JP2005136119A - Sapphire window material - Google Patents

Sapphire window material Download PDF

Info

Publication number
JP2005136119A
JP2005136119A JP2003369862A JP2003369862A JP2005136119A JP 2005136119 A JP2005136119 A JP 2005136119A JP 2003369862 A JP2003369862 A JP 2003369862A JP 2003369862 A JP2003369862 A JP 2003369862A JP 2005136119 A JP2005136119 A JP 2005136119A
Authority
JP
Japan
Prior art keywords
window material
light
semiconductor laser
window
laser element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003369862A
Other languages
Japanese (ja)
Inventor
Toshiro Furutaki
敏郎 古滝
Yoshihiro Konno
良博 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2003369862A priority Critical patent/JP2005136119A/en
Publication of JP2005136119A publication Critical patent/JP2005136119A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate alignment work of the propagating direction of light in a window material with the C-axis direction of the window material. <P>SOLUTION: In a sapphire window material, the window material of a hermetically sealed vessel 5 which holds a semiconductor laser element 4 is formed of a sapphire. When the window material 1 is fixed to the hermetically sealed vessel, the C-axis direction of the window material is set obliquely at the angle of a formula (1) α=sin<SP>-1</SP>(sinθ/n(λ)) to a normal of an optical surface of the window material, where θ is the oblique angle of the window material in a direction perpendicular to an optical path direction of an emitting light from the semiconductor laser element, and n(λ) is the refractive index of the window material to the wavelength λ of the emitted light, and a marking is formed on the window material so that the rear surface and the front surface of the window material in a direction of the optical path become different appearances. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は半導体レーザ素子を収容する気密封止容器に使用される窓材に関するものである。   The present invention relates to a window member used in an airtight sealed container that accommodates a semiconductor laser element.

近年発達の著しい光通信の分野では、半導体レーザ素子から励起された光を確実に伝搬するために、前記半導体レーザ素子を収容する気密封止容器の気密性が重要視されている。それは、前記気密封止容器の内部が高温高湿状態となると、その内部に収容された半導体レーザ素子の電極部が劣化することと、内部に侵入した水分が結露して半導体レーザ素子の光学特性が劣化し、半導体レーザ素子の寿命を保証できなくなるためである。   In the field of optical communication, which has been remarkably developed in recent years, in order to reliably propagate the light excited from the semiconductor laser element, the hermeticity of the hermetic container that houses the semiconductor laser element is regarded as important. When the inside of the hermetically sealed container is in a high-temperature and high-humidity state, the electrode part of the semiconductor laser element accommodated therein deteriorates, and moisture that has entered the inside condenses to cause optical characteristics of the semiconductor laser element. This is because the lifetime of the semiconductor laser element cannot be guaranteed.

ところで前記気密封止容器は、内部の半導体レーザ素子と、前記半導体レーザ素子から出射された光の伝搬経路部品である光ファイバとを、レンズを使用して光結合させる役割がある。前記気密封止容器の気密性を確保したままで、このような光学系を実現するために、前記気密封止容器には光透過型の窓材が使用されている。   By the way, the hermetic sealing container serves to optically couple an internal semiconductor laser element and an optical fiber, which is a propagation path component of light emitted from the semiconductor laser element, using a lens. In order to realize such an optical system while ensuring the hermeticity of the hermetic sealing container, a light transmission type window material is used for the hermetic sealing container.

このような窓材には、光透過性に優れ、且つ強度も高いことからサファイアが適しており、既に窓材にサファイアを使用した気密封止容器の筐体の基本構造とその製造方法が開示されている(例えば、特許文献1を参照。)。
特開平08−148594号(第3−4頁、第1図)
For such a window material, sapphire is suitable because of its excellent light transmission and high strength, and the basic structure of a case of an airtight sealed container using sapphire as the window material and its manufacturing method are disclosed. (For example, see Patent Document 1).
JP 08-148594 A (page 3-4, FIG. 1)

図9に上記の筐体構造の側断面図を示す。枠体100はFe-Ni-Co合金、Fe-Ni合金等の金属材料から成り、基体101の上面に半導体レーザ素子4が載置される載置部101aを囲繞するようにして銀ロウ等のロウ材を介して接合される。   FIG. 9 is a side sectional view of the above-described casing structure. The frame 100 is made of a metal material such as an Fe—Ni—Co alloy or an Fe—Ni alloy, and is made of silver brazing or the like so as to surround the mounting portion 101a on which the semiconductor laser element 4 is mounted on the upper surface of the base 101. Joined through brazing material.

更に、枠体100はその側部に貫通孔100aが設けられており、貫通孔100aには筒状の固定部材102が取り着けられている。固定部材102はその内側空所に光ファイバ103が半導体レーザ素子4と対向するようにして挿着され、光ファイバ103と半導体レーザ素子4との間で光結合を行い得るようになっている。   Further, the frame body 100 is provided with a through hole 100a on a side portion thereof, and a cylindrical fixing member 102 is attached to the through hole 100a. The fixing member 102 is inserted into the inner space so that the optical fiber 103 faces the semiconductor laser element 4 so that optical coupling can be performed between the optical fiber 103 and the semiconductor laser element 4.

又、枠体100の内側に位置する固定部材102の端部は所定の角度をもって斜めに形成されており、その傾斜面に図10に示すように、傾斜角θ(半導体レーザ素子4からの出射光の光路方向Xに垂直な方向に対する傾斜角度)を以て、サファイアから成る窓材1が固定されている。これによって窓材1の表面で反射した反射光が半導体レーザ素子4に戻ることを防止でき、半導体レーザ素子4の光の励起が不安定になることを防止して発振動作を安定に保つことが出来る。   Further, the end portion of the fixing member 102 located inside the frame 100 is formed obliquely with a predetermined angle, and an inclined angle θ (exit from the semiconductor laser element 4) is formed on the inclined surface as shown in FIG. The window material 1 made of sapphire is fixed with an inclination angle with respect to a direction perpendicular to the optical path direction X of the incident light. As a result, the reflected light reflected from the surface of the window material 1 can be prevented from returning to the semiconductor laser element 4, and the oscillation of the light of the semiconductor laser element 4 can be prevented from becoming unstable and the oscillation operation can be kept stable. I can do it.

また、このようなサファイアの単結晶は従来周知のチョクラルスキー法やベルヌイ法等の単結晶引き上げ方法によって形成されると共に、引き上げられたサファイアは引き上げ方向(C軸方向) に対し、結晶面方位が[0001]となるように垂直な方向に切断・研磨されて、所定の板状に作製される。   In addition, such a single crystal of sapphire is formed by a conventionally known single crystal pulling method such as the Czochralski method or the Bernoulli method, and the pulled sapphire has a crystal plane orientation with respect to the pulling direction (C-axis direction). Is cut and polished in a vertical direction so as to be [0001], and is made into a predetermined plate shape.

しかしながら、サファイアは半導体レーザ素子4からの出射光に対し所定の屈折率を有している。更に、結晶面方位を[0001]としたサファイアが固定部材102の端面に斜めに固定されるため、出射光が窓材1を透過して光ファイバ103に光結合する場合、前記出射光が窓材1内部で複屈折を起こして、光の一部のみが光ファイバ103に光結合されることとなる。その結果、光ファイバ103への光結合効率が悪化すると共に、前記出射光の伝送効率も悪化するという欠点を有していた。又、複屈折によって分離した光の間で位相差が生じ、この位相差に起因して、窓材1に本来設定されている消光比を低下させることにもなっていた。   However, sapphire has a predetermined refractive index for light emitted from the semiconductor laser element 4. Further, since sapphire having a crystal plane orientation of [0001] is obliquely fixed to the end face of the fixing member 102, when the emitted light passes through the window material 1 and is optically coupled to the optical fiber 103, the emitted light is transmitted through the window. Birefringence occurs inside the material 1, and only a part of the light is optically coupled to the optical fiber 103. As a result, the optical coupling efficiency to the optical fiber 103 is deteriorated, and the transmission efficiency of the emitted light is also deteriorated. In addition, a phase difference occurs between the lights separated by birefringence, and due to this phase difference, the extinction ratio originally set for the window material 1 is also lowered.

このような欠点を解決するため、光の光路方向Xに垂直な方向に対する窓材1の傾斜角をθ、光路方向XとサファイアのC軸方向とが成す角度をθ1、半導体レーザ素子4の出射光の波長λに対する窓材1の屈折率をn(λ)とするとき、窓材1を

Figure 2005136119

を満足するように固定することによって、スネルの法則に従って屈折する出射光の窓材1内部における伝搬方向と、窓材1のC軸方向とを一致させて、光の複屈折を生じさせない、即ち光の偏光面が回転しないようにする窓材固定構造が提案されている。サファイアのように一軸性の単結晶では、光の伝搬方向とC軸方向とを一致させると複屈折は起きなくなり、光の偏光面が回転することなく維持される。 In order to solve these disadvantages, the inclination angle of the window member 1 with respect to the direction perpendicular to the optical path direction X of light is θ, the angle formed by the optical path direction X and the C-axis direction of sapphire is θ1, and the output of the semiconductor laser device 4 is When the refractive index of the window material 1 with respect to the wavelength λ of the incident light is n (λ), the window material 1 is
Figure 2005136119

Is fixed so that the propagation direction of the outgoing light refracted according to Snell's law in the window material 1 and the C-axis direction of the window material 1 coincide with each other, so that no birefringence of light occurs. A window material fixing structure that prevents the polarization plane of light from rotating has been proposed. In a uniaxial single crystal such as sapphire, birefringence does not occur when the light propagation direction coincides with the C-axis direction, and the polarization plane of light is maintained without rotating.

このように複屈折が防止されると、全ての光がそのまま光ファイバ103に光結合されるようになり、その結果、光ファイバ103への光結合効率が良好になると共に伝送効率を優れたものとすることが出来る。又、前記伝搬方向とC軸方向とが一致されるため、複屈折による位相差が発生しなくなり、窓材1の消光比の低下を防止することも可能となる。   When birefringence is prevented in this way, all light is optically coupled to the optical fiber 103 as it is. As a result, the optical coupling efficiency to the optical fiber 103 is improved and the transmission efficiency is excellent. It can be. Further, since the propagation direction and the C-axis direction coincide with each other, a phase difference due to birefringence does not occur, and it is possible to prevent a reduction in the extinction ratio of the window material 1.

しかしながら窓材を取り付ける際に、窓材内部の光の伝搬方向と窓材のC軸方向とを一致させようとしても、目視ではC軸方向を確認することが出来ないので、十分な取付精度を以て窓材を固定することは困難であった。従って、窓材を固定箇所にあてがいながら光を透過させ、複屈折に起因した位相差の変化を確認しながら最適位置を出さなければならず、作業が煩雑になって時間も要していた。更に、最適位置が導き出されたとしても、その位置で一旦仮止めを行わねばならず作業工程が冗長になっていた。   However, when attaching the window material, even if it is attempted to make the light propagation direction inside the window material coincide with the C-axis direction of the window material, the C-axis direction cannot be visually confirmed. It was difficult to fix the window material. Therefore, it is necessary to transmit light while applying the window material to the fixed portion and to find the optimum position while confirming the change in the phase difference caused by the birefringence, which complicates the work and takes time. Further, even if the optimum position is derived, the temporary fixing has to be performed once at that position, and the work process becomes redundant.

本発明は上記課題に鑑みてなされたものであり、その目的は、窓材内部の光の伝搬方向と窓材のC軸方向との一致作業が容易に行える気密封止容器用の窓材を提供する事である。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a window material for a hermetically sealed container that can easily match the light propagation direction inside the window material with the C-axis direction of the window material. It is to provide.

本発明の請求項1記載の発明は、半導体レーザ素子を収容している気密封止容器の窓材において、前記窓材がサファイアで形成されると共に、前記窓材が前記気密封止容器に固定される際、前記半導体レーザ素子から出射される光の光路方向に垂直な方向に対する窓材の傾斜角をθとし、前記光の波長λに対する前記窓材の屈折率がn(λ)であるとき、前記窓材のC軸方向が前記窓材の光学面の法線に対して、

Figure 2005136119

の角度で斜めに設定されると共に、前記光の光路方向における前記窓材の裏面と表面とで異なる外観となるようにマーキングが形成されることを特徴とする窓材である。 According to a first aspect of the present invention, in the window material of the hermetic sealing container containing the semiconductor laser element, the window material is formed of sapphire and the window material is fixed to the hermetic sealing container. When the inclination angle of the window material with respect to the direction perpendicular to the optical path direction of the light emitted from the semiconductor laser element is θ, and the refractive index of the window material with respect to the wavelength λ of the light is n (λ) , The C-axis direction of the window material is normal to the optical surface of the window material,
Figure 2005136119

The window material is characterized in that markings are formed so as to have different appearances on the back surface and the front surface of the window material in the optical path direction of the light.

本発明の窓材に依れば、光の光路方向における窓材の裏面と表面とで異なる外観となるようにマーキングを形成したので、C軸方向を窓材の光学面の法線に対し斜めに設定した窓材を、裏表間違うこと無く気密封止容器に固定することが可能となる。マーキングで裏面と表面で外観を異ならせることにより、目視によって前記法線に対するC軸の傾斜方向を判別することが可能となる。更に、窓材内部における光の伝搬方向とC軸方向とが一致するように、予め光学面とC軸との傾斜角度を設定することにより、光の複屈折が発生しない窓材の最適位置出しが容易になる。この結果、窓材の取付精度を容易に高めることが可能になると共に、作業の簡略化と作業時間の短縮を図ることが出来る。   According to the window material of the present invention, since the marking is formed so that the back surface and the front surface of the window material have different appearances in the optical path direction of light, the C-axis direction is oblique to the normal line of the optical surface of the window material. It becomes possible to fix the window material set to 1 to the hermetically sealed container without making a mistake on both sides. By making the appearance different between the back surface and the front surface by marking, it is possible to visually determine the inclination direction of the C axis with respect to the normal line. Further, by setting the inclination angle between the optical surface and the C axis in advance so that the light propagation direction inside the window material coincides with the C axis direction, the optimum positioning of the window material where no light birefringence occurs is determined. Becomes easier. As a result, the mounting accuracy of the window material can be easily increased, and the work can be simplified and the work time can be shortened.

以下、図1〜図4を参照しながら、本発明に係る気密封止容器用の窓材について説明する。図1は半導体レーザ素子収容用の気密封止容器に使用される窓材の平面図であり、図2は図1の窓材の左側面図であり、図3は図1及び図2の窓材を気密封止容器に固定した状態を模式的に示す部分側断面図である。なお、図9及び図10で示した従来の気密封止容器と同一箇所には同一番号を付し、重複する説明は省略若しくは簡略化して記述する。   Hereinafter, the window material for an airtight container according to the present invention will be described with reference to FIGS. 1 is a plan view of a window member used in an airtight sealing container for housing a semiconductor laser device, FIG. 2 is a left side view of the window member of FIG. 1, and FIG. 3 is a window of FIGS. It is a fragmentary sectional side view which shows the state which fixed the material to the airtight sealing container typically. In addition, the same number is attached | subjected to the same location as the conventional airtight sealing container shown in FIG.9 and FIG.10, and the overlapping description is abbreviate | omitted or simplified and described.

本発明に係る窓材1はサファイアの単結晶で形成されると共に、そのC軸方向は図2中の矢印Cで示すように、窓材1の光学面1a、1bの法線Hに対して角度αだけ傾斜するように斜めに設定されている。図4に窓材1のサファイア単結晶の面方位を示すユニットセル図を示す。サファイアは正確には菱面体構造を有しているが、この図に示すように六方晶系で近似できる。   The window material 1 according to the present invention is formed of a single crystal of sapphire, and its C-axis direction is relative to the normal H of the optical surfaces 1a and 1b of the window material 1 as indicated by an arrow C in FIG. The angle is set so as to be inclined by the angle α. FIG. 4 shows a unit cell diagram showing the plane orientation of the sapphire single crystal of the window material 1. Sapphire has a rhombohedral structure, but can be approximated by a hexagonal system as shown in this figure.

サファイアは従来周知のチョクラルスキー法やベルヌイ法等の単結晶引き上げ方法によって形成される。更に、C軸方向(矢印C)に垂直なC面([0001]面)に対して角度αだけ傾けて、サファイア単結晶を切断(その切断面6を図4に斜線で示す)して板状に切り出し、切断面6を研磨することによって光学面1a、1bにして窓材1を形成する。切断面6をC軸方向に対して角度αだけ傾けることによって、切断面6の法線も角度αだけC軸方向に対して傾く。なお、C軸方向(矢印C)に対して角度αだけ傾斜する切断面6を形成する方向は任意に設定可能であり、図4は一例に過ぎない。このとき切断面6の法線に対するC軸方向の傾斜角度αは、図3より窓材1が気密封止容器5の端面に固定される際、半導体レーザ素子4から出射される光の光路方向(矢印X方向)に垂直な方向に対する窓材1の傾斜角をθ、前記光の波長λに対する窓材1の屈折率をn(λ)とすると、

Figure 2005136119

に設定される。法線Hに対しC軸方向を角度αを以て斜めに設定して窓材1を形成し、更に、傾斜角θで斜めに気密封止容器5の一端にこの窓材1を固定したとき、光学面1aで屈折して窓材1内部を伝搬する光の伝搬方向とC軸方向とを一致させることが出来る(図3参照)。つまり、
Figure 2005136119

を満足するように、気密封止容器5の斜めに傾斜している一端に窓材1が取り付けられる。但し、θ1は光の光路方向(矢印X)とサファイアのC軸方向(矢印C)とが成す角度である。窓材1は、Au-Snロウ材によって気密封止容器5に接合される。 Sapphire is formed by a conventionally known single crystal pulling method such as Czochralski method or Bernoulli method. Further, the sapphire single crystal is cut by tilting it by an angle α with respect to the C plane ([0001] plane) perpendicular to the C-axis direction (arrow C) (the cut plane 6 is indicated by hatching in FIG. 4). The window material 1 is formed into optical surfaces 1a and 1b by cutting into a shape and polishing the cut surface 6. By tilting the cut surface 6 with respect to the C-axis direction by an angle α, the normal line of the cut surface 6 is also tilted with respect to the C-axis direction by an angle α. In addition, the direction which forms the cut surface 6 which inclines only the angle (alpha) with respect to a C-axis direction (arrow C) can be set arbitrarily, and FIG. 4 is only an example. At this time, the inclination angle α in the C-axis direction with respect to the normal line of the cut surface 6 is the optical path direction of the light emitted from the semiconductor laser element 4 when the window material 1 is fixed to the end face of the hermetic sealing container 5 from FIG. When the inclination angle of the window member 1 with respect to the direction perpendicular to the arrow X direction is θ, and the refractive index of the window member 1 with respect to the wavelength λ of the light is n (λ),
Figure 2005136119

Set to When the window material 1 is formed by setting the C-axis direction obliquely with respect to the normal H at an angle α, and the window material 1 is fixed to one end of the hermetic sealing container 5 at an inclination angle θ, The propagation direction of the light refracted on the surface 1a and propagating through the window material 1 can be matched with the C-axis direction (see FIG. 3). That means
Figure 2005136119

The window material 1 is attached to one end of the hermetic sealing container 5 that is inclined obliquely. Here, θ1 is an angle formed by the optical path direction of light (arrow X) and the sapphire C-axis direction (arrow C). The window material 1 is joined to the hermetically sealed container 5 by an Au—Sn brazing material.

以上のような構成とすることにより、半導体レーザ素子4から出射した光は窓材1を透過中に複屈折を起こすこと無く、全ての光が図示しない光ファイバへと光結合される。この結果、光ファイバへの光結合効率が良好になると、共に光の伝送効率が優れたものとなる。更に、複屈折が防止されるため複屈折位相差が発生せず、窓材1の消光比の低下を防止できる。   With the above configuration, the light emitted from the semiconductor laser element 4 is optically coupled to an optical fiber (not shown) without causing birefringence during transmission through the window material 1. As a result, when the optical coupling efficiency to the optical fiber is improved, the light transmission efficiency is improved. Furthermore, since birefringence is prevented, a birefringence phase difference does not occur, and a reduction in the extinction ratio of the window material 1 can be prevented.

この設定角度αからのずれ角度をγとした場合、その影響はsinγで現れる。γ:3度以下で前記影響を5%程度に納めることが可能であり、γ:0.5度以下で前記影響を1%以下にすることが出来る。このずれ角度γは窓材1の消光比に直接影響するのでγ:0.2度以下に抑えることが好ましい。   When the deviation angle from the set angle α is γ, the effect appears as sin γ. When γ is 3 degrees or less, the influence can be reduced to about 5%, and when γ is 0.5 degrees or less, the influence can be made 1% or less. Since the shift angle γ directly affects the extinction ratio of the window material 1, it is preferable to suppress γ: 0.2 degrees or less.

窓材1には2つのオリフラ2及び3を形成する。第1のオリフラ2は切断面6に対し垂直方向に形成される。オリフラ2の形成面は特に規定しない。そして、第2のオリフラ3がオリフラ2に対し垂直方向に形成される。図1に示すように、オリフラ3はオリフラ2と判別がつくように大きさが異なるように設定され、第2のオリフラ3を第1のオリフラ2より小さくした一例を示す。   Two orientation flats 2 and 3 are formed on the window material 1. The first orientation flat 2 is formed in a direction perpendicular to the cut surface 6. The formation surface of the orientation flat 2 is not particularly defined. The second orientation flat 3 is formed in a direction perpendicular to the orientation flat 2. As shown in FIG. 1, the orientation flat 3 is set to have a size different from that of the orientation flat 2, and the second orientation flat 3 is smaller than the first orientation flat 2.

このように大きさが異なるオリフラ2、3を2箇所形成することにより、図1に示すように前記光の光路方向から窓材1を見たときにオリフラ2に対してオリフラ3が左右どちらに形成されているかと云うように、光の光路方向における窓材1の外観を裏面・表面とでそれぞれ異なるように形成することが出来る。従って、オリフラ2、3をマーキングにして窓材1の裏表の判別を目視で確認することが可能になるため、引き上げ単結晶の切り出しの段階で窓材1内部の光の伝搬方向と一致するようにC軸方向を前記法線Hに対し角度αを以て斜めに設定した窓材1を、裏表間違えること無く気密封止容器5に固定することが可能となる。従って、気密封止容器5への窓材1の取付精度を容易に高めることが可能になると共に作業の簡略化と作業時間の短縮を図ることが出来る。   By forming two orientation flats 2 and 3 having different sizes in this way, as shown in FIG. 1, when the window material 1 is viewed from the optical path direction of the light, the orientation flat 3 is located on either side of the orientation flat 2. As can be said, the appearance of the window member 1 in the light path direction can be formed differently on the back surface and the front surface. Accordingly, since the orientation flats 2 and 3 can be marked so that the front and back sides of the window material 1 can be visually confirmed, the light propagation direction inside the window material 1 coincides with that at the stage of cutting the pulled single crystal. In addition, the window material 1 in which the C-axis direction is set obliquely with respect to the normal H with respect to the normal line H can be fixed to the hermetic sealing container 5 without making a mistake in the front and back sides. Accordingly, it is possible to easily increase the accuracy of attaching the window material 1 to the hermetic sealing container 5 and to simplify the operation and shorten the operation time.

又、窓材1の法線Hを中心軸とした回転方向の取付精度に関しては、前記の通り法線Hに対してC軸方向を傾斜させて設定しているので、法線Hを中心軸とした回転は影響を及ぼす。従って、図1に示すようにC軸投影方向(矢印T)と、窓材1の傾斜方向の投影線tとのずれ角度βは小さい方が望ましい。ずれ角度βの消光比に与える影響eは、

Figure 2005136119

となる。角度βの目安として、α×βが90以下で影響eを5%程度に納めることが可能となり、α×βが16以下で前記影響eを1%以下にすることが出来る。例えば、角度α:4度の場合、影響eを1%以下にするためには、数5よりβを4度以下とすることが必要になる。通常、傾斜角度αは8度程度なので、前記回転による影響eを1%程度に軽減するには角度βは約3度程度と導出される。 Further, the mounting accuracy in the rotation direction about the normal line H of the window material 1 is set by inclining the C-axis direction with respect to the normal line H as described above. Rotation that has an effect. Therefore, as shown in FIG. 1, it is desirable that the deviation angle β between the C-axis projection direction (arrow T) and the projection line t in the inclination direction of the window material 1 is small. The effect e of the deviation angle β on the extinction ratio is
Figure 2005136119

It becomes. As a guideline for the angle β, it is possible to make the influence e about 5% when α × β is 90 or less, and to make the influence e 1% or less when α × β is 16 or less. For example, in the case where the angle α is 4 degrees, in order to make the influence e 1% or less, β needs to be 4 degrees or less from Equation 5. Since the inclination angle α is usually about 8 degrees, the angle β is derived to be about 3 degrees in order to reduce the influence e caused by the rotation to about 1%.

なお、本形態では2箇所のオリフラを窓材の裏表判別用のマーキングとして形成した例を説明したが、本発明はその技術的思想に基づき種々変更可能であり、例えば図5に示すように、大きさの異なる2つのノッチ7、8をマーキングにしても良い。   In the present embodiment, an example in which two orientation flats are formed as markings for discriminating the front and back surfaces of the window material has been described, but the present invention can be variously modified based on its technical idea, for example, as shown in FIG. Two notches 7 and 8 having different sizes may be marked.

又は、図6と図7に示すように窓材1に形成するオリフラ2を一つとし、そのオリフラ2における光学面1a側のみに面取り2aを施すことにより窓材1の裏表判別用のマーキングとしても良いし、図8に示すように光学面1aのみにレーザマーキング9を施しても良い。更にマーキングの別形態として、2つの光学面1a、1bのうち、どちらかの面上のみにARコートを施してこれを窓材の裏表判別用のマーキングとしても良い。   Alternatively, as shown in FIGS. 6 and 7, one orientation flat 2 is formed on the window material 1, and the chamfering 2a is applied only to the optical surface 1a side of the orientation flat 2 as a marking for discriminating the front and back of the window material 1. Alternatively, as shown in FIG. 8, laser marking 9 may be applied only to the optical surface 1a. Furthermore, as another form of marking, an AR coat may be applied only on one of the two optical surfaces 1a and 1b, and this may be used as a marking for discriminating the front and back of the window material.

本発明の窓材を、光通信で使用されている光モジュールの半導体レーザ素子気密封止容器に適用することにより、複屈折を防止して容易に窓材の消光比を向上させることができる。   By applying the window material of the present invention to the semiconductor laser element hermetically sealed container of an optical module used in optical communication, birefringence can be prevented and the extinction ratio of the window material can be easily improved.

半導体レーザ素子収容用の気密封止容器に使用される窓材の平面図。The top view of the window material used for the airtight sealing container for a semiconductor laser element accommodation. 図1の窓材の左側面図。The left view of the window material of FIG. 図1及び図2の窓材を気密封止容器に固定した状態を模式的に示す部分側断面図。The partial sectional side view which shows typically the state which fixed the window material of FIG.1 and FIG.2 to the airtight sealing container. 窓材のサファイア単結晶の面方位を示すユニットセル図。The unit cell figure which shows the surface orientation of the sapphire single crystal of a window material. 別形態の裏表判別用のマーキングを形成された窓材を示す平面図。The top view which shows the window material in which the marking for back-and-front discrimination of another form was formed. (a) 更に別形態の裏表判別用のマーキングを形成された窓材を示す平面図。 (b) 同図(a)の窓材を別の光学面からみた平面図。(a) The top view which shows the window material in which the marking for back-and-front discrimination of another form was formed. (b) The top view which looked at the window material of the figure (a) from another optical surface. 図6(a)の窓材の左側面図。The left view of the window material of Fig.6 (a). (a) 更に別形態の裏表判別用のマーキングを形成された窓材を示す平面図。 (b) 同図(a)の窓材を別の光学面からみた平面図。(a) The top view which shows the window material in which the marking for back-and-front discrimination of another form was formed. (b) The top view which looked at the window material of the figure (a) from another optical surface. 従来の気密封止容器の筐体構造を示す側断面図。The sectional side view which shows the housing structure of the conventional airtight sealing container. 図9に示す気密封止容器に固定されている筒状固定部材と窓材を形成するサファイアのC軸方向との関係を説明するための図。The figure for demonstrating the relationship with the C-axis direction of the cylindrical fixing member currently fixed to the airtight sealing container shown in FIG. 9, and the sapphire which forms a window material.

符号の説明Explanation of symbols

1 窓材
2、3 オリフラ
4 半導体レーザ素子
5 気密封止容器
6 切断面
7、8 ノッチ
9 レーザマーキング
DESCRIPTION OF SYMBOLS 1 Window material 2, 3 Orientation flat 4 Semiconductor laser element 5 Airtight sealing container 6 Cut surface 7, 8 Notch 9 Laser marking

Claims (1)

半導体レーザ素子を収容している気密封止容器の窓材において、
前記窓材がサファイアで形成されると共に、前記窓材が前記気密封止容器に固定される際、前記半導体レーザ素子から出射される光の光路方向に垂直な方向に対する窓材の傾斜角をθとし、前記光の波長λに対する前記窓材の屈折率がn(λ)であるとき、前記窓材のC軸方向が前記窓材の光学面の法線に対して、
Figure 2005136119

の角度で斜めに設定されると共に、前記光の光路方向における前記窓材の裏面と表面とで異なる外観となるようにマーキングが形成されることを特徴とする窓材。
In the window material of the hermetically sealed container containing the semiconductor laser element,
When the window material is formed of sapphire and the window material is fixed to the hermetic sealing container, an inclination angle of the window material with respect to a direction perpendicular to an optical path direction of light emitted from the semiconductor laser element is θ. And when the refractive index of the window material with respect to the wavelength λ of the light is n (λ), the C-axis direction of the window material is normal to the optical surface of the window material,
Figure 2005136119

The window material is characterized in that the marking is formed so as to be different from the back surface and the front surface of the window material in the light path direction.
JP2003369862A 2003-10-30 2003-10-30 Sapphire window material Pending JP2005136119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003369862A JP2005136119A (en) 2003-10-30 2003-10-30 Sapphire window material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003369862A JP2005136119A (en) 2003-10-30 2003-10-30 Sapphire window material

Publications (1)

Publication Number Publication Date
JP2005136119A true JP2005136119A (en) 2005-05-26

Family

ID=34647041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003369862A Pending JP2005136119A (en) 2003-10-30 2003-10-30 Sapphire window material

Country Status (1)

Country Link
JP (1) JP2005136119A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249751A (en) * 2007-03-29 2008-10-16 Fujitsu Ltd Mirror device and light device
US7580599B2 (en) 2007-06-22 2009-08-25 Fujitsu Limited Optical switch and MEMS package
JP2021105526A (en) * 2019-12-26 2021-07-26 リオン株式会社 Flow cell and particle measurement device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511294A (en) * 1991-04-12 1993-01-19 Matsushita Electric Ind Co Ltd Optical crystalline body and solid-state laser device for exciting semiconductor laser constituted by using this body
JPH08148594A (en) * 1994-11-25 1996-06-07 Kyocera Corp Optical-semiconductor-element storing package
JPH08152658A (en) * 1994-11-30 1996-06-11 Sony Corp Production of optical crystal element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511294A (en) * 1991-04-12 1993-01-19 Matsushita Electric Ind Co Ltd Optical crystalline body and solid-state laser device for exciting semiconductor laser constituted by using this body
JPH08148594A (en) * 1994-11-25 1996-06-07 Kyocera Corp Optical-semiconductor-element storing package
JPH08152658A (en) * 1994-11-30 1996-06-11 Sony Corp Production of optical crystal element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249751A (en) * 2007-03-29 2008-10-16 Fujitsu Ltd Mirror device and light device
US7706049B2 (en) 2007-03-29 2010-04-27 Fujitsu Limited Mirror device and optical apparatus
JP4714175B2 (en) * 2007-03-29 2011-06-29 富士通株式会社 Mirror device and optical device
US7580599B2 (en) 2007-06-22 2009-08-25 Fujitsu Limited Optical switch and MEMS package
JP2021105526A (en) * 2019-12-26 2021-07-26 リオン株式会社 Flow cell and particle measurement device
JP7203006B2 (en) 2019-12-26 2023-01-12 リオン株式会社 Flow cell and particle counter

Similar Documents

Publication Publication Date Title
JP2007086472A (en) Cap for semiconductor laser, and optical module
EP1263054B1 (en) Hermetically sealing package for optical semiconductor device and its use in an optical semiconductor module
US7585120B2 (en) Optical device and method of manufacturing the same, optical device adaptor, and optical component stopper
JP2007071912A (en) Optical receptacle and optical module with same
JP2005136119A (en) Sapphire window material
JPH02136819A (en) Method for adjusting rotating directional position of optical isolator in optical isolator incorporating type semiconductor laser module
JP7163478B2 (en) Optical waveguides, planar optical circuits and light source modules
US6759132B2 (en) Method for the manufacture of electromagnetic radiation reflecting devices
KR100405289B1 (en) Optical module
JPH10133146A (en) Capillary type optical isolator
JPH09211269A (en) Light emission module
JP3809724B2 (en) Optical isolator module and optical isolator parts
JP4262136B2 (en) Optical isolator module with transparent window and optical element module
JP2008268892A (en) Optical isolator module and optical element module using the same
JP2005128267A (en) Optical fiber collimator and its manufacturing method
JP3973975B2 (en) Optical isolator
JP3904991B2 (en) Optical receptacle and optical module using the same
JP3599917B2 (en) Semiconductor laser device
JP4150310B2 (en) Receptacle with optical isolator
JP2000028852A (en) Polarization plane maintaining fiber, ld module and its assembly method
JP2008003189A (en) Optical fiber integrated optical isolator
JP2003207693A (en) Photosemiconductor module
JP2004280088A (en) Optical fiber assembly component for light emitting element and light emitting element module using the same
JP2005242314A (en) Optical receptacle having optical isolator and optical module using the optical receptacle
JP2006011019A (en) Light terminal with optical isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100510