JP2005136803A - Fault detecting apparatus for duplexed sound signal - Google Patents

Fault detecting apparatus for duplexed sound signal Download PDF

Info

Publication number
JP2005136803A
JP2005136803A JP2003372221A JP2003372221A JP2005136803A JP 2005136803 A JP2005136803 A JP 2005136803A JP 2003372221 A JP2003372221 A JP 2003372221A JP 2003372221 A JP2003372221 A JP 2003372221A JP 2005136803 A JP2005136803 A JP 2005136803A
Authority
JP
Japan
Prior art keywords
audio signal
failure
fault
feature quantity
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003372221A
Other languages
Japanese (ja)
Other versions
JP3957211B2 (en
Inventor
Ryoichi Kawada
亮一 川田
Atsushi Koike
淳 小池
Masahiro Wada
正裕 和田
Shuichi Matsumoto
修一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2003372221A priority Critical patent/JP3957211B2/en
Priority to US10/957,574 priority patent/US7738664B2/en
Publication of JP2005136803A publication Critical patent/JP2005136803A/en
Application granted granted Critical
Publication of JP3957211B2 publication Critical patent/JP3957211B2/en
Priority to US12/285,272 priority patent/US7876907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To detect a fault in real time even when the fault occurs only in a sound signal of one system in the duplex transmission of sound signals. <P>SOLUTION: Feature quantities of small areas of the sound signals transmitted by an active system and a reserve system are extracted by signal feature quantity calculation parts 6-1, 6-2. A feature quantity comparison part 7 compares the extracted feature quantities between the systems and determines that the fault occurs in either of the systems. Feature quantity difference calculation parts 9-1, 9-2 calculate differences between the feature quantity of a fault area and the feature quantity of a normal area in each system and a [D] comparison part 10 and a fault system determination part 11 determines that the fault occurs in a system of which the calculated difference is larger. The reliability of determination is further enhanced by providing a majority processing part 12 and a significance determination part 13. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、2重化音声信号の障害検出装置に関し、特に、同一の音声信号を2系統の回線に分けて伝送し、受信側で障害のない音声信号を選択的に受信する場合に好適な2重化音声信号の障害検出装置に関する。   The present invention relates to a fault detection apparatus for a duplex voice signal, and is particularly suitable for the case where the same voice signal is transmitted by being divided into two lines, and a fault-free voice signal is selectively received on the receiving side. The present invention relates to a fault detection apparatus for a duplex audio signal.

従来、テレビ信号の高信頼性伝送を目的とした2重化伝送では、同一の映像/音声信号を2系統の回線に分けて伝送し、受信側ではいずれか一方の回線を選択して受信する。   Conventionally, in duplex transmission for the purpose of high-reliability transmission of TV signals, the same video / audio signal is divided into two lines and transmitted, and one of the lines is selected and received on the receiving side. .

図6は、従来の2重化伝送装置を示すブロック図である。なお、同図では音声信号についてのみ示している。図示の上側を現用系とし、下側を予備系とすると、正常時には、受信側の手動切替スイッチ3を現用系を選択するように接続する。この時、入力音声信号は符号化器1−1、現用伝送路4−1、復号器2−1、手動切替スイッチ3を通して伝送されて出力音声信号となる。   FIG. 6 is a block diagram showing a conventional duplex transmission apparatus. In the figure, only the audio signal is shown. If the upper side in the figure is the active system and the lower side is the standby system, the receiving side manual change-over switch 3 is connected so as to select the active system in the normal state. At this time, the input voice signal is transmitted through the encoder 1-1, the working transmission line 4-1, the decoder 2-1, and the manual changeover switch 3 to become an output voice signal.

監視員は受信側で2系統の回線状態を監視し、現用系で障害が発生したと検知すると、手動切替スイッチ3を予備系側に切り替える。入力音声信号は符号化器1−2、予備伝送路4−2、復号器2−2、手動切替スイッチ3を通して伝送され、正常な回線を介して継続的に音声信号が受信される。   The monitoring person monitors the line status of the two systems on the receiving side, and switches the manual changeover switch 3 to the standby side when detecting that a failure has occurred in the active system. The input voice signal is transmitted through the encoder 1-2, the spare transmission path 4-2, the decoder 2-2, and the manual changeover switch 3, and the voice signal is continuously received through a normal line.

本出願人は、2重化伝送において受信中の回線で障害が発生した場合に正常回線への切替えを自動化し、出力信号の障害時間をなるべく短くする技術を下記特許文献1で提案した。
特開2000−350238号公報
The present applicant has proposed in Japanese Patent Application Laid-Open No. 2004-228688 a technique for automating switching to a normal line when a failure occurs on a line being received in duplex transmission and shortening the failure time of the output signal as much as possible.
JP 2000-350238 A

監視員が手動によりスイッチを切り替えて回線を選択し、正常な音声信号が受信されるようにするものでは、正常な音声信号を受信し得る回線への切替完了までに時間がかかり、出力音声信号の障害時間を短くすることが困難であるという課題がある。   If the supervisor manually switches the switch and selects the line so that a normal audio signal is received, it takes time to complete the switch to the line that can receive the normal audio signal, and the output audio signal There is a problem that it is difficult to shorten the failure time.

また、上記特許文献1の技術は、映像を対象としており、映像に障害があったことを検知して正常な回線への切替を行うものである。しかしながら、映像が正常でも音声のみに障害が発生している場合があり、上記特許文献1の技術ではこのような場合に正常な回線への切替が行われず、音声が障害になったままとなるという課題がある。   The technique of the above-mentioned Patent Document 1 is intended for video, and detects that there is a fault in the video and switches to a normal line. However, even if the video is normal, there is a case where a failure occurs only in the sound. In the technique disclosed in Patent Document 1, switching to a normal line is not performed in such a case, and the sound remains in the failure. There is a problem.

本発明は、音声信号の2重化伝送において、一方の系統の音声信号のみに障害が発生した場合でも、その障害を実時間で検出できるようにすることを目的とし、障害が発生した系統から正常な回線へ切替を瞬時に行って、継続的に正常な音声が受信されるようにすることを可能にする。   An object of the present invention is to make it possible to detect a failure in real time even when a failure occurs only in one of the audio signals in the duplex transmission of the audio signal. It is possible to instantaneously switch to a normal line so that normal voice is continuously received.

上記課題を解決するために、本発明は、2系統の回線により伝送された2重化音声信号の障害検出装置において、各系統に対応して設けられ、各系統それぞれの音声信号の小領域ごとの特徴量を抽出する特徴量抽出手段と、前記特徴量抽出手段により抽出された特徴量を系統間で比較する特徴量比較手段と、前記特徴量比較手段の比較結果に基づいていずれかの系統で障害が発生したことを判定する判定手段とを備える点に第1の特徴がある。   In order to solve the above-mentioned problems, the present invention provides a fault detection device for a duplex audio signal transmitted by two lines, corresponding to each system, and for each small area of the audio signal of each system. Based on the comparison result of the feature quantity comparing means, the feature quantity comparing means for comparing the feature quantities extracted by the feature quantity extracting means between the systems, and the feature quantity comparing means There is a first feature in that it includes a determination unit that determines that a failure has occurred.

また、本発明は、2系統の回線により伝送された2重化音声信号の障害検出装置において、各系統に対応して設けられ、各系統それぞれの音声信号の小領域ごとの特徴量を抽出する特徴量抽出手段と、いずれかの系統に障害が発生しており、2重化音声信号における障害領域が明らかな場合に、各系統における障害領域の特徴量と正常領域の特徴量との差分を演算する演算手段と、前記演算手段で演算された差分が大きい方の系統に障害が発生していると判定する障害系統判定手段とを備える点に第2の特徴がある。   In addition, the present invention provides a fault detection apparatus for a duplicated audio signal transmitted through two lines, which is provided corresponding to each system, and extracts a feature amount for each small region of the audio signal of each system. When a failure has occurred in any of the systems and the feature region extraction means and the failure region in the duplicate audio signal is clear, the difference between the feature amount of the failure region and the feature amount of the normal region in each system is calculated. There is a second feature in that a calculation means for calculating and a fault system determination means for determining that a fault has occurred in a system having a larger difference calculated by the calculation means.

また、本発明は、前記障害系統判定手段が、前記演算手段で演算された差分に基づく判定結果を複数用い、それらの多数決処理を行って最終的な判定を行い、その際、前記演算手段で演算された差分が所定値以下の場合の判定結果を非有意にする点に第3の特徴がある。   Further, according to the present invention, the fault system determination unit uses a plurality of determination results based on the difference calculated by the calculation unit, performs a majority decision thereof, and makes a final determination. A third feature is that the determination result when the calculated difference is equal to or less than a predetermined value is made insignificant.

また、本発明は、さらに、小領域内の音声信号が無音状態であるか否かを検出するとともに2系統における音声信号を比較して無音状態が障害によるものであるか否かを検出する無音・ミュート検出手段を備える点に第4の特徴がある   In addition, the present invention further detects whether or not the sound signal in the small area is in a silence state and compares the sound signals in the two systems to detect whether or not the silence state is due to a failure. -There is a fourth feature in that a mute detection means is provided.

また、本発明は、さらに、前記特徴量抽出手段で抽出された特徴量が異常値を示すか否かを検出する異常値検出手段を備える点に第5の特徴がある。   In addition, the present invention has a fifth feature in that it further includes an abnormal value detecting means for detecting whether or not the feature quantity extracted by the feature quantity extracting means shows an abnormal value.

さらに、本発明は、入力される音声信号に対して、符号を保存あるいは反転し、絶対値が比較的小さい部分の絶対値を大きくし、絶対値が比較的大きい部分の絶対値を小さくする単調増加あるいは単調減少の変換特性で変換を施す変換手段を備える点に第6の特徴がある。   Furthermore, the present invention is a monotonous method that preserves or inverts the sign of an input audio signal, increases the absolute value of a portion having a relatively small absolute value, and decreases the absolute value of a portion having a relatively large absolute value. A sixth feature is that a conversion means for performing conversion with an increase or monotonous decrease conversion characteristic is provided.

本発明によれば、各系統それぞれの音声信号の小領域ごとの特徴量を使用して、2系統のいずれかで障害が発生したことを判定するので、音声サンプル同士を直接比較する方法などに比べて符号化ノイズなどに影響されにくい安定した障害検出が可能になる。   According to the present invention, it is determined that a failure has occurred in one of the two systems using the feature amount of each audio signal of each system, so that a method for directly comparing audio samples can be used. As a result, stable fault detection that is less affected by coding noise or the like is possible.

また、各系統それぞれの音声信号の小領域ごとの特徴量の差分に基づいて障害が発生した系統を判定するので、特徴量そのものの値を比較する方法などに比べて伝送エラーの多少によらず安定した判定が可能になる。   In addition, since the system in which the failure has occurred is determined based on the difference in the feature quantity for each small area of the audio signal of each system, it does not depend on the number of transmission errors compared to the method of comparing the value of the feature quantity itself. Stable determination is possible.

また、各系統それぞれの音声信号の小領域ごとの特徴量の差分に基づく判定結果を複数用い、それらの多数決処理を行って最終的に障害が発生した系統を判定し、その際、特徴量の差分が所定値以下の差分に基づく判定結果を非有意にすることにより、判定の信頼性を高めることができる。   In addition, using a plurality of determination results based on the difference of the feature amount for each small area of the audio signal of each system, and finally performing the majority process to determine the system in which the failure has occurred, By making the determination result based on the difference less than the predetermined value insignificant, the reliability of the determination can be improved.

また、小領域内の音声信号が無音状態であるか否かを検出するとともに2系統における音声信号を比較して無音状態が障害によるものであるか否かを検出することにより、ミュート障害による無音とそれ以外の無音との誤認を防ぐことが可能になる。   In addition, it detects whether or not the sound signal in the small area is in a silent state, and compares the sound signals in the two systems to detect whether or not the silent state is due to a failure. It is possible to prevent misidentification of other silences.

また、音声信号の特徴量が明らかに異常値を示す場合、それを区別して検出することにより、特徴量同士の比較演算などをすることなく、迅速にその状態を判定できる。   Further, when the feature amount of the audio signal clearly shows an abnormal value, the state can be determined quickly without performing comparison operation between the feature amounts by distinguishing and detecting the feature value.

さらに、符号を保存あるいは反転し、絶対値が比較的小さい部分の絶対値を大きくし、絶対値が比較的大きい部分の絶対値を小さくする単調増加あるいは単調減少の変換特性で音声信号を変換し、変換した音声信号に対して障害検出処理を実行することにより、小さい音声信号でも正確な障害検出が可能になる。   Furthermore, the audio signal is converted with a monotonically increasing or monotonically decreasing conversion characteristic that preserves or inverts the sign, increases the absolute value of the part with a relatively small absolute value, and decreases the absolute value of the part with a relatively large absolute value. By executing the failure detection process on the converted audio signal, it is possible to accurately detect the failure even with a small audio signal.

以下、図面を参照して本発明を詳細に説明する。図1は、本発明に係る2重化音声信号の障害検出装置の一実施形態を示すブロック図である。まず、音声信号を分配器(図示せず)により2経路(系統)に分配する。音声信号をデジタル圧縮符号化して伝送する場合、各系統には符号化器(エンコーダ)1−1,1−2と復号器(デコーダ)2−1,2−2が配置される。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a fault detection apparatus for a duplicated audio signal according to the present invention. First, an audio signal is distributed to two paths (systems) by a distributor (not shown). When audio signals are digitally compressed and transmitted, encoders (encoders) 1-1 and 1-2 and decoders (decoders) 2-1 and 2-2 are arranged in each system.

ここで、図示の上側を現用系(系統A)とし、下側を予備系(系統B)とすると、正常時には、受信側の切替スイッチ3は現用系を選択するように接続される。この時、音声信号は符号化器1−1、現用伝送路4−1、復号器2−1、切替スイッチ3を通して伝送されて出力音声信号となる。   Here, if the upper side in the figure is the active system (system A) and the lower side is the standby system (system B), the selector switch 3 on the receiving side is connected to select the active system in the normal state. At this time, the audio signal is transmitted through the encoder 1-1, the working transmission line 4-1, the decoder 2-1, and the changeover switch 3 to become an output audio signal.

現用系に障害が発生した時、後述する障害検出に基づいて切替スイッチ3は予備系を選択するように切り替えられる。今度は、音声信号は符号化器1−2、予備伝送路4−2、復号器2−2、切替スイッチ3を通して伝送される。   When a failure occurs in the active system, the changeover switch 3 is switched so as to select the standby system based on the failure detection described later. This time, the audio signal is transmitted through the encoder 1-2, the spare transmission path 4-2, the decoder 2-2, and the changeover switch 3.

以下に、音声信号の障害検出について説明する。まず、受信側で受信した2系統A,Bの音声信号をそれぞれ、信号対数変換処理部5−1,5−2に入力する。信号対数変換処理部5−1,5−2は、入力される音声信号をその符号を保存したまま対数変換する。   In the following, detection of a failure in an audio signal will be described. First, the audio signals of the two systems A and B received on the receiving side are input to the signal logarithmic conversion processing units 5-1 and 5-2, respectively. The signal logarithmic conversion processing units 5-1 and 5-2 logarithmically convert the input audio signal while maintaining the code.

人間の耳の特性は信号のレベルが小さくても鋭敏に聞き分けることができるという非線形特性を持つため、信号処理もそれに従ったものとすることが望ましい。信号対数変換処理部5−1,5−2は、これを満たすような変換特性を持ち、この変換により音声信号における微小部分での信号変化をより大きな変化にすることができ、小さな音声に対する障害検出特性を改善することができる。   Since the characteristics of the human ear have non-linear characteristics such that they can be discerned sensitively even if the signal level is small, it is desirable that the signal processing also conforms thereto. The signal logarithmic conversion processing units 5-1 and 5-2 have conversion characteristics satisfying this, and this conversion can change a signal change at a minute part in the audio signal to a larger change, which is an obstacle to a small sound. The detection characteristics can be improved.

図2は、信号対数変換処理部5−1,5−2の変換特性の一例を示す。この変換特性における入力信号sと出力信号tの関係は、下記(1)式で表される。   FIG. 2 shows an example of conversion characteristics of the signal logarithmic conversion processing units 5-1 and 5-2. The relationship between the input signal s and the output signal t in this conversion characteristic is expressed by the following equation (1).

Figure 2005136803
Figure 2005136803

図2の例は、符号を保存したまま対数変換する単調増加(右上がり)の変換特性であるが、符号を反転して単調減少(右下がり)の変換特性を用いることもできる。要するに、入力される音声信号に対して、符号を保存あるいは反転し、絶対値が比較的小さい部分の絶対値を大きくし、絶対値が比較的大きい部分の絶対値を小さくする単調増加あるいは単調減少の変換特性であればよい。   The example of FIG. 2 shows a monotonically increasing (upward to right) conversion characteristic in which the logarithmic conversion is performed while preserving the sign, but it is also possible to invert the sign and use a monotonically decreasing (downward to right) conversion characteristic. In short, with respect to the input audio signal, the sign is preserved or inverted, the absolute value of the portion with a relatively small absolute value is increased, and the absolute value of the portion with a relatively large absolute value is decreased, monotonically increasing or decreasing monotonically. Any conversion characteristic may be used.

信号対数変換処理部5−1,5−2で対数変換された音声信号を信号特徴量演算部6−1,6−2に入力する。信号特徴量演算部6−1,6−2は、音声信号の小領域ごとの特徴量を計算して抽出する。この特徴量としては、音声信号の平均値や標準偏差などを使用でき、複数種類を抽出してもよい。   The audio signal logarithmically converted by the signal logarithmic conversion processing units 5-1 and 5-2 is input to the signal feature amount calculation units 6-1 and 6-2. The signal feature amount calculation units 6-1 and 6-2 calculate and extract feature amounts for each small region of the audio signal. As the feature amount, an average value or standard deviation of the audio signal can be used, and a plurality of types may be extracted.

次に、抽出された特徴量を特徴量比較部7に入力し、特徴量を2系統A,B間で各小領域ごとに比較する。2系統A,B間での特徴量の差が所定閾値以下の場合、その領域ではいずれの系統にも障害が発生していないと判定できる。一方、2系統A,B間での特徴量の差が所定閾値を超える場合、その領域ではいずれかの系統に障害が発生していると見なすことができる。この比較結果に基づいて正常領域か障害領域かを判定し、正常・破綻情報として正常・破綻情報記録部8に記録する。この正常・破綻情報は、後述する障害系統判定で使用される。   Next, the extracted feature quantity is input to the feature quantity comparison unit 7, and the feature quantity is compared between the two systems A and B for each small region. When the difference in the feature amount between the two systems A and B is equal to or less than a predetermined threshold value, it can be determined that no failure has occurred in any system in that region. On the other hand, when the difference in the feature amount between the two systems A and B exceeds a predetermined threshold, it can be considered that a failure has occurred in any system in that region. Based on this comparison result, it is determined whether it is a normal area or a failure area, and is recorded in the normal / failure information recording unit 8 as normal / failure information. This normal / failure information is used in failure system determination described later.

図3は、信号特徴量演算部6−1,6−2および特徴量比較部7の動作を説明するための波形図である。まず、音声信号をブロック(小領域)単位、例えば1ブロック=128サンプルに分ける。次に、各系統A,Bでブロック内の特徴量を計算して抽出する。各系統A,Bのブロック内の特徴量は、ブロック位置をpで表すと、{fAi(p)},{fBi(p)}(i=1,2,・・・,N)でそれぞれ表される。ここで、Nは、抽出する特徴量数(種類)を表す。特徴量としては、上述のように、音声信号の平均値や標準偏差など、さまざまなものを使用できる。 FIG. 3 is a waveform diagram for explaining the operation of the signal feature quantity computing units 6-1 and 6-2 and the feature quantity comparison unit 7. First, the audio signal is divided into block (small area) units, for example, 1 block = 128 samples. Next, the feature amount in the block is calculated and extracted in each of the systems A and B. The feature quantities in the blocks of the systems A and B are represented by {f Ai (p)} and {f Bi (p)} (i = 1, 2,..., N), where the block position is represented by p. Each is represented. Here, N represents the number (type) of feature quantities to be extracted. As described above, various features such as an average value and a standard deviation of an audio signal can be used.

2系統A,B間での特徴量{fAi(p)}、{fBi(p)}の差が所定閾値Th以下(すなわち、i→|fAi(p)−fBi(p)|≦Th)の場合、その区間ではいずれの系統にも障害が発生していないと判定し、その差が所定閾値Thを超える(すなわち、∋i→|fAi(p)−fBi(p)|>Th)場合には、その領域でいずれかの系統に障害が発生していると判定する。この判定結果を正常・破綻情報としてブロックごとに正常・破綻情報記録部8に記録する。 The difference between the feature quantities {f Ai (p)} and {f Bi (p)} between the two systems A and B is less than or equal to a predetermined threshold Th i (that is, i → | f Ai (p) −f Bi (p ) | ≦ Th i ), it is determined that no fault has occurred in any system in the section, and the difference exceeds a predetermined threshold Th i (ie, す な わ ちi → | f Ai (p) −f In the case of Bi (p) |> Th i ), it is determined that a failure has occurred in any system in that region. The determination result is recorded in the normal / failure information recording unit 8 for each block as normal / failure information.

このように、信号特徴量演算部6−1,6−2および特徴量比較部7では、符号化ノイズなどの影響を受けにくい大局的な特徴量を利用し、系統間の特徴量の差分値の大小を障害検出の規範としている。したがって、符号化器が2系統に挿入されている場合、一般的に符号化ノイズが2系統で異なり、2系統信号間の単純比較による障害検出では、このノイズの差異が問題になるが、本実施形態では、この符号化ノイズの差異を障害と誤検出することがなく、破綻部が存在する伝送エラー特有の音質劣化を正確に検出することができる。   As described above, the signal feature quantity calculation units 6-1 and 6-2 and the feature quantity comparison unit 7 use global feature quantities that are not easily affected by coding noise and the like, and the difference values of the feature quantities between the systems. Is the norm of fault detection. Therefore, when the encoders are inserted in two systems, the encoding noise is generally different in the two systems, and this noise difference becomes a problem in fault detection by simple comparison between the two system signals. In the embodiment, the difference in coding noise is not erroneously detected as a failure, and sound quality degradation peculiar to a transmission error in which a broken portion exists can be accurately detected.

次に、特徴量差算出部9−1,9−2より後段の構成について説明する。この構成は、障害系統判定、すなわち系統A,Bのどちらで障害が発生したかを検出するためのものである。なお、各系統での特徴量が明らかな異常値を示す場合には、後述する閾値比較部14−1,14−2および無音・ミュート検出部15により障害発生の系統を判定できる。   Next, a configuration subsequent to the feature amount difference calculation units 9-1 and 9-2 will be described. This configuration is for fault system determination, that is, to detect which of the systems A and B has a fault. When the characteristic amount in each system shows a clear abnormal value, the system in which the failure has occurred can be determined by the threshold comparison units 14-1 and 14-2 and the silence / mute detection unit 15 described later.

特徴量差算出部9−1,9−2は、信号特徴量演算部6−1,6−2で抽出された特徴量を入力とし、正常・破綻情報記録部8に記録された正常・破綻情報を参照して、特徴量が系統A,B間で一致した一致領域と不一致の不一致領域の間での特徴量の差Dを、各系統ごとに算出する。   The feature amount difference calculation units 9-1 and 9-2 receive the feature amounts extracted by the signal feature amount calculation units 6-1 and 6-2, and the normal / failure information recorded in the normal / failure information recording unit 8 With reference to the information, the difference D of the feature amount between the matched region where the feature amount is matched between the systems A and B and the unmatched mismatched region is calculated for each system.

‖D‖比較部10は、系統Aの特徴量の差Dと系統Bの特徴量の差Dを比較する。障害系統判定部11は、‖D‖比較部10の比較結果に基づいて障害発生の系統を判定する。特徴量の差Dが大きいことは、一致領域と不一致領域とで音声信号が大きく変化していることを意味するため、障害が発生している可能性が大きい。さらに、その差がどのくらい大きいかで、その判定が有意か非有意かの度合いが決まる。障害系統判定部11は、以上を総合的に勘案した上で判定を行う。   The ‖D‖ comparison unit 10 compares the feature value difference D of the system A and the feature value difference D of the system B. The fault system determination unit 11 determines a faulty system based on the comparison result of the ‖D‖ comparison unit 10. A large feature amount difference D means that the audio signal has changed greatly between the matching region and the non-matching region, and therefore there is a high possibility that a failure has occurred. Furthermore, how large the difference is determines the degree of whether the determination is significant. The fault system determination unit 11 performs the determination after comprehensively considering the above.

図4は障害系統判定部11の動作を説明するための波形図である。障害発生の系統の判定は、音声信号のブロックを複数個、例えば4個まとめた単位(以下、これをフレームと呼ぶ。)で行う。正常・破綻情報記録8に記録された正常・破綻情報を参照して、特徴量が系統A,B間で一致した一致領域と不一致の不一致領域の間での特徴量の差D={D}(i=1,2,・・・,N)を、各系統ごとに算出し、その値Dが大きい方の系統を障害発生の系統と判定する。この判定結果はフレームごとに出力される。 FIG. 4 is a waveform diagram for explaining the operation of the fault system determination unit 11. The determination of the failure occurrence system is performed in units of a plurality of, for example, four audio signal blocks (hereinafter referred to as frames). Referring to the normal / failure information recorded in the normal / failure information record 8, the feature amount difference D = {D i between the matched region where the feature amount is matched between the systems A and B and the unmatched mismatched region } (I = 1, 2,..., N) is calculated for each system, and the system with the larger value D is determined as the system in which the failure occurred. This determination result is output for each frame.

このように、障害系統判定部11では、伝送障害での破綻領域は局在化するという一般的性質(特にデジタル伝送障害ではこの傾向が強い)を積極的に利用し、いずれかの系統に障害が発生しており、2重化音声信号における障害部分が明らかな場合に、各系統における正常領域の特徴量と破綻領域の特徴量の差分値の大小を規範とし、その差分値が大きい方を障害系統と判定する。この場合、正常領域/破綻領域間の特徴量の差分にのみ注目して障害発生の系統を判定するので、系統のエラー率によらず安定した判定を行うことができる。   As described above, the fault system determination unit 11 actively uses the general property that a failure area due to a transmission fault is localized (especially this tendency is strong in the case of a digital transmission fault). If the faulty part in the duplex audio signal is obvious, the difference between the feature value of the normal region and the feature value of the failure region in each system is used as a standard, and the one with the larger difference value Determined as a faulty system. In this case, since the system in which the failure has occurred is determined by paying attention only to the difference in the feature amount between the normal area and the failed area, stable determination can be performed regardless of the system error rate.

具体的には、まず、各特徴量について正常/破綻領域の境界部分での差分絶対値和を求める。フレーム中のブロック同士の境界をb(j=1,2,・・・,n)、境界bをはさむ2ブロックの位置を表す関数をg(b),g(b)、正常/破綻領域の境界の全体をCとすると、系統Aでのi番目の特徴量の系統内差分DAiは、下記(2)式で算出することができる。ここで、nはブロック同士の境界の数であり、図4のように1フレーム当たり4ブロックとすると、境界の数は3となる。系統Bについても同様である。 Specifically, first, the sum of absolute differences at the boundary part of the normal / failure area is obtained for each feature amount. B j (j = 1, 2,..., N) is a boundary between blocks in the frame, and g 1 (b j ) and g 2 (b j ) are functions representing the positions of two blocks sandwiching the boundary b j. If the whole boundary of the normal / failure area is C, the intra-system difference D Ai of the i-th feature amount in the system A can be calculated by the following equation (2). Here, n is the number of boundaries between blocks, and the number of boundaries is 3 when there are 4 blocks per frame as shown in FIG. The same applies to the system B.

Figure 2005136803
Figure 2005136803

以上のようにして算出された特徴量の系統内差分Dを基に、例えば下記(3)式により‖D‖を算出し、‖D‖の値が大きい方の系統を障害発生の系統と判定する。 Based on the in-system difference D i of the feature amount calculated as described above, for example, ‖D‖ is calculated by the following equation (3), and the system with the larger value of ‖D‖ is determined as the faulty system. judge.

Figure 2005136803
Figure 2005136803

ここで、w(i=1,2,・・・、N)は、各特徴量iごとの重み係数であり、例えば、次のようにして決定できる。すなわち、無障害信号を用いた予備実験を行って、各特徴量iにつき隣接ブロック間での差分値の分布を求め、その標準偏差の逆数を特徴量iに対する重みwとする。 Here, w i (i = 1, 2,..., N) is a weighting coefficient for each feature quantity i, and can be determined as follows, for example. That is, a preliminary experiment using a no-failure signal is performed to obtain a distribution of difference values between adjacent blocks for each feature quantity i, and the reciprocal of the standard deviation is set as a weight w i for the feature quantity i.

障害系統判定部11の判定結果を制御信号として用い、それが現用系障害を示したときに切替スイッチ3を予備系側に切り替えることができる。その場合、特徴量の種類や数を最適化すれば障害系統判定の正当率を上げて予備系への切り替えを行うことができるが、それでも誤判定があり得る。そこで本実施形態では、さらに多数決処理部12でフレームごとの判定結果を複数回取得し、その多数決を取って最終的な判定結果とすることにより、判定の信頼性を高めている。   The determination result of the failure system determination unit 11 can be used as a control signal, and the switch 3 can be switched to the standby system side when it indicates an active system failure. In that case, if the type and number of feature quantities are optimized, it is possible to increase the correct rate of failure system determination and switch to the standby system, but there may still be erroneous determination. Therefore, in this embodiment, the determination processing for each frame is further acquired by the majority processing unit 12 a plurality of times, and the majority determination is taken to obtain a final determination result, thereby improving the determination reliability.

さらに有意度判定部13を設け、多数決処理部12で多数決に使用する判定結果を、例えば下記(4)式によって有意とされる判定結果のみとすることにより、多数決処理の有効性を向上させることができる。   In addition, the significance determination unit 13 is provided, and the determination result used for the majority vote in the majority processing unit 12 is only the determination result made significant by the following formula (4), for example, thereby improving the effectiveness of the majority process. Can do.

Figure 2005136803
Figure 2005136803

上記(4)式による有意度判定に従って多数決処理すれば、系統Aの特徴量差分と系統Bの特徴量差分の差が小さいときの判定結果は、信頼度が小さい(非有意)として多数決に寄与しないようにすることができる。   If the majority process is performed according to the significance determination by the above equation (4), the determination result when the difference between the feature amount difference of the system A and the feature amount difference of the system B is small contributes to the majority decision with low reliability (insignificant). You can avoid it.

また、本実施形態では、閾値比較部14−1,14−2および無音・ミュート検出部15を設けて、信号特徴量演算部6−1,6−2で算出された特徴量や音声信号が予め定めた条件に合致していないかをチェックし、このチェック結果を障害系統判定や有意度判定で使用している。   In the present embodiment, the threshold value comparison units 14-1 and 14-2 and the silence / mute detection unit 15 are provided, and the feature amounts and audio signals calculated by the signal feature amount calculation units 6-1 and 6-2 are received. It is checked whether or not a predetermined condition is met, and this check result is used in fault system determination and significance determination.

信号特徴量演算部6−1,6−2で算出された特徴量が明らかに異常値を示す場合、異常値を示す系統に障害が発生したと判定できる。明らかな異常値は、例えば、通常ではあり得ないような大きなレベルの音声信号、あるいは逆に0レベルの信号が続く場合に生じる。各系統A,Bそれぞれに対して設けられた閾値比較部14−1,14−2は、各系統A,Bの特徴量が異常値であることを検出する。また、無音・ミュート検出部15は、音声信号レベルの異常が一方の系統のみで生じているかを検出する。ここで、一方の系統のみの信号レベルがずっと0である場合、その系統の前段の符号化器、復号器などがミュート障害を起こしている可能性が高い。   When the feature amount calculated by the signal feature amount calculation units 6-1 and 6-2 clearly shows an abnormal value, it can be determined that a failure has occurred in the system indicating the abnormal value. An obvious abnormal value occurs, for example, when an audio signal of a large level that cannot be normal or a signal of 0 level continues. The threshold comparison units 14-1 and 14-2 provided for the respective systems A and B detect that the feature values of the respective systems A and B are abnormal values. The silence / mute detection unit 15 detects whether an abnormality in the audio signal level occurs only in one system. Here, when the signal level of only one system is always 0, there is a high possibility that the previous stage encoder, decoder, etc. of that system has caused a mute failure.

障害系統判定部11は、一方の系統の特徴量や信号レベルが異常値を示すとき、その系統に障害が発生したと判定する。また、特徴量や信号レベルが異常値を示す時の障害系統判定部11の判定結果は信頼度が高いと考えられるので、有意度判定部13は、その時の有意度を大きくする。   The fault system determination unit 11 determines that a fault has occurred in one system when the feature value or signal level of one system indicates an abnormal value. Further, since the determination result of the fault system determination unit 11 when the feature amount or the signal level shows an abnormal value is considered to be highly reliable, the significance determination unit 13 increases the significance at that time.

図5は、障害によ破綻領域を含む音声信号の例を示す波形図である。ここでは、障害により信号レベルが極端に大きくなった破綻領域とミュート障害による破綻領域を含む音声信号波形を示している。前述のように、伝送障害による破綻領域は局在化する。   FIG. 5 is a waveform diagram illustrating an example of an audio signal including a failure area due to a failure. Here, an audio signal waveform including a failure area where the signal level has become extremely high due to a failure and a failure area due to a mute failure is shown. As described above, the failure area due to the transmission failure is localized.

なお、ミュート障害とは、障害検出処理の前段に設置される符号化器や復号器などが伝送路障害を検知した結果、音声信号として無音信号(0レベルの信号)を出力するような状態を意味する。このような場合、一方の系統だけに注目したのでは現在の音声信号がもともと無音状態なのか、ミュート障害なのか区別できない。   Note that the mute failure is a state in which a silence signal (0 level signal) is output as an audio signal as a result of detection of a transmission path failure by an encoder, a decoder or the like installed in the previous stage of failure detection processing. means. In such a case, if attention is paid to only one system, it cannot be distinguished whether the current audio signal is originally silent or a mute failure.

しかし、本実施形態では、無音・ミュート検出部15で両系統の音声信号を受信し、両系統とも無音状態の時は障害と判定せず、一方の系統のみが無音状態のときにのみミュート障害と判定するので、障害検出の信頼性が高い。   However, in the present embodiment, the silence / mute detection unit 15 receives the audio signals of both systems, and does not determine that there is a failure when both systems are silent, but only when one of the systems is silent. Therefore, the reliability of fault detection is high.

上記実施形態では、各系統に符号化器と復号器を配置して音声信号をデジタル圧縮符号化して伝送しているが、伝送の際の圧縮符号化は必ずしも必要なものではなく、本発明は音声信号を非圧縮で伝送する場合にも適用できる。   In the above embodiment, an encoder and a decoder are arranged in each system and the audio signal is digitally compressed and transmitted. However, compression encoding at the time of transmission is not always necessary, and the present invention The present invention can also be applied to a case where an audio signal is transmitted without being compressed.

以上説明したように、本発明によれば、2重化伝送された音声信号を用いて実時間で自動的に、また高い信頼性で障害検出/障害系統を検出することができ、2重化伝送音声の無中断化、すなわち信頼性の向上に貢献できる。   As described above, according to the present invention, it is possible to automatically detect a failure detection / failure system in real time and with high reliability by using a double-transmitted audio signal, and to perform duplexing. It is possible to contribute to non-interruption of transmission voice, that is, improvement of reliability.

本発明に係る2重化音声信号の障害検出装置の一実施形態を示すブロック図である。It is a block diagram which shows one Embodiment of the failure detection apparatus of the double audio | voice signal which concerns on this invention. 信号対数変換処理部の変換特性の一例を示す図である。It is a figure which shows an example of the conversion characteristic of a signal logarithm conversion process part. 信号特徴量演算部および特徴量比較部の動作を説明するための波形図である。It is a wave form diagram for demonstrating operation | movement of a signal feature-value calculating part and a feature-value comparison part. 障害系統判定部の動作を説明するための波形図である。It is a wave form diagram for demonstrating operation | movement of a failure system determination part. 障害によ破綻領域を含む音声信号の例を示す波形図である。It is a wave form diagram which shows the example of the audio | voice signal containing a failure area by a failure. 従来の2重化伝送装置を示すブロック図である。It is a block diagram which shows the conventional duplex transmission apparatus.

符号の説明Explanation of symbols

1−1,1−2・・・符号化器、2−1,2−2・・・復号器、3・・・切替スイッチ、4−1,4−2・・・伝送路、5−1,5−2・・・信号対数変換処理部、6−1,6−2・・・信号特徴量演算部、7・・・特徴量比較部、8・・・破綻・正常情報記録部、9−1,9−2・・・特徴量差算出部、10・・・‖D‖比較部、11・・・障害系統判定部、12・・・多数決処理部、13・・・有意度判定部、14−1,14−2・・・閾値比較部、15・・・無音・ミュート検出部 1-1, 1-2 ... encoder, 2-1, 2-2 ... decoder, 3 ... changeover switch, 4-1, 4-2 ... transmission path, 5-1. , 5-2... Signal logarithmic conversion processing unit, 6-1, 6-2... Signal feature amount calculation unit, 7... Feature amount comparison unit, 8. -1, 9-2 ... feature quantity difference calculation unit, 10 ... ‖D‖ comparison unit, 11 ... fault system determination unit, 12 ... majority decision processing unit, 13 ... significance determination unit , 14-1, 14-2... Threshold comparison unit, 15... Silence / mute detection unit

Claims (6)

2系統の回線により伝送された2重化音声信号の障害検出装置において、
各系統に対応して設けられ、各系統それぞれの音声信号の小領域ごとの特徴量を抽出する特徴量抽出手段と、
前記特徴量抽出手段により抽出された特徴量を系統間で比較する特徴量比較手段と、
前記特徴量比較手段の比較結果に基づいていずれかの系統で障害が発生したことを判定する判定手段とを備えることを特徴とする2重化音声信号の障害検出装置。
In a fault detection device for a duplicated audio signal transmitted through two lines,
Feature quantity extraction means provided corresponding to each system and extracting a feature quantity for each small region of the audio signal of each system;
Feature quantity comparison means for comparing the feature quantities extracted by the feature quantity extraction means between systems;
A failure detection apparatus for a duplicated audio signal, comprising: a determination unit that determines that a failure has occurred in any of the systems based on a comparison result of the feature amount comparison unit.
2系統の回線により伝送された2重化音声信号の障害検出装置において、
各系統に対応して設けられ、各系統それぞれの音声信号の小領域ごとの特徴量を抽出する特徴量抽出手段と、
いずれかの系統に障害が発生しており、2重化音声信号における障害領域が明らかな場合に、各系統における障害領域の特徴量と正常領域の特徴量との差分を演算する演算手段と、
前記演算手段で演算された差分が大きい方の系統に障害が発生していると判定する障害系統判定手段とを備えることを特徴とする2重化音声信号の障害検出装置。
In a fault detection device for a duplicated audio signal transmitted through two lines,
Feature amount extraction means provided corresponding to each system, and extracting a feature amount for each small region of the audio signal of each system;
When a fault has occurred in any of the systems and the fault area in the duplex audio signal is clear, a calculation means for calculating the difference between the feature quantity of the fault area and the feature quantity of the normal area in each system,
A fault detection apparatus for a duplicated audio signal, comprising fault system determination means for determining that a fault has occurred in a system having a larger difference calculated by the calculation means.
前記障害系統判定手段は、前記演算手段で演算された差分に基づく判定結果を複数用い、それらの多数決処理を行って最終的な判定を行い、その際、前記演算手段で演算された差分が所定値以下の場合の判定結果を非有意にすることを特徴とする請求項2に記載の2重化音声信号の障害検出装置。 The failure system determination means uses a plurality of determination results based on the difference calculated by the calculation means, performs a majority decision thereof, and makes a final determination. At this time, the difference calculated by the calculation means is predetermined. 3. The fault detection apparatus for a duplicated audio signal according to claim 2, wherein a determination result when the value is equal to or less than the value is made insignificant. さらに、小領域内の音声信号が無音状態であるか否かを検出するとともに2系統における音声信号を比較して無音状態が障害によるものであるか否かを検出する無音・ミュート検出手段を備えることを特徴とする請求項1ないし3のいずれかに記載の2重化音声信号の障害検出装置。 Furthermore, a silence / mute detection means is provided for detecting whether or not the audio signal in the small area is silent and comparing the audio signals in the two systems to detect whether or not the silence is due to a failure. 4. The fault detection apparatus for a duplicated audio signal according to claim 1, wherein さらに、前記特徴量抽出手段で抽出された特徴量が異常値を示すか否かを検出する異常値検出手段を備えることを特徴とする請求項1ないし4のいずれかに記載の2重化音声信号の障害検出装置。 5. The duplicated voice according to claim 1, further comprising an abnormal value detecting means for detecting whether or not the feature quantity extracted by the feature quantity extracting means shows an abnormal value. Signal failure detection device. さらに、入力される音声信号に対して、符号を保存あるいは反転し、絶対値が比較的小さい部分の絶対値を大きくし、絶対値が比較的大きい部分の絶対値を小さくする単調増加あるいは単調減少の変換特性で変換を施す変換手段を備えることを特徴とする請求項1ないし5のいずれかに記載の2重化音声信号の障害検出装置。 Furthermore, for the input audio signal, the sign is stored or inverted, the absolute value of the part with a relatively small absolute value is increased, and the absolute value of the part with a relatively large absolute value is decreased monotonically increasing or decreasing 6. The apparatus for detecting a failure in a duplicated audio signal according to claim 1, further comprising conversion means for performing conversion with the conversion characteristics of:
JP2003372221A 2003-10-07 2003-10-31 Duplex audio signal failure detection device Expired - Fee Related JP3957211B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003372221A JP3957211B2 (en) 2003-10-31 2003-10-31 Duplex audio signal failure detection device
US10/957,574 US7738664B2 (en) 2003-10-07 2004-10-05 Apparatus for fault detection for parallelly transmitted audio signals and apparatus for delay difference detection and adjustment for parallelly transmitted audio signals
US12/285,272 US7876907B2 (en) 2003-10-07 2008-10-01 Apparatus for fault detection for parallelly transmitted audio signals and apparatus for delay difference detection and adjustment for parallelly transmitted audio signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372221A JP3957211B2 (en) 2003-10-31 2003-10-31 Duplex audio signal failure detection device

Publications (2)

Publication Number Publication Date
JP2005136803A true JP2005136803A (en) 2005-05-26
JP3957211B2 JP3957211B2 (en) 2007-08-15

Family

ID=34648659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372221A Expired - Fee Related JP3957211B2 (en) 2003-10-07 2003-10-31 Duplex audio signal failure detection device

Country Status (1)

Country Link
JP (1) JP3957211B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189419A (en) * 2006-01-12 2007-07-26 Fujitsu Ten Ltd Receiver, method and device for diagnosing abnormality thereof, and program
JP2009182796A (en) * 2008-01-31 2009-08-13 Nec Corp Automatic changeover device and automatic changeover method
JP2010056625A (en) * 2008-08-26 2010-03-11 Kddi Corp Sound fault detection apparatus and automatic sound switching apparatus
WO2015005224A1 (en) * 2013-07-08 2015-01-15 ヤマハ株式会社 Signal processing system and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189419A (en) * 2006-01-12 2007-07-26 Fujitsu Ten Ltd Receiver, method and device for diagnosing abnormality thereof, and program
JP2009182796A (en) * 2008-01-31 2009-08-13 Nec Corp Automatic changeover device and automatic changeover method
JP2010056625A (en) * 2008-08-26 2010-03-11 Kddi Corp Sound fault detection apparatus and automatic sound switching apparatus
JP4656542B2 (en) * 2008-08-26 2011-03-23 Kddi株式会社 Voice failure detection device and voice automatic switching device
WO2015005224A1 (en) * 2013-07-08 2015-01-15 ヤマハ株式会社 Signal processing system and program

Also Published As

Publication number Publication date
JP3957211B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
US7876907B2 (en) Apparatus for fault detection for parallelly transmitted audio signals and apparatus for delay difference detection and adjustment for parallelly transmitted audio signals
US6885988B2 (en) Bit error concealment methods for speech coding
DK170482B1 (en) Method for detecting and hiding errors using predicted signal values
JP4560269B2 (en) Silence detection
KR101429564B1 (en) Device and method for postprocessing a decoded multi-channel audio signal or a decoded stereo signal
JP3957211B2 (en) Duplex audio signal failure detection device
EP0805572A2 (en) Error detection and error concealment for encoded speech data
JP3527137B2 (en) Image failure detection device in redundant duplex transmission
CN1433562A (en) Audible error detector and controller utilizing channel quality data and iterative synthesis
CN1893339B (en) Continuous median failure control system and method
JP4761391B2 (en) Listening quality evaluation method and apparatus
US7080006B1 (en) Method for decoding digital audio with error recognition
JPH11261534A (en) Communications device, communications method and communications signal system
JP4817872B2 (en) Data signal monitoring apparatus and signal monitoring method
GB2430129A (en) Voice activity detector
JP4656542B2 (en) Voice failure detection device and voice automatic switching device
EP1231597A1 (en) Method and decoder for detecting bad speech frames based on spectral difference between consecutive frames
EP1427129A2 (en) Frame error detection
JP3818500B2 (en) Transmission path error detection device for dual audio signals
JP4067997B2 (en) Information receiving apparatus, information receiving method and program
JP4735295B2 (en) Failure detection device
JPS6086920A (en) Fault detector
JPS6247025B2 (en)
KR20160115006A (en) Apparatus and method for protection switching of optical line
JP2658924B2 (en) Fault diagnosis device for single channel coding circuit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070502

R150 Certificate of patent or registration of utility model

Ref document number: 3957211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160518

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees