JP2005135861A - Nonaqueous electrolyte electrochemical cell - Google Patents

Nonaqueous electrolyte electrochemical cell Download PDF

Info

Publication number
JP2005135861A
JP2005135861A JP2003373179A JP2003373179A JP2005135861A JP 2005135861 A JP2005135861 A JP 2005135861A JP 2003373179 A JP2003373179 A JP 2003373179A JP 2003373179 A JP2003373179 A JP 2003373179A JP 2005135861 A JP2005135861 A JP 2005135861A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
transition metal
lithium
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003373179A
Other languages
Japanese (ja)
Other versions
JP2005135861A5 (en
Inventor
Koko Ryu
興江 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2003373179A priority Critical patent/JP2005135861A/en
Publication of JP2005135861A publication Critical patent/JP2005135861A/en
Publication of JP2005135861A5 publication Critical patent/JP2005135861A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode activator made of transition metal oxide excellent in discharging capacity, charging and discharging potential, and cycle performance, since cobalt oxide is not always an ideal candidate of a cheap negative electrode activator having high energy density because of high discharge potential and a resource problem in spite of its excellent cycle performance. <P>SOLUTION: On the manufacturing process of the negative electrode activator for the nonaqueous electrolyte electrochemical cell, an oxide of 3d transition metal is manufactured by applying a heat treatment of not lower than 350°C and not higher than 600°C to a kind of oxyhydroxide of the metal chosen from 3d transition metal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は非水電解質電気化学セル用負極活物質の製造方法に関するものである。   The present invention relates to a method for producing a negative electrode active material for a non-aqueous electrolyte electrochemical cell.

近年、携帯電話、ビデオカメラ等のポータブル電子機器の発達にともない、高性能の電池の開発が望まれている。正極にはリチウム遷移金属複合酸化物、負極には黒鉛、非晶質炭素を用いたリチウム電池は作動電圧が高く、エネルギー密度が高い非水電解質電池として広く実用化されている。   In recent years, with the development of portable electronic devices such as mobile phones and video cameras, development of high-performance batteries is desired. Lithium batteries using lithium transition metal composite oxide for the positive electrode and graphite and amorphous carbon for the negative electrode are widely put into practical use as non-aqueous electrolyte batteries with high operating voltage and high energy density.

また、炭素材料の容量より大きい理論容量を持つリチウム金属およびリチウム合金の研究が盛んにおこなわれている。しかしながら、リチウム金属またはリチウム合金は充放電にともなう体積変化が大きく、サイクル寿命および安全性の面で、問題点を多く有しているために、金属リチウム、リチウム合金を用いたリチウム二次電池がまだ商品化されていない。   Research on lithium metals and lithium alloys having a theoretical capacity larger than that of carbon materials has been actively conducted. However, since lithium metal or lithium alloy has a large volume change due to charge and discharge, and has many problems in terms of cycle life and safety, lithium secondary batteries using metal lithium and lithium alloys are not suitable. Not yet commercialized.

一方、遷移金属酸化物が正極活物質として使用されているが、負極活物質にも使用できると報告されている。特許文献1には、酸化鉄、FeO、Fe、Fe、酸化コバルト、CoO、CoおよびCoを負極活物質としての技術を公開している。また、特許文献2には、種々のリチウム含有またはリチウムを含有しない遷移金属の酸化物を負極活物質に用いた技術、例えばLi1−q(ただし、Mは遷移金属を表し、xは0.17〜11.25の範囲にあり、qは0〜0.7の範囲にあり、そしてjは1.3〜4.1の範囲にある)で表されたリチウム含有遷移金属酸化物およびその製造技術を開示している。さらに、特許文献3には、遷移金属酸化物負極活物質の粒径、焼成条件および電気化学的にリチウムイオンを挿入する技術を公開している。 On the other hand, although transition metal oxides are used as positive electrode active materials, it has been reported that they can also be used as negative electrode active materials. Patent Document 1 discloses a technique using iron oxide, FeO, Fe 2 O 3 , Fe 3 O 4 , cobalt oxide, CoO, Co 2 O 3, and Co 3 O 4 as a negative electrode active material. Patent Document 2 discloses a technique using various lithium-containing or non-lithium-containing transition metal oxides as a negative electrode active material, for example, Li x M q V 1-q O j (where M is a transition metal). And x is in the range of 0.17 to 11.25, q is in the range of 0 to 0.7, and j is in the range of 1.3 to 4.1). Disclosed are metal oxides and techniques for their production. Further, Patent Document 3 discloses a technology for inserting lithium ions electrochemically, with the particle size of the transition metal oxide negative electrode active material, the firing conditions, and electrochemically.

また、非特許文献1には、遷移金属酸化物CoO、Co、NiO、FeOおよびCuOの負極活物質としての特性や反応メカニズムが示されている。これらの酸化物が700mAh/g以上の放電容量を示し、充電にともなってLiOの生成およびナノーサイズの遷移金属が確認された。また、コバルト酸化物のサイクル性能が良好であった。 Non-Patent Document 1 discloses the characteristics and reaction mechanism of transition metal oxides CoO, Co 3 O 4 , NiO, FeO, and Cu 2 O as negative electrode active materials. These oxides showed a discharge capacity of 700 mAh / g or more, and generation of Li 2 O and nano-sized transition metals were confirmed with charging. Further, the cycle performance of the cobalt oxide was good.

さらに、
“Electrochemical and Solid−state Letters”第5巻A70−A73ページにメカニカルミーリング法でリチウム含有遷移金属酸化物および硫化物を作製する技術を記述している。得られていた混合物の最大初期放電容量が600 mAhg−1以上であるが、サイクル性能が劣ったものでした。
further,
“Electrochemical and Solid-state Letters”, Vol. 5, pages A70-A73, describes a technique for producing lithium-containing transition metal oxides and sulfides by mechanical milling. The maximum initial discharge capacity of the obtained mixture was 600 mAhg-1 or more, but the cycle performance was inferior.

特開平3−291862号公報JP-A-3-291862 特許第3242751号公報Japanese Patent No. 3242751 特開平7−14581号公報JP-A-7-14581 Nature 第407巻、P496−499(2000)Nature 407, P496-499 (2000) Electrochemical and Solid−state Letters、第5巻、PA70−A73(2002)Electrochemical and Solid-state Letters, Vol. 5, PA70-A73 (2002)

コバルト酸化物が優れたサイクル性能を示していたが、放電電位が高く、且つコバルトの資源問題が存在するため、高エネルギー密度、安価な負極活物質として理想な候補ではない。NiOの充放電挙動がCoOと似ているが、サイクル性能が劣った。マンガン酸化物の充放電特性については開示されなかった。   Although cobalt oxide showed excellent cycle performance, the discharge potential is high and the resource problem of cobalt exists, so it is not an ideal candidate as a high energy density, inexpensive negative electrode active material. The charge / discharge behavior of NiO is similar to that of CoO, but the cycle performance is inferior. The charge / discharge characteristics of manganese oxide were not disclosed.

そこで、本発明は放電容量、充放電電位およびサイクル性能ともに優れている遷移金属酸化物負極活物質を提供することを目的としている。   Therefore, an object of the present invention is to provide a transition metal oxide negative electrode active material excellent in discharge capacity, charge / discharge potential, and cycle performance.

われわれ鋭意研究した結果、種々遷移金属の固溶している酸化物が優れた放電電位、サイクル性能および放電容量を有していることを見出した。   As a result of our extensive research, it was found that oxides in which various transition metals are dissolved have excellent discharge potential, cycle performance and discharge capacity.

請求項1の発明は、非水電解質電気化学セル用負極活物質の製造方法において、3d遷移金属から選ばれた少なくとも一種金属のオキシ水酸化物を350℃以上、600℃以下の温度で熱処理して、前記3d遷移金属の酸化物を作製することを特徴とする。   According to a first aspect of the present invention, in the method for producing a negative electrode active material for a non-aqueous electrolyte electrochemical cell, an oxyhydroxide of at least one metal selected from 3d transition metals is heat-treated at a temperature of 350 ° C. or higher and 600 ° C. or lower. Thus, an oxide of the 3d transition metal is produced.

請求項2の発明は、上記非水電解質電気化学セル用負極活物質の製造方法において、3d遷移金属の酸化物が、ニッケルとコバルトとマンガンとの三元素が固溶した酸化物であることを特徴とする。   According to a second aspect of the present invention, in the method for producing a negative electrode active material for a non-aqueous electrolyte electrochemical cell, the oxide of the 3d transition metal is an oxide in which three elements of nickel, cobalt, and manganese are dissolved. Features.

請求項3の発明は、上記非水電解質電気化学セル用負極活物質の製造方法において、3d遷移金属の酸化物がリチウムを含有することを特徴とする。   The invention of claim 3 is characterized in that, in the above method for producing a negative electrode active material for a non-aqueous electrolyte electrochemical cell, the oxide of the 3d transition metal contains lithium.

請求項4の発明は、請求項3の非水電解質電気化学セル用負極活物質の製造方法において、有機電解液中で、リチウム基準の電位範囲が0〜0.3Vまで電気化学的に還元する工程を経て作製され、CuKα線を用いたX線回折法で5°<2θ<25°および40°<2θ<50°に現れる回折ピークの半値幅が5°(2θ)以上であることを特徴とする。   According to a fourth aspect of the present invention, in the method for producing a negative electrode active material for a nonaqueous electrolyte electrochemical cell according to the third aspect, in an organic electrolyte, the potential range based on lithium is electrochemically reduced to 0 to 0.3 V. The half-width of the diffraction peak produced through the process and appearing at 5 ° <2θ <25 ° and 40 ° <2θ <50 ° by the X-ray diffraction method using CuKα rays is 5 ° (2θ) or more. And

請求項1の発明によれば、化合物中の原子酸素の含有量が多く、水素の含有量の少ない3d遷移金属酸化物が得られる、このように作製した3d遷移金属酸化物の活性酸素含有量が高く、式1に示したように、3d遷移金属酸化物の放電容量が活性酸素の含有量に比例するので、オキシ水酸化物から作製した3d遷移金属酸化物の放電容量が高いものである。そして、中温で熱処理しているので、活性酸素の損失が少なく、最適な粒径および結晶状態があるので、優れたサイクル性能が期待できる。   According to the invention of claim 1, a 3d transition metal oxide having a high atomic oxygen content and a low hydrogen content in a compound is obtained. Since the discharge capacity of the 3d transition metal oxide is proportional to the active oxygen content as shown in Equation 1, the discharge capacity of the 3d transition metal oxide prepared from oxyhydroxide is high. . And since it heat-processes at medium temperature, since there is little loss of active oxygen and there exists an optimal particle size and crystal state, the outstanding cycling performance can be anticipated.

Me+2yLi+2ye=xMe+yLiO・・・・(式1)
但し、式1において、Meは3d遷移金属を表すものとする。
Me x O y + 2yLi + 2ye = xMe + yLi 2 O (formula 1)
However, in Formula 1, Me shall represent a 3d transition metal.

請求項2の発明によれば、ニッケルとコバルトとマンガンの三元素が固溶している酸化物を作製でき、その放電電位が連続であり、平均電位の低い負極活物質が得られる。   According to the invention of claim 2, an oxide in which the three elements of nickel, cobalt, and manganese are solid-solved can be produced, and a negative electrode active material having a continuous discharge potential and a low average potential can be obtained.

請求項3の発明によれば、リチウムソースが存在するため、リチウムを含有しない正極と組み合わせて使用できる。   According to the invention of claim 3, since a lithium source is present, it can be used in combination with a positive electrode not containing lithium.

請求項4の発明によれば、電気化学的に還元して得られたリチウム含有遷移金属酸化物がアモルファス化し、このような複合酸化物がサイクル性能の向上が期待される。   According to the invention of claim 4, the lithium-containing transition metal oxide obtained by electrochemical reduction becomes amorphous, and such a composite oxide is expected to improve the cycle performance.

このように、本発明により、高エネルギー密度、長いサイクル寿命のある非水電解質電気化学セル用負極材料が得られる。本発明の製造方法で製造した3d遷移金属酸化物を負極活物質に用いることにより、放電容量が高く、サイクル性能および放電電位ともに優れた非水電解質電気化学セルを得ることができる。   Thus, according to the present invention, a negative electrode material for a non-aqueous electrolyte electrochemical cell having a high energy density and a long cycle life can be obtained. By using the 3d transition metal oxide produced by the production method of the present invention as the negative electrode active material, a nonaqueous electrolyte electrochemical cell having a high discharge capacity and excellent cycle performance and discharge potential can be obtained.

本発明は、非水電解質電気化学セルの負極活物質、その製造方法およびこの活物資を用いた非水電解質電気化学セルに関するものである。また、本発明の非水電解質電気化学セルというのはリチウム電池、リチウム二次電池および/または電気化学キャパシタを指すものである。   The present invention relates to a negative electrode active material for a non-aqueous electrolyte electrochemical cell, a method for producing the same, and a non-aqueous electrolyte electrochemical cell using this active material. The nonaqueous electrolyte electrochemical cell of the present invention refers to a lithium battery, a lithium secondary battery and / or an electrochemical capacitor.

本発明者は遷移金属酸化物に着目し、様々な元素の組合せおよび割合さらに合成条件について鋭意研究を重ねてきた結果、3d遷移金属から選ばれた少なくとも一種金属のオキシ水酸化物を350℃以上、600℃以下の温度で熱処理して製造した3d遷移金属酸化物が、非水電解質電気化学セル用負極活物質としての大きな放電容量、連続放電電位、優れたサイクル性能などの特性を有していることを見出した。   The present inventor has paid attention to transition metal oxides, and as a result of earnest research on combinations and ratios of various elements and synthesis conditions, at least 350 ° C. or more of oxyhydroxides of at least one metal selected from 3d transition metals. The 3d transition metal oxide manufactured by heat treatment at a temperature of 600 ° C. or less has characteristics such as a large discharge capacity, continuous discharge potential, and excellent cycle performance as a negative electrode active material for non-aqueous electrolyte electrochemical cells. I found out.

ここで「3d遷移金属」とは、Ni、Co、Mn、Fe、V、Zn、Cuをさすものとする。3d遷移金属酸化物中の金属としては、Ni、Co、Mn、Fe、V、Zn、Cuといった3d遷移金属から1種のみ選択してもよいし、例えば、NiとCoとMnなどのように複数種を選択してもよい。   Here, “3d transition metal” refers to Ni, Co, Mn, Fe, V, Zn, and Cu. As the metal in the 3d transition metal oxide, only one kind of 3d transition metal such as Ni, Co, Mn, Fe, V, Zn, Cu may be selected. For example, Ni, Co, Mn, etc. Multiple types may be selected.

また、これらの遷移金属酸化物には、さらにLi含有しても良い。好ましくは、Ni、Co、Mnを含むオキシ水酸化物を350℃以上600℃以下の温度で作製した複合酸化物が活物質の性能改善効果がより顕著にあらわれる。   Further, these transition metal oxides may further contain Li. Preferably, a composite oxide prepared by producing an oxyhydroxide containing Ni, Co, and Mn at a temperature of 350 ° C. or higher and 600 ° C. or lower exhibits the performance improvement effect of the active material more remarkably.

本発明の出発物質である3d遷移金属オキシ水酸化物が、好ましくは前記3d遷移金属の平均酸化数が3未満である前記水酸化物から出発し、前記遷移金属の平均酸化数が3以上になるまで酸化させる場合に適用すれば、発明の効果をより引き出すことができる。   The 3d transition metal oxyhydroxide as a starting material of the present invention preferably starts from the hydroxide having an average oxidation number of the 3d transition metal of less than 3, and the average oxidation number of the transition metal is 3 or more. If the present invention is applied to the case where it is oxidized, the effect of the invention can be further extracted.

前記酸化物の3d遷移金属を原子レベルで固溶させるために共沈法が好ましい。その出発物である3d遷移金属水酸化物をアルカリ溶液中に分散させ、50℃の温度にて酸化剤で酸化し、沈殿を濾過、乾燥してオキシ水酸化物が得られる。   A coprecipitation method is preferable for dissolving the 3d transition metal of the oxide at an atomic level. The starting 3d transition metal hydroxide is dispersed in an alkaline solution, oxidized with an oxidizing agent at a temperature of 50 ° C., and the precipitate is filtered and dried to obtain an oxyhydroxide.

一方、3d遷移金属水酸化合物をLiOH水溶液中に分散させ、80℃の温度にて酸化剤で酸化させると、部分リチウムイオン交換されたオキシ水酸化物が得られる。MnやFeが含まれた場合、窒素やアルゴンガスを保護しながら酸化処理することが望ましい。これによって、各元素が固溶した状態のオキシ水酸化物が得られることだけでなく、“不活性な”炭酸塩の生成が避けられる。   On the other hand, when a 3d transition metal hydroxide compound is dispersed in an LiOH aqueous solution and oxidized with an oxidizing agent at a temperature of 80 ° C., a partially lithium ion-exchanged oxyhydroxide is obtained. When Mn and Fe are contained, it is desirable to oxidize while protecting nitrogen and argon gas. This not only provides an oxyhydroxide in which each element is in solid solution, but also avoids the formation of “inert” carbonates.

また、このように前記酸化物に導入されたリチウムイオン量がそのイオン交換反応の平衡定数に制限されるが、それ以上のリチウムイオン例えばLi/Me(Meは少なくとも一種の遷移金属)>0.86を含有するリチウム含有遷移金属酸化物が得られていない。   Further, the amount of lithium ions introduced into the oxide is limited to the equilibrium constant of the ion exchange reaction, but more lithium ions such as Li / Me (Me is at least one transition metal)> 0. No lithium-containing transition metal oxide containing 86 has been obtained.

酸化剤の種類も特に限定されない。好ましくは、酸素、オゾンまたはペルオキソ二硫酸塩、もしくは次亜塩素酸塩、過マンガン酸塩、二クロム酸塩、臭素、塩素から選択される少なくとも1種を用いる段階を含ませるとよい。また、酸化剤を用いる化学的な酸化方法だけではなく、電気化学的な手法を用いてもよい。   The kind of oxidizing agent is not particularly limited. Preferably, a step of using at least one selected from oxygen, ozone or peroxodisulfate, or hypochlorite, permanganate, dichromate, bromine, and chlorine may be included. Further, not only a chemical oxidation method using an oxidizing agent but also an electrochemical method may be used.

以上のように、得られたオキシ水酸化物は、そのまま非水電解質電気化学セルの負極活物質に使用できる。上記の化合物をさらに熱処理すると、種々電気化学性能の向上が期待できる。また、その熱処理温度をTG−DTAの測定結果を用いて定める。つまり初期の結晶水および構造水の除去される開始温度を下限側、酸素の放出および結晶化の発達温度を上限としてその熱処理温度の範囲を定義した。また、熱処理の雰囲気として、空気と酸素が望ましい。   As described above, the obtained oxyhydroxide can be used as it is for the negative electrode active material of the nonaqueous electrolyte electrochemical cell. When the above compound is further heat-treated, various electrochemical performances can be expected to be improved. Moreover, the heat processing temperature is defined using the measurement result of TG-DTA. That is, the heat treatment temperature range was defined with the initial temperature at which the initial crystal water and structural water were removed as the lower limit, and the oxygen release and crystallization development temperatures as upper limits. Further, air and oxygen are desirable as the heat treatment atmosphere.

本発明に用いる材料は、上記の遷移金属オキシ水酸化物から製造されたものを含め、たとえばCoO、Co34、Co、CoOOH、NiO、NiOOH、TiO、TiO、TiS、V、V、V、CrO、Cr、MnO、MnO、Mn、Mn、MnOOH、FeO、Fe、Fe、FeOOH、FePO、CuO、CuO、ZnO、MoS、MoOなどがあげられる。 Materials used in the present invention include those produced from the above transition metal oxyhydroxides, such as CoO, Co 3 O 4 , Co 2 O 3 , CoOOH, NiO, NiOOH, TiO 2 , TiO, TiS 2 , V 2 O 3, V 2 O 4, V 2 O 5, CrO 3, Cr 2 O 3, MnO, MnO 2, Mn 2 O 3, Mn 3 O 4, MnOOH, FeO, Fe 2 O 3, Fe 3 O 4 , FeOOH, FePO 4 , CuO, Cu 2 O, ZnO, MoS 2 , MoO 3 and the like.

また、3d遷移金属元素を二種以上含む固溶体がさらに望ましい。さらに、上記物質にN、P、F、Cl、Br、I、Sなどの典型非金属元素を含んでもよい。また、結晶構造としては、結晶性から非晶質までのものが使用することができるが、高率放電には非晶質の方が良い。また、粉末、膜、繊維、多孔体でも使用できる。   Further, a solid solution containing two or more 3d transition metal elements is more desirable. Furthermore, typical non-metallic elements such as N, P, F, Cl, Br, I, and S may be included in the above substance. As the crystal structure, those from crystalline to amorphous can be used, but amorphous is better for high rate discharge. Further, powders, membranes, fibers, and porous bodies can be used.

これらの材料は炭素材料との複合体を形成して使用することができる。炭素材料との複合体としては、これらの材料の表面を炭素材料で被覆したもの、炭素材料とを混合して造粒したもの、さらにその表面に炭素材料で被覆したもの等が挙げられる。炭素材料で被覆する方法としては、ベンゼン、トルエン、キシレン、メタン、プロパン、ブタン、エチレンあるいはアセチレンなどを炭素源として気相中で分解し、粒子の表面に化学的に蒸着させるCVD方法、ピッチ、タールまたはフルフリルアルコールなどの熱可塑性樹脂と今後した後に焼成する方法、またはメカノケミカル反応を用いた方法で製造できる。CVD法望ましい。   These materials can be used by forming a composite with a carbon material. Examples of the composite with the carbon material include those obtained by coating the surface of these materials with a carbon material, those obtained by mixing and granulating the carbon material, and those obtained by coating the surface with the carbon material. As a method of coating with a carbon material, a CVD method in which benzene, toluene, xylene, methane, propane, butane, ethylene, acetylene or the like is decomposed in a gas phase as a carbon source and chemically deposited on the particle surface, pitch, It can be produced by a method using a thermoplastic resin such as tar or furfuryl alcohol and firing afterwards, or a method using a mechanochemical reaction. The CVD method is desirable.

さらに、上記遷移金属酸化物にリチウムを導入する方法としては、遷移金属酸化物を含む電極と金属リチウム電極とを電解液中で短絡させる方法がある。また、遷移金属酸化物とリチウム合金粉末とリチウム含有遷移金属窒化物(例えばLi2.5Co0.5N粉末)とを含む電極を作製し、この電極を有機電解液と接触させると、電池反応が起こり、リチウム含有遷移金属酸化物を作成できる。また、遷移金属酸化物を、リチウムの有機錯体例えばブチルリチウムなどの有機溶液と接触させて反応させることによって、リチウム含有遷移金属酸化物も作製できる。さらに、前記金属酸化物を電極にし、有機電解液中で、リチウム基準の電位範囲が0〜0.3Vまで電気化学的に還元することによって、リチウム含有遷移金属酸化物を作製することができる。 Furthermore, as a method of introducing lithium into the transition metal oxide, there is a method of short-circuiting an electrode containing a transition metal oxide and a metal lithium electrode in an electrolytic solution. Further, when an electrode including a transition metal oxide, a lithium alloy powder, and a lithium-containing transition metal nitride (for example, Li 2.5 Co 0.5 N powder) is prepared and the electrode is brought into contact with an organic electrolyte, a battery is obtained. A reaction occurs and a lithium-containing transition metal oxide can be created. Moreover, a lithium-containing transition metal oxide can also be produced by bringing a transition metal oxide into contact with an organic solution of lithium, for example, an organic solution such as butyl lithium. Furthermore, a lithium-containing transition metal oxide can be produced by using the metal oxide as an electrode and electrochemically reducing the potential range based on lithium to 0 to 0.3 V in an organic electrolyte.

遷移金属酸化物負極活物質の導電材料として、アセチレンブラック、非晶質炭素、黒鉛粉末、カーボンナノチューブ、カーボンナノホンなどが望ましい。導電材料と遷移金属酸化物とをよく混合させるために、混合方法としてメカニカルミーリング法が望ましい。   As the conductive material of the transition metal oxide negative electrode active material, acetylene black, amorphous carbon, graphite powder, carbon nanotube, carbon nanophone, and the like are desirable. In order to mix the conductive material and the transition metal oxide well, a mechanical milling method is desirable as a mixing method.

集電体材料としてCu、Ni、Ti、Al、ステンレスなどが使用できる。形態として、シートやメッシュおよび発泡体など三次元の構造体が挙げられる。   Cu, Ni, Ti, Al, stainless steel, etc. can be used as the current collector material. Examples of the form include a three-dimensional structure such as a sheet, a mesh, and a foam.

本発明の非水電解質電池で用いられる正極材料としては、LiCoO、LiNiO、MnO、LiMn等の組成式LiMOまたはLi(ただし、Mは遷移金属、0≦x≦1、0≦y≦1)で表される複合酸化物や、トンネル状の孔を有する酸化物、層状構造の金属カルコゲン化物等を用いることができる。 As a positive electrode material used in the nonaqueous electrolyte battery of the present invention, LiCoO 2 , LiNiO 2 , MnO 2 , LiMn 2 O 4 and other compositional formulas Li x MO 2 or Li y M 2 O 4 (where M is a transition metal) , 0 ≦ x ≦ 1, 0 ≦ y ≦ 1), oxides having tunnel-like holes, metal chalcogenides having a layered structure, and the like can be used.

また、5V級の活物質LiNi0.5Mn1.5およびオリビン材料であるLiFePOなどが使用できる。さらには、負極活物質としてリチウム含有遷移金属酸化物を用いた場合、正極にはリチウムソースのないTiS、MoS、V、MnOなども使用できる。 Further, such LiFePO 4 as an active material LiNi 0.5 Mn 1.5 O 4 and olivine material 5V-class can be used. Furthermore, when a lithium-containing transition metal oxide is used as the negative electrode active material, TiS 2 , MoS 2 , V 2 O 5 , MnO 2 or the like without a lithium source can be used for the positive electrode.

本発明の非水電解質電池で用いられる非水電解質としては、非水電解液であっても、ポリマー電解質、固体電解質であっても構わない。非水電解液に用いられる溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒およびこれらの混合溶媒が例示される。   The non-aqueous electrolyte used in the non-aqueous electrolyte battery of the present invention may be a non-aqueous electrolyte, a polymer electrolyte, or a solid electrolyte. Solvents used for the non-aqueous electrolyte include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane. And polar solvents such as 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane and methyl acetate, and mixed solvents thereof.

また、非水電解液の溶質としては、LiPF、LiBF、LiAsF、LiClO、LiSCN、LiCFCO、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCFおよびLiN(COCFCFなどの塩もしくはこれらの混合物が例示される。 Moreover, as a solute of the nonaqueous electrolytic solution, LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiSCN, LiCF 3 CO 2 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2). Illustrative are salts such as CF 3 ) 2 , LiN (COCF 3 ) 2 and LiN (COCF 2 CF 3 ) 2 or mixtures thereof.

以下に、本発明の負極活物質の合成方法および本正極活物質を備えた非水電解質二次電池を実施例に基づいて、さらに詳細に説明する。しかしながら、本発明は、以下の実施例によって限定されるものではない。   Hereinafter, a method for synthesizing a negative electrode active material of the present invention and a nonaqueous electrolyte secondary battery including the positive electrode active material will be described in more detail based on examples. However, the present invention is not limited to the following examples.

[実施例1]
[実施例1−1]
Ni/Co/Mnモル比1/1/1のNi1/3Co1/3Mn1/3(OH)を4MのLiOH水溶液中に分散させ、80℃の温度にて1.2当量のNaClOを投入し、80℃を保持しながら6時間攪拌し、酸化させた。続いて吸引濾過し、さらに65℃で乾燥した。得られた最終生成物を正極活物質A11として、導電材としてアセチレンブラック5wt%、結着剤としてポリ二フッ化ビニリデンのn−メチル−2−ピロリドン溶液(ポリ二フッ化ビニリデン固形分として9wt%)とをドライルーム内で混合して、ペースト状にしてから集電体の発泡ニッケルに塗布した後、70℃で真空乾燥して、プレスして、厚みが260μm、大きさが10mm×20mmの負極板を製作した。
[Example 1]
[Example 1-1]
Ni 1/3 Co 1/3 Mn 1/3 (OH) 2 having a Ni / Co / Mn molar ratio of 1/1/1 was dispersed in a 4M LiOH aqueous solution, and 1.2 equivalents at a temperature of 80 ° C. NaClO was added, and the mixture was stirred for 6 hours while maintaining 80 ° C. to be oxidized. Subsequently, the solution was suction filtered and further dried at 65 ° C. The obtained final product was used as the positive electrode active material A11, 5% by weight of acetylene black as a conductive material, and n-methyl-2-pyrrolidone solution of polyvinylidene difluoride as a binder (9% by weight as a solid content of polyvinylidene difluoride). ) In a dry room to form a paste, and then applied to the nickel foam foam of the current collector, then vacuum dried at 70 ° C. and pressed to have a thickness of 260 μm and a size of 10 mm × 20 mm. A negative electrode plate was produced.

この負極板1枚に対し、対極として同じ大きさのリチウム金属板2枚を用いた。参照極として、同様に金属リチウムを用いた。電解液には、1Mの過塩素酸リチウムを含むエチレンカーボネートとジエチルカーボネートとの混合溶媒50mlを用いて、本発明による負極活物質電極の評価をおこなった。充放電の条件はリチウム基準で0.02Vまで定電流0.25mA/cmで充電し、放電は同様な電流密度で3.0Vまでおこなった。その充放電電気量および20サイクル後の容量維持率を表1に示す。 Two lithium metal plates having the same size as the counter electrode were used for one negative electrode plate. Similarly, metallic lithium was used as a reference electrode. The negative electrode active material electrode according to the present invention was evaluated using 50 ml of a mixed solvent of ethylene carbonate and diethyl carbonate containing 1 M lithium perchlorate as the electrolytic solution. The charging / discharging conditions were charged at a constant current of 0.25 mA / cm 2 up to 0.02 V on a lithium basis, and discharging was performed up to 3.0 V at a similar current density. The charge / discharge electricity amount and the capacity retention ratio after 20 cycles are shown in Table 1.

[実施例1−2]
Ni/Co/Mnモル比は2/1/1のMe(OH)以外は実施例1−1と同様本発明の負極活物質A12を作製した。さらに、実施例1−1と同様に電極を作製し、電気化学の測定をおこなった。
[Example 1-2]
A negative electrode active material A12 of the present invention was produced in the same manner as in Example 1-1 except that the Ni / Co / Mn molar ratio was 2/1/1 Me (OH) 2 . Furthermore, an electrode was prepared in the same manner as in Example 1-1, and electrochemical measurements were performed.

[実施例1−3]
Ni/Co/Mnモル比3/1/1のMe(OH)以外は実施例1−1と同様本発明の負極活物質A13を作製した。さらに、実施例1−1と同様に電極を作製し、電気化学の測定をおこなった。
[Example 1-3]
A negative electrode active material A13 of the present invention was produced in the same manner as Example 1-1 except for Me (OH) 2 having a Ni / Co / Mn molar ratio of 3/1/1. Furthermore, an electrode was prepared in the same manner as in Example 1-1, and electrochemical measurements were performed.

[実施例2]
実施例1で得られた活物質をさらに150℃熱処理を加えた。
[Example 2]
The active material obtained in Example 1 was further subjected to heat treatment at 150 ° C.

[実施例2−1]
実施例1−1の活物質A11をさらに150℃で真空熱処理5時間をおこなったこと以外は実施例1−1と同様本発明の負極活物質A21を作製した。さらに、実施例1−1と同様に電極を作製し、電気化学の測定をおこなった。
[Example 2-1]
A negative electrode active material A21 of the present invention was produced in the same manner as in Example 1-1, except that the active material A11 of Example 1-1 was further subjected to vacuum heat treatment at 150 ° C. for 5 hours. Furthermore, an electrode was prepared in the same manner as in Example 1-1, and electrochemical measurements were performed.

[実施例2−2]
実施例1−2の活物質A12をさらに150℃で真空熱処理5時間をおこなったこと以外は実施例1−2と同様本発明の負極活物質A22を作製した。さらに、実施例1−1と同様に電極を作製し、電気化学の測定をおこなった。
[Example 2-2]
A negative electrode active material A22 of the present invention was produced in the same manner as in Example 1-2, except that the active material A12 of Example 1-2 was further subjected to a vacuum heat treatment at 150 ° C. for 5 hours. Furthermore, an electrode was prepared in the same manner as in Example 1-1, and electrochemical measurements were performed.

[実施例2−3]
実施例1−3の活物質A13をさらに150℃で真空熱処理5時間をおこなったこと以外は実施例1−3と同様本発明の負極活物質A23を作製した。さらに、実施例1−1と同様に電極を作製し、電気化学の測定をおこなった。
[Example 2-3]
A negative electrode active material A23 of the present invention was produced in the same manner as in Example 1-3, except that the active material A13 of Example 1-3 was further subjected to a vacuum heat treatment at 150 ° C. for 5 hours. Furthermore, an electrode was prepared in the same manner as in Example 1-1, and electrochemical measurements were performed.

[実施例3]
実施例1で得られた活物質にTG−DTA測定を実施した。その結果を図1に示す。すべてのサンプルが350℃の温度で顕著な重量減少が観察された。そして、高温領域例えば650℃以上の温度で小さな重量減少が観察された。そこで、中高温での処理温度を350℃、400℃、600℃、1000℃を設定した。400℃および600℃での熱処理雰囲気をArの以外にOも用いた。そして、すべての熱処理が環状電気炉(いすゞ製作所、AT−E58)で16時間おこなった。
[Example 3]
TG-DTA measurement was performed on the active material obtained in Example 1. The result is shown in FIG. All samples showed significant weight loss at a temperature of 350 ° C. A small weight loss was observed in a high temperature region, for example, a temperature of 650 ° C. or higher. Therefore, the treatment temperatures at medium and high temperatures were set to 350 ° C., 400 ° C., 600 ° C., and 1000 ° C. The heat treatment atmosphere at 400 ° C. and 600 ° C. used O 2 in addition to Ar. All heat treatments were performed for 16 hours in an annular electric furnace (Isuzu Seisakusho, AT-E58).

[実施例3−1]
実施例1−1の活物質A11をさらに350℃でArフローしながら16時間熱処理をおこなったこと以外は実施例1―1と同様本発明の負極活物質A31を作製した。さらに、実施例1−1と同様に電極を作製し、電気化学の測定をおこなった。
[Example 3-1]
A negative electrode active material A31 of the present invention was produced in the same manner as in Example 1-1, except that the active material A11 of Example 1-1 was further heat-treated for 16 hours while flowing Ar at 350 ° C. Furthermore, an electrode was prepared in the same manner as in Example 1-1, and electrochemical measurements were performed.

[実施例3−2]
実施例1−2の活物質A12をさらに350℃でArフローしながら16時間熱処理をおこなったこと外は実施例1―2と同様本発明の負極活物質A32を作製した。さらに、実施例1−1と同様に電極を作製し、電気化学の測定をおこなった。
[Example 3-2]
A negative electrode active material A32 of the present invention was produced in the same manner as in Example 1-2, except that the active material A12 of Example 1-2 was further heat-treated for 16 hours while flowing Ar at 350 ° C. Furthermore, an electrode was prepared in the same manner as in Example 1-1, and electrochemical measurements were performed.

[実施例3−3]
実施例1−3の活物質A13をさらに350℃でArフローしながら16時間熱処理をおこなったこと以外は実施例1−3と同様本発明の負極活物質A33を作製した。さらに、実施例1−1と同様に電極を作製し、電気化学の測定をおこなった。
[Example 3-3]
A negative electrode active material A33 of the present invention was produced in the same manner as in Example 1-3, except that the active material A13 of Example 1-3 was further heat-treated for 16 hours while flowing Ar at 350 ° C. Furthermore, an electrode was prepared in the same manner as in Example 1-1, and electrochemical measurements were performed.

[実施例4]
実施例1で得られた活物質をさらにAr雰囲気中で400℃の温度で熱処理した。
[Example 4]
The active material obtained in Example 1 was further heat-treated at a temperature of 400 ° C. in an Ar atmosphere.

[実施例4−1]
実施例1−1の活物質A11をさらに400℃でArフローしながら16時間熱処理をおこなったこと以外は実施例1−1と同様本発明の負極活物質A41を作製した。さらに、実施例1−1と同様に電極を作製し、電気化学の測定をおこなった。
[Example 4-1]
A negative electrode active material A41 of the present invention was produced in the same manner as in Example 1-1 except that the active material A11 of Example 1-1 was further heat-treated for 16 hours while flowing Ar at 400 ° C. Furthermore, an electrode was prepared in the same manner as in Example 1-1, and electrochemical measurements were performed.

[実施例4−2]
実施例1−2の活物質A12をさらに400℃でArフローしながら16時間熱処理をおこなったこと以外は実施例1−1と同様本発明の負極活物質A42を作製した。さらに、実施例1−1と同様に電極を作製し、電気化学の測定をおこなった。
[Example 4-2]
A negative electrode active material A42 of the present invention was produced in the same manner as in Example 1-1, except that the active material A12 of Example 1-2 was further heat treated for 16 hours while flowing Ar at 400 ° C. Furthermore, an electrode was prepared in the same manner as in Example 1-1, and electrochemical measurements were performed.

[実施例4−3]
実施例1−3の活物質A13をさらに400℃でArフローしながら16時間熱処理をおこなったこと以外は実施例1−1と同様本発明の負極活物質A43を作製した。さらに、実施例1−1と同様に電極を作製し、電気化学の測定をおこなった。
[Example 4-3]
A negative electrode active material A43 of the present invention was produced in the same manner as in Example 1-1, except that the active material A13 of Example 1-3 was further heat-treated for 16 hours while flowing Ar at 400 ° C. Furthermore, an electrode was prepared in the same manner as in Example 1-1, and electrochemical measurements were performed.

[実施例5]
熱処理温度を600℃にした実施例を以下に示す。
[Example 5]
An example in which the heat treatment temperature is 600 ° C. is shown below.

[実施例5−1]
実施例1−1の活物質A11をさらに600℃でArフローしながら16時間熱処理をおこなったこと以外は実施例1−1と同様本発明の負極活物質A51を作製した。さらに、実施例1−1と同様に電極を作製し、電気化学の測定をおこなった。
[Example 5-1]
A negative electrode active material A51 of the present invention was produced in the same manner as in Example 1-1, except that the active material A11 of Example 1-1 was further heat-treated for 16 hours while flowing Ar at 600 ° C. Furthermore, an electrode was prepared in the same manner as in Example 1-1, and electrochemical measurements were performed.

[実施例5−2]
実施例1−2の活物質A12をさらに600℃でArフローしながら16時間熱処理をおこなったこと以外は実施例1−1と同様本発明の負極活物質A52を作製した。さらに、実施例1−1と同様に電極を作製し、電気化学の測定をおこなった。
[Example 5-2]
A negative electrode active material A52 of the present invention was produced in the same manner as in Example 1-1 except that the active material A12 of Example 1-2 was further heat-treated for 16 hours while flowing Ar at 600 ° C. Furthermore, an electrode was prepared in the same manner as in Example 1-1, and electrochemical measurements were performed.

[実施例5−3]
実施例1−3の活物質A13をさらに600℃でArフローしながら16時間熱処理をおこなったこと以外は実施例1−1と同様本発明の負極活物質A53を作製した。さらに、実施例1−1と同様に電極を作製し、電気化学の測定をおこなった。
[Example 5-3]
A negative electrode active material A53 of the present invention was produced in the same manner as in Example 1-1, except that the active material A13 of Example 1-3 was further heat-treated for 16 hours while flowing Ar at 600 ° C. Furthermore, an electrode was prepared in the same manner as in Example 1-1, and electrochemical measurements were performed.

[実施例6]
熱処理温度を1000℃にした実施例を以下にしめす。
[Example 6]
An example in which the heat treatment temperature is 1000 ° C. is shown below.

[実施例6−1]
実施例1−1の活物質A11をさらに1000℃でArフローしながら16時間熱処理をおこなったこと以外は実施例1−1と同様本発明の負極活物質A61を作製した。さらに、実施例1−1と同様に電極を作製し、電気化学の測定をおこなった。
[Example 6-1]
A negative electrode active material A61 of the present invention was produced in the same manner as in Example 1-1, except that the active material A11 of Example 1-1 was further heat-treated for 16 hours while flowing Ar at 1000 ° C. Furthermore, an electrode was prepared in the same manner as in Example 1-1, and electrochemical measurements were performed.

[実施例6−2]
実施例1−2の活物質A12をさらに1000℃でArフローしながら16時間熱処理をおこなったこと以外は実施例1−1と同様本発明の負極活物質A62を作製した。さらに、実施例1−1と同様に電極を作製し、電気化学の測定をおこなった。
[Example 6-2]
A negative electrode active material A62 of the present invention was produced in the same manner as in Example 1-1, except that the active material A12 of Example 1-2 was further heat-treated for 16 hours while flowing Ar at 1000 ° C. Furthermore, an electrode was prepared in the same manner as in Example 1-1, and electrochemical measurements were performed.

[実施例6−3]
実施例1−3の活物質A13をさらに1000℃でArフローしながら16時間熱処理をおこなったこと以外は実施例1−1と同様本発明の負極活物質A63を作製した。さらに、実施例1−1と同様に電極を作製し、電気化学の測定をおこなった。
[Example 6-3]
A negative electrode active material A63 of the present invention was produced in the same manner as in Example 1-1, except that the active material A13 of Example 1-3 was further heat-treated for 16 hours while flowing Ar at 1000 ° C. Furthermore, an electrode was prepared in the same manner as in Example 1-1, and electrochemical measurements were performed.

[実施例7]
リチウム含有しない遷移金属オキシ水酸化物を作製し、熱処理した。Ni/Co/Mnモル比1/1/1、2/1/1、3/1/1のNiCoMn(OH)を50℃水溶液中に分散させ、50℃の温度で攪拌しながら1.2当量のNaClOを投入し、6時間攪拌し、酸化させた。続いて吸引濾過し、水洗して、さらに65℃で乾燥した。このように得られた最終生成物を正極活物質それぞれB11、B12、B13とした。
[Example 7]
A transition metal oxyhydroxide containing no lithium was prepared and heat-treated. Ni / Co / Mn molar ratio of 1/1/1/1 / 1,3 / 1/1 of the Ni a Co b Mn c (OH ) 2 was dispersed in 50 ° C. aqueous solution, stirred at a temperature of 50 ° C. While adding 1.2 equivalents of NaClO, the mixture was stirred for 6 hours to oxidize. Subsequently, the mixture was filtered with suction, washed with water, and further dried at 65 ° C. The final products thus obtained were designated as positive electrode active materials B11, B12, and B13, respectively.

これらの活物質86wt%と、導電材としてアセチレンブラック5wt%、結着剤としてポリ二フッ化ビニリデンのn−メチル−2−ピロリドン溶液(ポリ二フッ化ビニリデン固形分として9wt%)とをドライルーム内で混合して、ペースト状にしてから集電体の発泡ニッケルに塗布した後、70℃で真空乾燥して、プレスして、厚みが260μm、大きさが10mm×20mmの負極板をそれぞれ製作した。   Dry room containing 86 wt% of these active materials, 5 wt% of acetylene black as a conductive material, and n-methyl-2-pyrrolidone solution of polyvinylidene difluoride (9 wt% as solid content of polyvinylidene difluoride) as a binder After mixing in a paste and applying to the foamed nickel of the current collector, vacuum drying at 70 ° C. and pressing to produce each negative electrode plate with a thickness of 260 μm and a size of 10 mm × 20 mm did.

この負極板1枚に対し、対極として同じ大きさのリチウム金属板2枚を用いた。参照極として、同様に金属リチウムを用いた。電解液には、1Mの過塩素酸リチウムを含むエチレンカーボネートとジエチルカーボネートとの混合溶媒50mlを用いて、本発明による負極活物質電極の評価をおこなった。充放電の条件はリチウム基準で0.02Vまで定電流0.25mA/cmで充電し、放電は同様な電流密度で3.0Vまでおこなった。その充放電電気量および20サイクル後の容量維持率を表1に示す。 Two lithium metal plates having the same size as the counter electrode were used for one negative electrode plate. Similarly, metallic lithium was used as a reference electrode. The negative electrode active material electrode according to the present invention was evaluated using 50 ml of a mixed solvent of ethylene carbonate and diethyl carbonate containing 1 M lithium perchlorate as the electrolytic solution. The charging / discharging conditions were charged at a constant current of 0.25 mA / cm 2 up to 0.02 V on a lithium basis, and discharging was performed up to 3.0 V at a similar current density. The charge / discharge electricity amount and the capacity retention ratio after 20 cycles are shown in Table 1.

[実施例8]
実施例7で得られた負極活物質B11、B12、B13を150℃で真空熱処理5hのものをそれぞれB21、B22、B23とし、実施例7と同様に電極作製し、充放電をおこなった。その充放電結果を同様に表2に示す。
[Example 8]
The negative electrode active materials B11, B12, and B13 obtained in Example 7 were respectively B21, B22, and B23 under vacuum heat treatment at 150 ° C. for 5 h, and electrodes were prepared and charged / discharged in the same manner as in Example 7. The charge / discharge results are also shown in Table 2.

[実施例9]
実施例7で得られた負極活物質B11、B12、B13を350℃にてAr雰囲気で熱処理16hのものをそれぞれB31、B32、B33とし、実施例7と同様に電極作製し、充放電をおこなった。その充放電結果を同様に表2に示す。
[Example 9]
The negative electrode active materials B11, B12, and B13 obtained in Example 7 were heat-treated at 350 ° C. in an Ar atmosphere for 16 hours as B31, B32, and B33, respectively, and electrodes were produced in the same manner as in Example 7, and charge and discharge were performed. It was. The charge / discharge results are also shown in Table 2.

[実施例10]
実施例7で得られた負極活物質B11、B12、B13を400℃にてAr雰囲気で熱処理16hのものをそれぞれB41、B42、B43とし、実施例7と同様に電極作製し、充放電をおこなった。その充放電結果を同様に表2に示す。
[Example 10]
The negative electrode active materials B11, B12, and B13 obtained in Example 7 were heat-treated at 400 ° C. in an Ar atmosphere for 16 hours as B41, B42, and B43, respectively, and electrodes were prepared and charged / discharged in the same manner as in Example 7. It was. The charge / discharge results are also shown in Table 2.

[実施例11]
実施例7で得られた負極活物質B11、B12、B13を600℃にてAr雰囲気で熱処理16hのものをそれぞれB51、B52、B53とし、実施例7と同様に電極作製し、充放電をおこなった。その充放電結果を同様に表2に示す。
[Example 11]
The negative electrode active materials B11, B12, and B13 obtained in Example 7 were heat-treated at 600 ° C. in an Ar atmosphere for 16 hours as B51, B52, and B53, respectively, and electrodes were produced in the same manner as in Example 7 to charge and discharge. It was. The charge / discharge results are also shown in Table 2.

[実施例12]
実施例7で得られた負極活物質B11、B12、B13を1000℃にてAr雰囲気で熱処理16hのものをそれぞれB61、B62、B63とし、実施例7と同様に電極作製し、充放電をおこなった。その充放電結果を同様に表2に示す。
[Example 12]
The negative electrode active materials B11, B12, and B13 obtained in Example 7 were heat treated in an Ar atmosphere at 1000 ° C. for 16 hours, and B61, B62, and B63 were respectively prepared as in Example 7, and charged and discharged. It was. The charge / discharge results are also shown in Table 2.

[比較例1]
実施例1−1の活物質A11の代わりに、Ni酸化物NiOを比較例活物質X1とした、実施例1−1と同様に電極を作製し、充放電結果を表2に示す。
[Comparative Example 1]
An electrode was prepared in the same manner as in Example 1-1 using Ni oxide NiO as the comparative active material X1 instead of the active material A11 of Example 1-1, and the charge / discharge results are shown in Table 2.

[比較例2]
実施例1−1の活物質A11の代わりに、Co酸化物Coを比較例活物質X2とした、実施例1−1と同様に電極を作製し、充放電結果を表2に示す。
[Comparative Example 2]
An electrode was prepared in the same manner as in Example 1-1 using Co oxide Co 3 O 4 as the comparative active material X2 instead of the active material A11 of Example 1-1, and the charge / discharge results are shown in Table 2. .

[比較例3]
実施例1−1の活物質A11の代わりに、Mn酸化物Mnを比較例活物質X3とした、実施例1−1と同様に電極を作製し、充放電結果を表2に示す。
[Comparative Example 3]
In place of the active material A11 of Example 1-1, an electrode was prepared in the same manner as in Example 1-1 using Mn oxide Mn 2 O 3 as a comparative example active material X3, and the charge / discharge results are shown in Table 2. .

Figure 2005135861
Figure 2005135861

Figure 2005135861
Figure 2005135861

以上の結果から分かるように、リチウムの有無に関わらず、Ni、Co、Mn固溶体オキシ酸化物、酸化物の放電容量はそれらの単体の酸化物より大きいことが分かる。特に、350℃〜600℃の温度範囲で熱処理した上記の固溶体が高い放電容量と優れたサイクル性能ともに有していることがわかる。   As can be seen from the above results, it can be seen that the discharge capacities of Ni, Co, Mn solid solution oxyoxides and oxides are larger than those single oxides regardless of the presence or absence of lithium. In particular, it can be seen that the solid solution heat-treated in the temperature range of 350 ° C. to 600 ° C. has both a high discharge capacity and excellent cycle performance.

図2にLiNi1/3Co1/3Mn1/3の放電曲線を示した。図2からわかるように、0〜2.2V Vs.Li/Liの電位範囲で連続した電位変化を示していることがわかる。 FIG. 2 shows a discharge curve of Li x Ni 1/3 Co 1/3 Mn 1/3 O 2 . As can be seen from FIG. 2, 0 to 2.2 V Vs. It can be seen that a continuous potential change is shown in the potential range of Li / Li + .

[実施例13]
熱処理雰囲気の影響を調べるために、処理温度を400℃に固定し、Arの代わりにOを用いた。活物質A11、A12、A13をそれぞれ16時間熱処理した。得られた活物質をC11、C12、C13とした。さらに、実施例1−1と同様に電極を作製し、その充放電結果を表3に示す。
[Example 13]
In order to investigate the influence of the heat treatment atmosphere, the treatment temperature was fixed at 400 ° C., and O 2 was used instead of Ar. Each of the active materials A11, A12, and A13 was heat-treated for 16 hours. The obtained active materials were designated as C11, C12, and C13. Furthermore, the electrode was produced similarly to Example 1-1, and the charging / discharging result is shown in Table 3.

Figure 2005135861
Figure 2005135861

これらのC11、C12およびC13の放電容量をそれぞれA41、A42、A43の放電容量と比べると、O雰囲気で熱処理したすべての活物質はサイクル性能があまり変わらなかったが、放電容量が大幅に増加したことが分かる。 Comparing the discharge capacities of C11, C12, and C13 with those of A41, A42, and A43, respectively, all the active materials heat-treated in the O 2 atmosphere did not change much in the cycle performance, but the discharge capacity increased significantly. I understand that.

<電気化学的還元処理>
上記の酸化物をリチウムイオン含有する有機電解液中で電気化学的に還元処理をおこなうと、負極にリチウムを導入でき、リチウムソースのないMnOやVなどの化合物との組み合わせたセルが実現できる。そして、還元した上記化合物を再度酸化すると、初期の不可逆容量の少ない、アモルファス化された化合物が得られる。また、ここに例示しているアモルファス化あるいはナノサイズ化された遷移金属酸化物の作製方法は電気化学的な手法であるが、Liの有機錯体で還元し、有機溶剤によるリチウムを抜け出す化学法でも良い。
<Electrochemical reduction treatment>
When the above oxide is subjected to electrochemical reduction treatment in an organic electrolyte containing lithium ions, lithium can be introduced into the negative electrode, and a cell combined with a compound such as MnO 2 or V 2 O 5 without a lithium source. Can be realized. When the reduced compound is oxidized again, an amorphous compound having a small initial irreversible capacity is obtained. In addition, the method for producing an amorphized or nanosized transition metal oxide exemplified here is an electrochemical method, but it can also be reduced by an organic complex of Li, and a chemical method for extracting lithium with an organic solvent. good.

[実施例14]
400℃酸素雰囲気で熱処理したリチウム含有オキシ水酸化ニッケルC11、C12、C13をさらに電気化学的に還元処理をおこなった。還元は定電流0.25 mA/cmで0.2Vvs.Li/Liまでおこなった。このように還元処理をおこなった上記活物質をD41、D42、D43とする。
[Example 14]
The lithium-containing nickel oxyhydroxides C11, C12, and C13 heat-treated in an oxygen atmosphere at 400 ° C. were further electrochemically reduced. The reduction is performed at a constant current of 0.25 mA / cm 2 and 0.2 Vvs. It carried out to Li / Li + . The active materials subjected to the reduction treatment in this way are designated as D41, D42, and D43.

これらの化合物がリチウムを含有し、充電状態の負極活物質となる。それらのXRD結果は図3に示す。これらの化合物を実施例1−1と同様な方法で電極に作製されたものである。電気化学測定の結果およびXRD解析の結果を表4に示す。明らかに、活物質D41、D42、D43アモルファス化し、CuKα線を用いたX線回折法で5°<2θ<25°および40°<2θ<50°に現れる回折ピークの半値幅が5°(2θ)以上である。そして、その放電容量がそれぞれA41、A42、A43と同様であった。   These compounds contain lithium and become a negative electrode active material in a charged state. The XRD results are shown in FIG. These compounds were produced on electrodes in the same manner as in Example 1-1. Table 4 shows the results of electrochemical measurement and the results of XRD analysis. Clearly, the active materials D41, D42 and D43 are made amorphous, and the half-value width of the diffraction peak appearing at 5 ° <2θ <25 ° and 40 ° <2θ <50 ° by the X-ray diffraction method using CuKα rays is 5 ° (2θ ) That's it. The discharge capacities were the same as A41, A42, and A43, respectively.

[実施例15]
400℃熱処理したオキシ水酸化ニッケルB41を電気化学的に還元処理をおこなった。定電流0.25 mA/cmで0.2Vvs.Li/Liまで還元したものをE41、さらに酸化処理したものをF41とした。これらの化合物のXRDパタンは図4に示す。電気化学測定の結果およびXRD解析の結果を表4に示す。
[Example 15]
The nickel oxyhydroxide B41 heat-treated at 400 ° C. was electrochemically reduced. 0.2 Vvs. At a constant current of 0.25 mA / cm 2 . E41 was reduced to Li / Li +, and F41 was further oxidized. The XRD pattern of these compounds is shown in FIG. Table 4 shows the results of electrochemical measurement and the results of XRD analysis.

明らかに、活物質E41、F41がアモルファス化し、CuKα線を用いたX線回折法で5°<2θ<25°および40°<2θ<50°に現れる回折ピークの半値幅がポリプロピレンによるピークを除けば、5°(2θ)以上である。そして、還元状態のE41のXRDパタンから33°(2θ)付近にLiOに対応する回折ピークが観察され、そして酸化状態にあるF41のXRDパタンからそのピーク観察されなかったため、遷移金属のナノ粒子の生成およびLiとLiO間の置換レドックス反応(式1)が起こっていることが裏付けられた。 Obviously, the active materials E41 and F41 become amorphous, and the half-value width of the diffraction peak appearing at 5 ° <2θ <25 ° and 40 ° <2θ <50 ° by the X-ray diffraction method using CuKα rays is excluded from the polypropylene peak. For example, it is 5 ° (2θ) or more. Then, a diffraction peak corresponding to Li 2 O was observed in the vicinity of 33 ° (2θ) from the XRD pattern of E41 in the reduced state, and the peak was not observed from the XRD pattern of F41 in the oxidized state. It was confirmed that the formation of particles and the substitution redox reaction between Li and Li 2 O (Formula 1) occurred.

[実施例16]
実施例15で得られた活物質D41、D42、D43を電気化学的に0.25mA/cmで3Vvs.Li/Liまで放電させ、電気化学的に充放電評価をおこなった。その結果を表4に示す。
[Example 16]
The active materials D41, D42 and D43 obtained in Example 15 were electrochemically applied at 3 Vvs. At 0.25 mA / cm 2 . The battery was discharged to Li / Li + and electrochemically charged and discharged. The results are shown in Table 4.

Figure 2005135861
Figure 2005135861

明らかに、電気化学的に還元、酸化プロセスを経て作製された活物質F41、G41、G42、G43が初期の不可逆容量がほとんどなく、理想的な放電状態の負極活物質であることがわかる。   Obviously, the active materials F41, G41, G42, and G43 produced through electrochemical reduction and oxidation processes have almost no initial irreversible capacity, and are negative electrode active materials in an ideal discharge state.

TG−DTA曲線、昇温速度5℃/分。TG-DTA curve, heating rate 5 ° C./min. LiNi1/3Co1/3Mn1/3の初サイクル充放電曲線。充放電電流密度:0.25 mA/cm。The first cycle charge / discharge curve of Li x Ni 1/3 Co 1/3 Mn 1/3 O 2 . Charge / discharge current density: 0.25 mA / cm. 400℃でリチウム含有LiNiCoMn1−a−b電気化学的に還元後サンプルのXRD測定結果。Cukα線使用。Lithium-containing Li x Ni a Co b Mn 1 -a-b O 2 electrochemically reduced after sample XRD measurements at 400 ° C.. Use Cukα radiation. 400℃で熱処理したNi1/3Co1/3Mn1/3OOHの充放電前後のXRD測定結果。400 Ni 1/3 was heat-treated at ° C. Co 1/3 Mn 1/3 discharge around the XRD measurement results of OOH.

Claims (4)

3d遷移金属から選ばれた少なくとも一種金属のオキシ水酸化物を350℃以上、600℃以下の温度で熱処理して、前記3d遷移金属の酸化物を作製することを特徴とする非水電解質電気化学セル用負極活物質の製造方法。 Non-aqueous electrolyte electrochemistry characterized in that an oxyhydroxide of at least one metal selected from 3d transition metals is heat-treated at a temperature of 350 ° C. or higher and 600 ° C. or lower to produce the 3d transition metal oxide. A method for producing a negative electrode active material for a cell. 3d遷移金属の酸化物が、ニッケルとコバルトとマンガンとの三元素が固溶した酸化物であることを特徴とする請求項1記載の非水電解質電気化学セル用負極活物質の製造方法。 The method for producing a negative electrode active material for a non-aqueous electrolyte electrochemical cell according to claim 1, wherein the 3d transition metal oxide is an oxide in which three elements of nickel, cobalt, and manganese are dissolved. 3d遷移金属の酸化物がリチウムを含有することを特徴とする請求項1または2記載の非水電気化学セル用負極活物質の製造方法。 The method for producing a negative electrode active material for a non-aqueous electrochemical cell according to claim 1 or 2, wherein the oxide of the 3d transition metal contains lithium. 有機電解液中で、リチウム基準の電位範囲が0〜0.3Vまで電気化学的に還元する工程を経て作製され、CuKα線を用いたX線回折法で5°<2θ<25°および40°<2θ<50°に現れる回折ピークの半値幅が5°(2θ)以上であることを特徴とする請求項3記載の非水電解質電気化学セル用負極活物質の製造方法。


























In an organic electrolyte, it is produced through a process of electrochemical reduction to a lithium-based potential range of 0 to 0.3 V, and 5 ° <2θ <25 ° and 40 ° by X-ray diffraction using CuKα rays. 4. The method for producing a negative electrode active material for a non-aqueous electrolyte electrochemical cell according to claim 3, wherein the half width of the diffraction peak appearing at <2θ <50 ° is 5 ° (2θ) or more.


























JP2003373179A 2003-10-31 2003-10-31 Nonaqueous electrolyte electrochemical cell Pending JP2005135861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003373179A JP2005135861A (en) 2003-10-31 2003-10-31 Nonaqueous electrolyte electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003373179A JP2005135861A (en) 2003-10-31 2003-10-31 Nonaqueous electrolyte electrochemical cell

Publications (2)

Publication Number Publication Date
JP2005135861A true JP2005135861A (en) 2005-05-26
JP2005135861A5 JP2005135861A5 (en) 2006-12-21

Family

ID=34649345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003373179A Pending JP2005135861A (en) 2003-10-31 2003-10-31 Nonaqueous electrolyte electrochemical cell

Country Status (1)

Country Link
JP (1) JP2005135861A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710915A (en) * 2020-06-28 2020-09-25 宜春清陶能源科技有限公司 Solid-state lithium ion battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710915A (en) * 2020-06-28 2020-09-25 宜春清陶能源科技有限公司 Solid-state lithium ion battery
CN111710915B (en) * 2020-06-28 2022-12-16 宜春清陶能源科技有限公司 Solid-state lithium ion battery

Similar Documents

Publication Publication Date Title
JP4216669B2 (en) Lithium / nickel / manganese / cobalt composite oxide and lithium ion secondary battery using the same as positive electrode active material
JP4523807B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP4766991B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery including the same
KR100797099B1 (en) Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
JP5808073B2 (en) Positive electrode active material and positive electrode and lithium battery employing the same
JP5308675B2 (en) Anode material optimum for battery, method for producing the same, electrode, and battery for carrying out the method
KR101463881B1 (en) Manganese spinel-type lithium transition metal oxide
KR20080026316A (en) Cathode active material and lithium battery using the same
JP5245210B2 (en) Cathode active material for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
WO2003069702A1 (en) Particulate positive electrode active material for lithium secondary cell
JP4813453B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery
KR101115416B1 (en) Positive active material for rechargeable, method of preparing same, and rechargeable lithium battery including same
JP3120789B2 (en) Non-aqueous electrolyte secondary battery
WO2014073701A1 (en) Positive electrode active material, lithium battery, and manufacturing method for positive electrode active material
JP2005158737A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
US20140302393A1 (en) High capacity lithium-ion electrochemical cells and methods of making same
JP4106651B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
KR101134566B1 (en) Novel cathode active material for lithium secondary battery and method of fabricating a cathode thin film for lithium secondary battery using the same
KR20040086813A (en) Cathode Material, Method of Manufacturing the Same, and Battery Using the Same
JP3495639B2 (en) Lithium-manganese composite oxide, method for producing the same, and lithium secondary battery using the composite oxide
JP4851699B2 (en) Anode active material for non-aqueous electrolyte electrochemical cell and non-aqueous electrolyte electrochemical cell using the same
JP2005353330A (en) Nonaqueous electrolyte electrochemical cell
JP2005135861A (en) Nonaqueous electrolyte electrochemical cell
JP5003030B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery including the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006