JP2005135678A - Planar heating element - Google Patents

Planar heating element Download PDF

Info

Publication number
JP2005135678A
JP2005135678A JP2003368779A JP2003368779A JP2005135678A JP 2005135678 A JP2005135678 A JP 2005135678A JP 2003368779 A JP2003368779 A JP 2003368779A JP 2003368779 A JP2003368779 A JP 2003368779A JP 2005135678 A JP2005135678 A JP 2005135678A
Authority
JP
Japan
Prior art keywords
electrode
heating element
conductive
weft
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003368779A
Other languages
Japanese (ja)
Other versions
JP4158678B2 (en
Inventor
Yoshitaka Arii
善孝 有井
Koichiro Maeda
耕一郎 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2003368779A priority Critical patent/JP4158678B2/en
Publication of JP2005135678A publication Critical patent/JP2005135678A/en
Application granted granted Critical
Publication of JP4158678B2 publication Critical patent/JP4158678B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a user-friendly planar heating element, slim and long in a length direction, by alleviating unevenness of current loads generated in electrode wires, and also restraining voltage fall and unevenness of heat radiation along a length direction of the electrode wire, without going to the trouble of setting a number of lead wires. <P>SOLUTION: The planar heating element is provided with weft thread 8 at least including conductive thread for heating arranged at given intervals, warp thread 10 made of insulating thread braided with weft thread 8 in crossing at given intervals, a pair of electrode wires 6, 6 arranged so as to be electrically connected to either end of the weft thread, and an insulation coating layer 4 coating woven cloth 5 woven with the warp thread 8, the weft thread 10 and the electrode wires 6. Each of the pair of electrode wires 6 is structured of two or more rows of electrode wire units 6a, 6b separated by a given interval W2 along a length direction W of the weft thread 8. The electrode wire units 6a, 6b adjacent to each other of each electrode wire 6, 6 are connected to each other by a low-resistance lateral conductive wire 20 with a lower electric resistance than the weft thread 8 at a given interval L2 along a length direction of the electrode wire units. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、面状発熱体に係り、さらに詳しくは、電極が並列に配置され、それらの電極間に線状の発熱素子が並列に配置されたタイプの面状発熱体に関する。   The present invention relates to a planar heating element, and more particularly to a planar heating element of a type in which electrodes are arranged in parallel and linear heating elements are arranged in parallel between the electrodes.

面状発熱体としては、種々のタイプのものが知られているが、電極形状により分類すると、直列電極タイプの面状発熱体と、並列電極タイプの面状発熱体とがある。直列電極タイプの面状発熱体では、ニクロム線や金属箔などの線状の発熱素子が、蛇行状に配置されて面を形成し、その線状の発熱素子の両端に電圧を印加して、線状の発熱素子を発熱させる。   Various types of planar heating elements are known, but classified into electrode shapes, there are a series electrode type planar heating element and a parallel electrode type planar heating element. In a series electrode type planar heating element, linear heating elements such as nichrome wire and metal foil are arranged in a meandering manner to form a surface, and a voltage is applied to both ends of the linear heating element, A linear heating element is caused to generate heat.

並列電極タイプの面状発熱体には、二つのタイプの面状発熱体がある。一つは、並列に配置された一対の電極間に、面状の導電フィルムなどからなる発熱素子を配置するタイプ(純粋面状タイプ)である。もう一つは、並列に配置された一対の電極間に、線状の発熱素子を並列に配置するタイプ(線面タイプ)である。   There are two types of planar heating elements of the parallel electrode type. One is a type (pure planar type) in which a heating element made of a planar conductive film or the like is disposed between a pair of electrodes arranged in parallel. The other is a type (line surface type) in which linear heating elements are arranged in parallel between a pair of electrodes arranged in parallel.

直列電極タイプの面状発熱体では、線状発熱素子の長手方向の一部が切断されると、発熱体の全体に電流が流れなくなり、面状発熱体としての機能を有しなくなるという課題を有する。これに対して、並列電極タイプの面状発熱体では、面状の発熱素子または線状の発熱素子の一部が切断されても、その他の発熱素子に電流が流れ、面状発熱体としての機能を維持することができる。   In the series electrode type planar heating element, when a part of the longitudinal direction of the linear heating element is cut, no current flows through the entire heating element and the function as a planar heating element is lost. Have. On the other hand, in the parallel electrode type planar heating element, even if a part of the planar heating element or the linear heating element is cut, a current flows to other heating elements, and the planar heating element is used as a planar heating element. The function can be maintained.

ところが、並列電極タイプの一つである純粋面状タイプの面状発熱体では、発熱素子の発熱量が一般に小さく、十分な発熱量を得ることが困難である。また、この純粋面状タイプの面状発熱体では、面状の発熱素子の一部に破損が生じると、その破損が生じた部分の周囲に電界が集中し、電流が流れすぎることにより異常発熱を生じやすいという課題がある。   However, in a pure planar type planar heating element, which is one of the parallel electrode types, the heating element generally generates a small amount of heat, and it is difficult to obtain a sufficient amount of heating. In addition, in this pure planar type planar heating element, if a part of the planar heating element is damaged, the electric field concentrates around the damaged part and excessive current flows, causing abnormal heat generation. There is a problem that is likely to occur.

それに対して、線面タイプの面状発熱体では、線状の発熱素子を用いているために比較的に大きな発熱量を得ることができる。また、線状の発熱素子の一本が切れたとしても、その切れた発熱素子には、電流が流れず、発熱しなくなるのみであり、他の線状の発熱素子には電界が集中することもなく、正常に発熱し続ける。   On the other hand, in the linear surface type heating element, since a linear heating element is used, a relatively large calorific value can be obtained. In addition, even if one of the linear heating elements is cut off, no current flows through the cut-off heating element, and only heat is not generated, and the electric field concentrates on the other linear heating elements. There is no fever and continues to generate heat normally.

そこで、並列電極で線面タイプの面状発熱体が、様々な分野において好ましく用いられている。従来の線面タイプの面状発熱体では、たとえば特許文献1に示すように、縦糸と横糸とを密に編み込んだ織布を樹脂フィルムで被覆して構成してある。横糸の両端には、縦糸と平行に、電極線が接続してある。これらの電極線も、織布の一部となり、樹脂フィルムで被覆される。各電極線は、たとえば特許文献2に示すように、複数の導電線で構成してあり、それらの導電線は、ハニカム状に接続される。   In view of this, a line-type planar heating element with parallel electrodes is preferably used in various fields. In a conventional linear surface type planar heating element, for example, as shown in Patent Document 1, a woven fabric in which warp yarns and weft yarns are closely woven is covered with a resin film. Electrode wires are connected to both ends of the weft in parallel with the warp. These electrode wires also become part of the woven fabric and are covered with a resin film. For example, as shown in Patent Document 2, each electrode wire is composed of a plurality of conductive wires, and these conductive wires are connected in a honeycomb shape.

ところが、このような電極線の構造でも、最も発熱側に近い電極線の導電線に多量に電流が流れ、その負荷が大きいという課題を有している。すなわち、電極線に流すことができる電流量の上限は、最も発熱側に近い電極線の導電線の容量により制限されており、面状発熱体における電極線に沿って電圧降下が生じる。そのため、面状発熱体の電極線方向の長さを長くすると、電源から遠い端部での発熱が少なくなるという課題を有する。そのために、面状発熱体を、あまり長くすることは困難であるという課題もある。   However, even such an electrode wire structure has a problem that a large amount of current flows through the conductive wire of the electrode wire closest to the heat generation side, and the load is large. In other words, the upper limit of the amount of current that can be passed through the electrode wire is limited by the capacity of the conductive wire of the electrode wire closest to the heat generation side, and a voltage drop occurs along the electrode wire in the planar heating element. Therefore, when the length of the planar heating element in the electrode line direction is increased, there is a problem that heat generation at an end portion far from the power source is reduced. Therefore, there is also a problem that it is difficult to make the planar heating element too long.

このような課題は、各電極線を構成する導電線の数を増大させても解消することはできないものであった。これは、単純に電極線の数を増やしても、最も発熱側に近い電極線の導電線に多量に電流が流れ、その負荷が大きいという事態を解消することはできないからである。   Such a problem cannot be solved even if the number of conductive wires constituting each electrode line is increased. This is because even if the number of electrode wires is simply increased, it is not possible to eliminate the situation where a large amount of current flows through the conductive wire of the electrode wire closest to the heat generation side and the load is large.

また、電極線の長手方向に沿っての電圧降下を防止するために、面状発熱体の長手方向に沿って所定間隔でリード線取り出し部を設けることは、リード線の数が多くなり、面状発熱体の用途によっては、使い勝手が悪くなる。
実公昭62−40389号公報 特公平1−30265号公報
In addition, in order to prevent a voltage drop along the longitudinal direction of the electrode wire, providing lead wire take-out portions at a predetermined interval along the longitudinal direction of the planar heating element increases the number of lead wires. Depending on the use of the heating element, the usability becomes worse.
Japanese Utility Model Publication No. 62-40389 Japanese Patent Publication No.1-30265

本発明は、このような実状に鑑みてなされ、電極線に生じる電流負荷の不均一を軽減し、しかも、電極線の長手方向に沿っての電圧降下および発熱の不均一も抑制し、リード線を多数設けることなく、長手方向に細長い使い勝手に優れた面状発熱体を提供することを目的とする。   The present invention has been made in view of such a situation, and reduces the non-uniformity of the current load generated in the electrode wire, and also suppresses the voltage drop and the non-uniformity of heat generation along the longitudinal direction of the electrode wire. An object of the present invention is to provide a planar heating element that is elongated in the longitudinal direction and excellent in usability.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

上記目的を達成するために、本発明に係る面状発熱体は、
発熱用導電性糸を少なくとも含み、所定間隔で配置される横糸と、
絶縁性糸からなり、前記横糸に交差して所定間隔で編み込まれて配置される縦糸と、
前記横糸の両端部に電気的に接続するようにそれぞれ配置される一対の電極線と、
前記横糸、縦糸および電極線で織り込まれた織布を被覆する絶縁被覆層と、
を有し、
前記一対の電極線の各々が、前記横糸の長手方向に沿って所定間隔離れた二列以上の電極線単位で構成してあり、
各電極線における相互に近接する電極線単位が、当該電極線単位の長手方向に沿って所定間隔で、前記発熱用導電性糸よりも電気抵抗の低い低抵抗横導電線により相互に接続してあることを特徴とする。
なお、本発明において、横糸は、発熱用導電性糸のみで構成されることなく、所定の配置間隔で配置された絶縁性糸を含んでいても良い。また、発熱用導電性糸に絶縁性糸が織り込まれても良い。
In order to achieve the above object, a planar heating element according to the present invention comprises:
A weft thread including at least a conductive thread for heat generation and disposed at a predetermined interval;
A warp yarn made of an insulating yarn, arranged to be knitted at a predetermined interval across the weft yarn, and
A pair of electrode wires respectively disposed so as to be electrically connected to both ends of the weft,
An insulating coating layer covering the woven fabric woven with the weft, warp and electrode wires;
Have
Each of the pair of electrode lines is configured in units of two or more electrode lines separated by a predetermined distance along the longitudinal direction of the weft yarn,
The electrode line units adjacent to each other in each electrode line are connected to each other by a low resistance lateral conductive line having a lower electrical resistance than the conductive yarn for heat generation at a predetermined interval along the longitudinal direction of the electrode line unit. It is characterized by being.
In the present invention, the weft may not include only the heat-generating conductive yarn but may include insulating yarns arranged at a predetermined arrangement interval. Further, an insulating yarn may be woven into the heat generating conductive yarn.

本発明に係る面状発熱体は、並列電極タイプで、いわゆる線面タイプの面状発熱体である。そのため、面状発熱体の一部に破損が生じて、横糸の少なくとも一部を構成する線状発熱素子(発熱用導電性糸)の一部が切断されたとしても、他の発熱用導電性糸には電流が供給され、発熱を維持することができる。また、切断された横糸の発熱用導電性糸は、電流が流れずに発熱しないのみであり、他の横糸の発熱用導電性糸に印加される電圧も変化せず、異常発熱などが発生するおそれもない。   The planar heating element according to the present invention is a so-called line-type planar heating element of a parallel electrode type. Therefore, even if a part of the planar heating element is damaged and a part of the linear heating element (heating conductive yarn) constituting at least a part of the weft is cut, other heating conductive An electric current is supplied to the yarn to maintain heat generation. In addition, the cut conductive yarn for heat generation of the weft does not generate heat because no current flows, the voltage applied to the conductive yarn for heat generation of the other weft does not change, and abnormal heat generation occurs. There is no fear.

また、本発明に係る面状発熱体では、一対の電極線の各々が、前記横糸の長手方向に沿って所定間隔離れた二列以上の電極線単位で構成してある。しかも、各電極線における相互に近接する電極線単位が、当該電極線単位の長手方向に沿って所定間隔で、前記横糸よりも電気抵抗の低い低抵抗横導電線により相互に接続してある。このため、発熱部に近い側(内側)の電極線単位に沿って電圧降下が生じたとしても、その発熱部から遠い側(外側)の電極線単位と低抵抗横導電線を通して初期電圧が内側の電極線単位に供給され、電圧降下を抑制する。そのことは、内側の電極線単位に対する電流負荷を軽減することも意味する。   Further, in the planar heating element according to the present invention, each of the pair of electrode lines is configured in units of two or more electrode lines separated by a predetermined distance along the longitudinal direction of the weft yarn. In addition, the electrode line units adjacent to each other in each electrode line are connected to each other by a low resistance horizontal conductive line having a lower electrical resistance than the weft at predetermined intervals along the longitudinal direction of the electrode line unit. For this reason, even if a voltage drop occurs along the electrode line unit on the side close to the heat generating part (inside), the initial voltage is set inside through the electrode line unit on the side far from the heat generating part (outside) and the low resistance lateral conductive line. Is supplied to each electrode line unit to suppress the voltage drop. This also means reducing the current load on the inner electrode line unit.

すなわち、本発明では、外側の電極線単位にも電流が流れるので、内側の電極線単位に対する電流負荷を軽減することができる。このことは、面状発熱体を従来よりも電極線の長手方向に長くすることができることを意味し、面状発熱体の使い勝手を向上させることができる。   That is, in the present invention, since the current flows also in the outer electrode line unit, the current load on the inner electrode line unit can be reduced. This means that the planar heating element can be made longer in the longitudinal direction of the electrode wire than before, and the usability of the planar heating element can be improved.

しかも、本発明では、面状発熱体の長手方向に沿って所定間隔でリード線取り出し部を設ける必要がないことから、リード線の数を増やす必要が無く、その点でも、使い勝手が向上する。   In addition, in the present invention, it is not necessary to provide lead wire take-out portions at predetermined intervals along the longitudinal direction of the planar heating element, so there is no need to increase the number of lead wires, and the usability is improved in that respect as well.

このため、本発明では、電極線に生じる電流負荷の不均一を軽減し、しかも、電極線の長手方向に沿っての電圧降下および発熱の不均一も抑制し、リード線を多数設けることなく、長手方向に細長い使い勝手に優れた面状発熱体を提供することができる。   For this reason, in the present invention, the non-uniformity of the current load generated in the electrode wire is reduced, and also the voltage drop and the non-uniformity of heat generation along the longitudinal direction of the electrode wire are suppressed, without providing a large number of lead wires. A planar heating element that is elongated in the longitudinal direction and excellent in usability can be provided.

本発明において、各電極線単位は、単線の導電線でも、複数の導電線でもよい。複数の導電線で各電極線単位が構成される場合には、相互に幅方向にハニカム状に織り込まれて接続される複数の低抵抗縦導電線で構成してあることが好ましい。   In the present invention, each electrode line unit may be a single conductive line or a plurality of conductive lines. When each electrode line unit is constituted by a plurality of conductive lines, it is preferably constituted by a plurality of low resistance vertical conductive lines that are woven and connected in a honeycomb shape in the width direction.

相互にハニカム状に織り込まれて幅方向に接続される複数の低抵抗縦導電線は、理想的には、断面積の大きな低抵抗の単一の導電線として扱われることができる。ただし、現実的には、複数の低抵抗縦導電線のうちでも、最も内側に位置する導電線に流れる電流が最も多くなる。   A plurality of low resistance vertical conductive lines woven in a honeycomb shape and connected in the width direction can be ideally handled as a single low resistance conductive line having a large cross-sectional area. However, in reality, among the plurality of low-resistance vertical conductive lines, the current flowing through the innermost conductive line is the largest.

本発明では、二列以上の電極線単位を形成し、その外側の電極線単位と低抵抗横導電線とを通して、長手方向の所定間隔で、内側の電極線単位に電圧を供給する。そのために、内側の電極線単位の長手方向に沿って電力の消費による電圧降下が生じても、その電圧降下は、外側の電極線単位には影響せず、外側の電極線単位を通して、電圧を回復することが可能である。   In the present invention, two or more electrode line units are formed, and a voltage is supplied to the inner electrode line units at predetermined intervals in the longitudinal direction through the outer electrode line units and the low-resistance lateral conductive lines. For this reason, even if a voltage drop occurs due to power consumption along the longitudinal direction of the inner electrode line unit, the voltage drop does not affect the outer electrode line unit. It is possible to recover.

以下、本発明を、図面に示す実施形態に基づき説明する。
図1は本発明の一実施形態に係る面状発熱体の要部平面図、
図2は図1に示すII−II線に沿う要部断面図、
図3は図1に示す電極線単位の要部拡大図、
図4は電極線単位の長手方向に沿った電圧降下を示す概略図である。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
FIG. 1 is a plan view of an essential part of a sheet heating element according to an embodiment of the present invention,
FIG. 2 is a cross-sectional view of an essential part taken along line II-II shown in FIG.
3 is an enlarged view of a main part of the electrode line unit shown in FIG.
FIG. 4 is a schematic diagram showing a voltage drop along the longitudinal direction of each electrode line.

図1および図2に示すように、本発明の一実施形態に係る面状発熱体2は、透明な絶縁被覆層4,4を有し、これらの絶縁被覆層4,4の間に、横糸8と縦糸10とから成る織布5が挟み込まれている。織布5の横糸8は、発熱用導電性糸と、必要に応じて絶縁糸を含む糸で構成してある。横糸8を構成する発熱用導電性糸は、たとえば絶縁性フィラメントの外周を導電性塗料で被覆したものである。この発熱用導電性糸は、単線でも撚り線でも良い。絶縁性フィラメントの材質としては、特に限定されないが、ポリエステル、コットン、ナイロン、ガラス繊維などである。導電性塗料としては、たとえば導電性粒子を混入して得られる温度依存性の高い正温度特性(PTC)型の導電性塗料などが用いられる。   As shown in FIGS. 1 and 2, the planar heating element 2 according to one embodiment of the present invention has transparent insulating coating layers 4, 4, and the weft yarn is between these insulating coating layers 4, 4. A woven fabric 5 composed of 8 and warp yarn 10 is sandwiched. The weft 8 of the woven fabric 5 is composed of a heat-generating conductive yarn and, if necessary, a yarn including an insulating yarn. The heat-generating conductive yarn constituting the weft 8 is, for example, one in which the outer periphery of an insulating filament is covered with a conductive paint. The heat generating conductive yarn may be a single wire or a stranded wire. The material of the insulating filament is not particularly limited, and examples thereof include polyester, cotton, nylon, and glass fiber. As the conductive paint, for example, a positive temperature characteristic (PTC) type conductive paint having a high temperature dependency obtained by mixing conductive particles is used.

PTC型の導電性塗料としては、高温になるにつれて、抵抗が増大し、良好な自己温度調節機能を発揮するものであれば特に限定されず、たとえば金属粒子、カーボン粒子(カーボンブラック粒子、グラファイトカーボン粒子、黒鉛粒子)などの、導電性粒子を含有するものが用いられる。導電性粒子としては、カーボン粒子が好ましく用いられる。   The PTC-type conductive paint is not particularly limited as long as the resistance increases as the temperature increases, and a good self-temperature control function is exhibited. For example, metal particles, carbon particles (carbon black particles, graphite carbon) Particles, graphite particles) and the like containing conductive particles are used. As the conductive particles, carbon particles are preferably used.

このような導電性塗料中に、絶縁性フィラメントを浸漬して乾燥させれば、本実施形態の横糸8を構成する導電性糸が得られる。導電性糸の電気抵抗値は、おおむね、500〜10000Ω/cmである。   If an insulating filament is immersed in such a conductive paint and dried, the conductive yarn constituting the weft 8 of this embodiment can be obtained. The electric resistance value of the conductive yarn is approximately 500 to 10,000 Ω / cm.

本実施形態では、縦糸10は、面状発熱体2の長手方向Lに沿って延び、その長手方向Lに直交する幅方向Wに沿って所定間隔で配置され、絶縁性糸で構成してある。   In the present embodiment, the warp yarns 10 extend along the longitudinal direction L of the planar heating element 2, are arranged at predetermined intervals along the width direction W orthogonal to the longitudinal direction L, and are composed of insulating yarns. .

縦糸10を構成する絶縁性糸は、たとえば導電性塗料で被覆されていない以外は同様な導電性糸の芯材として用いられる絶縁性フィラメントで構成される。また、例えば金属線を絶縁被覆したものでも良い。この縦糸10も、単線でも撚り線でも良い。   The insulating yarn constituting the warp yarn 10 is constituted by an insulating filament used as a core material of the same conductive yarn except that it is not covered with a conductive paint, for example. Further, for example, a metal wire with an insulating coating may be used. The warp yarn 10 may also be a single wire or a stranded wire.

横糸8の幅方向Wの両端には、一対の電極線6が織布5の長手方向Lに沿って配置してある。各電極線6は、横糸8の長手方向Wに沿って所定間隔W2だけ離れた二列以上の電極線単位6a,6bで構成してある。各電極線6における相互に近接する電極線単位6a,6bが、当該電極線単位6a,6bの長手方向Lに沿って所定間隔L2で、横糸8よりも電気抵抗の低い低抵抗横導電線20により相互に接続してある。低抵抗横導電線20の電気抵抗値は、低いほどよく、通常、5Ω/cm以下、好ましくは、1Ω/cm以下である。   A pair of electrode wires 6 are arranged along the longitudinal direction L of the woven fabric 5 at both ends of the weft 8 in the width direction W. Each electrode line 6 is composed of two or more rows of electrode line units 6 a and 6 b that are separated by a predetermined interval W 2 along the longitudinal direction W of the weft 8. The electrode line units 6a and 6b that are adjacent to each other in each electrode line 6 are arranged at a predetermined interval L2 along the longitudinal direction L of the electrode line units 6a and 6b, and have a low resistance lateral conductive line 20 having a lower electrical resistance than the weft thread 8. Are connected to each other. The lower the electrical resistance value of the low resistance lateral conductive wire 20, the better, and it is usually 5 Ω / cm or less, preferably 1 Ω / cm or less.

各電極線単位6a(6bも同じ)は、図3に示すように、相互にハニカム状に織り込まれて幅方向Wに接続される複数の低抵抗縦導電線30で構成してある。低抵抗縦導電線30は、金属製糸で構成してあるのが好ましい。また、低抵抗横導電線20も、金属製糸で構成してあるのが好ましい。   As shown in FIG. 3, each electrode line unit 6a (same for 6b) is composed of a plurality of low resistance vertical conductive lines 30 that are woven in a honeycomb shape and connected in the width direction W. The low resistance vertical conductive wire 30 is preferably made of a metal thread. Moreover, it is preferable that the low resistance lateral conductive wire 20 is also made of a metal thread.

前記低抵抗縦導電線30は、織布5の両端において、織布5に対して一体的に編み込まれ、電極線単位6aまたは6bを構成し、各横糸8と電気的に接続してある。また、低抵抗横導電線20は、図1に示すように、織布5に編み込まれて、各電極線6における相互に近接する電極線単位6a,6bを、当該電極線単位6a,6bの長手方向Lに沿って所定間隔L2で接続する。低抵抗横導電線20は、近接する電極線単位6a,6bのみを電気的に接続し、面状発熱体2の幅方向Wの左右に位置する電極線6,6同士は、接続しない長さで織布5に編み込まれる。
低抵抗縦導電線30の電気抵抗値は、低いほどよく、通常5Ω/cm以下、好ましくは、1Ω/cm以下である。
The low resistance longitudinal conductive wire 30 is knitted integrally with the woven fabric 5 at both ends of the woven fabric 5, constitutes an electrode wire unit 6a or 6b, and is electrically connected to each weft yarn 8. Further, as shown in FIG. 1, the low-resistance lateral conductive line 20 is knitted into a woven fabric 5 so that the electrode line units 6a and 6b adjacent to each other in each electrode line 6 are connected to the electrode line units 6a and 6b. Connections are made along the longitudinal direction L at a predetermined interval L2. The low resistance lateral conductive line 20 electrically connects only the adjacent electrode line units 6a and 6b, and the electrode lines 6 and 6 positioned on the left and right in the width direction W of the planar heating element 2 are not connected to each other. Is knitted into the woven fabric 5.
The lower the electrical resistance value of the low resistance vertical conductive wire 30, the better, and it is usually 5 Ω / cm or less, preferably 1 Ω / cm or less.

低抵抗導電線20または30を構成する好ましい形態である金属製糸は、たとえば銅、鉄、ステンレスなどからなる。金属製糸は、単線でも撚り線でも良い。この金属製糸の線径は、縦糸10および横糸8の線径と略同じであり、好ましくは10〜1000μmである。   The metal yarn which is a preferred form constituting the low resistance conductive wire 20 or 30 is made of, for example, copper, iron, stainless steel or the like. The metal yarn may be a single wire or a stranded wire. The wire diameter of the metal yarn is substantially the same as that of the warp yarn 10 and the weft yarn 8, and is preferably 10 to 1000 μm.

本実施形態では、織布5における隣り合う横糸8相互間の間隔L1は、好ましくは0.01〜50mmである。また、織布5における隣り合う縦糸10相互間の間隔W1は、好ましくは0.01〜50mmである。   In the present embodiment, the distance L1 between the adjacent wefts 8 in the woven fabric 5 is preferably 0.01 to 50 mm. Moreover, the space | interval W1 between the adjacent warp 10 in the woven fabric 5 becomes like this. Preferably it is 0.01-50 mm.

横糸8の配置間隔L1が狭すぎると、単位面積あたりの発熱量が大きくなりすぎる傾向にあり、横糸8の配置間隔L1が広すぎると、面状発熱体全体としての発熱能力が低下する傾向にある。なお、縦糸10は、ほとんど発熱に寄与しないため、織布5としての強度を保持できる限り、縦糸10の配置間隔W1は、横糸8の配置間隔L1よりも広くすることができる。ただし、横糸8と縦糸10との織布5を形成する作業性を考慮すると、横糸の配置間隔W1と、縦糸の配置間隔L1とは、実質的に同じ程度がよい。   If the arrangement interval L1 of the weft yarns 8 is too narrow, the amount of heat generated per unit area tends to be too large, and if the arrangement interval L1 of the weft yarns 8 is too wide, the heat generation capacity of the entire planar heating element tends to decrease. is there. In addition, since the warp yarn 10 hardly contributes to heat generation, the arrangement interval W1 of the warp yarn 10 can be made wider than the arrangement interval L1 of the weft yarn 8 as long as the strength as the woven fabric 5 can be maintained. However, considering the workability of forming the woven fabric 5 of the weft yarn 8 and the warp yarn 10, the arrangement interval W1 of the weft yarn and the arrangement interval L1 of the warp yarn should be substantially the same.

低抵抗横導電線20相互間の間隔L2は、特に限定されないが、好ましくは10〜50000mm、さらに好ましくは50〜30000mmである。この間隔L2が狭すぎると、編み込み作業が繁雑になる傾向にあり、広すぎると、本発明の作用効果が小さくなる傾向にある。但し、L2>L1が好ましい。   Although the space | interval L2 between the low resistance horizontal conductive lines 20 is not specifically limited, Preferably it is 10-50000 mm, More preferably, it is 50-30000 mm. If the distance L2 is too narrow, the knitting work tends to be complicated, and if it is too wide, the effect of the present invention tends to be small. However, L2> L1 is preferable.

各電極線における近接する電極線単位6a,6b間の離間距離W2は、好ましくは1〜50mm、さらに好ましくは5〜30mmである。この離間距離W2が狭すぎると、1本の電極線単位6aの幅を広くしたことと同じになり、本発明の作用効果が小さくなる傾向にあり、離間幅W2が広すぎると、発熱に寄与しにくい部分の幅が広くなり、材料の無駄になる。   The separation distance W2 between the adjacent electrode line units 6a and 6b in each electrode line is preferably 1 to 50 mm, more preferably 5 to 30 mm. If the separation distance W2 is too small, it is the same as increasing the width of one electrode line unit 6a, and the effect of the present invention tends to be reduced. If the separation width W2 is too wide, it contributes to heat generation. The width of the difficult part is widened and the material is wasted.

縦糸10と、横糸8と、電極線6(低抵抗横導電線20含む)とからなる織布5は、図2に示すように、透明または不透明な絶縁被覆層4で被覆される。絶縁被覆層4は、特に限定されないが、たとえば塩化ビニルシート、PETシート、ポリオレフィンシート、ポリウレタンシート、アクリルシートなどで構成される。   As shown in FIG. 2, the woven fabric 5 composed of the warp yarn 10, the weft yarn 8, and the electrode wire 6 (including the low resistance transverse conductive wire 20) is covered with a transparent or opaque insulating coating layer 4. The insulating coating layer 4 is not particularly limited, and is composed of, for example, a vinyl chloride sheet, a PET sheet, a polyolefin sheet, a polyurethane sheet, an acrylic sheet, or the like.

織布5を絶縁被覆層4で被覆するための方法としては、特に限定されないが、接着剤による方法、熱融着による方法などが例示される。接着剤を用いる場合には、接着剤としては、ポリウレタン系やエポキシ樹脂系の接着剤が好ましく使用される。
また、上述した実施形態における面状発熱体2の絶縁被覆層4は、単層膜でも良いが、たとえば塩化ビニルシートとポリエチレンテレフタレート(PET)シートとの多層膜で構成しても良い。この絶縁被覆層4を、塩化ビニルシートとPETシートとの多層膜で構成する場合には、内側を塩化ビニルシートで構成し、外側をPETシートで構成することが好ましい。PETシートを外側に配置することで、外側からの液体の浸透を有効に防止することができる。また、内側に比較的に柔軟な塩化ビニルシートを配置することで、発熱体となる織布を挟み込んでの熱融着が容易になると共に、外側のPETシートの破損を、内側の塩化ビニルシートで補填することができる。多層膜は、たとえば熱ラミネーション工法などで製造することができる。
A method for coating the woven fabric 5 with the insulating coating layer 4 is not particularly limited, and examples thereof include a method using an adhesive and a method using thermal fusion. When an adhesive is used, a polyurethane or epoxy resin adhesive is preferably used as the adhesive.
In addition, the insulating coating layer 4 of the planar heating element 2 in the above-described embodiment may be a single layer film, but may be composed of, for example, a multilayer film of a vinyl chloride sheet and a polyethylene terephthalate (PET) sheet. When the insulating coating layer 4 is composed of a multilayer film of a vinyl chloride sheet and a PET sheet, the inside is preferably composed of a vinyl chloride sheet and the outside is composed of a PET sheet. By disposing the PET sheet on the outside, it is possible to effectively prevent the penetration of liquid from the outside. In addition, by arranging a relatively flexible vinyl chloride sheet on the inner side, it becomes easy to heat-seal with a woven fabric serving as a heating element, and damage to the outer PET sheet can be prevented. Can be compensated with. The multilayer film can be manufactured by, for example, a thermal lamination method.

各電極線6における内側の電極線単位6aの長手方向Lの端部には、電源に接続するためのリード線22が接続してある。このリード線22を介して、一対の電極線6間に印加される電圧は、特に限定されないが、たとえば250ボルト以下である。電極線6の間に電圧が印加されると、横糸8の長手方向Wに電流が流れ、横糸8が発熱する。本実施形態では、内側の電極線単位6aの間が主要な発熱部となる。面状発熱体における発熱部の発熱温度は、絶縁被覆層4の材質などにもよるが、80℃以下程度が好ましい。   A lead wire 22 for connecting to a power source is connected to an end portion in the longitudinal direction L of the inner electrode wire unit 6a in each electrode wire 6. The voltage applied between the pair of electrode wires 6 via the lead wire 22 is not particularly limited, but is, for example, 250 volts or less. When a voltage is applied between the electrode wires 6, a current flows in the longitudinal direction W of the weft 8, and the weft 8 generates heat. In this embodiment, the space between the inner electrode line units 6a is a main heat generating portion. The heating temperature of the heating part in the planar heating element is preferably about 80 ° C. or less, although it depends on the material of the insulating coating layer 4.

本実施形態に係る面状発熱体2は、並列電極タイプで、いわゆる線面タイプの面状発熱体である。そのため、面状発熱体の一部に破損が生じて、横糸8からなる線状発熱素子の一部が切断されたとしても、他の横糸8には電流が供給され、発熱を維持することができる。また、切断された横糸8は、電流が流れずに発熱しないのみであり、他の横糸8に印加される電圧も変化せず、異常発熱などが発生するおそれもない。   The planar heating element 2 according to the present embodiment is a parallel electrode type, and is a so-called linear surface type heating element. Therefore, even if a part of the planar heating element is damaged and a part of the linear heating element composed of the weft yarn 8 is cut, current is supplied to the other weft yarns 8 to maintain the heat generation. it can. Further, the cut weft 8 does not generate heat because no current flows, the voltage applied to the other weft 8 does not change, and there is no possibility of abnormal heat generation.

しかも、本実施形態に係る面状発熱体2では、一対の電極線6,6の各々が、横糸8の長手方向Wに沿って所定間隔離れた二列以上の電極線単位6a、6bで構成してある。しかも、各電極線6における相互に近接する電極線単位6a、6bが、当該電極線単位6a、6bの長手方向Lに沿って所定間隔L2で、横糸8よりも電気抵抗の低い低抵抗横導電線20により相互に接続してある。   Moreover, in the planar heating element 2 according to the present embodiment, each of the pair of electrode wires 6 and 6 is configured by two or more rows of electrode wire units 6 a and 6 b that are separated by a predetermined distance along the longitudinal direction W of the weft 8. It is. In addition, the electrode line units 6a and 6b adjacent to each other in each electrode line 6 have a low resistance lateral conductivity having a lower electric resistance than the weft 8 at a predetermined interval L2 along the longitudinal direction L of the electrode line units 6a and 6b. The lines 20 are connected to each other.

このため、図4に示すように、発熱部に近い側(内側)の電極線単位6aの長手方向Lに沿って電圧降下が生じたとしても、その発熱部から遠い側(外側)の電極線単位6bと低抵抗横導電線20を通して初期電圧が内側の電極線単位6aに供給され、電圧降下を抑制する。そのことは、内側の電極線単位6aに対する電流負荷を軽減することも意味する。   For this reason, as shown in FIG. 4, even if a voltage drop occurs along the longitudinal direction L of the electrode line unit 6a on the side (inner side) close to the heat generating part, the electrode line on the side farther from the heat generating part (outer side) An initial voltage is supplied to the inner electrode line unit 6a through the unit 6b and the low-resistance lateral conductive line 20 to suppress a voltage drop. This also means that the current load on the inner electrode line unit 6a is reduced.

すなわち、本実施形態では、外側の電極線単位6bにも電流が流れるので、内側の電極線単位6aに対する電流負荷を軽減することができる。このことは、面状発熱体2を従来よりも長手方向Lに長くすることができることを意味し、面状発熱体2の使い勝手を向上させることができる。   That is, in this embodiment, since the current also flows through the outer electrode line unit 6b, the current load on the inner electrode line unit 6a can be reduced. This means that the planar heating element 2 can be made longer in the longitudinal direction L than before, and the usability of the planar heating element 2 can be improved.

しかも、本実施形態では、面状発熱体2の長手方向に沿って所定間隔でリード線取り出し部を設ける必要がないことから、リード線22の数を増やす必要が無く、その点でも、使い勝手が向上する。   In addition, in the present embodiment, there is no need to provide lead wire take-out portions at predetermined intervals along the longitudinal direction of the planar heating element 2, so there is no need to increase the number of lead wires 22, and in that respect, it is easy to use. improves.

このため、本実施形態では、電極線6に生じる電流負荷の不均一を軽減し、しかも、電極線6の長手方向Lに沿っての電圧降下および発熱の不均一も抑制し、リード線22を多数設けることなく、長手方向Lに細長い使い勝手に優れた面状発熱体2を提供することができる。   For this reason, in this embodiment, the non-uniformity of the current load generated in the electrode wire 6 is reduced, and also the voltage drop and the non-uniformity of heat generation along the longitudinal direction L of the electrode wire 6 are suppressed, and the lead wire 22 is Without providing a large number, it is possible to provide a planar heating element 2 that is elongated in the longitudinal direction L and excellent in usability.

なお、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。   The present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the present invention.

本発明に係る面状発熱体の用途は、特に限定されず、たとえば、敷布、マット、定温倉庫の床、コンクリート構造体、タンクなどの加温や保温、あるいは、融雪、霜取り、融氷、凍結防止、台所、風呂場、トイレ、洗面所の暖房などの用途に幅広く用いることができる。   The use of the sheet heating element according to the present invention is not particularly limited. For example, heating or heat insulation of a floor covering, a mat, a floor of a constant temperature warehouse, a concrete structure, a tank, etc., or melting snow, defrosting, melting ice, freezing It can be used for a wide variety of purposes such as prevention, kitchen, bathroom, toilet, and bathroom heating.

図1は本発明の一実施形態に係る面状発熱体の要部平面図である。FIG. 1 is a plan view of an essential part of a planar heating element according to an embodiment of the present invention. 図2は図1に示すII−II線に沿う要部断面図である。FIG. 2 is a cross-sectional view of an essential part taken along line II-II shown in FIG. 図3は図1に示す電極線単位の要部拡大図である。FIG. 3 is an enlarged view of a main part of each electrode line shown in FIG. 図4は電極線単位の長手方向に沿った電圧降下を示す概略図である。FIG. 4 is a schematic diagram showing a voltage drop along the longitudinal direction of each electrode line.

符号の説明Explanation of symbols

2… 面状発熱体
4… 絶縁被覆層
5… 織布
6… 電極線
6a… 電極線単位
6b… 電極線単位
8… 横糸
10… 縦糸
20… 低抵抗横導電線
22… リード線
30… 低抵抗縦導電線
DESCRIPTION OF SYMBOLS 2 ... Planar heating element 4 ... Insulation coating layer 5 ... Woven cloth 6 ... Electrode wire 6a ... Electrode wire unit 6b ... Electrode wire unit 8 ... Weft yarn 10 ... Warp yarn 20 ... Low resistance transverse conductive wire 22 ... Lead wire 30 ... Low resistance Vertical conductive wire

Claims (3)

発熱用導電性糸を少なくとも含み、所定間隔で配置される横糸と、
絶縁性糸からなり、前記横糸に交差して所定間隔で編み込まれて配置される縦糸と、
前記横糸の両端部に電気的に接続するようにそれぞれ配置される一対の電極線と、
前記横糸、縦糸および電極線で織り込まれた織布を被覆する絶縁被覆層と、
を有し、
前記一対の電極線の各々が、前記横糸の長手方向に沿って所定間隔離れた二列以上の電極線単位で構成してあり、
各電極線における相互に近接する電極線単位が、当該電極線単位の長手方向に沿って所定間隔で、前記発熱用導電性糸よりも電気抵抗の低い低抵抗横導電線により相互に接続してある面状発熱体。
A weft thread including at least a conductive thread for heat generation and disposed at a predetermined interval;
A warp yarn made of an insulating yarn, arranged to be knitted at a predetermined interval across the weft yarn, and
A pair of electrode wires respectively disposed so as to be electrically connected to both ends of the weft,
An insulating coating layer covering the woven fabric woven with the weft, warp and electrode wires;
Have
Each of the pair of electrode lines is configured in units of two or more electrode lines separated by a predetermined distance along the longitudinal direction of the weft yarn,
The electrode line units adjacent to each other in each electrode line are connected to each other by a low resistance lateral conductive line having a lower electrical resistance than the conductive yarn for heat generation at a predetermined interval along the longitudinal direction of the electrode line unit. A sheet heating element.
前記各電極線単位が、複数の低抵抗縦導電線からなり、該導電線が相互にハニカム状に織り込まれ、横糸長手方向に接続されたものである請求項1に記載の面状発熱体。 2. The planar heating element according to claim 1, wherein each of the electrode line units includes a plurality of low-resistance longitudinal conductive lines, and the conductive lines are woven in a honeycomb shape and connected in the longitudinal direction of the weft yarn. 前記横糸は、発熱用導電性糸以外に、絶縁性糸を含む請求項1または2に記載の面状発熱体。 The planar heating element according to claim 1, wherein the weft yarn includes an insulating yarn in addition to the conductive yarn for heat generation.
JP2003368779A 2003-10-29 2003-10-29 Planar heating element Expired - Lifetime JP4158678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368779A JP4158678B2 (en) 2003-10-29 2003-10-29 Planar heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368779A JP4158678B2 (en) 2003-10-29 2003-10-29 Planar heating element

Publications (2)

Publication Number Publication Date
JP2005135678A true JP2005135678A (en) 2005-05-26
JP4158678B2 JP4158678B2 (en) 2008-10-01

Family

ID=34646338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368779A Expired - Lifetime JP4158678B2 (en) 2003-10-29 2003-10-29 Planar heating element

Country Status (1)

Country Link
JP (1) JP4158678B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049907A1 (en) * 2005-10-27 2007-05-03 Pacific Medical Co., Ltd. Heating mat using the plane heater
JP2012079538A (en) * 2010-10-01 2012-04-19 Aoyama Sangyo Kk Planar heating element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049907A1 (en) * 2005-10-27 2007-05-03 Pacific Medical Co., Ltd. Heating mat using the plane heater
JP2012079538A (en) * 2010-10-01 2012-04-19 Aoyama Sangyo Kk Planar heating element

Also Published As

Publication number Publication date
JP4158678B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
US5422462A (en) Electric heating sheet
US4700054A (en) Electrical devices comprising fabrics
JP2007227384A (en) Surface heating member and manufacturing method of surface heating member
KR101638415B1 (en) Partial Heating Type Plane Heating Element and Method for Fabricating the same
JP5499892B2 (en) Cloth material
JP4158678B2 (en) Planar heating element
KR102238410B1 (en) Heating fabric using carbon thread
JP5887451B1 (en) Planar heating element
JPH1140329A (en) Flat heating body
KR20100137992A (en) Woven heating device which conductive threads are binded
JP2016072103A (en) Heater for steering wheel and method of manufacturing the same
US20090032524A1 (en) Three-dimensional electric heating apparatus
JP2008108561A (en) Installation method of planar heating element, and planar heating element unit
US20150296567A1 (en) Heating element
JP2004296150A (en) Planar electric room heater
JPH1197160A (en) Sheet heater
JP2006338900A (en) Connection terminal and planar heating element using it
KR200406906Y1 (en) Heat-generating mat adopting planar heating element
JP2024024701A (en) Planar heating element
JP2005108631A (en) Transparent surface heating element
KR100965745B1 (en) Plane heater
JP2005108636A (en) Surface heating element
WO1998001009A1 (en) Electrically-heated, flexible and stretchable, shaped fabric
KR200389288Y1 (en) weave type heating element
KR200430375Y1 (en) Caloric seat using carbon calorification net

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4158678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term