JP2005135825A - Control device for fuel cell system - Google Patents

Control device for fuel cell system Download PDF

Info

Publication number
JP2005135825A
JP2005135825A JP2003372341A JP2003372341A JP2005135825A JP 2005135825 A JP2005135825 A JP 2005135825A JP 2003372341 A JP2003372341 A JP 2003372341A JP 2003372341 A JP2003372341 A JP 2003372341A JP 2005135825 A JP2005135825 A JP 2005135825A
Authority
JP
Japan
Prior art keywords
pure water
fuel cell
flow rate
cell system
circulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003372341A
Other languages
Japanese (ja)
Inventor
Tsutomu Yamazaki
努 山崎
Akihiro Sakakida
明宏 榊田
Akihiro Asai
明寛 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003372341A priority Critical patent/JP2005135825A/en
Publication of JP2005135825A publication Critical patent/JP2005135825A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To prevent imparting an adverse effect to a fuel cell, by appropriately eliminating air from deionized water system when starting the fuel cell system. <P>SOLUTION: Circulating paths 3 and 4 for circulating the deionized water to the fuel cell 1 via a deionized water pump 5 are provided. When the fuel cell system is stopped, air pressure is introduced and the deionized water in the fuel cell 1, the deionized water in the circulating paths 3 and 4 and the deionized water, in constituting parts of the circulating paths 3 and 4, are recovered to a deionized water tank 2 in the fuel cell system. A circulated water quantity control means 20 is provided for controlling the quantity of flow of the circulating deionized water, according to the state of operation of the fuel cell system. When the fuel cell system is started, the quantity of flow of the deionized water is controlled by the control means 20 to be increased to more than the quantity of flow of the deionized water in idle operation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、燃料電池システムの制御装置に関する。   The present invention relates to a control device for a fuel cell system.

燃料電池システムは、運転停止時に凍結防止のためにシステム内の純水を回収し、運転開始時に純水の循環を開始するようにしている(例えば、特許文献1)。
特開平11−273705号
The fuel cell system collects pure water in the system to prevent freezing when operation is stopped, and starts circulation of pure water at the start of operation (for example, Patent Document 1).
JP-A-11-273705

燃料電池システムの純水は、燃料電池の発電量が少なく、ガスの供給量も少ないアイドル運転時には、循環量も少ない。   The pure water in the fuel cell system has a small circulation amount during idle operation with a small amount of power generated by the fuel cell and a small amount of gas supply.

したがって、システムの起動時に、循環する純水をアイドル流量等、少ない流量で起動していたために、純水系の配管内、構成部品内のエアの抜けが十分でなく、エアの溜まりが発生する恐れがあった。   Therefore, when starting the system, the circulating pure water was started at a low flow rate such as an idle flow rate, so that the air in the pure water system pipes and components was not sufficiently removed, and there was a risk of air accumulation. was there.

エアが発電中の燃料電池に侵入したのでは、燃料電池に影響を及ぼしかねない。   If air enters a fuel cell that is generating electricity, it may affect the fuel cell.

この発明は、燃料電池システムの起動時に純水系のエアを的確に排除して、このような問題を解決することを目的としている。   An object of the present invention is to solve such a problem by accurately removing pure water air when the fuel cell system is started.

本発明は、燃料電池に純水を純水ポンプを介して循環する循環経路を有しており、燃料電池システムの停止時には、空気圧を導入して、燃料電池内の純水、並びに循環経路内の純水、並びに循環経路の構成部品内の純水を、純水タンクに回収する燃料電池システムにおいて、燃料電池システムの運転状態に応じて循環する純水の流量を制御する循環水量制御手段を備える。循環水量制御手段は、燃料電池システムの起動時には、純水の流量をアイドル運転時の純水の流量よりも増量制御する。   The present invention has a circulation path for circulating pure water to a fuel cell via a pure water pump, and when the fuel cell system is stopped, air pressure is introduced to supply the pure water in the fuel cell and the circulation path. In the fuel cell system that collects pure water in the components of the circulation path and pure water in the components of the circulation path into the pure water tank, circulating water amount control means for controlling the flow rate of the pure water circulated according to the operating state of the fuel cell system is provided. Prepare. The circulating water amount control means controls the flow rate of pure water to be larger than the flow rate of pure water during idle operation when the fuel cell system is started.

本発明によれば、燃料電池、循環径路、循環径路の構成部品内に純水を的確に充填でき、循環径路、循環径路の構成部品内等にエア溜まりを発生させることはない。したがって、発電中の燃料電池にエアが混入して、燃料電池に悪影響あるいは損傷を与えることを防止できる。   According to the present invention, pure water can be accurately filled in the fuel cell, the circulation path, and the components of the circulation path, and no air pool is generated in the circulation path and the components of the circulation path. Therefore, it is possible to prevent air from being mixed into the fuel cell that is generating power, thereby adversely affecting or damaging the fuel cell.

以下、第1の実施形態を図面に基づいて説明する。   Hereinafter, a first embodiment will be described with reference to the drawings.

図1は燃料電池システムの純水系システムの構成を表す。   FIG. 1 shows the configuration of a pure water system of a fuel cell system.

図1において、1は燃料電池(燃料電池の単セルを所定数組み付けてスタックを構成している)、2は純水を貯蔵する純水タンク、3は純水を循環させる循環経路の供給側通路、4はその戻り側通路である。   In FIG. 1, 1 is a fuel cell (a stack is formed by assembling a predetermined number of single cells of a fuel cell), 2 is a pure water tank for storing pure water, and 3 is a supply side of a circulation path for circulating pure water A passage 4 is a return-side passage.

供給側通路3の入口部は、純水タンク2の底部に配置している。   The inlet portion of the supply side passage 3 is disposed at the bottom of the pure water tank 2.

供給側通路3の途中には、純水タンク2の近傍に純水ポンプ5を、その下流に異物を取り除く異物フィルタ6と、純水の導電性を改善するためのイオンフィルタ7とを設置している。   In the middle of the supply side passage 3, a pure water pump 5 is installed in the vicinity of the pure water tank 2, and a foreign matter filter 6 for removing foreign matters and an ion filter 7 for improving the conductivity of pure water are installed downstream thereof. ing.

供給側通路3の出口部は、燃料電池1の内部に設けた純水流路の入口に接続している。   An outlet portion of the supply side passage 3 is connected to an inlet of a pure water passage provided in the fuel cell 1.

戻り側通路4の入口部は、燃料電池1の内部に設けた純水流路の出口に接続している。   An inlet portion of the return side passage 4 is connected to an outlet of a pure water passage provided in the fuel cell 1.

戻り側通路4の出口部は、純水タンク2に配置している。   The exit portion of the return side passage 4 is disposed in the pure water tank 2.

燃料電池1の内部の純水流路には、水素ガス、空気(酸化剤ガス)の加湿用、ならびに燃料電池1の冷却用に純水を導入、循環するようになっている。   Pure water is introduced and circulated in the pure water flow path inside the fuel cell 1 for humidification of hydrogen gas and air (oxidant gas) and for cooling the fuel cell 1.

一方、純水タンク2には、タンク2内にエアバルブ8を介して高圧空気を導入して、内圧を高めて、純水ポンプ5に呼び水を送るための空気導入ライン10を配設している。純水ポンプ5と異物フィルタ6との間の供給側通路3は、純水ポンプ5に呼び水をするときに、純水ポンプ5の下流を開放するための呼び水バルブ11に連結している。   On the other hand, the pure water tank 2 is provided with an air introduction line 10 for introducing high-pressure air into the tank 2 via the air valve 8 to increase the internal pressure and sending priming water to the pure water pump 5. . The supply-side passage 3 between the pure water pump 5 and the foreign matter filter 6 is connected to a priming valve 11 for opening the downstream of the pure water pump 5 when priming water to the pure water pump 5.

戻り側通路4の途中には、戻り側通路4、燃料電池1、供給側通路3、イオンフィルタ7、異物フィルタ6、純水ポンプ5の各内の純水のパージをするために、戻り側通路4にパージバルブ12を介して高圧空気を導入するパージ用空気導入ライン13を接続している。パージ用空気導入ライン13の接続部の直下流の戻り側通路4には、通路4を遮断するための遮断バルブ14を設けている。   In the middle of the return side passage 4, the return side passage 4, the fuel cell 1, the supply side passage 3, the ion filter 7, the foreign matter filter 6, and the pure water pump 5 are purged with pure water. A purge air introduction line 13 for introducing high-pressure air through the purge valve 12 is connected to the passage 4. A shut-off valve 14 for shutting off the passage 4 is provided in the return side passage 4 immediately downstream of the connection portion of the purge air introduction line 13.

空気導入ライン10、パージ用空気導入ライン13には、図示しないコンプレッサあるいはエアータンクよりそれぞれ所定の高圧空気を送るようにしている。   Predetermined high-pressure air is sent to the air introduction line 10 and the purge air introduction line 13 from a compressor or an air tank (not shown).

なお、戻り側通路4、燃料電池1、供給側通路3、イオンフィルタ7、異物フィルタ6、純水ポンプ5の各内の純水を的確にパージするため、純水タンク2は、純水系の最下方位置に配置している。また、燃料電池1、イオンフィルタ7、異物フィルタ6、純水ポンプ5の順に高位に配置すると共に、純水ポンプ5は純水タンク2の満水時の水位より高位に配置している。   The pure water tank 2 is a pure water system in order to accurately purge the pure water in each of the return side passage 4, the fuel cell 1, the supply side passage 3, the ion filter 7, the foreign matter filter 6, and the pure water pump 5. Arranged at the lowest position. In addition, the fuel cell 1, the ion filter 7, the foreign matter filter 6, and the pure water pump 5 are disposed at a higher level in this order, and the pure water pump 5 is disposed at a higher level than the water level when the pure water tank 2 is full.

図中20は、純水ポンプ5、各バルブ8、11、12、14を制御するためのコントローラである。   In the figure, reference numeral 20 denotes a controller for controlling the pure water pump 5 and the valves 8, 11, 12, 14.

燃料電池システムの通常運転時は、コントローラ20は、エアバルブ8、呼び水バルブ11、パージバルブ12は閉じ、遮断バルブ14は開き、純水ポンプ5を駆動して、純水を循環させる。   During normal operation of the fuel cell system, the controller 20 closes the air valve 8, the priming valve 11, and the purge valve 12, opens the shutoff valve 14, drives the pure water pump 5, and circulates pure water.

純水は、純水タンク2→純水ポンプ5→異物フィルタ6→イオンフィルタ7→燃料電池1→遮断バルブ14→純水タンク2を循環する。   The pure water circulates through the pure water tank 2 → the pure water pump 5 → the foreign matter filter 6 → the ion filter 7 → the fuel cell 1 → the cutoff valve 14 → the pure water tank 2.

燃料電池1の出力等によって、必要とされる純水量を純水ポンプ5の出力を変えることで調整する。   The amount of pure water required is adjusted by changing the output of the pure water pump 5 according to the output of the fuel cell 1 or the like.

次に、燃料電池システムの停止時のコントローラ20の制御内容を図2のフローチャートに基づいて説明する。   Next, the control contents of the controller 20 when the fuel cell system is stopped will be described based on the flowchart of FIG.

燃料電池システムの停止時には、凍結対応等のために、燃料電池1内の純水と循環経路および各構成部品(イオンフィルタ7、異物フィルタ6、純水ポンプ5)内の純水を純水タンク2へと戻す必要がある。   When the fuel cell system is stopped, the pure water in the fuel cell 1 and the pure water in the circulation path and each component (ion filter 7, foreign matter filter 6, pure water pump 5) are used in a pure water tank for freezing. It is necessary to return to 2.

ステップS1、S2では、純水ポンプ5を停止した後に、純水径路(循環経路)の戻り側通路4の遮断バルブ14を閉じ、パージ用空気導入ライン13のパージバルブ12を開く。   In steps S1 and S2, after the pure water pump 5 is stopped, the shutoff valve 14 of the return side passage 4 of the pure water path (circulation route) is closed, and the purge valve 12 of the purge air introduction line 13 is opened.

ステップS3では、時間計測を開始する。   In step S3, time measurement is started.

パージバルブ12を開き、パージ用空気導入ライン13から戻り側通路4に所定の高圧空気を導入すると、その空気圧により、パージ用空気導入ライン13の空気導入位置から上流側の戻り側通路4の純水を遮断バルブ14とは反対方向へと押し出し始め、このため純水は、燃料電池1、供給側通路3を通って、純水タンク2へと流される。   When the purge valve 12 is opened and predetermined high-pressure air is introduced from the purge air introduction line 13 into the return side passage 4, pure water in the return side passage 4 upstream from the air introduction position of the purge air introduction line 13 is generated by the air pressure. Is pushed out in the direction opposite to the shutoff valve 14, so that pure water flows through the fuel cell 1 and the supply-side passage 3 to the pure water tank 2.

ステップS4では、所定時間E(純水系の水パージに要する時間)が経過したかを見る。   In step S4, it is checked whether or not a predetermined time E (time required for purifying the pure water system) has elapsed.

ステップS5、S6では、所定時間Eが経過すると、遮断バルブ14を開け、パージバルブ12を閉じる。   In steps S5 and S6, when the predetermined time E has elapsed, the shutoff valve 14 is opened and the purge valve 12 is closed.

このため、遮断バルブ14の下流の純水も純水タンク2へ流れ、純水系のほとんどの純水を純水タンク2に回収した状態となる。   For this reason, pure water downstream of the shutoff valve 14 also flows to the pure water tank 2, and a state in which most pure water pure water is collected in the pure water tank 2.

したがって、周囲温度が氷点下以下となった場合においても、燃料電池1、循環経路、各構成部品が凍結することはない。   Therefore, even when the ambient temperature becomes below freezing point, the fuel cell 1, the circulation path, and each component do not freeze.

次に、燃料電池システムの起動時のコントローラ20の制御内容を図3のフローチャートに基づいて説明する。   Next, the control content of the controller 20 at the start of the fuel cell system will be described based on the flowchart of FIG.

ステップS11では、空気導入ライン10のエアバルブ8を開き、純水タンク2内に所定高圧空気を導入する。   In step S <b> 11, the air valve 8 of the air introduction line 10 is opened, and predetermined high-pressure air is introduced into the pure water tank 2.

ステップS12、S13では、純水径路(循環経路)の戻り側通路4の遮断バルブ14を閉じ、呼び水バルブ11を開く。   In steps S12 and S13, the shutoff valve 14 of the return side passage 4 of the pure water path (circulation path) is closed and the priming valve 11 is opened.

純水ポンプ5内部は、燃料電池システム停止時に純水を抜いているため、純水ポンプ5を起動させるために、呼び水を送る必要があり、空気導入ライン10のエアバルブ8を開き、純水タンク2内に所定高圧空気を導入して、純水タンク2の内圧を上昇させる。呼び水バルブ11を開くことで、純水ポンプ5下流をほぼ大気圧にして、遮断バルブ14を閉じることで、純水タンク2の内圧の上昇によって、純水タンク2内の純水を純水ポンプ5に送り、純水ポンプ5の呼び水を完了する。   The pure water pump 5 is drained with pure water when the fuel cell system is stopped. Therefore, it is necessary to send priming water to activate the pure water pump 5, and the air valve 8 of the air introduction line 10 is opened to open the pure water tank. A predetermined high-pressure air is introduced into 2 to increase the internal pressure of the pure water tank 2. By opening the priming water valve 11, the downstream of the pure water pump 5 is brought to almost atmospheric pressure, and the shutoff valve 14 is closed, whereby the pure water in the pure water tank 2 is purified by the increase in the internal pressure of the pure water tank 2. 5 to complete the priming of the pure water pump 5.

ステップS14では、呼び水が完了した後、純水ポンプ5を起動させる。   In step S14, after the priming is completed, the pure water pump 5 is started.

この場合、純水ポンプ5の吐出流量つまり純水系を循環させる純水流量は、アイドル運転時の純水流量よりも高く、また純水系のエア抜きに必要な最小流量よりも高い設定流量Aにするように、純水ポンプ5を制御する。   In this case, the discharge flow rate of the pure water pump 5, that is, the pure water flow rate for circulating the pure water system, is higher than the pure water flow rate during idle operation, and to a set flow rate A that is higher than the minimum flow rate required for venting the pure water system. Thus, the pure water pump 5 is controlled.

図4に純水系を循環させる純水流量の制御特性を示す。   FIG. 4 shows the control characteristics of the pure water flow rate for circulating the pure water system.

燃料電池1に循環させる純水流量は、燃料電池1の出力に応じて変え、アイドルから定格まで、出力に比例した純水流量を循環させるように制御する。   The flow rate of pure water to be circulated in the fuel cell 1 is changed according to the output of the fuel cell 1 and is controlled so as to circulate the pure water flow rate proportional to the output from idle to rated.

純水系のエア抜きに必要な最小流量は、燃料電池1の純水流路、純水径路の配管径、長さ、純水径路の構成部品の容積、圧損等により決定する。   The minimum flow rate required for venting the pure water system is determined by the pure water flow path of the fuel cell 1, the pipe diameter and length of the pure water path, the volume of the components of the pure water path, the pressure loss, and the like.

燃料電池システムの起動時の設定流量Aは、エア抜きに必要な最小流量から定格流量の間に設定する。この場合、設定流量Aは、可能な限り高くすることが望ましい。   The set flow rate A at the start of the fuel cell system is set between the minimum flow rate required for bleeding and the rated flow rate. In this case, it is desirable that the set flow rate A is as high as possible.

図5には純水ポンプ5のP−Q性能を示している。   FIG. 5 shows the PQ performance of the pure water pump 5.

本純水ポンプ5は、PWM(パルス幅変調)制御により流量を制御する。図中に示す細い実線は、等DUTY線であり、太い実線は本純水系の圧損を示している。実際に流れる純水量は、制御信号であるDUTY値から決まる純水ポンプ5のP−Q性能線と純水系システムの圧損との交点の値となる。   The pure water pump 5 controls the flow rate by PWM (pulse width modulation) control. The thin solid line shown in the figure is an equal DUTY line, and the thick solid line indicates the pressure loss of the pure water system. The amount of pure water that actually flows is the value of the intersection of the PQ performance line of the pure water pump 5 determined from the DUTY value that is the control signal and the pressure loss of the pure water system.

ステップS15では、純水ポンプ5の起動開始に対して時間計測を開始する。   In step S15, time measurement is started with respect to the start of activation of the pure water pump 5.

ステップS16、S17では、呼び水バルブ11を閉じ、純水径路の戻り側通路4の遮断バルブ14を開く。   In steps S16 and S17, the priming valve 11 is closed and the shutoff valve 14 of the return side passage 4 of the pure water path is opened.

ステップS18では、純水ポンプ5の起動開始より所定時間F(純水系のエア抜きに要する時間)が経過したかを見る。   In step S18, it is determined whether or not a predetermined time F (time required for venting the pure water system) has elapsed since the start of starting the pure water pump 5.

ステップS19では、純水ポンプ5の起動開始より所定時間Fが経過した場合、循環させる純水流量をアイドル運転時の純水流量に戻す。   In step S19, when the predetermined time F has elapsed from the start of starting the pure water pump 5, the circulating pure water flow rate is returned to the pure water flow rate during idle operation.

この起動時の処理を終えた以降は、燃料電池システムの発電要求に応じて、ガス(水素ガス、空気)圧との所定差圧を保ちながら、純水流量をアイドル流量から定格流量に制御する。   After the start-up process is completed, the pure water flow rate is controlled from the idle flow rate to the rated flow rate while maintaining a predetermined differential pressure from the gas (hydrogen gas, air) pressure according to the power generation request of the fuel cell system. .

このように、燃料電池システムの起動時に、純水循環を開始する際は、設定流量Aで純水を循環させる。この設定流量Aは、アイドル流量およびエア抜きに必要な最小流量より高いので、燃料電池1、循環径路の配管、および、循環径路の構成部品内に純水を的確に充填でき、循環径路の配管、および、循環径路の構成部品内等にエア溜まりを発生させることはない。   Thus, when starting the pure water circulation when starting the fuel cell system, the pure water is circulated at the set flow rate A. Since this set flow rate A is higher than the idle flow rate and the minimum flow rate required for venting, the fuel cell 1, the circulation path pipe, and the components of the circulation path can be filled with pure water accurately, and the circulation path pipe In addition, no air pool is generated in the components of the circulation path.

したがって、発電中の燃料電池1にエアが混入して、燃料電池1の反応膜間に設置された複数の並列純水流路に純水がとどまることはなく、燃料電池1の発電に悪影響あるいは損傷を与えることが無くなる。   Therefore, air does not enter the fuel cell 1 during power generation and the pure water does not stay in the plurality of parallel pure water flow paths installed between the reaction membranes of the fuel cell 1, which adversely affects or damages the power generation of the fuel cell 1. Will not be given.

図6、図7は、第2の実施形態を示す。   6 and 7 show a second embodiment.

これは、純水径路(循環経路)の戻り側通路4に燃料電池1の出口の純水の圧力を検出する圧力センサ30を設けて、純水系のエア抜きを制御するものである。   In this method, a pressure sensor 30 for detecting the pressure of pure water at the outlet of the fuel cell 1 is provided in the return side passage 4 of the pure water path (circulation route) to control the deaeration of the pure water system.

燃料電池システムの起動時に、図7のように、ステップS21では、空気導入ライン10のエアバルブ8を開き、純水タンク2内に所定高圧空気を導入する。   When starting the fuel cell system, as shown in FIG. 7, in step S <b> 21, the air valve 8 of the air introduction line 10 is opened to introduce predetermined high-pressure air into the pure water tank 2.

ステップS22、S23では、純水径路(循環経路)の戻り側通路4の遮断バルブ14を閉じ、呼び水バルブ11を開く。   In steps S22 and S23, the shutoff valve 14 of the return side passage 4 of the pure water path (circulation route) is closed and the priming valve 11 is opened.

ステップS24では、呼び水が完了した後、純水ポンプ5を起動させる。   In step S24, after the priming is completed, the pure water pump 5 is started.

純水ポンプ5の吐出流量つまり純水系を循環させる純水流量は、アイドル運転時の純水流量よりも高く、また純水系のエア抜きに必要な最小流量よりも高い設定流量A(図4、図5参照)にするように、純水ポンプ5を制御する。   The discharge flow rate of the pure water pump 5, that is, the pure water flow rate that circulates the pure water system, is higher than the pure water flow rate during idle operation, and is higher than the minimum flow rate required for venting the pure water system (see FIG. The pure water pump 5 is controlled as shown in FIG.

ステップS25、S26では、呼び水バルブ11を閉じ、純水径路の戻り側通路4の遮断バルブ14を開く。   In steps S25 and S26, the priming valve 11 is closed and the shutoff valve 14 of the return side passage 4 of the pure water path is opened.

ステップS27では、圧力センサ30の検出圧力を所定圧力Dと比較する。   In step S27, the pressure detected by the pressure sensor 30 is compared with a predetermined pressure D.

燃料電池1の出口の圧力センサ30の検出圧は、戻り側通路4の配管径や長さ等で決まる圧力センサ30の下流の圧損と純水流量の関係で決まる。そのため、燃料電池1の下流が純水で満たされた際の設定流量Aでの圧力センサ30の下流の圧損を基に所定圧力Dを設定しておけば、圧力センサ30の検出圧力が所定圧力Dを越えたときに、純水系が純水で満たされたとの判断が可能となる。   The detected pressure of the pressure sensor 30 at the outlet of the fuel cell 1 is determined by the relationship between the pressure loss downstream of the pressure sensor 30 determined by the piping diameter and length of the return side passage 4 and the pure water flow rate. Therefore, if the predetermined pressure D is set based on the pressure loss downstream of the pressure sensor 30 at the set flow rate A when the downstream of the fuel cell 1 is filled with pure water, the detected pressure of the pressure sensor 30 is the predetermined pressure. When D is exceeded, it can be determined that the pure water system is filled with pure water.

ステップS28では、圧力センサ30の検出圧力が所定圧力Dを越えた場合、循環させる純水流量をアイドル運転時の純水流量に戻す。   In step S28, when the pressure detected by the pressure sensor 30 exceeds the predetermined pressure D, the circulating pure water flow rate is returned to the pure water flow rate during idle operation.

このようにすれば、燃料電池1、循環径路の配管、および、循環径路の構成部品内に純水を的確に充填でき、循環径路の配管、および、循環径路の構成部品内のエア溜まりの発生を適切に回避できる。   In this way, pure water can be accurately filled in the fuel cell 1, the circulation path piping, and the circulation path components, and the occurrence of an air pool in the circulation path piping and the circulation path components. Can be avoided appropriately.

図8は、第3の実施形態を示す。   FIG. 8 shows a third embodiment.

これは、純水系に純水を充填する際の流量を段階的に制御するものである。   This controls the flow rate when filling pure water into pure water in a stepwise manner.

燃料電池システムの起動時に、図8のように、ステップS31では、空気導入ライン10のエアバルブ8を開き、純水タンク2内に所定高圧空気を導入する。   When starting the fuel cell system, as shown in FIG. 8, in step S <b> 31, the air valve 8 of the air introduction line 10 is opened to introduce predetermined high-pressure air into the pure water tank 2.

ステップS32、S33では、純水径路(循環経路)の戻り側通路4の遮断バルブ14を閉じ、呼び水バルブ11を開く。   In steps S32 and S33, the shutoff valve 14 of the return side passage 4 of the pure water path (circulation path) is closed, and the priming valve 11 is opened.

ステップS34では、呼び水が完了した後、純水ポンプ5を起動させる。   In step S34, after the priming is completed, the pure water pump 5 is started.

この場合、純水ポンプ5の吐出流量つまり純水系を循環させる純水流量は、高い設定流量B(図5の定格流量相当)にするように、純水ポンプ5を制御する。   In this case, the pure water pump 5 is controlled so that the discharge flow rate of the pure water pump 5, that is, the pure water flow rate for circulating the pure water system, is set to a high set flow rate B (corresponding to the rated flow rate in FIG. 5).

ステップS35は、時間計測を開始する。   Step S35 starts time measurement.

ステップS36、S37では、呼び水バルブ11を閉じ、純水径路の戻り側通路4の遮断バルブ14を開く。   In steps S36 and S37, the priming valve 11 is closed, and the shutoff valve 14 of the return side passage 4 of the pure water path is opened.

ステップS38では、所定時間Gつまり設定流量Bでの純水の供給時間が経過したかを見る。   In step S38, it is determined whether a predetermined time G, that is, a supply time of pure water at the set flow rate B has elapsed.

ステップS39では、所定時間Gが経過した場合、循環させる純水流量を設定流量Bよりも少ない設定流量C(前記形態の設定流量A相当)に制御する。   In step S39, when the predetermined time G has elapsed, the pure water flow rate to be circulated is controlled to a set flow rate C (corresponding to the set flow rate A in the above-described form) that is smaller than the set flow rate B.

ステップS40では、所定時間Hつまり設定流量Cでの純水の供給時間が経過したかを見る。   In step S40, it is determined whether a predetermined time H, that is, whether the supply time of pure water at the set flow rate C has elapsed.

ステップS41では、所定時間Hが経過した場合、循環させる純水流量をアイドル運転時の純水流量に戻す。   In step S41, when the predetermined time H has elapsed, the pure water flow to be circulated is returned to the pure water flow during idle operation.

燃料電池システムの起動時に、始めは大きな流量の設定流量Bで純水を流す。   At the start of the fuel cell system, pure water is initially flowed at a large set flow rate B.

燃料電池1の上流の循環径路に2つのフィルタ6、7を設置しており、したがって、大きな流量の設定流量Bで純水を流すことで、この両フィルタ6、7に純水を速やかに充填できる。設定流量Bでの純水の供給は、所定時間Gで終えるので、燃料電池1に純水が至って燃料電池1内の純水圧を極端に上昇させることがない。   Two filters 6 and 7 are installed in the circulation path upstream of the fuel cell 1. Therefore, pure water is quickly filled into both the filters 6 and 7 by flowing pure water at a large set flow rate B. it can. Since the supply of pure water at the set flow rate B ends in a predetermined time G, the pure water does not reach the fuel cell 1 and the pure water pressure in the fuel cell 1 is not extremely increased.

設定流量Bでの純水の供給を終えると、次は流量を減少した設定流量Cで純水を流す。   When the supply of pure water at the set flow rate B is finished, the pure water is then flowed at the set flow rate C with the flow rate decreased.

したがって、燃料電池1、循環径路の戻り側通路4に純水を的確に充填できる。   Therefore, it is possible to accurately fill the fuel cell 1 and the return side passage 4 of the circulation path with pure water.

この後、所定時間Hが経過すると、アイドル運転時の純水流量に戻す(第2の実施形態のように圧力センサ30の検出圧力を基に制御しても良い)。   Thereafter, when the predetermined time H has passed, the flow rate is returned to the pure water flow rate during idle operation (the control may be based on the pressure detected by the pressure sensor 30 as in the second embodiment).

この設定流量B、設定流量Cの関係は、
設定流量B>設定流量C
燃料電池1のガス圧との差圧制御が成立する最大流量
≧設定流量C>エア抜きに必要な最低流量
である。
The relationship between the set flow rate B and the set flow rate C is
Set flow rate B> Set flow rate C
Maximum flow rate at which differential pressure control with the gas pressure of the fuel cell 1 is established
≧ Set flow rate C> minimum flow rate required for air bleeding.

このようにすれば、燃料電池1、循環径路の配管、および、循環径路の構成部品内に純水を一層的確に短時間で充填でき、特に、燃料電池1上流の循環径路の構成部品内のより適切なエア抜きを行える。したがって、燃料電池システムの起動を一層短時間で行える。   In this way, the pure water can be filled in the fuel cell 1, the circulation path piping, and the circulation path components more accurately and in a short time, and in particular, in the circulation path components upstream of the fuel cell 1. A more appropriate air can be vented. Therefore, the fuel cell system can be started up in a shorter time.

車両用ならびに車両用以外の燃料電池に適用できる。   It can be applied to fuel cells for vehicles and other vehicles.

第1の実施形態の純水系システムの構成図である。It is a block diagram of the pure water system of 1st Embodiment. 制御フローチャートである。It is a control flowchart. 制御フローチャートである。It is a control flowchart. 純水流量の制御特性図である。It is a control characteristic figure of a pure water flow rate. 純水ポンプのP−Q性能特性図である。It is a PQ performance characteristic figure of a pure water pump. 第2の実施形態の純水系システムの構成図である。It is a block diagram of the pure water system of 2nd Embodiment. 制御フローチャートである。It is a control flowchart. 第3の実施形態の制御フローチャートである。It is a control flowchart of a 3rd embodiment.

符号の説明Explanation of symbols

1 燃料電池
2 純水タンク
3 供給側通路
4 戻り側通路
5 純水ポンプ
6 異物フィルタ
7 イオンフィルタ
8 エアバルブ
10 空気導入ライン
11 呼び水バルブ
12 パージバルブ
13 パージ用空気導入ライン
14 遮断バルブ
20 コントローラ
30 圧力センサ
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Pure water tank 3 Supply side passage 4 Return side passage 5 Pure water pump 6 Foreign matter filter 7 Ion filter 8 Air valve 10 Air introduction line 11 Nominal valve 12 Purge valve 13 Purge air introduction line 14 Shut off valve 20 Controller 30 Pressure sensor

Claims (4)

燃料電池に純水を純水ポンプを介して循環する循環経路を有しており、
燃料電池システムの停止時には、空気圧を導入して、燃料電池内の純水、並びに循環経路内の純水、並びに循環経路の構成部品内の純水を、純水タンクに回収する燃料電池システムにおいて、
燃料電池システムの運転状態に応じて循環する純水の流量を制御する循環水量制御手段を備え、
該循環水量制御手段は、燃料電池システムの起動時には、純水の流量をアイドル運転時の純水の流量よりも増量制御することを特徴とする燃料電池システムの制御装置。
The fuel cell has a circulation path for circulating pure water through a pure water pump,
In a fuel cell system that introduces air pressure when the fuel cell system is stopped and collects pure water in the fuel cell, pure water in the circulation path, and pure water in the components of the circulation path in a pure water tank. ,
Comprising a circulating water amount control means for controlling the flow rate of pure water circulating according to the operating state of the fuel cell system;
The control apparatus for a fuel cell system, wherein the circulating water amount control means controls the flow rate of pure water to be greater than the flow rate of pure water during idle operation when the fuel cell system is started.
前記循環水量制御手段は、燃料電池システムの起動時に、前記増量制御を開始した後、所定時間経過したときにアイドル運転時の流量に戻すことを特徴とする請求項1に記載の燃料電池システムの制御装置。   2. The fuel cell system according to claim 1, wherein the circulating water amount control unit returns the flow rate during idle operation when a predetermined time has elapsed after starting the increase control when the fuel cell system is started. Control device. 燃料電池出口の純水の圧力を検出する圧力センサを設け、
前記循環水量制御手段は、燃料電池システムの起動時に、前記増量制御を開始した後、圧力センサの検出圧に基づいてアイドル運転時の流量に戻すことを特徴とする請求項1に記載の燃料電池システムの制御装置。
A pressure sensor is provided to detect the pressure of pure water at the fuel cell outlet,
2. The fuel cell according to claim 1, wherein the circulating water amount control means returns the flow rate during idle operation based on a detected pressure of a pressure sensor after starting the increase control when the fuel cell system is started. System control unit.
前記増量制御は、最初の一定時間は増量幅を大きくし、その後は増量幅を小さくして所定の増量値に制御することを特徴とする請求項2または3に記載の燃料電池システムの制御装置。   4. The fuel cell system control device according to claim 2, wherein the increase control is performed to increase the increase range for an initial fixed time period and then decrease the increase range to a predetermined increase value. 5. .
JP2003372341A 2003-10-31 2003-10-31 Control device for fuel cell system Pending JP2005135825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003372341A JP2005135825A (en) 2003-10-31 2003-10-31 Control device for fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372341A JP2005135825A (en) 2003-10-31 2003-10-31 Control device for fuel cell system

Publications (1)

Publication Number Publication Date
JP2005135825A true JP2005135825A (en) 2005-05-26

Family

ID=34648750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372341A Pending JP2005135825A (en) 2003-10-31 2003-10-31 Control device for fuel cell system

Country Status (1)

Country Link
JP (1) JP2005135825A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280748A (en) * 2006-04-06 2007-10-25 Fuji Electric Holdings Co Ltd Method of starting fuel-cell power generation system
JP2013030295A (en) * 2011-07-27 2013-02-07 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and cooling method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280748A (en) * 2006-04-06 2007-10-25 Fuji Electric Holdings Co Ltd Method of starting fuel-cell power generation system
JP2013030295A (en) * 2011-07-27 2013-02-07 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and cooling method thereof

Similar Documents

Publication Publication Date Title
US9748588B2 (en) Reverse flow relief valve for a fuel cell system
KR100855330B1 (en) Fuel cell system
JP6225886B2 (en) Fuel cell system and method for discharging fluid in the system
JP4632055B2 (en) Fuel cell system and liquid discharge method thereof
JP2003173807A (en) Controller for fuel cell system
JP2012047234A (en) Gas filling device
JP4106960B2 (en) Fuel cell system
JP4844352B2 (en) Control device for fuel cell system
JP2006134861A (en) Fuel cell system and gas leakage detection method
JP4106961B2 (en) Fuel cell system
JP2005135825A (en) Control device for fuel cell system
JP2005310550A (en) Valve abnormality judgement control device of fuel cell
JP2005259586A (en) Fuel cell system
JP2006309948A (en) Fuel cell system
JP2011049040A (en) Fuel cell system
JP5407662B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP2009123600A (en) Fuel cell system, abnormality detecting method of fuel cell system, and vehicle
JP2007311087A (en) Fuel cell system, and ion removal method in cooling system in the same
JP2005259528A (en) Fuel cell system
JP3879423B2 (en) Fuel cell system
US20090317675A1 (en) Fuel cell system
JP3622720B2 (en) Fuel cell system
JP2006066117A (en) Fuel cell system
JP2004311241A (en) Fuel cell system
JP2006049234A (en) Liquid discharge of fuel cell system