JP2005138062A - Method of separating oil content in water and determination method of oil content in water containing oil content using the same - Google Patents

Method of separating oil content in water and determination method of oil content in water containing oil content using the same Download PDF

Info

Publication number
JP2005138062A
JP2005138062A JP2003379207A JP2003379207A JP2005138062A JP 2005138062 A JP2005138062 A JP 2005138062A JP 2003379207 A JP2003379207 A JP 2003379207A JP 2003379207 A JP2003379207 A JP 2003379207A JP 2005138062 A JP2005138062 A JP 2005138062A
Authority
JP
Japan
Prior art keywords
temperature
oil
water
polymer compound
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003379207A
Other languages
Japanese (ja)
Other versions
JP2005138062A5 (en
JP4409915B2 (en
Inventor
Hiroshi Okumura
浩 奥村
Seiji Ishii
誠治 石井
Chiyo Matsubara
チヨ 松原
Fumi Ninomiya
扶実 二宮
Hiroshi Yoshioka
浩 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYORITSU RIKAGAKU KENKYUSHO KK
Patent Technology Development Inc
Original Assignee
KYORITSU RIKAGAKU KENKYUSHO KK
Patent Technology Development Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYORITSU RIKAGAKU KENKYUSHO KK, Patent Technology Development Inc filed Critical KYORITSU RIKAGAKU KENKYUSHO KK
Priority to JP2003379207A priority Critical patent/JP4409915B2/en
Publication of JP2005138062A publication Critical patent/JP2005138062A/en
Publication of JP2005138062A5 publication Critical patent/JP2005138062A5/ja
Application granted granted Critical
Publication of JP4409915B2 publication Critical patent/JP4409915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method of separating an oil content from water, in which specific polymeric compound is used, the oil content in the water is caught in solid aggregate with very little moisture content, and even if an amount of the addition of flocculant increases, it does not become a dispersion stabilizer of the oil content. <P>SOLUTION: The method of separating oil content from water comprises (a) a process of adding, to water containing the oil content maintaining a predetermined temperature, low-temperature hydrophilic-high temperature hydrophobic heat-reversible thermosensitive polymeric compound having a higher transition temperature than the temperature of the water to dissolve and prepare an aqueous solution, (b) a process of warming the aqueous solution obtained in (a) more than the transition temperature of the low-temperature hydrophilic-high temperature hydrophobic heat-reversible thermosensitive polymeric compound, and forming solid matter of thermosensitive polymeric compound catching the oil content, and (c) a process of separating the solid matter from a water phase. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、新規な水中の油分分離方法及びその分離方法を用いた油分含有水中の油分の定量方法に関するものである。   The present invention relates to a novel method for separating oil in water and a method for quantifying oil in water containing oil using the separation method.

油分を含有する産業排水や家庭排水におけるCODやBODは、大部分が油分に依存するため、この油分を除去することにより大幅にBODを低下させることができる。
したがって、これらの排水は、水質保全法に基づく指定水域の水質基準として、あるいは下水道法による規制基準以下にまで油分を除去して、下水や河川に放流されている。
Most of COD and BOD in industrial wastewater and household wastewater containing oil depend on oil, and therefore, BOD can be greatly reduced by removing this oil.
Therefore, these wastewaters are discharged into sewage and rivers as water quality standards for designated water areas based on the Water Quality Conservation Law, or after removing oil to a level below the regulation standards of the Sewerage Law.

ところで、これらの排水中の油分を除く方法としては、重力又は加圧式の浮上分離法が主流を占めているが、これらは上記した放流可能な基準値以下に油分を除去すればよく、完全な油分除去を必要としないため、油分を完全に除くための浄化や油分含有量を測定するための分析に使用するには、必ずしも適当な方法ではない。   By the way, as a method for removing oil in these wastewaters, gravity or pressurized flotation separation methods occupy the mainstream, but it is sufficient to remove oil below the reference value that can be discharged as described above. Since it does not require oil removal, it is not necessarily a suitable method for use in purification to completely remove oil or analysis for measuring oil content.

一方、有機系又は無機系の凝集剤を用いると、乳化状態の油分を効率よく捕捉し得ることが知られている。そして、このような凝集剤として、切削油廃水用の塩化カルシウム含浸白土とアニオン系高分子化合物との粉末状混合物からなる凝集剤(特許文献1参照)、カチオン性高分子化合物又はカチオン性高分子化合物とアニオン性高分子化合物との粉末状混合物からなる凝集剤(特許文献2参照)、アルギン酸塩と硫酸アンモニウムとを含む洗車排水用凝集剤(特許文献3参照)、微生物が産生した油水分離能を有する高分子化合物を主成分とする凝集剤(特許文献4参照)、油分を吸収してフロック化する吸油性ポリマーと水中の微粒子を凝集するための凝集剤とからなる油分離剤(特許文献5参照)などが提案されている。   On the other hand, it is known that when an organic or inorganic flocculant is used, oil in an emulsified state can be efficiently captured. And as such a flocculant, the flocculant (refer patent document 1) which consists of a powdery mixture of the calcium chloride impregnation clay for cutting oil wastewater, and an anionic polymer compound, a cationic polymer compound, or a cationic polymer A flocculant composed of a powdered mixture of a compound and an anionic polymer compound (see Patent Document 2), a flocculant for car wash drainage containing alginate and ammonium sulfate (see Patent Document 3), and an oil-water separation ability produced by microorganisms An oil separating agent comprising a flocculant mainly composed of a polymer compound (see Patent Document 4), an oil-absorbing polymer that absorbs oil to form a floc, and a flocculant for agglomerating fine particles in water (Patent Document 5) Have been proposed).

しかしながら、これらの凝集剤は、いずれも大量の産業廃水の処理用として提案されたものであり、油分を完全に分離して定量分析したり、油分を全く含まない浄化水を得るためのものとしては、必ずしも満足し得るものではない。   However, all of these flocculants have been proposed for the treatment of a large amount of industrial wastewater, and are intended for quantitative separation and analysis of oil completely or for obtaining purified water containing no oil. Is not always satisfactory.

他方、環境水中の微量汚染物質の一つである鉱物油及び動植物油の定量方法としては、日本工業規格「工場排水試験方法(JIS K 0102)」や衛生試験法があり、これらJISや衛生試験法においては、試料を微酸性とし、へキサンで抽出したのち、このヘキサンを揮散させた後に残留する物質を秤量して定量する。   On the other hand, there are Japanese Industrial Standard “Factory Wastewater Test Method (JIS K 0102)” and sanitary test methods as methods for quantifying mineral oils and animal and vegetable oils, which are one of the trace pollutants in environmental water. In the method, a sample is made slightly acidic, extracted with hexane, and then the substance remaining after volatilization of hexane is weighed and quantified.

しかし、この定量方法では、大量の試料水を用いて多量のへキサンを回収するために、煩雑な操作や多量の熱エネルギーを必要とするので、処理費がコスト高になるのを免れない。   However, in this quantification method, since a large amount of sample water is used to collect a large amount of hexane, a complicated operation and a large amount of heat energy are required, so that the processing cost is inevitable.

なお、最近、オンサイト分析に適した技術として、重金属検出用材料及びその製造方法(特許文献6参照)並びに環境汚染微量物質の定量方法及びそれに用いる定量用キット(特許文献7参照)が提案された。
しかし、この技術は有害重金属イオンの定量を目的とし、重金属イオンとキレート化合物を形成して呈色する疎水性キレート形成型発色試薬を用いるものであって、キレート化合物を形成せず呈色もしない油分の定量に用いられるものではない。
Recently, as a technique suitable for on-site analysis, a heavy metal detection material and a method for producing the same (see Patent Document 6), a method for quantifying environmental pollutants, and a kit for quantification used therein (see Patent Document 7) have been proposed. It was.
However, this technique aims to quantify harmful heavy metal ions and uses a hydrophobic chelate-forming color reagent that forms a chelate compound with a heavy metal ion, and does not form a chelate compound or color. It is not used to determine the oil content.

特開昭51−30585号公報(特許請求の範囲その他)JP 51-30585 (Claims and others) 特開昭60−202787号公報(特許請求の範囲その他)JP-A-60-202787 (Claims and others) 特開2003−170007号公報(特許請求の範囲その他)JP 2003-170007 (Claims and others) 特開2000−70955号公報(特許請求の範囲その他)Japanese Patent Laid-Open No. 2000-70955 (claims and others) 特開2000−328048号公報(特許請求の範囲その他)JP 2000-328048 (Claims and others) 特開2003−149226号公報(特許請求の範囲その他)JP 2003-149226 A (Claims and others) 特開2003−194798号公報(特許請求の範囲その他)JP 2003-194798 A (Claims and others)

本発明は、特定の高分子化合物を用い、水分量が極めて少ない固形状の凝集物内に水中の油分を捕捉し、且つ凝集剤の添加量を多くしても油分の分散安定剤となることのない新規な水中の油分分離方法を提供すること、並びに、フィールドにおいて、環境水等の水中の微量油分を簡便、迅速かつ精度高く、しかも低コストで二次汚染もなくオンサイト分析し得る新規な水中の油分の定量方法を提供することを目的としてなされたものである。   The present invention uses a specific polymer compound, traps oil in water in a solid agglomerate having a very low water content, and can be a dispersion stabilizer for oil even if the amount of flocculant added is increased. Providing a new method for separating oil in water, and a new method capable of on-site analysis of minute amounts of oil in water such as environmental water in the field simply, quickly, with high accuracy, at low cost and without secondary contamination It was made for the purpose of providing a method for quantitatively determining the oil content in water.

本発明者らは、上記課題に鑑み鋭意研究を重ねた結果、低温親水性−高温疎水性熱可逆型感熱性高分子化合物の特性を利用して、水中の微量油分の全量を高温側で固形物中に分離・濃縮できること、さらにはこの固形物を少量の水に低温側で溶解してできる油分懸濁液を用いると簡易・迅速かつ高い精度を以って油分量を定量し得ることを見出し、この知見に基づいて本発明を完成するに至った。   As a result of intensive research in view of the above problems, the present inventors made use of the characteristics of a low temperature hydrophilic-high temperature hydrophobic thermoreversible thermosensitive polymer compound to solidify the total amount of trace oil in water on the high temperature side. The oil content can be separated and concentrated in the product, and the amount of oil can be quantified easily, quickly and with high accuracy by using an oil suspension obtained by dissolving this solid in a small amount of water on the low temperature side. Based on this finding, the present invention has been completed.

すなわち、本発明は、(イ)所定温度に保持した油分含有水に、その温度よりも高い転移温度をもつ低温親水性−高温疎水性熱可逆型感熱性高分子化合物を加えて溶解し、水溶液を調製する工程、(ロ)(イ)で得られた水溶液を上記低温親水性−高温疎水性熱可逆型感熱性高分子化合物の転移温度以上に昇温して、油分を捕捉した感熱性高分子化合物の固形物を形成させる工程、及び(ハ)上記の固形物を水相から分離する工程からなることを特徴とする水中の油分分離方法、並びに(イ)所定温度に保持した油分含有水に、その温度よりも高い転移温度をもつ低温親水性−高温疎水性熱可逆型感熱性高分子化合物を加えて溶解し、混合液を調製する工程、(ロ)(イ)で得られた混合液を上記低温親水性−高温疎水性熱可逆型感熱性高分子化合物の転移温度以上に昇温して、油分を捕捉した感熱性高分子化合物の固形物を形成させる工程、(ハ)上記の固形物を水相から分離する工程、(ニ)(ハ)で得た固形物に、所定量の純水を、上記感熱性高分子化合物の転移温度よりも低い温度において加えて溶解し、油分の水性懸濁液を形成させる工程、及び(ホ)上記水性懸濁液中の油分を検量する工程からなる油分含有水中の油分の定量方法を提供するものである。   That is, the present invention comprises (a) a low temperature hydrophilic-high temperature hydrophobic thermoreversible thermosensitive polymer compound having a transition temperature higher than the oil-containing water maintained at a predetermined temperature, (B) The aqueous solution obtained in (a) is heated to a temperature higher than the transition temperature of the low-temperature hydrophilic-high-temperature hydrophobic thermoreversible thermosensitive polymer compound to capture the oil component. A step of forming a solid of a molecular compound, and (c) a method of separating oil in water, the step of separating the solid from the aqueous phase, and (b) oil-containing water kept at a predetermined temperature. A step of adding a low-temperature hydrophilic-high-temperature hydrophobic thermoreversible thermosensitive polymer compound having a transition temperature higher than that temperature to dissolve and preparing a mixed solution, (b) mixing obtained in (a) Liquid above low temperature hydrophilic-high temperature hydrophobic thermoreversible thermosensitive high content In the step of forming a solid of a heat-sensitive polymer compound that has captured the oil by raising the temperature above the transition temperature of the compound, (c) a step of separating the solid from the aqueous phase, (d) in (c) Adding a predetermined amount of pure water to the obtained solid at a temperature lower than the transition temperature of the thermosensitive polymer compound to form an aqueous suspension of oil; and (e) the aqueous suspension. The present invention provides a method for quantifying oil content in oil-containing water, which comprises the step of calibrating the oil content in a suspension.

次に、本発明について、さらに詳細に説明する。
本発明は、所定温度に保持した微量油分を含有する廃水などに、その温度よりも高い転移温度をもつ低温親水性−高温疎水性熱可逆型感熱性高分子化合物を加えてその転移温度以下で溶解し、次に転移温度以上に昇温して凝固・析出した固形物中に油分を捕捉(捕集・濃縮)し、次にこの固形物を水相から分離する工程からなる水中の油分の分離方法及び前記分離方法を利用して得た固形物に、極少容量の所定量の純水を、上記感熱性高分子化合物の転移温度よりも低い温度において加えて溶解し、この感熱性高分子化合物水溶液を分散媒として油分を懸濁させ、その濁度等を検量することにより油分含有水中の油分を定量する方法である。
ここで転移温度とは、下限臨界共溶温度(Lower Critical Solution Temperature)を意味する。
Next, the present invention will be described in more detail.
The present invention adds a low-temperature hydrophilic-high-temperature hydrophobic thermoreversible thermosensitive polymer compound having a transition temperature higher than that temperature to waste water containing a trace amount of oil held at a predetermined temperature, and below the transition temperature. Dissolve, then raise the temperature above the transition temperature to capture (capture / concentrate) the oil in the solidified / precipitated solid, and then separate the solid from the aqueous phase. A separation method and a solid obtained by using the separation method are dissolved by adding a predetermined amount of pure water at a temperature lower than the transition temperature of the thermosensitive polymer compound, and the thermosensitive polymer. This is a method for quantifying the oil content in oil-containing water by suspending the oil content using a compound aqueous solution as a dispersion medium and measuring the turbidity and the like.
Here, the transition temperature refers to a lower critical solution temperature (Lower Critical Solution Temperature).

先ず、本発明に対する理解を容易にするために、本発明における低温親水性−高温疎水性熱可逆型感熱性高分子化合物の機能と作用機序を説明する。
本発明は、低温親水性−高温疎水性熱可逆型感熱性高分子化合物中に水中の油分を捕捉し、次いで水相から分離するものであり、またこの分離方法を利用して得られた固形分を水中に再分散させてその濁度を測定するものであるが、低温親水性−高温疎水性熱可逆型感熱性高分子化合物は、それぞれの段階において次のように機能する。
First, in order to facilitate understanding of the present invention, the function and action mechanism of the low temperature hydrophilic-high temperature hydrophobic thermoreversible thermosensitive polymer compound in the present invention will be described.
The present invention captures oil in water in a low-temperature hydrophilic-high-temperature hydrophobic thermoreversible thermosensitive polymer compound and then separates it from the aqueous phase. The solid obtained by using this separation method The turbidity is measured by redispersing the water in water. The low temperature hydrophilic-high temperature hydrophobic thermoreversible thermosensitive polymer compound functions as follows in each stage.

すなわち、分離工程では油分含有水に加えられた低温親水性−高温疎水性熱可逆型感熱性高分子化合物は、温度を転移温度以上に上昇させると脱水和して疎水性になるため油分と親和性を生じる。その結果、油分は凝固した高分子固体物(固形物)中に取り込まれて高度に濃縮されるので、この固形分を水相から分離すれば、油分が分離される。
このようにして水中に極希薄な状態で存在している油分についても濃縮処理が施され、分離可能になる。
That is, the low-temperature hydrophilic-high-temperature hydrophobic thermoreversible thermosensitive polymer compound added to the oil-containing water in the separation step is dehydrated and becomes hydrophobic when the temperature is raised above the transition temperature. Produces sex. As a result, the oil is taken into the solidified polymer solid (solid) and highly concentrated. Therefore, if the solid is separated from the aqueous phase, the oil is separated.
In this way, the oil present in an extremely dilute state in water is also subjected to a concentration treatment and becomes separable.

従来の凝集法で生成する油分含有フロックは親水性コロイドの凝集物であり水分を多量に含むものであるが、本発明の固形物は感熱性高分子化合物の高温疎水性の特性を利用して水分の少ない固形分として回収できる。   Oil-containing flocs produced by the conventional agglomeration method are agglomerates of hydrophilic colloids and contain a large amount of moisture, but the solids of the present invention utilize the high-temperature hydrophobic characteristics of thermosensitive polymer compounds to absorb moisture. It can be recovered as a low solid content.

次に、定量方法の工程では、低温親水性−高温疎水性熱可逆型感熱性高分子化合物水溶液は油分の分散媒として機能する。感熱性高分子化合物は、疎水性と親水性の両面を有する界面活性剤的な性質を示し、その水溶液は油分を包含したミセルを形成することにより、油分を小さな粒子として懸濁分散することができる。その懸濁状態は、長時間に渉って高い安定性を保ち、その濁度は油分含量に比例する。また、懸濁粒子径を小さく保てるので濁度測定において高い感度を得ることができる。   Next, in the quantitative method step, the low temperature hydrophilic-high temperature hydrophobic thermoreversible thermosensitive polymer compound aqueous solution functions as an oil dispersion medium. A thermosensitive polymer compound exhibits a surfactant-like property having both hydrophobic and hydrophilic properties, and its aqueous solution forms a micelle including the oil component, whereby the oil component can be suspended and dispersed as small particles. it can. The suspension remains highly stable over time and its turbidity is proportional to the oil content. Moreover, since the suspended particle diameter can be kept small, high sensitivity can be obtained in turbidity measurement.

このようにして、本発明では、低温親水性−高温疎水性熱可逆型感熱性高分子化合物を濃縮媒体及びその水溶液を分散媒として用いることにより、水中の微量油分を迅速かつ高感度で定量することができる。   Thus, in the present invention, a trace amount of oil in water is rapidly and highly quantified by using a low temperature hydrophilic-high temperature hydrophobic thermoreversible thermosensitive polymer compound as a concentration medium and an aqueous solution thereof as a dispersion medium. be able to.

本発明における抽出及び分散のための媒体である低温親水性−高温疎水性熱可逆型感熱性高分子化合物による抽出過程における物質取り込みの機序は、分離対象物質と感熱性高分子化合物の間の疎水性に基づく親和性を利用したものであり、その対象物質に対する感熱性高分子化合物による抽出に関しては、基本的に、有機溶媒抽出法(水−有機溶媒間の分配係数支配によるもの)の場合と同様に考えることができる。   The mechanism of substance uptake in the extraction process by the low-temperature hydrophilic-high-temperature hydrophobic thermoreversible thermosensitive polymer compound, which is a medium for extraction and dispersion in the present invention, is determined between the substance to be separated and the thermosensitive polymer compound. It uses affinity based on hydrophobicity, and the extraction of the target substance with a thermosensitive polymer compound is basically the case of the organic solvent extraction method (by controlling the partition coefficient between water and organic solvent). Can be thought of as well.

すなわち、高分子凝集相の抽出溶媒としての性質は、例えばポリ(N‐イソプロピルアクリルアミドの場合、水−感熱性高分子化合物凝集相間の分配係数が、水−オクタノール間分配定数(化合物の疎水性を示す尺度)との整合性を示す[「アナリティカル・ケミストリー(Anal.Chem.)」,1999年,第71巻,p.4506−4512参照]ことからも理解でき、本発明による水中油分の定量法はヘキサン抽出物質の測定法と軌を一にするものと考えられる。   That is, the property of the polymer aggregate phase as an extraction solvent is, for example, in the case of poly (N-isopropylacrylamide), the partition coefficient between the water-thermosensitive polymer compound aggregate phase is the partition constant between water and octanol (the hydrophobicity of the compound). (See “Analytical Chemistry”, 1999, Vol. 71, p. 4506-4512), and the determination of oil-in-water according to the present invention. The method is considered to be consistent with the measurement method of hexane extract.

本発明における低温親水性−高温疎水性熱可逆型感熱性高分子化合物水溶液の分散媒としての作用機序は、高分子の疎水性基を内側に、親水性基を外側にしてミセル様のコアを形成し水溶液中で疎水性物質取り込みの場を形成し、油分を保持・分散して安定な水中油の懸濁状態を保つものと考えられる。上記感熱性高分子化合物水溶液が形成する微視的疎水環境は、平均的には低級アルコール程度である[「タランタ(Talanta)」,1998年,第46巻,p.541−550参照]。   The mechanism of action of the low temperature hydrophilic-high temperature hydrophobic thermoreversible thermosensitive polymer compound aqueous solution in the present invention as a dispersion medium is a micelle-like core with the hydrophobic group of the polymer on the inside and the hydrophilic group on the outside. It is considered that a hydrophobic substance uptake field is formed in an aqueous solution, and the oil is retained and dispersed to maintain a stable suspension of oil-in-water. The microscopic hydrophobic environment formed by the aqueous solution of the thermosensitive polymer compound is on the order of lower alcohol on average ["Taranta", 1998, Vol. 46, p. 541-550].

次に、本発明で用いる具体的な低温親水性−高温疎水性熱可逆型感熱性高分子化合物について説明する。
本発明に用いられる低温親水性−高温疎水性熱可逆型感熱性高分子化合物は、所定の温度即ち転移温度以下の低温で生成する高分子の水和物(オキソニウムヒドロキシド)が、上記温度よりも高温度側で脱水和することにより高分子同士が凝集し固体状になる物性を有するものであり、転移温度以下では親水性を示し水に溶解しているが、転移温度よりも高い温度では疎水性を示し固形物になるものである。
Next, specific low-temperature hydrophilic-high-temperature hydrophobic thermoreversible thermosensitive polymer compounds used in the present invention will be described.
The low-temperature hydrophilic-high-temperature hydrophobic thermoreversible thermosensitive polymer compound used in the present invention is a polymer hydrate (oxonium hydroxide) produced at a predetermined temperature, that is, a low temperature below the transition temperature. It has the physical property that the polymers are aggregated and become solid by dehydrating at a higher temperature than the transition temperature, and it is hydrophilic and dissolves in water below the transition temperature, but it is higher than the transition temperature. Is hydrophobic and becomes a solid.

本発明においては転移温度が0〜90℃、好ましくは10〜60℃の範囲内にある低温親水性−高温疎水性熱可逆型感熱性高分子化合物が用いられる。本発明の油分含有水中の油分の定量方法を利用したオンサイト分析の点から、周囲温度では親水性を示し、加熱すると疎水性を示すような転移温度を持つものが好ましい。   In the present invention, a low temperature hydrophilic-high temperature hydrophobic thermoreversible thermosensitive polymer compound having a transition temperature in the range of 0 to 90 ° C., preferably 10 to 60 ° C. is used. From the viewpoint of on-site analysis using the method for quantifying oil content in the oil-containing water of the present invention, those having a transition temperature that is hydrophilic at ambient temperature and hydrophobic when heated are preferred.

なお、この転移温度は、感熱性高分子化合物を構成する単量体の種類、共単量体の含有割合によって変えることができるが、そのほか水溶液としたときの塩濃度やpHを調整することによっても変えることができる。   This transition temperature can be changed depending on the type of monomer constituting the thermosensitive polymer compound and the content ratio of the comonomer, but by adjusting the salt concentration and pH of the aqueous solution. Can also be changed.

本発明に用いられる低温親水性−高温疎水性熱可逆型感熱性高分子化合物は公知の物質であり、その例としては、N‐n‐プロピルアクリルアミド、N‐イソプロピルアクリルアミド、N‐シクロプロピルアクリルアミド、N,N‐エチルメチルアクリルアミド、N,N‐ジエチルアクリルアミド、N‐アクリロイルピロリジン、N‐アクリロイルピペリジン、N‐アクリロイルモルホリン及び対応するメタクリルアミド誘導体の中から選ばれた少なくとも1種の単量体の重合体又は共重合体、あるいはこれらの単量体と親水性単量体、例えばN‐ビニルピロリドン、ビニルピリジン、アクリルアミド、メタクリルアミド、N‐メチルアクリルアミド、ヒドロキシエチルメタクリレート、ヒドロキシエチルアクリレート、ヒドロキシメチルアクリレート、アクリル酸やメタクリル酸のような不飽和カルボン酸及びそれらの塩、ビニルスルホン酸やスチレンスルホン酸のような不飽和スルホン酸、N,N‐ジメチルアミノエチルメタクリレート、N,N‐ジメチルアミノプロピルアクリルアミドなど、あるいは疎水性単量体、例えばエチルアクリレート、メチルメタクリレート、グリシジルメタクリレートのようなアクリル酸エステル又はメタクリル酸やN‐アルキル置換アクリルアミド又はメタクリルアミド、塩化ビニル、アクリロニトリル、スチレン、酢酸ビニルなどの中から選ばれた少なくとも1種の単量体との共重合体等が挙げられる。
中でも、N,N‐ジエチルアクリルアミド、N‐イソプロピルアクリルアミド、N‐n‐プロピルアクリルアミド又はN‐シクロプロピルアクリルアミド若しくは対応するN‐メタクリルアミド誘導体の中から選ばれた少なくとも1種の単量体の重合体又は共重合体が特に好適に用いられる。
The low temperature hydrophilic-high temperature hydrophobic thermoreversible thermosensitive polymer compound used in the present invention is a known substance, and examples thereof include Nn-propylacrylamide, N-isopropylacrylamide, N-cyclopropylacrylamide, The weight of at least one monomer selected from N, N-ethylmethylacrylamide, N, N-diethylacrylamide, N-acryloylpyrrolidine, N-acryloylpiperidine, N-acryloylmorpholine and the corresponding methacrylamide derivative. Copolymers or copolymers, or these monomers and hydrophilic monomers such as N-vinylpyrrolidone, vinylpyridine, acrylamide, methacrylamide, N-methylacrylamide, hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxymethyl acrylate Relate, unsaturated carboxylic acids such as acrylic acid and methacrylic acid and their salts, unsaturated sulfonic acids such as vinyl sulfonic acid and styrene sulfonic acid, N, N-dimethylaminoethyl methacrylate, N, N-dimethylaminopropyl Acrylamide, etc. or hydrophobic monomers such as acrylic acid esters such as ethyl acrylate, methyl methacrylate, glycidyl methacrylate, methacrylic acid, N-alkyl substituted acrylamides or methacrylamides, vinyl chloride, acrylonitrile, styrene, vinyl acetate, etc. And a copolymer with at least one monomer selected from.
Among them, a polymer of at least one monomer selected from N, N-diethylacrylamide, N-isopropylacrylamide, Nn-propylacrylamide, N-cyclopropylacrylamide or a corresponding N-methacrylamide derivative Alternatively, a copolymer is particularly preferably used.

一般に、親水性単量体と共重合させると単独重合体よりも転移温度は上昇するし、また疎水性単量体と共重合させると単独重合体よりも転移温度は低下するので、これを利用して所望の転移温度を持つ低温親水性−高温疎水性熱可逆型感熱性高分子化合物を形成させることができる。   In general, copolymerization with a hydrophilic monomer raises the transition temperature compared to a homopolymer, and copolymerization with a hydrophobic monomer lowers the transition temperature than a homopolymer. Thus, a low-temperature hydrophilic-high-temperature hydrophobic thermoreversible thermosensitive polymer compound having a desired transition temperature can be formed.

転移温度は、低温親水性−高温疎水性熱可逆型感熱性高分子化合物を水溶液としたとき、その塩濃度やpHを調整することによっても変えることができる。低温親水性−高温疎水性熱可逆型感熱性高分子化合物の可溶化と固体凝集はそれぞれ水和と脱水和によるものであり、塩析作用を持つ塩の添加は、低温親水性−高温疎水性熱可逆型感熱性高分子化合物の凝集を促進する。塩類は塩析効果の大きいものが有用であり、塩化ナトリウム、過塩素酸ナトリウムなどの他にも種々の塩を用いることができ、それぞれの系に適した塩とその濃度を選択することが好ましい。   The transition temperature can also be changed by adjusting the salt concentration and pH when the low-temperature hydrophilic-high-temperature hydrophobic thermoreversible thermosensitive polymer compound is used as an aqueous solution. Low temperature hydrophilicity-high temperature hydrophobic thermoreversible thermosensitive polymer compound solubilization and solid agglomeration are due to hydration and dehydration, respectively. Promotes aggregation of thermoreversible thermosensitive polymer compounds. As the salts, those having a large salting-out effect are useful, and various salts other than sodium chloride and sodium perchlorate can be used, and it is preferable to select a salt and a concentration suitable for each system. .

次に、本発明の水中の油分の分離方法を各工程に従って説明する。
(イ)工程
先ず所定温度に保持した油分含有水に、その温度よりも高い転移温度をもつ低温親水性−高温疎水性熱可逆型感熱性高分子化合物を加えて溶解し、水溶液を調製する。
油分含有水としては、例えば、水の浄化再利用原液や油分定量用試料などの中から任意に選ぶことができる。
Next, the method for separating oil in water according to the present invention will be described according to each step.
Step (a) First, a low temperature hydrophilic-high temperature hydrophobic thermoreversible thermosensitive polymer compound having a transition temperature higher than that temperature is added to an oil-containing water kept at a predetermined temperature and dissolved to prepare an aqueous solution.
The oil-containing water can be arbitrarily selected from, for example, a water purification and reuse stock solution, a sample for oil content determination, and the like.

本発明の分離方法は微量油分含量の水に特に有効なので、油分濃度が高い場合には従来の凝集法等の油水分離法で一次処理を行った後の微量油分含有水について適用するのが有利である。   Since the separation method of the present invention is particularly effective for water with a small amount of oil content, when the oil concentration is high, it is advantageous to apply to water containing a small amount of oil after the primary treatment by an oil-water separation method such as a conventional coagulation method. It is.

油分としては、鉱物油と動植物油、具体的にはエンジンオイル等潤滑油、流動パラフィン、サラダ油、なたね油、オリーブ油、ごま油及び紅花油等を挙げることができる。
低温親水性−高温疎水性熱可逆型感熱性高分子化合物の添加量はその処理水に応じ適宜定めることができる。多量に添加しても後続工程で水と分離されるので、特に問題はない。
Examples of the oil component include mineral oil and animal and vegetable oils, specifically lubricating oil such as engine oil, liquid paraffin, salad oil, rapeseed oil, olive oil, sesame oil and safflower oil.
The amount of the low-temperature hydrophilic-high-temperature hydrophobic thermoreversible thermosensitive polymer compound can be appropriately determined according to the treated water. Even if it is added in a large amount, it is separated from water in the subsequent process, so there is no particular problem.

(ロ)工程
次に、得られた水溶液を上記低温親水性−高温疎水性熱可逆型感熱性高分子化合物の転移温度以上に昇温して、油分を捕捉した感熱性高分子化合物の固形物を形成させる。
昇温温度は転移温度以上であればよく、コスト上は転移温度を若干超える程度に設定するのがよい。
(B) Step Next, the obtained aqueous solution is heated to a temperature equal to or higher than the transition temperature of the low temperature hydrophilic-high temperature hydrophobic thermoreversible thermosensitive polymer compound, and the solid of the thermosensitive polymer compound capturing the oil component. To form.
The temperature elevation temperature may be equal to or higher than the transition temperature, and is preferably set to be slightly higher than the transition temperature in terms of cost.

(ハ)工程
次いで上記の固形物を水相から分離する。この分離は転移温度以上で行うことが必要である。分離は固形物を適宜な手段で取り出してもよく、また水相の方を適宜手段で除いてもよい。
(C) Step Next, the solid is separated from the aqueous phase. This separation needs to be performed above the transition temperature. For the separation, the solid matter may be taken out by an appropriate means, and the aqueous phase may be removed by an appropriate means.

他方、本発明の油分含有水中の油分の定量方法は各工程に従って行われる。
(イ)工程
先ず、所定量の環境水等の油分含有水を採取し、試料とする。環境水としては工場排水、下水処理場への流入水、下水処理場処理水、河川水、湖沼水、海水等を挙げることができる。また、測定対象物質の油分としては前述した鉱物油と動植物油を挙げることができる。
測定1回当りの試料採取量は、10〜200mlの範囲内の所定量とするのが簡便、迅速、低コスト等の点から好ましい。
On the other hand, the method for quantifying the oil content in the oil-containing water of the present invention is performed according to each step.
(B) Step First, a predetermined amount of oil-containing water such as environmental water is collected and used as a sample. Examples of the environmental water include industrial wastewater, inflow water to a sewage treatment plant, sewage treatment plant treatment water, river water, lake water, seawater, and the like. Moreover, the mineral oil and animal and vegetable oil mentioned above can be mentioned as an oil component of a measuring object substance.
The amount of sample collected per measurement is preferably a predetermined amount within the range of 10 to 200 ml from the viewpoints of simplicity, speed, and low cost.

次にこの試料に、その周囲温度より高い転移温度を持つ低温親水性−高温疎水性熱可逆型感熱性高分子化合物の所定量を加え、よく混合し溶解させ、その混合液を得る。その所定量は、通常100〜500mg/リットルの範囲内の特定濃度になるように添加する。この濃度範囲内で本発明の定量方法は特に高い測定精度を得ることができる。   Next, a predetermined amount of a low-temperature hydrophilic-high-temperature hydrophobic thermoreversible thermosensitive polymer compound having a transition temperature higher than the ambient temperature is added to this sample, mixed well and dissolved to obtain a mixed solution. The predetermined amount is usually added to a specific concentration within the range of 100 to 500 mg / liter. Within this concentration range, the quantification method of the present invention can obtain particularly high measurement accuracy.

低温親水性−高温疎水性熱可逆型感熱性高分子化合物はこれを高分子水溶液として予め用意しておき、所定量になるよう試料に加えるのが作業時間短縮の点から有利である。この場合、高分子水溶液の濃度は1〜2質量%とするのがよい。
また、転移温度を調整するために必要により塩類やpH調整剤を添加することができるが、それらも水溶液として予め用意して、その所定量を添加するのがよい。
The low-temperature hydrophilic-high-temperature hydrophobic thermoreversible thermosensitive polymer compound is advantageously prepared in advance as an aqueous polymer solution and added to the sample in a predetermined amount from the viewpoint of shortening the working time. In this case, the concentration of the polymer aqueous solution is preferably 1 to 2% by mass.
In order to adjust the transition temperature, salts and pH adjusters can be added as necessary, but it is also preferable to prepare them in advance as an aqueous solution and add a predetermined amount thereof.

(ロ)工程
次に、(イ)工程で得られた混合液(溶解液)を上記転移温度(塩類添加等で調整された場合はその転移温度)よりも高い温度に加温する。この段階で低温親水性−高温疎水性熱可逆型感熱性高分子化合物は疎水性となり、固形物として析出してくる。そして、この固形物中に油分の全てが抽出・濃縮される。
(B) Step Next, the liquid mixture (dissolved solution) obtained in the step (a) is heated to a temperature higher than the above transition temperature (the transition temperature when adjusted by addition of salts or the like). At this stage, the low temperature hydrophilic-high temperature hydrophobic thermoreversible thermosensitive polymer compound becomes hydrophobic and precipitates as a solid. Then, all of the oil is extracted and concentrated in the solid.

(ハ)工程
次いで、上記転移温度以上に保ったまま、この固形物を液体部分から適当な手段(デカンテーション等)を用いて分離する。この分離の際、振とうすることにより、固形物は容器(ガラス容器やポリプロピレン等の容器)の壁面に付着する特性があり、簡便・迅速に固形物のみを得ることができる。また、加温手段としては湯浴等の簡便な手段をとることができる。
Step (c) Next, the solid is separated from the liquid portion using an appropriate means (such as decantation) while keeping the temperature above the transition temperature. By shaking at the time of this separation, the solid matter has a property of adhering to the wall surface of the container (a container such as a glass container or polypropylene), and only the solid substance can be obtained easily and rapidly. Moreover, as a heating means, simple means, such as a hot water bath, can be taken.

(ニ)工程
次に、(ハ)工程で得た固形物に、所定量の極少量の純水を上記感熱性高分子化合物の転移温度よりも低い温度において加えて溶解し、油分の水性懸濁液を形成させる。上記転移温度よりも低い温度とは(イ)工程にいう周囲温度と同じ温度でもよい。さらに、純水の所定量は、感熱性高分子化合物の濃度が1〜2g/リットルの範囲になる特定量を添加するのが、次の(ホ)工程で高感度・高精度の定量値を得ることができる点で特に好ましい。
(D) Step Next, a predetermined amount of pure water is added to the solid material obtained in step (c) at a temperature lower than the transition temperature of the heat-sensitive polymer compound to dissolve it, and an aqueous suspension of oil is added. A turbid liquid is formed. The temperature lower than the transition temperature may be the same temperature as the ambient temperature in the step (a). In addition, the specified amount of pure water is a specific amount in which the concentration of the thermosensitive polymer compound is in the range of 1 to 2 g / liter. It is particularly preferable in that it can be obtained.

(ホ)工程
次に(ニ)工程で得られた懸濁液中の油分を検量する。検量法は濁度を測定するか、吸光度を測定するか、あるいは他の適当な方法を用いて行い、試料中の微量油分の含量を求める。
(E) Step Next, the oil content in the suspension obtained in the step (d) is weighed. The calibration method is performed by measuring turbidity, measuring absorbance, or using other appropriate methods to determine the content of trace oil in the sample.

上記(ホ)工程の検量法はオンサイト分析の点からは、濁度による測定方法が特に望ましい。濁度は懸濁物質の種類、粒径によりまた測定方法によって異なるが、浮遊物質濃度(C)、粒径(d)、濁度(T)の間に次式が経験的に得られている(上水試験方法解説等参照)。
C=K・T・dm
K,mは、濁質、測定方法により異なる定数である。
The calibration method in step (e) is particularly preferably a measurement method based on turbidity from the viewpoint of on-site analysis. Although the turbidity varies depending on the type and particle size of the suspended substance and the measurement method, the following equation has been obtained empirically between the suspended solid concentration (C), particle size (d), and turbidity (T). (Refer to the water supply test method explanation)
C = K · T · d m
K and m are constants that vary depending on the turbidity and the measurement method.

すなわち、一定条件下において濁質濃度と濁度は比例関係にあり、粒径が小さいほど大きい濁度が得られる。本発明において低温親水性−高温疎水性熱可逆型感熱性高分子化合物水溶液を分散媒として用いることに依り、油分をより小さい一定の粒径を有する安定な濁質として測定に供することができるのでこの点からも特に濁度測定が有利である。   That is, the turbidity concentration and turbidity are in a proportional relationship under a certain condition, and a larger turbidity is obtained as the particle size is smaller. In the present invention, by using an aqueous solution of a low temperature hydrophilic-high temperature hydrophobic thermoreversible thermosensitive polymer compound as a dispersion medium, the oil can be used for measurement as a stable turbid substance having a smaller constant particle size. In this respect, turbidity measurement is particularly advantageous.

濁度の測定方式には透過光方式、散乱光方式及び積分球方式があるが、本発明においてはいずれの測定方法にも応用できる。透過光方式を用いる場合には、ある濃度範囲においてランベルト−ベールの法則が適用され検量線法を用いて定量できる。尚、この場合の測定波長は濁度測定に通常用いられる600nm以上の波長域にあることが望ましい。
本発明において、低温親水性−高温疎水性熱可逆型感熱性高分子化合物水溶液を分散媒として用いることにより、実験条件を一定にして再現性ある結果を得ることができる。
The turbidity measurement method includes a transmitted light method, a scattered light method, and an integrating sphere method. In the present invention, any method can be applied. In the case of using the transmitted light method, the Lambert-Beer law is applied in a certain concentration range, and quantification can be performed using a calibration curve method. In this case, it is desirable that the measurement wavelength is in a wavelength range of 600 nm or more which is usually used for turbidity measurement.
In the present invention, by using an aqueous solution of a low-temperature hydrophilic-high-temperature hydrophobic thermoreversible thermosensitive polymer compound as a dispersion medium, a reproducible result can be obtained with constant experimental conditions.

本発明の定量方法は、各工程の操作が円滑に行えるように、用具を組み合わせた定量用キットを用いて行うのが好ましい。図1は、このような定量用キットの一例を示す斜視図である。   The quantification method of the present invention is preferably performed using a quantification kit in which tools are combined so that each step can be smoothly performed. FIG. 1 is a perspective view showing an example of such a quantification kit.

この図1に示すキットは、必要量(30ml)の環境水を採取し、測定試料の調製操作を実施するための容器(1)、所定濃度(0.5mol/リットル)のHCl水溶液を所定回数分(30回分)収納した容器(2)、所定濃度(1.2質量%)の低温親水性−高温疎水性熱可逆型感熱性高分子化合物水溶液を所定回数分(30回分)収納した容器(3)、所定濃度(3.2mol/リットル)のNaCl水溶液を所定回数分(30回)収納した容器(4)、純水を所定回数分(30回分)収納した容器(5)、容器(2)から所定量(0.5ml)のHCl水溶液を採取し、容器(1)へ加えるためのスポイト(6)、容器(3)から所定量(1.0ml)の前記感熱性高分子化合物水溶液を採取し、容器(1)へ加えるためのスポイト(7)、容器(4)から所定量(3.0ml)のNaCl水溶液を採取し、容器(1)へ加えるためのスポイト(8)、容器(5)から所定量(5.0ml)の精製水を採取し、容器(1)へ加えるためのシリンジ(9)、前記感熱性高分子化合物を凝集させた後に容器(1)から水相を抜き取るための先端にロック針を装着したシリンジ(10)、及び容器(1)を湯浴するためのカップ(11)から構成されている。   The kit shown in FIG. 1 collects a necessary amount (30 ml) of environmental water, a container (1) for preparing a measurement sample, and an aqueous HCl solution having a predetermined concentration (0.5 mol / liter) a predetermined number of times. A container (2) containing a minute amount (30 times), a container containing a predetermined concentration (1.2% by mass) of a low temperature hydrophilic-high temperature hydrophobic thermoreversible thermosensitive polymer compound aqueous solution a predetermined number of times (30 times) ( 3) a container (4) containing a predetermined concentration (3.2 mol / liter) of NaCl aqueous solution for a predetermined number of times (30 times), a container (5) containing pure water for a predetermined number of times (30 times), and a container (2 ) From a predetermined amount (0.5 ml) of HCl aqueous solution, and add the dropper (6) to the container (1) and a predetermined amount (1.0 ml) of the thermosensitive polymer compound aqueous solution from the container (3). Dropper to collect and add to container (1) 7) A predetermined amount (3.0 ml) of NaCl aqueous solution is collected from the container (4) and added to the container (1), a dropper (8), and a predetermined amount (5.0 ml) of purified water from the container (5). A syringe (9) for collecting and adding to the container (1), and a syringe (10) fitted with a lock needle at the tip for extracting the aqueous phase from the container (1) after aggregating the thermosensitive polymer compound And a cup (11) for bathing the container (1).

それぞれは、使いやすさ等を考慮し、容器(1)がポリプロピレン製ふた付きのガラス製ねじ口瓶、容器(2)、(3)、(4)及び(5)がポリプロピレン製ねじ口瓶、スポイト(6)、(7)及び(8)がポリエチレン製スポイト、シリンジ(9)と(10)がポリプロピレン製シリンジ、カップ(11)がポリエチレン製カップ(11)からなるものである。   In consideration of ease of use and the like, the container (1) is a glass screw mouth bottle with a polypropylene lid, the containers (2), (3), (4) and (5) are polypropylene screw mouth bottles, The syringes (6), (7), and (8) are made of polyethylene, the syringes (9) and (10) are made of polypropylene, and the cup (11) is made of a polyethylene cup (11).

図1に示す定量キットを用いた環境水中の油分の定量方法を各工程に従って説明する。
(イ)工程
先ず、30mlの環境水を容器(1)に採取し、これに容器(2)のHCl水溶液0.5mlをスポイト(6)を用いて加えて、混和する。次いで容器(3)の低温親水性−高温疎水性熱可逆型感熱性高分子化合物水溶液1.0mlをスポイト(7)を用いて加え混和する。さらに容器(4)のNaCl水溶液3.0mlをスポイト(8)を用いて加えて混和する。なお、ここでHClとNaClの混合水溶液を先に添加してから感熱性高分子化合物水溶液を添加してもよい。
A method for quantifying oil content in environmental water using the quantification kit shown in FIG. 1 will be described according to each step.
Step (a) First, 30 ml of environmental water is collected in a container (1), and 0.5 ml of an aqueous HCl solution in the container (2) is added thereto using a dropper (6) and mixed. Next, 1.0 ml of the aqueous solution of low temperature hydrophilicity-high temperature hydrophobic thermoreversible thermosensitive polymer compound in the container (3) is added and mixed using a dropper (7). Further, add 3.0 ml of NaCl aqueous solution in the container (4) using a dropper (8) and mix. Here, the aqueous solution of the thermosensitive polymer compound may be added after the mixed aqueous solution of HCl and NaCl is added first.

(ロ)工程
次に、用意しておいた転移温度以上の湯で満たされたカップ(11)の中に容器(1)を浸し、約1分後に取り出して激しく振り混ぜて固形物を析出・凝縮させ、さらに塊状に凝固させるために再度湯の中に浸し、1〜3分間程度放置する。
(B) Step Next, immerse the container (1) in a cup (11) filled with hot water above the prepared transition temperature, take out after about 1 minute, and vigorously shake to precipitate solid matter. In order to condense and further solidify into a lump, it is immersed again in hot water and left for about 1-3 minutes.

(ハ)工程
次いで容器(1)を湯の中から取り出して蓋を外し、転移温度以上に保持した状態においてシリンジ(10)のロック針を容器(1)の底まで差し込み、凝縮して浮上した固形物を取り込まないように注意しながら、ゆっくり液を吸引して取り除く。この際、浮上した固形物は液面の下降により、周囲のガラス内壁面に付着する。したがって、この操作により、デカンテーションによる固形物の流出を大幅に減少させることができ、測定結果のばらつきを抑えることが可能である。
(C) Step Next, the container (1) was taken out from the hot water, the lid was removed, and the syringe (10) was inserted into the bottom of the container (1) while keeping the temperature above the transition temperature, and then condensed and floated. Remove the liquid slowly by suction, taking care not to take up solids. At this time, the solid matter that has floated adheres to the surrounding glass inner wall surface as the liquid level drops. Therefore, by this operation, the outflow of solid matter due to decantation can be greatly reduced, and variations in measurement results can be suppressed.

(ニ)工程
次に、前記工程で得られた固形物入り容器(1)を、上記転移温度より低い温度(周囲温度等)に冷やした後、容器(5)の純水5mlをシリンジ(9)を用いて加え、振り混ぜて固形物を構成している感熱性高分子化合物を溶解させ、油分の水性懸濁液を得る。
(D) Step Next, after cooling the solid-containing container (1) obtained in the step to a temperature (ambient temperature etc.) lower than the above transition temperature, 5 ml of pure water in the container (5) is syringed (9). Is added and shaken to dissolve the heat-sensitive polymer compound constituting the solid, thereby obtaining an aqueous suspension of oil.

(ホ)工程
最後に、得られた油分の水性懸濁液の濁度(例えば、660nmにおける吸光度)を測定し、環境水試料中の油分量を算出する。
(E) Step Finally, the turbidity (for example, absorbance at 660 nm) of the obtained aqueous suspension of oil is measured, and the amount of oil in the environmental water sample is calculated.

本発明の水中の油分分離方法によれば、水分量が極めて少ない固形状の凝集物内に水中の油分を捕捉する水中の油分の分離方法が提供される。   According to the method for separating oil in water of the present invention, a method for separating oil in water that captures the oil in water in a solid aggregate having an extremely small amount of water is provided.

さらに、本発明の油分含有水中の油分の定量方法によれば、フィールドにおいて、環境水などに含まれる微量油分を簡便、迅速かつ精度高く、しかも低コストで二次汚染もなくオンサイト分析し得る新規な油分含有水中の油分の定量方法が提供される。   Furthermore, according to the method for quantifying oil content in the oil-containing water of the present invention, on-site analysis can be performed in a field for trace amounts of oil contained in environmental water, etc. easily, quickly and accurately, at low cost and without secondary contamination. A novel method for quantifying oil content in oil-containing water is provided.

次に実施例により、本発明を実施するための最良の形態を説明する。   Next, the best mode for carrying out the present invention will be described by way of examples.

ミシン油の一定量を秤取し、全量800mlになるまで水を加えて分散させて原液を調製した。次にこの原液を水で希釈して、油分含有量0ないし83ppmの試料とした。次いで、これらの試料各50mlずつを蓋付きびんに分取し、これに0.5M−HCl水溶液1.0mlを加えて混合した後、ポリ(N−イソプロピルアクリルアミド)(質量平均分子量約10万、転移温度32℃)の2.0質量%濃度の水溶液1.0mlを加え、さらに4M−NaCl水溶液4mlを加えて混合した。   A certain amount of sewing oil was weighed, and water was added and dispersed to a total volume of 800 ml to prepare a stock solution. Next, this stock solution was diluted with water to obtain a sample having an oil content of 0 to 83 ppm. Next, 50 ml of each of these samples was dispensed into a bottle with a lid, and after adding 1.0 ml of 0.5 M HCl aqueous solution and mixing, poly (N-isopropylacrylamide) (mass average molecular weight of about 100,000, 1.0 ml of a 2.0 mass% aqueous solution having a transition temperature of 32 ° C. was added, and 4 ml of 4M-NaCl aqueous solution was further added and mixed.

次にこのようにして得た混合物を、55℃で1〜3分間加温したのち、その温度を保ちながら激しく振り混ぜて、析出した固形分を凝集させた。このようにして凝集させた固形分から、注意しながらデカンテーションにより水相を分離することにより水相から油分を回収した。この例においてミシン油の代わりに潤滑油、パラフィン油を用いた場合においても同様の結果が得られた。   Next, the mixture thus obtained was heated at 55 ° C. for 1 to 3 minutes, and then vigorously shaken while maintaining the temperature to aggregate the precipitated solid. The oil was recovered from the aqueous phase by carefully separating the aqueous phase by decantation from the solids thus agglomerated. In this example, similar results were obtained when lubricating oil or paraffin oil was used instead of sewing machine oil.

ゴマ油の一定量を秤取し、全量800mlになるまで水を加えて分散させて原液を調製した。次にこの原液を水で希釈して、油分含有量0ないし83ppmの試料とした。次いで、これらの試料各50mlずつを蓋付きびんに分取し、これに0.5M−HCl水溶液1.0mlを加えて混合した後、実施例1で用いたのと同じポリ(N−イソプロピルアクリルアミド)の2.0質量%濃度の水溶液1.0mlを加え、さらに4M−NaCl水溶液4mlを加えて混合した。   A certain amount of sesame oil was weighed, and water was added and dispersed until the total amount reached 800 ml to prepare a stock solution. Next, this stock solution was diluted with water to obtain a sample having an oil content of 0 to 83 ppm. Next, 50 ml of each of these samples was dispensed into a bottle with a lid, and after adding 1.0 ml of 0.5 M HCl aqueous solution and mixing, the same poly (N-isopropylacrylamide) used in Example 1 was used. 1.0 ml of an aqueous solution having a concentration of 2.0% by mass, and 4 ml of 4M-NaCl aqueous solution were added and mixed.

次にこのようにして得た混合物を、55℃で3分間加温したのち、その温度を保ちながら激しく振り混ぜて、析出した固形分を凝集させた。このようにして凝集させた固形分から、注意しながらデカンテーションにより水相を分離することにより水相から油分を回収した。この例においてゴマ油の代わりにサラダ油、菜種油、オリーブ油、紅花油を用いた場合においても同様の結果が得られた。   Next, the mixture thus obtained was heated at 55 ° C. for 3 minutes, and then vigorously shaken while maintaining the temperature to aggregate the precipitated solid. The oil was recovered from the aqueous phase by carefully separating the aqueous phase by decantation from the solids thus agglomerated. In this example, similar results were obtained when salad oil, rapeseed oil, olive oil, safflower oil were used instead of sesame oil.

実施例1で得た固形分に20℃以下の水5mlを加えて振り混ぜて、これを溶解し、生成した油分のエマルションの濁度を波長660nmにおける吸光度として測定した。その結果をミシン油濃度に対する濁度の変化を示すグラフとして図2のAに示す。また参考のために濃縮操作前の試料についてそのまま濁度を測定した場合の結果をB、濃縮した場合に得られると予想される油分濃度[ポリ(N‐イソプロピルアクリルアミド)を含まない]に対する濁度をCとして併記した。   To the solid content obtained in Example 1, 5 ml of water at 20 ° C. or lower was added and shaken to dissolve it, and the turbidity of the produced oil emulsion was measured as the absorbance at a wavelength of 660 nm. The results are shown in FIG. 2A as a graph showing the change in turbidity with respect to the sewing machine oil concentration. For reference, B is the result of measuring the turbidity of the sample before the concentration operation as it is, and the turbidity with respect to the oil concentration [not including poly (N-isopropylacrylamide)] expected to be obtained when concentrated. As C.

この図から分るように、ミシン油を10倍に濃縮した場合では、本発明方法により検出した濁度Aは、濃縮した場合に得られると予想した濃度のミシン油を水に分散させた場合の濁度Cより大きな値を示し、10倍以上に感度が増大している。このことは、ポリ(N−イソプロピルアクリルアミド)が油捕集剤としての役割を果たすだけでなく、その水溶液が分散媒として乳濁粒子の微細化とその安定化に寄与していることを示している。   As can be seen from this figure, when the sewing oil is concentrated 10 times, the turbidity A detected by the method of the present invention is obtained when the sewing oil having a concentration expected to be obtained when concentrated is dispersed in water. The value is larger than the turbidity C, and the sensitivity is increased 10 times or more. This indicates that poly (N-isopropylacrylamide) not only plays a role as an oil scavenger, but its aqueous solution contributes to the refinement and stabilization of emulsion particles as a dispersion medium. Yes.

実施例2で得た固形分を用い、これを20℃の水10mlに溶解し、実施例3と同様にしてゴマ油の濃度と濁度との関係を求め、図3にグラフとして示した。図中のAは本発明により濃縮した試料についてのグラフ、Bは濃縮操作前の試料についてのグラフ、Cは、濃縮した場合に得られると予想される濃度の油分[ポリ(N‐イソプロピルアクリルアミド)を含まない]を分散させたものについてのグラフである。   Using the solid content obtained in Example 2, this was dissolved in 10 ml of water at 20 ° C., and the relationship between the concentration of sesame oil and turbidity was determined in the same manner as in Example 3 and is shown as a graph in FIG. In the figure, A is a graph for a sample concentrated according to the present invention, B is a graph for a sample before the concentration operation, and C is an oil component having a concentration expected to be obtained when concentrated [poly (N-isopropylacrylamide)] It is a graph about what disperse | distributed.

東京都と神奈川県の境を流れる多摩川の下流域、田園調布堰下において排出されている川崎市の下水処理場からの放流水を多摩川への排水口で直接採取し、それに既知量の油分を添加したものを検液として用い、標準添加法に依り得た測定データを示す。さらに、最も広く用いられている界面活性剤の一つである陰イオン界面活性剤ドデシルベンゼンスルホン酸ナトリウム(以下、DBSと略す)を添加した測定データを示す。   The effluent discharged from the sewage treatment plant in Kawasaki City, which is discharged under the Denenchofu weir in the downstream area of the Tama River that flows between Tokyo and Kanagawa Prefecture, is directly collected at the drain to the Tama River, and a known amount of oil is added to it. The measured data obtained by using the standard addition method is shown below. Furthermore, the measurement data which added the anionic surfactant sodium dodecylbenzenesulfonate (henceforth DBS) which is one of the most widely used surfactants are shown.

すなわち、ミシン油又はサラダ油の一定量を秤取し、ミシン油については全量800ml、サラダ油については全量400mlになるまでそれぞれ実試料を加えて分散・溶解し、油分添加実試料の原水を調製した。次いで、この油分添加実試料の原水を別に分けた実試料で希釈して、ミシン油については油分含量0〜14.7mg/リットル、サラダ油については油分含量0〜64mg/リットルの油分添加実試料を調製した。   That is, a certain amount of sewing oil or salad oil was weighed, and the actual sample was added and dispersed / dissolved until the total amount of the sewing oil was 800 ml and the total amount of the salad oil was 400 ml, thereby preparing the raw water of the oil-added actual sample. Next, the raw water of the oil-added real sample is diluted with a separate real sample, and an oil-added real sample having an oil content of 0 to 14.7 mg / liter for sewing oil and an oil content of 0 to 64 mg / liter for salad oil is obtained. Prepared.

定量操作は実施例1と同じ手順に依った。このようにして得られたミシン油についての結果を図4に、またサラダ油についての結果を図5に示す。   The quantitative operation was according to the same procedure as in Example 1. The results for the sewing machine oil thus obtained are shown in FIG. 4, and the results for the salad oil are shown in FIG.

これらの図において、グラフAは油分のみ添加した場合、グラフBは油分とDBS12mg/リットルを添加した場合、グラフCは比較のために、濃縮したときに得られると予想される油分濃度の標準液の測定結果を示す。   In these figures, graph A is a case where only oil is added, graph B is a case where oil and DBS 12 mg / liter are added, and graph C is a standard solution of oil concentration expected to be obtained when concentrated for comparison. The measurement results are shown.

これらの図から分るようにミシン油の場合(図4)、ミシン油の添加濃度と濁度の間には、実試料の含まれない標準液で得られた検量線とほぼ同様の直線関係が得られている。試料水中にさらにDBSを12mg/リットル添加した場合は、ミシン油が10mg/リットル以下においては、測定値に影響が見られないが、それ以上では約25%の低下が見られる。   As can be seen from these figures, in the case of sewing oil (FIG. 4), the linear relationship between the added concentration and the turbidity of the sewing oil is almost the same as the calibration curve obtained with the standard solution not containing the actual sample. Is obtained. When DBS is further added to the sample water at 12 mg / liter, the measurement value is not affected when the sewing oil is 10 mg / liter or less, but a decrease of about 25% is observed at more than that.

サラダ油の場合(図5)、DBS添加の有無に依らず、サラダ油の添加濃度と濁度の間には、標準液で得られた検量線とよく一致した結果が得られる。   In the case of salad oil (FIG. 5), a result that is in good agreement with the calibration curve obtained with the standard solution is obtained between the concentration of added salad oil and the turbidity, regardless of whether DBS is added.

通常の下水及びその処理水においては、その油分の大部分は植物油と考えられるし、下水処理場への流入水及び処理水においても、陰イオン界面活性剤が10mg/リットル以上の高濃度で共存することはほとんど考えられない。したがって、上記の結果から、環境水及び下水処理場への流入水や処理水等、油分測定を義務づけられている水の大部分に本定量方法が適用できる。そして、DBS共存においても直線性が保たれている(図4)。本発明方法は、鉱物油を使う特定の工場の排水においても適用できるので、現場における油分の迅速モニタリング法として好適である。   In ordinary sewage and its treated water, most of the oil is considered to be vegetable oil, and the anionic surfactant coexists at a high concentration of 10 mg / liter or more in the inflow water and treated water to the sewage treatment plant. It is almost unthinkable to do. Therefore, based on the above results, this quantification method can be applied to most of the water that is obliged to measure oil content, such as environmental water and inflow water to sewage treatment plants and treated water. And linearity is maintained also in DBS coexistence (FIG. 4). Since the method of the present invention can also be applied to wastewater from a specific factory that uses mineral oil, it is suitable as a method for quickly monitoring oil in the field.

本発明方法は、水の浄化、水中の油分の定量に用いることができる。   The method of the present invention can be used for water purification and determination of oil content in water.

本発明の定量方法に用いるのに好適なキット。A kit suitable for use in the quantification method of the present invention. 実施例3における油分濃度に対する濁度の変化を示すグラフ。The graph which shows the change of the turbidity with respect to the oil concentration in Example 3. 実施例4における油分濃度に対する濁度の変化を示すグラフ。The graph which shows the change of the turbidity with respect to the oil concentration in Example 4. 実施例5におけるミシン油についての濃度に対する濁度の変化を示すグラフ。The graph which shows the change of the turbidity with respect to the density | concentration about the sewing machine oil in Example 5. FIG. 実施例5におけるサラダ油についての濃度に対する濁度の変化を示すグラフ。The graph which shows the change of the turbidity with respect to the density | concentration about the salad oil in Example 5. FIG.

符号の説明Explanation of symbols

1 ポリプロピレン製ふた付きガラス製ねじ口瓶
2,3,4,5 ポリプロピレン製ねじ口瓶
6,7,8 ポリエチレン製スポイト
9,10 ポリプロピレン製シリンジ
11 ポリエチレン製カップ
1 Screw cap bottle made of polypropylene with lid 2,3,4,5 Screw cap bottle made of polypropylene 6,7,8 Polyethylene syringe 9,10 Polypropylene syringe 11 Polyethylene cup

Claims (4)

(イ)所定温度に保持した油分含有水に、その温度よりも高い転移温度をもつ低温親水性−高温疎水性熱可逆型感熱性高分子化合物を加えて溶解し、水溶液を調製する工程、
(ロ)(イ)で得られた水溶液を上記低温親水性−高温疎水性熱可逆型感熱性高分子化合物の転移温度以上に昇温して、油分を捕捉した感熱性高分子化合物の固形物を形成させる工程、及び
(ハ)上記の固形物を水相から分離する工程からなることを特徴とする水中の油分分離方法。
(A) A step of preparing an aqueous solution by adding a low temperature hydrophilic-high temperature hydrophobic thermoreversible thermosensitive polymer compound having a transition temperature higher than that temperature to an oil-containing water kept at a predetermined temperature and dissolving the same.
(B) The aqueous solution obtained in (a) is heated to a temperature higher than the transition temperature of the low-temperature hydrophilic-high-temperature hydrophobic thermoreversible thermosensitive polymer compound, and the solid of the thermosensitive polymer compound capturing the oil. And (c) a method for separating oil from water, the method comprising separating the solid from the aqueous phase.
(イ)所定温度に保持した油分含有水に、その温度よりも高い転移温度をもつ低温親水性−高温疎水性熱可逆型感熱性高分子化合物を加えて溶解し、混合液を調製する工程、
(ロ)(イ)で得られた混合液を上記低温親水性−高温疎水性熱可逆型感熱性高分子化合物の転移温度以上に昇温して、油分を捕捉した感熱性高分子化合物の固形物を形成させる工程、
(ハ)上記の固形物を水相から分離する工程、
(ニ)(ハ)で得た固形物に、所定量の純水を、上記感熱性高分子化合物の転移温度よりも低い温度において加えて溶解し、油分の水性懸濁液を形成させる工程、及び
(ホ)上記水性懸濁液中の油分を検量する工程からなる油分含有水中の油分の定量方法。
(A) a step of preparing a mixed solution by adding a low temperature hydrophilic-high temperature hydrophobic thermoreversible thermosensitive polymer compound having a transition temperature higher than the temperature to an oil-containing water kept at a predetermined temperature and dissolving it;
(B) The temperature of the mixed liquid obtained in (a) above the transition temperature of the low-temperature hydrophilic-high-temperature hydrophobic thermoreversible thermosensitive polymer compound, and the solid of the thermosensitive polymer compound capturing the oil Forming a product,
(C) a step of separating the solid matter from the aqueous phase;
(D) a step of adding a predetermined amount of pure water to the solid obtained in (c) at a temperature lower than the transition temperature of the thermosensitive polymer compound to form an aqueous suspension of oil; And (e) a method for quantifying the oil content in the oil-containing water, comprising the step of calibrating the oil content in the aqueous suspension.
(イ)工程における油分含有水が鉱物油又は動植物油を含む工場排水、下水処理場への流入水、下水処理場処理水、河川水、湖沼水又は海水である請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the oil-containing water in the step (i) is industrial wastewater containing mineral oil or animal and vegetable oil, inflow water to a sewage treatment plant, sewage treatment plant treatment water, river water, lake water, or seawater. . (イ)工程において加える低温親水性−高温疎水性熱可逆型感熱性高分子化合物が、N‐n‐プロピルアクリルアミド、N‐イソプロピルアクリルアミド、N‐シクロプロピルアクリルアミド、N,N‐エチルメチルアクリルアミド、N,N‐ジエチルアクリルアミド、N‐アクリロイルピロリジン、N‐アクリロイルピペリジン、N‐アクリロイルモルホリン及び対応するメタクリルアミド誘導体の中から選ばれた少なくとも1種の単量体の重合体又は共重合体あるいはこれらの単量体と他の親水性単量体、疎水性単量体との共重合体である請求項1、2又は3記載の方法。
(B) Low-temperature hydrophilic-high-temperature hydrophobic thermoreversible thermosensitive polymer compound added in the step is Nn-propylacrylamide, N-isopropylacrylamide, N-cyclopropylacrylamide, N, N-ethylmethylacrylamide, N , N-diethylacrylamide, N-acryloylpyrrolidine, N-acryloylpiperidine, N-acryloylmorpholine and a corresponding methacrylamide derivative, a polymer or copolymer of at least one monomer, or a monomer thereof. The method according to claim 1, 2 or 3, which is a copolymer of a monomer and other hydrophilic monomer or hydrophobic monomer.
JP2003379207A 2003-11-07 2003-11-07 Oil content determination method in oil-containing water Expired - Fee Related JP4409915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003379207A JP4409915B2 (en) 2003-11-07 2003-11-07 Oil content determination method in oil-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003379207A JP4409915B2 (en) 2003-11-07 2003-11-07 Oil content determination method in oil-containing water

Publications (3)

Publication Number Publication Date
JP2005138062A true JP2005138062A (en) 2005-06-02
JP2005138062A5 JP2005138062A5 (en) 2005-11-24
JP4409915B2 JP4409915B2 (en) 2010-02-03

Family

ID=34689332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003379207A Expired - Fee Related JP4409915B2 (en) 2003-11-07 2003-11-07 Oil content determination method in oil-containing water

Country Status (1)

Country Link
JP (1) JP4409915B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286531A (en) * 2007-05-15 2008-11-27 Nippon Soken Inc Fuel property detection apparatus
WO2010008028A1 (en) * 2008-07-16 2010-01-21 株式会社 ポッカコーポレーション Dispersion analysis method and device, as well as dispersion stability evaluation method and device
KR101028041B1 (en) * 2008-12-31 2011-04-08 한국과학기술연구원 Method for fabricating thermo-responsive micelle and method for treatment of toxic substance using thermo-responsive micelle
JP2014112102A (en) * 2014-02-21 2014-06-19 Pokka Sappro Food & Beverage Ltd Dispersion liquid stability evaluation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286531A (en) * 2007-05-15 2008-11-27 Nippon Soken Inc Fuel property detection apparatus
US8089629B2 (en) 2007-05-15 2012-01-03 Nippon Soken, Inc. Fuel property detection apparatus
WO2010008028A1 (en) * 2008-07-16 2010-01-21 株式会社 ポッカコーポレーション Dispersion analysis method and device, as well as dispersion stability evaluation method and device
JP2010025643A (en) * 2008-07-16 2010-02-04 Pokka Corp Dispersion analysis method and device, as well as dispersion stability evaluation method and device
US20110126615A1 (en) * 2008-07-16 2011-06-02 Pokka Corporation Dispersion analysis method and device, as well as dispersion stability evaluation method and device
US8746047B2 (en) 2008-07-16 2014-06-10 Pokka Corporation Dispersion analysis method and device
KR101028041B1 (en) * 2008-12-31 2011-04-08 한국과학기술연구원 Method for fabricating thermo-responsive micelle and method for treatment of toxic substance using thermo-responsive micelle
JP2014112102A (en) * 2014-02-21 2014-06-19 Pokka Sappro Food & Beverage Ltd Dispersion liquid stability evaluation method

Also Published As

Publication number Publication date
JP4409915B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP3566373B2 (en) Method for optimizing dosage of polyelectrolyte water treatment agent
Aguilar et al. Microscopic observation of particle reduction in slaughterhouse wastewater by coagulation–flocculation using ferric sulphate as coagulant and different coagulant aids
Turchiuli et al. Influence of structural properties of alum and ferric flocs on sludge dewaterability
Wang et al. Characterization of floc size, strength and structure in various aluminum coagulants treatment
Yu et al. Breakage and re-growth of flocs formed by alum and PACl
Hassan et al. Coagulation and flocculation treatment of wastewater in textile industry using chitosan
Li et al. Preliminary study on low-density polystyrene microplastics bead removal from drinking water by coagulation-flocculation and sedimentation
Li et al. Coagulation-flocculation performance and floc properties for microplastics removal by magnesium hydroxide and PAM
EP3033611B1 (en) Method of tracing chemical quantities using encapsulated fluorescent dyes
Zafisah et al. Interaction between ballasting agent and flocs in ballasted flocculation for the removal of suspended solids in water
Wang et al. Insight into the combined coagulation-ultrafiltration process: The role of Al species of polyaluminum chlorides
AlMubaddal et al. Performance optimization of coagulation/flocculation in the treatment of wastewater from a polyvinyl chloride plant
Mousa et al. Oilfield produced water treatment by coagulation/flocculation processes
Kumar et al. Coagulation process for tannery industry effluent treatment using Moringa oleifera seeds protein: Kinetic study, pH effect on floc characteristics and design of a thickener unit
Gray et al. Effect of organic polyelectrolyte characteristics on floc strength
JP4409915B2 (en) Oil content determination method in oil-containing water
Tansel et al. Coalescence and size distribution characteristics of oil droplets attached on flocs after coagulation
Ruziqna et al. Aluminium recovery from water treatment sludge as coagulant by acidification
Jin Use of a high resolution photographic technique for studying coagulation/flocculation in water treatment
Ani et al. Coagulation-flocculation performance of snail shell biomass for waste water purification
Ahmad et al. Coagulation-sedimentation-extraction pretreatment methods for the removal of suspended solids and residual oil from palm oil mill effluent (POME)
Dushkin et al. The increasing efficiency of upflow clarifiers at the drinking water preparation
Ruhsing Pan et al. Effect of surfactant on alum sludge conditioning and dewaterability
Hjorth et al. Evaluation of methods to determine flocculation procedure for manure separation
Jabbar et al. Coagulation/flocculation process for oily wastewater treatment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091112

R150 Certificate of patent or registration of utility model

Ref document number: 4409915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees