.01 or less, which is the environmental standard.

実施例1と同様に浄化試験を行い、鉛に関する浄化作用を確認した。   A purification test was conducted in the same manner as in Example 1 to confirm the purification effect on lead.

小型キルンに対する試験結果を図2に、電気マッフル炉に対する試験結果を図3に示す。   The test result for the small kiln is shown in FIG. 2, and the test result for the electric muffle furnace is shown in FIG.

図2(a)でわかるように、生石灰の添加量が5〜10%の範囲では鉛の溶出量が抑制されて環境基準である0.01を下回り、添加量が15%を上回ると、逆に溶出量が増大することがわかる。この現象は、図2(b)に示した鉛の溶出量とpHとの関係とも整合している。   As can be seen in Fig. 2 (a), when the amount of quicklime added is in the range of 5 to 10%, the amount of lead elution is suppressed and is below the environmental standard of 0.01. It can be seen that the amount increases. This phenomenon is consistent with the relationship between the elution amount of lead and pH shown in FIG.

したがって、鉛の場合、生石灰によるpHの適度な上昇が加熱後の溶出抑制に大きく寄与していると言える。   Therefore, in the case of lead, it can be said that a moderate increase in pH due to quick lime greatly contributes to suppression of elution after heating.

図3もほぼ同様な傾向を示しており、pHが9〜11の範囲で鉛の溶出量が抑制され、環境基準である0.01を下回っていることがわかる。   FIG. 3 shows almost the same tendency, and it can be seen that the amount of lead elution is suppressed in the pH range of 9 to 11, which is below the environmental standard of 0.01.

実施例1と同様、生石灰添加後の加熱による汚染土の浄化作用を確認するため、以下のように浄化試験を行ったので、その概要及び試験結果を説明する。   As in Example 1, since the purification test was performed as follows in order to confirm the purification action of the contaminated soil by heating after the addition of quicklime, the outline and test results will be described.

汚染土については、油とヒ素を含有する廃白土Eを試料土として用いた。   As the contaminated soil, waste white soil E containing oil and arsenic was used as sample soil.

廃白土Eの性状は以下の通りであり、ヒ素は試験前の状態では環境基準0.01を下回っている。
含水比: 63.7 %
油含有量: 336000 mg/kg-dry
重金属溶出量(環告46号法、):
ヒ素:0.0052 (mg/L)
土壌環境基準値は0.01 (mg/L)以下。
The properties of the waste clay E are as follows. Arsenic is below the environmental standard 0.01 in the state before the test.
Water content: 63.7%
Oil content: 336000 mg / kg-dry
Heavy metal elution amount (announcement method 46):
Arsenic: 0.0052 (mg / L)
Soil environmental standard value is 0.01 (mg / L) or less.

試験手順は、実施例1と同様であるのでここではその説明を省略する。なお、本実施例ではパイロットプラントを加熱手段に用いた。   Since the test procedure is the same as in Example 1, the description thereof is omitted here. In this embodiment, a pilot plant is used as the heating means.

試験結果を表2に示す。   The test results are shown in Table 2.

Figure 2005138065
Figure 2005138065

表2から以下のことがわかる。   Table 2 shows the following.

試験No.2-0は、処理前における試験土の性状を示したものであり、ヒ素溶出量は0.0052 (mg/L)で土壌環境基準0.01 (mg/L)を下回っている。   Test No.2-0 shows the properties of the test soil before treatment, and the arsenic elution amount is 0.0052 (mg / L), which is lower than the soil environmental standard 0.01 (mg / L).

しかしながら、この試料土をただ単に加熱すると、試験No.2-1でわかるように、ヒ素の溶出量が0.16と30倍にも増大していることがわかる。   However, when this sample soil is simply heated, it can be seen that the elution amount of arsenic is increased to 0.16, which is 30 times as shown in Test No. 2-1.

一方、試料土に予め生石灰を添加したケース(No.2-2〜2-7)では、後処理を行った場合はもちろんのこと、後処理を行わなくても(No.2-7)、ヒ素の溶出量は環境基準以下に抑制されている。   On the other hand, in the case where quick lime is added to the sample soil in advance (No.2-2 to 2-7), not only when post-treatment is performed, but also after treatment (No.2-7), The amount of arsenic elution is controlled below the environmental standard.

以上の試験結果から、当初は環境基準を下回っていたヒ素の溶出量は、加熱によって大幅に増大するが、生石灰を予め添加すれば、環境基準である0.01 以下に抑制可能であることがわかる。   From the above test results, it can be seen that the elution amount of arsenic, which was initially lower than the environmental standard, is greatly increased by heating, but can be suppressed to 0.01 or lower, which is the environmental standard, by adding quick lime in advance.

本実施形態に係る汚染土壌の浄化方法の手順を示したフローチャート。The flowchart which showed the procedure of the purification method of the contaminated soil which concerns on this embodiment. 本実施形態に係る汚染粘性土の浄化方法の作用を示したグラフ。The graph which showed the effect | action of the purification method of the contaminated clay soil which concerns on this embodiment. 本実施形態に係る汚染粘性土の浄化方法の作用を示したグラフ。The graph which showed the effect | action of the purification method of the contaminated clay soil which concerns on this embodiment.

Claims (1)

揮発性有機化合物及び油の少なくともいずれかからなる汚染物質と重金属とが混入している汚染土に生石灰を添加して一次処理土とし、該一次処理土を前記汚染物質が揮発しかつ酸化反応を制御可能な温度範囲で気密状態にて加熱して二次処理土とし、該二次処理土を一般土として再利用することを特徴とする汚染土壌の浄化方法。 Quick lime is added to a contaminated soil in which a contaminant consisting of at least one of a volatile organic compound and oil and heavy metal are mixed to form a primary treated soil, and the contaminant is volatilized and oxidized by the primary treated soil. A method for purifying contaminated soil, comprising heating in an airtight state within a controllable temperature range to obtain secondary treated soil, and reusing the secondary treated soil as general soil.
JP2003379413A 2003-11-10 2003-11-10 Method of cleaning contaminated soil Pending JP2005138065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003379413A JP2005138065A (en) 2003-11-10 2003-11-10 Method of cleaning contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003379413A JP2005138065A (en) 2003-11-10 2003-11-10 Method of cleaning contaminated soil

Publications (1)

Publication Number Publication Date
JP2005138065A true JP2005138065A (en) 2005-06-02

Family

ID=34689469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003379413A Pending JP2005138065A (en) 2003-11-10 2003-11-10 Method of cleaning contaminated soil

Country Status (1)

Country Link
JP (1) JP2005138065A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167617A (en) * 2004-12-16 2006-06-29 Kobe Steel Ltd Treatment method of soil polluted with arsenic
JP2008055410A (en) * 2006-08-02 2008-03-13 Jdc Corp Method and apparatus for removing volatile substance
JP2009108583A (en) * 2007-10-30 2009-05-21 Shimizu Corp Method for utilizing tunnel excavated soil
CN109047303A (en) * 2018-07-03 2018-12-21 四川农业大学 A method of induction pleioblastus argenteastriatus absorbs and accumulation P in soil b

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167617A (en) * 2004-12-16 2006-06-29 Kobe Steel Ltd Treatment method of soil polluted with arsenic
JP4664663B2 (en) * 2004-12-16 2011-04-06 株式会社神戸製鋼所 Treatment method of arsenic contaminated soil
JP2008055410A (en) * 2006-08-02 2008-03-13 Jdc Corp Method and apparatus for removing volatile substance
JP2009108583A (en) * 2007-10-30 2009-05-21 Shimizu Corp Method for utilizing tunnel excavated soil
CN109047303A (en) * 2018-07-03 2018-12-21 四川农业大学 A method of induction pleioblastus argenteastriatus absorbs and accumulation P in soil b

Similar Documents

Publication Publication Date Title
EP1671712B1 (en) Method for treatment of arsenic-contaminated soil
JPH0412200B2 (en)
CN112916609A (en) Method for blocking and burying polluted soil
TW529970B (en) A method for the treatment, in particular stabilization, of materials containing environmentally noxious constituents, especially from the incineration of waste, as well as a plant for carrying out the said method
JP2005138065A (en) Method of cleaning contaminated soil
JP4686227B2 (en) Treatment method of sulfuric acid pitch
JP2000301103A (en) Detoxification treatment of incineration ash or fly ash
JP4662546B2 (en) Purification method for contaminated soil
JP4470449B2 (en) Purification method for contaminated clay soil
JP3496610B2 (en) Alkaline fly ash treatment method
JP2006281148A (en) Dioxin contaminant treating method
JPH10216670A (en) Treatment to change incineration ash or fly ash into harmless
JP2010247047A (en) Method and apparatus for purifying polluted soil
JP2007154236A (en) Method for separating lead from combustion ash
JP2005233537A (en) Paper sludge treatment method
JP4155579B2 (en) Landfill waste processing method and processing apparatus
JP2008272599A (en) Method and device for treating fly ash, and method and device for treating waste substances from waste incinerator using the same
KR101458568B1 (en) Processing Method of Harmful Substance of Incinerated ashes
JP2009050776A (en) Method of rendering heavy metal-containing contaminant harmless
JPH10202221A (en) Treatment of incineration ash or fly ash making harmless
JP3455118B2 (en) Treatment method of molten fly ash or incinerated fly ash
JP4600276B2 (en) Method for desorbing lead from combustion ash
JPH11114530A (en) Incineration ash or non-polluting treatment of fly ash
JP2005138049A (en) Method of making treatment incineration ash harmless, zeolite-like product and apparatus for making treatment incineration ash harmless
CN116586417A (en) In-situ restoration method for polluted soil in chemical plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061010

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310