JP2005134239A - Radiation measuring apparatus - Google Patents

Radiation measuring apparatus Download PDF

Info

Publication number
JP2005134239A
JP2005134239A JP2003370688A JP2003370688A JP2005134239A JP 2005134239 A JP2005134239 A JP 2005134239A JP 2003370688 A JP2003370688 A JP 2003370688A JP 2003370688 A JP2003370688 A JP 2003370688A JP 2005134239 A JP2005134239 A JP 2005134239A
Authority
JP
Japan
Prior art keywords
gas
radiation
measurement
measurement object
ionization current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003370688A
Other languages
Japanese (ja)
Other versions
JP4181012B2 (en
Inventor
Akira Sano
明 佐野
Tatsuyuki Maekawa
立行 前川
Shigeru Kanemoto
茂 兼本
Yukio Yoshimura
幸雄 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003370688A priority Critical patent/JP4181012B2/en
Publication of JP2005134239A publication Critical patent/JP2005134239A/en
Application granted granted Critical
Publication of JP4181012B2 publication Critical patent/JP4181012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a gas sucking speed difference in a measuring chamber, to make the position dependency of sensitivity smaller, and to perform high-accuracy radiation measurement in a radiation measuring apparatus which sucks ions generated in a gas inside the measuring chamber by ionization action of the radiation of an object to be measured, detects an ionization current and measures the radiation. <P>SOLUTION: The quantity of the radiation is measured by blowing a gas from a gas blowout apparatus 17 to the periphery of the object 1 to be measured put in the measuring chamber 2, agitating the gas 5 inside the chamber 2, sucking the agitated gas 5 with a sucking apparatus 3 and circulating it in a gas circulation course 8, collects the ions in the gas with an ion collector 9 provided in the middle of the course 8, measures the ionization current with an ionization-current measuring device 6, and performing an arithmetic operation with a data processor 7 on the basis of the value of this ionization current. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、放射線測定対象物を測定室内に収納し、放射線の電離作用で生成されたイオンを収集し、イオン化による電離電流を測定することにより測定対象物の放射線量を測定する放射線測定装置に関する。   The present invention relates to a radiation measuring apparatus that stores a radiation measurement object in a measurement chamber, collects ions generated by the ionizing action of radiation, and measures the radiation dose of the measurement object by measuring an ionization current due to ionization. .

放射線測定装置として従来、放射線の電離作用によって気体が電離され、電離によって生成されたイオンを気体と共に吸引し、電場をかけた電極でイオンによる電離電流を検出し、その強度から放射線量を測定するようにしたものがある。   Conventionally, as a radiation measurement device, gas is ionized by the ionizing action of radiation, ions generated by ionization are sucked together with the gas, ionization current due to ions is detected with an electrode applied with an electric field, and the radiation dose is measured from the intensity. There is something like that.

その一例として、従来図9に示すようなものが考えられている。
図9において、1は放射線の測定対象物、2は前記測定対象物1を収納する測定室、3a〜3dは例えば測定室2の周囲4箇所に等間隔にパイプ4a〜4dを介して接続され、測定室2内の気体5を吸引する吸引装置、6a〜6dは各吸引装置3a〜3dと測定室2との間のパイプ4a〜4dの途中に設けられた電離電流測定装置、7は各電離電流測定装置6a〜6dで測定された電離電流値が入力されるデータ処理装置である(例えば、特許文献1参照。)。
As an example, the conventional one shown in FIG. 9 has been considered.
In FIG. 9, reference numeral 1 denotes a radiation measurement object, 2 denotes a measurement chamber for housing the measurement object 1, and 3 a to 3 d are connected to, for example, four locations around the measurement chamber 2 at equal intervals via pipes 4 a to 4 d. , A suction device for sucking the gas 5 in the measurement chamber 2, 6 a to 6 d are ionization current measurement devices provided in the middle of the pipes 4 a to 4 d between the suction devices 3 a to 3 d and the measurement chamber 2, and 7 is each This is a data processing device to which ionization current values measured by the ionization current measuring devices 6a to 6d are input (see, for example, Patent Document 1).

このような放射線測定装置であると、測定対象物1の放射線により電離された電離イオンを含む測定室2内の気体5を吸引装置3a〜3dで吸引し、各電離電流測定装置5a〜5dでイオンによる電離電流を測定し、この測定された電離電流を基にデータ処理装置6で演算処理して測定対象物1の放射線量を測定する。   In such a radiation measurement device, the gas 5 in the measurement chamber 2 containing ionized ions ionized by the radiation of the measurement object 1 is sucked by the suction devices 3a to 3d, and the ionization current measurement devices 5a to 5d are used. The ionization current due to ions is measured, and the radiation amount of the measurement object 1 is measured by the data processing device 6 based on the measured ionization current.

一方、従来の別の手段として図10に示すようなものも考えられている。
図10において、1は放射線の測定対象物で、例えば片側が閉塞された筒状の物体、2は前記測定対象物1を収納する測定室、8は測定室2に接続された気体循環経路で、この循環経路の途中に電極を有するイオン収集装置9、測定室2内の気体5を気体循環経路8内に吸引する吸引装置3、及び粒子捕集装置10を備えている。
On the other hand, another conventional means is also considered as shown in FIG.
In FIG. 10, reference numeral 1 denotes a radiation measurement object, for example, a cylindrical object closed on one side, 2 a measurement chamber for housing the measurement object 1, and 8 a gas circulation path connected to the measurement chamber 2. The ion collecting device 9 having an electrode in the middle of the circulation path, the suction device 3 for sucking the gas 5 in the measurement chamber 2 into the gas circulation path 8, and the particle collecting device 10 are provided.

11は測定室2の内部に設けられ、先端を測定対象物1に向けて開口したパイプ状の気体噴出装置、12は測定室2の外部に設けられ、前記気体噴出装置11に気体を送風する気体送風装置、6はイオン収集装置9により収集されたイオンから電離電流を測定する電離電流測定装置、7は電離電流測定装置6で測定された電離電流値が入力されるデータ処理装置、13は前記イオン収集装置9の電極に電圧を印加する電圧供給装置である(例えば、非特許文献1参照。)。   11 is a pipe-like gas ejection device provided inside the measurement chamber 2, the tip of which opens toward the measurement object 1, and 12 is provided outside the measurement chamber 2, and blows gas to the gas ejection device 11. A gas blower, 6 is an ionization current measurement device that measures an ionization current from ions collected by the ion collection device 9, 7 is a data processing device to which an ionization current value measured by the ionization current measurement device 6 is input, and 13 is This is a voltage supply device that applies a voltage to the electrodes of the ion collector 9 (see, for example, Non-Patent Document 1).

このような放射線測定装置であると、測定対象物1の放射線により電離された電離イオンを含む測定室2内の気体5を吸引装置3で吸引して気体循環経路8内に矢印X方向に沿って循環させ、循環経路の途中に設けたイオン収集装置9でイオンを収集する。
収集されたイオンは電離電流測定装置6により電離電流を測定し、この測定された電離電流を基にデータ処理装置7で演算処理して測定対象物1の放射線量を測定する。
In such a radiation measurement device, the gas 5 in the measurement chamber 2 containing ionized ions ionized by the radiation of the measurement object 1 is sucked by the suction device 3 and along the arrow X direction in the gas circulation path 8. The ions are collected by the ion collector 9 provided in the middle of the circulation path.
The collected ions are measured for ionization current by the ionization current measuring device 6, and the data processing device 7 performs arithmetic processing based on the measured ionization current to measure the radiation dose of the measurement object 1.

気体循環経路8を流れる気体はイオンを捕獲されたあと粒子捕集装置10を通って再び測定室2内に戻される。
測定室2内においては気体送風装置12から送られてくる風を気体噴出装置11を介して測定対象物1の筒内に吹き付けることにより筒内に滞留した気体を気体循環経路8内に強制的に循環させる。
特開2003−194946号公報(P14、図9) 日本原子力学会「2003年秋の大会」予稿集(P64)
The gas flowing through the gas circulation path 8 is trapped by ions and then returned to the measurement chamber 2 through the particle collecting device 10.
In the measurement chamber 2, the gas sent from the gas blower 12 is blown into the cylinder of the measurement object 1 through the gas blower 11, so that the gas staying in the cylinder is forced into the gas circulation path 8. To circulate.
JP2003-194946A (P14, FIG. 9) Proceedings of the Atomic Energy Society of Japan "Autumn of 2003" (P64)

しかしながら図9に示すような従来の放射線測定装置であると、測定室2内の気体5を測定室2の周囲4箇所に等間隔に設けた吸引装置3a〜3dにより吸引しているが、測定室2内の気体吸引速度差が大きく、測定対象物1の表面近傍の気体を均等な速度で吸引することが難しい。   However, in the case of the conventional radiation measuring apparatus as shown in FIG. 9, the gas 5 in the measurement chamber 2 is sucked by the suction devices 3a to 3d provided at equal intervals around the measurement chamber 2, but the measurement is performed. The gas suction speed difference in the chamber 2 is large, and it is difficult to suck the gas in the vicinity of the surface of the measurement object 1 at a uniform speed.

特に大型で、種々の形状をした測定対象物であると、イオンを含む気体が測定室2内の隅部や測定対象物1の凹部などに滞留してしまい、より一層均等に吸引することが難しくなる。
このため、測定対象物1に対する感度位置依存性が大きくなり、精度の高い放射線測定が行えない。
In particular, in the case of a measurement object having a large size and various shapes, a gas containing ions stays in a corner of the measurement chamber 2 or a recess of the measurement object 1 and can be more evenly sucked. It becomes difficult.
For this reason, the sensitivity position dependence with respect to the measuring object 1 becomes large, and highly accurate radiation measurement cannot be performed.

一方、図10に示す従来の放射線測定装置であると、気体噴出装置11による部分的送風により測定室2内の気体5を攪拌し、一部の感度差を小さくしているものの、図示するような円筒型のような単純な形をした測定対象物にはある程度の効果があるものの、大型で、複雑な形状をした測定対象物に対してはあまり効果が期待できず、図9に示す従来例と同様に、イオンを含む気体の滞留が生じ、測定対象物1に対する感度位置依存性が大きくなり、精度の高い放射線測定が行えない。   On the other hand, in the case of the conventional radiation measuring apparatus shown in FIG. 10, the gas 5 in the measuring chamber 2 is agitated by partial blowing by the gas jetting apparatus 11 to reduce a part of the sensitivity difference. Although a measurement object having a simple shape such as a cylindrical shape has a certain effect, it cannot be expected to be very effective for a measurement object having a large size and a complicated shape. As in the example, the retention of gas containing ions occurs, the sensitivity position dependency on the measurement object 1 increases, and highly accurate radiation measurement cannot be performed.

本発明は以上の課題を解決するためになされたものであり、大型で、複雑な形状をした測定対象物に対しても精度の高い放射線測定が行える放射線測定装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a radiation measuring apparatus capable of performing highly accurate radiation measurement even on a large and complicated measuring object.

上記目的を達成するために請求項1に記載の放射線測定装置の発明は、放射線の測定対象物を気体と共に収納する測定室と、前記測定対象物の放射線により電離された電離イオンを含む前記測定室内の気体を循環させる気体循環経路と、前記気体循環経路に設けられたイオン収集装置と、前記イオン収集装置により収集されたイオンから電離電流を測定する電離電流測定装置と、前記電離電流測定装置により測定された電離電流を基に測定対象物の放射線量を演算処理するデータ処理装置と、前記測定室内に収納された測定対象物をその周囲から取り囲むように設けられ、測定対象物に気体を吹き付ける複数個の気体噴出装置と、前記気体噴出装置に気体を送る気体送風装置とからなることを特徴とする。   In order to achieve the above-mentioned object, the invention of the radiation measuring apparatus according to claim 1 includes a measurement chamber for storing a measurement object of radiation together with gas, and the measurement including ionized ions ionized by radiation of the measurement object. A gas circulation path for circulating a gas in the room; an ion collector provided in the gas circulation path; an ionization current measurement apparatus for measuring an ionization current from the ions collected by the ion collection apparatus; and the ionization current measurement apparatus A data processing device for calculating and processing the radiation dose of the measurement object based on the ionization current measured by the method, and surrounding the measurement object stored in the measurement chamber from the periphery, It is characterized by comprising a plurality of gas jetting devices to be blown and a gas blower sending gas to the gas jetting device.

また、請求項4に記載の放射線測定装置の発明は、放射線の測定対象物を気体と共に収納する測定室と、測定対象物の放射線により電離された電離イオンを含む前記測定室内の気体を循環させる気体循環経路と、前記気体循環経路に設けられた電荷収集装置と、前記電荷収集装置により収集された積算電荷量から電荷量を測定する電荷測定装置と、前記電荷測定装置により測定された電荷を基に測定対象物の放射線量を演算処理するデータ処理装置と、前記測定室内に収納された測定対象物をその周囲から取り囲むように設けられ、測定対象物に気体を吹き付ける複数個の気体噴出装置と、前記気体噴出装置に気体を送る気体送風装置とからなることを特徴とする。   Further, the invention of the radiation measuring apparatus according to claim 4 circulates the gas in the measuring chamber containing the ionizing ions ionized by the radiation of the measuring object and the measuring chamber for storing the measuring object of the radiation together with the gas. A gas circulation path, a charge collection device provided in the gas circulation path, a charge measurement device for measuring a charge amount from an accumulated charge amount collected by the charge collection device, and a charge measured by the charge measurement device. A data processing device for calculating and processing the radiation dose of the measurement object, and a plurality of gas ejection devices which are provided so as to surround the measurement object housed in the measurement chamber from the surroundings and blow gas to the measurement object And a gas blower that sends gas to the gas jetting device.

本発明の放射線計測装置によれば、大型で、複雑な形状をした測定対象物に対しても精度の高い放射線測定が行える。   According to the radiation measuring apparatus of the present invention, it is possible to perform highly accurate radiation measurement even on a large and complicated measuring object.

以下本発明の実施の形態について図面を参照して説明する。なお、以下の実施の形態の説明において、図9及び図10に示す従来の放射線測定装置と同一部分には同一の符号を付し、詳細な説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the following description of the embodiment, the same parts as those in the conventional radiation measuring apparatus shown in FIGS. 9 and 10 are denoted by the same reference numerals, and detailed description thereof is omitted.

図1は本発明の第1の実施の形態を示す図で、図1において、1は片方が閉塞した円筒型容器のような放射線の測定対象物、2は測定対象物1を収納する測定室、8は一端が測定室2の気体出口側に気体収束装置14を介して接続され、他端が測定室2の気体入口側に気体拡散装置15を介して接続された気体循環経路で、この気体循環経路8の途中に電極を有するイオン収集装置9、測定室2内の空気からなる気体5を気体循環経路8内に吸引する吸引装置3、粒子捕集装置10及び吸引装置3で気体循環経路8内に吸引した測定室2内の気体5を再び気体拡散装置15を通して測定室2内へ循環させる送風装置16とを設けている。   FIG. 1 is a diagram showing a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a measurement object of radiation such as a cylindrical container closed on one side, and reference numeral 2 denotes a measurement chamber for storing the measurement object 1. , 8 is a gas circulation path having one end connected to the gas outlet side of the measurement chamber 2 via the gas converging device 14 and the other end connected to the gas inlet side of the measurement chamber 2 via the gas diffusion device 15. Gas circulation with an ion collector 9 having an electrode in the middle of the gas circulation path 8, a suction device 3 that sucks the gas 5 consisting of air in the measurement chamber 2 into the gas circulation path 8, a particle collection device 10, and the suction device 3. A blower device 16 is provided for circulating the gas 5 in the measurement chamber 2 sucked into the path 8 through the gas diffusion device 15 into the measurement chamber 2 again.

6はイオン収集装置9により収集されたイオンから電離電流を測定する電離電流測定装置、7は電離電流測定装置6で検出された電離電流値が入力されるデータ処理装置、13は前記イオン収集装置9の電極に電圧を印加する電圧供給装置である。   6 is an ionization current measuring device that measures the ionization current from the ions collected by the ion collector 9, 7 is a data processing device to which the ionization current value detected by the ionization current measuring device 6 is input, and 13 is the ion collector. 9 is a voltage supply device for applying a voltage to nine electrodes.

17は測定室2内に収納された測定対象物1をその周囲から取り囲むように測定室2の壁に取り外し自在に取り付けられた複数個のノズル状の気体噴出装置であり、各気体噴出装置17の気体噴出口は測定対象物1に向けてその位置が自由に変えられるように取り付けられている。   Reference numeral 17 denotes a plurality of nozzle-like gas ejection devices that are detachably attached to the wall of the measurement chamber 2 so as to surround the measurement object 1 housed in the measurement chamber 2 from the periphery thereof. The gas outlet is attached to the measuring object 1 so that its position can be freely changed.

図1では平面的に見て測定室2の一つの壁に3個の気体噴出装置17を取り付け、四つの壁で合計12個の気体噴出装置17を取り付けた状態を示しているが、実際には天井壁にも気体噴出装置は取り付けられており、その数、取り付け位置などは必要に応じて決定される。   FIG. 1 shows a state in which three gas ejection devices 17 are attached to one wall of the measurement chamber 2 in plan view, and a total of 12 gas ejection devices 17 are attached to the four walls. A gas ejection device is also attached to the ceiling wall, and the number, attachment position, etc. are determined as necessary.

また、各気体噴出装置17は、作業員が測定室2内に入ってあらかじめイオンを含む気体の滞留が予測される個所に向けて調整しながら最適な位置、方向になるように測定室2の壁に取り付け、固定することにより効率的に取り付けることができる。   In addition, each gas ejection device 17 is placed in the measurement chamber 2 so as to be in an optimum position and direction while being adjusted toward a place where an operator enters the measurement chamber 2 and is expected to retain a gas containing ions in advance. It can be attached efficiently by attaching and fixing to the wall.

18は各気体噴出装置17に接続され、気体噴出装置17の自由な位置調整作業にも追従する可撓性を有する送風パイプ、19は各送風パイプ18を介して気体噴出装置17に気体を送る気体送風装置、20は気体送風装置19と複数個の各気体噴出装置17とを一括して接続し、気体送風装置19から各気体噴出装置17に送られる送風量を個々に開閉制御する図示しない開閉バルブを有した開閉装置、21は開閉装置20の開閉バルブの開閉を制御する開閉制御装置である。   18 is connected to each gas ejection device 17, and has a flexible blow pipe that follows the position adjustment operation of the gas ejection device 17. 19 is a gas that is sent to the gas ejection device 17 via each blow pipe 18. A gas blower 20, which connects the gas blower 19 and a plurality of gas ejection devices 17 together, individually controls the opening and closing of the amount of air sent from the gas blower 19 to each gas ejection device 17. An opening / closing device 21 having an opening / closing valve is an opening / closing control device 21 for controlling the opening / closing of the opening / closing valve of the opening / closing device 20.

22は測定室2内に設けられ、測定対象物1を載置して、載置したまま回転可能なターンテーブルのような回転装置、23は測定対象物1の回転角度を検出する回転角度検出装置、24は測定室2の壁内側に設けられ、気体循環経路8から測定室2内に循環送風されてくる気体を測定室2内で円滑に流動させるための整流板、25は気体送風装置19の気体取り入れ口に設けられた粒子捕集装置である。   Reference numeral 22 denotes a rotating device such as a turntable which is provided in the measurement chamber 2 and can place the measurement object 1 and can be rotated while being placed. Reference numeral 23 denotes a rotation angle detection which detects the rotation angle of the measurement object 1. A device 24 is provided inside the wall of the measurement chamber 2, and a rectifying plate for smoothly flowing the gas circulated and blown into the measurement chamber 2 from the gas circulation path 8 in the measurement chamber 2, 25 is a gas blower It is the particle | grain collection apparatus provided in 19 gas intake ports.

次に、本実施の形態による放射線測定装置の作用について説明する。
測定室2内に収納された測定対象物1の表面で放射線により電離された電離イオンを含む気体5は吸引装置3で吸引され、気体収束装置14により収束されて気体循環経路8内に矢印X方向に沿って循環される。
Next, the operation of the radiation measuring apparatus according to this embodiment will be described.
The gas 5 containing ionized ions ionized by radiation on the surface of the measurement object 1 housed in the measurement chamber 2 is sucked by the suction device 3, converged by the gas converging device 14, and arrow X in the gas circulation path 8. It is circulated along the direction.

気体循環経路8内に送られた気体5は循環経路の途中に設けたイオン収集装置9を通過し、ここで気体中に含まれるイオンが収集される。
収集されたイオンは電離電流測定装置6にて電離電流が測定され、この測定された電離電流を基にデータ処理装置7で演算処理して測定対象物1の放射線量を測定する。
The gas 5 sent into the gas circulation path 8 passes through an ion collector 9 provided in the middle of the circulation path, where ions contained in the gas are collected.
The collected ions are measured for the ionization current by the ionization current measuring device 6, and the data processing device 7 performs arithmetic processing based on the measured ionization current to measure the radiation dose of the measurement object 1.

一方、気体循環経路8内を気体5が循環する時、気体送風手段19では高速の気体を発生し、開閉装置20の開閉バルブ、送風パイプ18を通って複数個の気体噴出装置17に送られ、そのノズル先端から測定対象物1の周囲に高速の気体を吹き付ける。   On the other hand, when the gas 5 circulates in the gas circulation path 8, the gas blowing means 19 generates high-speed gas, which is sent to the plurality of gas ejection devices 17 through the opening / closing valve of the opening / closing device 20 and the blowing pipe 18. A high-speed gas is blown around the measurement object 1 from the nozzle tip.

測定対象物1の表面では気体噴出装置17から吹き付けられた高速の気体が衝突し、測定対象物1の表面に生成されたイオンが剥離されると共に測定室2内の気体5が攪拌され、この攪拌された気体5を吸引装置8により吸引し、気体収束装置14を通って気体循環経路8内に循環させる。   The high-speed gas blown from the gas ejection device 17 collides with the surface of the measurement object 1, the ions generated on the surface of the measurement object 1 are separated, and the gas 5 in the measurement chamber 2 is stirred. The stirred gas 5 is sucked by the suction device 8 and circulated in the gas circulation path 8 through the gas converging device 14.

気体循環経路8を流れる気体はイオンを収集されたあと粒子捕集装置10を通って浄化され、気体送風装置16により気体拡散装置15で広範囲に拡散された状態で再び測定室2内に戻される。   The gas flowing through the gas circulation path 8 is collected through the particle collecting device 10 after collecting the ions, and returned to the measurement chamber 2 again after being diffused in a wide range by the gas diffusion device 15 by the gas blower 16. .

このように本実施の形態による放射線測定装置によれば、測定対象物1の表面に生成されたイオンを気体噴出装置17から吹き付けられた高速の気体により剥離し、測定室2内の気体5を攪拌して気体循環経路8に設けられたイオン収集装置9に移送するようにしているので、測定室2内でのイオンの滞留がなくなり、気体拡散装置15により拡散された気体の流れだけに比べてイオンの循環がより円滑になり、イオンの測定効率差が小さくなる。   As described above, according to the radiation measuring apparatus according to the present embodiment, the ions generated on the surface of the measurement object 1 are separated by the high-speed gas blown from the gas ejection device 17, and the gas 5 in the measurement chamber 2 is removed. Since the mixture is stirred and transferred to the ion collector 9 provided in the gas circulation path 8, there is no stagnation of ions in the measurement chamber 2, and compared with only the gas flow diffused by the gas diffusion device 15. Therefore, the circulation of ions becomes smoother, and the difference in ion measurement efficiency is reduced.

特に大型で、複雑な形状をした測定対象物に対しても測定対象物の周囲に設けられた複数の気体噴出装置17により高速の気体を吹き付けられるので滞留イオンをなくし、イオンの循環が円滑になるので測定対象物1に対する感度位置依存性が小さくなり、精度の高い放射線測定が行える。   High-speed gas is blown by a plurality of gas ejection devices 17 provided around the measurement object even on a measurement object that is particularly large and has a complicated shape, thereby eliminating stagnant ions and smoothing the circulation of ions. Therefore, the sensitivity position dependency with respect to the measurement object 1 is reduced, and highly accurate radiation measurement can be performed.

また測定対象物1の放射線測定を行う時、測定対象物1を回転装置22により回転させ、測定対象物1の回転角度を回転角度検出装置23により検出し、その検出信号を開閉制御装置21に入力し、前もって定めた測定対象物1の角度毎に各気体噴出装置17からの気体の噴出量を開閉制御装置21による開閉装置20の開閉バルブの調節により制御する。   When performing radiation measurement of the measurement object 1, the measurement object 1 is rotated by the rotation device 22, the rotation angle of the measurement object 1 is detected by the rotation angle detection device 23, and the detection signal is sent to the opening / closing control device 21. The gas ejection amount from each gas ejection device 17 is controlled by adjusting the opening / closing valve of the opening / closing device 20 by the opening / closing control device 21 for each predetermined angle of the measuring object 1.

例えば、気体収束装置14を取り付けた測定室2の壁に設けた気体噴出装置17からの気体の噴出がなく、測定対象物1の回転角度が315度から45度の場合には気体拡散手段15を取り付けた測定室2の壁に設けた気体噴出手段17からのみ気体を噴出させ、回転角度が45度から135度の場合は気体拡散手段15を取り付けた測定室2の壁から90度回転した面に取り付けられた気体噴出装置17からのみ気体が噴出し、回転角度が135度から225度の場合には気体拡散手段15を取り付けた測定室2の壁から270度回転した面に取り付けられた気体噴出装置17からのみ気体が噴出するように制御する。   For example, when there is no gas ejection from the gas ejection device 17 provided on the wall of the measurement chamber 2 to which the gas converging device 14 is attached and the rotation angle of the measurement object 1 is 315 to 45 degrees, the gas diffusion means 15 The gas was ejected only from the gas ejection means 17 provided on the wall of the measurement chamber 2 to which the gas diffusion means 15 was attached. When the rotation angle was 45 to 135 degrees, the gas was rotated 90 degrees from the wall of the measurement chamber 2 to which the gas diffusion means 15 was attached. Gas was ejected only from the gas ejection device 17 attached to the surface, and when the rotation angle was 135 to 225 degrees, it was attached to the surface rotated 270 degrees from the wall of the measurement chamber 2 to which the gas diffusion means 15 was attached. Control is performed so that gas is ejected only from the gas ejection device 17.

このように測定対象物1を回転させ、その回転角度に応じて気体噴出装置17からの気体の噴出量を制御することにより、より複雑な形状の測定対象物の場合でも滞留イオンをなくし、イオンの循環が円滑になるので測定対象物1に対する感度位置依存性が小さくなり、精度の高い放射線測定が行える。   In this way, by rotating the measurement object 1 and controlling the amount of gas ejected from the gas ejection device 17 according to the rotation angle, the accumulated ions are eliminated even in the case of a measurement object having a more complicated shape. Therefore, the sensitivity position dependency with respect to the measurement object 1 is reduced, and radiation measurement with high accuracy can be performed.

さらにまた、気体噴出装置17から気体を噴出した時のみ気体循環経路8に設けたイオン収集装置9によりイオンを収集して電離電流を測定し、気体噴出装置17から気体が噴出しない時には電離電流を測定せず、測定した複数個の電離電流の値を例えば平均値を算出してそれから放射線量を求めるようにすると、効率的に収集した電流値から演算処理できるので感度差が小さくなり、より測定精度が向上する。   Furthermore, only when gas is ejected from the gas ejection device 17, ions are collected by the ion collector 9 provided in the gas circulation path 8 to measure the ionization current. When no gas is ejected from the gas ejection device 17, the ionization current is measured. If, for example, the average value is calculated from the measured values of the multiple ionization currents and then the radiation dose is calculated from the measured values, the difference in sensitivity can be reduced because it can be efficiently calculated from the current values collected. Accuracy is improved.

例えば、片側のみ開口した円筒容器形状の測定対象物を、開口を気体拡散装置15に向けて横置きし、これを角度0度とした場合、測定対象物1の回転角度が340度から20度の場合には、気体拡散装置15を取り付けた測定室2の壁に設けた気体噴出手段17からのみ気体を噴出させ、回転角度が70度から110度の場合は気体拡散手段15を取り付けた測定室2の壁から90度回転した壁に取り付けられた気体噴出装置17からのみ気体を噴出させ、回転角度が160度から200度の場合には気体拡散手段15を取り付けた測定室2の壁から180度回転した壁に取り付けられた気体噴出装置17からのみ気体を噴出させ、回転角度が250度から290度の場合には気体拡散手段15を取り付けた測定室2の壁から270度回転した壁に取り付けられた気体噴出装置17からのみ気体を噴出させるようにする。
このようにした場合でも感度差が小さくなり、より測定精度が向上する。
For example, when a cylindrical container-shaped measurement object opened only on one side is placed sideways with the opening facing the gas diffusion device 15 and the angle is set to 0 degrees, the rotation angle of the measurement object 1 is 340 degrees to 20 degrees. In this case, gas is ejected only from the gas ejection means 17 provided on the wall of the measurement chamber 2 to which the gas diffusion device 15 is attached, and when the rotation angle is 70 degrees to 110 degrees, the measurement is performed with the gas diffusion means 15 attached. When the gas is ejected only from the gas ejection device 17 attached to the wall rotated 90 degrees from the wall of the chamber 2 and the rotation angle is 160 degrees to 200 degrees, from the wall of the measurement chamber 2 to which the gas diffusion means 15 is attached When gas is ejected only from the gas ejection device 17 attached to the wall rotated 180 degrees and the rotation angle is 250 to 290 degrees, the gas is rotated 270 degrees from the wall of the measurement chamber 2 to which the gas diffusion means 15 is attached. It was only gas from the gas discharge device 17 attached to the wall so as to jet.
Even if it does in this way, a sensitivity difference becomes small and a measurement precision improves more.

次に本発明の第2の実施の形態について図2を参照して説明する。なお以下の実施の形態の説明において、図1に示す本発明の第1の実施の形態と同一部分には同一の符号を付し、詳細な説明は省略する。   Next, a second embodiment of the present invention will be described with reference to FIG. In the following description of the embodiment, the same parts as those in the first embodiment of the present invention shown in FIG.

図2において、26は測定室2内で回転装置22上に載置された測定対象物1の映像を撮影するビデオカメラのような撮影装置で、この撮影装置26で撮影した測定対象物1の映像信号は開閉制御装置21に入力される。   In FIG. 2, reference numeral 26 denotes an imaging device such as a video camera that captures an image of the measurement object 1 placed on the rotating device 22 in the measurement chamber 2, and the measurement object 1 captured by the imaging device 26. The video signal is input to the open / close control device 21.

本実施の形態による放射線測定装置であると、撮影装置26で撮影した測定対象物1の形状は映像信号として開閉制御装置21に送られ、この形状から測定対象物1の回転角度を検出し、この回転角度を基に前もって定めた測定対象物1の角度毎に各気体噴出装置17からの気体の噴出量を開閉制御装置21による開閉装置20の開閉バルブの調節により制御する。   In the radiation measuring apparatus according to the present embodiment, the shape of the measuring object 1 photographed by the photographing apparatus 26 is sent to the open / close control device 21 as a video signal, and the rotation angle of the measuring object 1 is detected from this shape. The amount of gas ejection from each gas ejection device 17 is controlled by adjusting the opening / closing valve of the opening / closing device 20 by the opening / closing control device 21 for each angle of the measuring object 1 determined in advance based on this rotation angle.

本実施の形態においても測定対象物1の映像信号から測定対象物1の回転角度を検出し、その回転角度に応じて気体噴出装置17からの気体の噴出量を制御することにより、より複雑な形状の測定対象物の場合でも滞留イオンをなくし、イオンの循環が円滑になるので測定対象物1に対する感度位置依存性が小さくなり、精度の高い放射線測定が行える。   Also in the present embodiment, the rotation angle of the measurement object 1 is detected from the video signal of the measurement object 1, and the gas ejection amount from the gas ejection device 17 is controlled in accordance with the rotation angle, thereby making it more complicated. Even in the case of a measurement object having a shape, the staying ions are eliminated, and the circulation of ions is smooth. Therefore, the sensitivity position dependency on the measurement object 1 is reduced, and highly accurate radiation measurement can be performed.

次に本発明の第3の実施の形態について図3を参照して説明する。
図3において、27は測定室2内の気体5の流れに沿って測定室2の出口側に設けられた第1の粒子捕集装置、28は気体循環経路8のイオン収集装置9の下流側に設けられ、前記第1の粒子捕集装置27の捕集対象粒径より小さい捕集対象粒径を有する第2の粒子捕集装置である。
Next, a third embodiment of the present invention will be described with reference to FIG.
In FIG. 3, 27 is a first particle collection device provided on the outlet side of the measurement chamber 2 along the flow of the gas 5 in the measurement chamber 2, and 28 is a downstream side of the ion collection device 9 in the gas circulation path 8. And a second particle collecting device having a collection target particle size smaller than the collection target particle size of the first particle collection device 27.

一般に、気体循環経路8を流れる気体5の中に含まれる粒子としては粒径の大きい順番に例えば以下の3種類が考えられる。
まず、測定対象物1に付着するダスト粒子、次に空気中に漂うエアロゾル、最後に
放射線の電離作用によって生成されたイオンが付着したクラスタイオンである。
In general, as the particles contained in the gas 5 flowing through the gas circulation path 8, for example, the following three types can be considered in order of increasing particle diameter.
First, dust particles adhering to the measurement object 1, then aerosol drifting in the air, and finally cluster ions to which ions generated by the ionizing action of radiation are attached.

ここで、第1の粒子捕集装置27の捕集粒径をダスト粒子に合わせ、第2の粒子捕集装置28の捕集粒径をエアロゾルに合わせるように設定しておく。
このようにすると、第1の粒子捕集装置27ではなるべくクラスタイオンの透過率をあげるとともに感度のバラツキの要因であるダスト粒子を確実に捕集し、第2の粒子捕集装置28では測定環境に悪影響するエアロゾルを捕集し、イオンを効率的に収集するため感度が向上し、精度の高い放射線測定が行える。
Here, the collection particle size of the first particle collection device 27 is set to match the dust particles, and the collection particle size of the second particle collection device 28 is set to match the aerosol.
In this way, the first particle collection device 27 increases the transmittance of the cluster ions as much as possible, and reliably collects dust particles that are a factor of sensitivity variation, and the second particle collection device 28 measures the measurement environment. It collects aerosols that adversely affect the environment and efficiently collects ions, improving sensitivity and performing highly accurate radiation measurement.

次に本発明の第4の実施の形態について図4を参照して説明する。
図4において、29は第1の実施の形態におけるイオン収集装置に代わって気体循環経路8の途中に設けられた電荷収集装置で、内部に絶縁された導電体30を備えている。31は電荷収集装置29に接続され、導電体30に蓄積された電荷を測定する電荷測定装置、32は電荷測定装置31に接続され、この電荷測定装置31により測定された電荷量を基に測定対象物1の放射線量を演算処理するデータ処理装置である。
Next, a fourth embodiment of the present invention will be described with reference to FIG.
In FIG. 4, reference numeral 29 denotes a charge collection device provided in the middle of the gas circulation path 8 in place of the ion collection device in the first embodiment, and includes a conductor 30 insulated inside. Reference numeral 31 is a charge measuring device connected to the charge collecting device 29 and measures the charge accumulated in the conductor 30, and 32 is connected to the charge measuring device 31 and measured based on the charge amount measured by the charge measuring device 31. 1 is a data processing device that performs arithmetic processing on the radiation dose of an object 1.

本実施の形態による放射線測定装置であると、測定室2内に収納された測定対象物1の表面で放射線により電離された電離イオンを含む気体5は吸引装置3により吸引され、気体収束装置14により収束されて気体循環経路8内に矢印X方向に沿って循環される。   In the radiation measuring apparatus according to the present embodiment, the gas 5 containing ionized ions ionized by radiation on the surface of the measurement object 1 housed in the measurement chamber 2 is sucked by the suction device 3 and the gas focusing device 14. And is circulated in the gas circulation path 8 along the arrow X direction.

気体循環経路8内に送られた気体5は循環経路の途中に設けた電荷測定装置29の導電体30に電荷として蓄積される。蓄積された電荷は電荷測定手段31によりその積算値が測定される。その測定された電荷量を基に前もって定めた電荷量から放射線量への換算定数を使用してデータ処理装置32で演算処理して放射線量を測定する。   The gas 5 sent into the gas circulation path 8 is accumulated as a charge in the conductor 30 of the charge measuring device 29 provided in the middle of the circulation path. The accumulated charge is measured by the charge measuring means 31 for its integrated value. Based on the measured charge amount, the data processor 32 performs arithmetic processing using the conversion constant from the charge amount to the radiation dose determined in advance, and measures the radiation dose.

本実施の形態によれば、測定対象物1の放射線により電離されたイオンを積算電荷量として測定するため、生成されたイオンが微弱イオンでも高感度で測定でき、精度の高い放射線測定が行える。   According to the present embodiment, since ions ionized by the radiation of the measurement object 1 are measured as an accumulated charge amount, even if the generated ions are weak ions, it can be measured with high sensitivity, and highly accurate radiation measurement can be performed.

次に本発明の第5の実施の形態について図5を参照して説明する。
図5において、33は気体収束装置14とイオン収集装置9との間の気体循環経路8の中に設置された絶縁された導電体、34は前記導電体33をプラスまたはマイナスに帯電させる帯電装置、35は電離電流測定装置6で測定された電離電流値が入力され、導電体33がプラスに帯電された場合に測定した電離電流の値と、マイナスに帯電された場合に測定した電離電流の値との関係より放射線量を補正するデータ解析手段である。
Next, a fifth embodiment of the present invention will be described with reference to FIG.
In FIG. 5, 33 is an insulated conductor installed in the gas circulation path 8 between the gas converging device 14 and the ion collector 9, and 34 is a charging device for charging the conductor 33 positively or negatively. , 35 is input with the ionization current value measured by the ionization current measuring device 6, and the ionization current value measured when the conductor 33 is positively charged and the ionization current value measured when the conductor 33 is negatively charged. Data analysis means for correcting the radiation dose based on the relationship with the value.

本実施の形態による放射線測定装置であると、まず、導電体33を帯電手段34によりプラスに帯電させ、測定室2内の気体5を気体循環経路8内に循環させると、気体5中のマイナスイオンは導電体33に吸着され、プラスイオンのみが通過してイオン収集装置9で収集され、電離電流測定装置6で第1の電流値として測定される。   In the radiation measuring apparatus according to the present embodiment, first, when the conductor 33 is positively charged by the charging means 34 and the gas 5 in the measurement chamber 2 is circulated in the gas circulation path 8, the minus in the gas 5 is obtained. Ions are adsorbed on the conductor 33, and only positive ions pass through and are collected by the ion collector 9 and measured by the ionization current measuring device 6 as the first current value.

次に、導電体33を帯電装置34によりマイナスに帯電させ、測定室2内の気体5を気体循環経路8内に循環させると、気体5中のプラスイオンは導電体33に吸着され、マイナスイオンのみが通過してイオン収集装置9で収集され、電離電流測定装置6で第2の電流値として測定される。
ここで、測定対象物1のイオンは、水分子を複数個含み、プラスとマイナスは成分が異なるクラスタイオンと考えられている。
Next, when the electric conductor 33 is negatively charged by the charging device 34 and the gas 5 in the measurement chamber 2 is circulated in the gas circulation path 8, the positive ions in the gas 5 are adsorbed by the electric conductor 33 and become negative ions. Only passes and is collected by the ion collector 9 and measured by the ionization current measuring device 6 as the second current value.
Here, the ions of the measuring object 1 are considered to be cluster ions including a plurality of water molecules, and plus and minus having different components.

従って、前もって求めた気体中の水分量に応じて変化するプラスイオンとマイナスイオンによる電流値の比と例えばマイナスイオンによる電流強度の変化率の関係と、前記のように測定したマイナスイオンとプラスイオンによる電流値の比から電流強度の変化率を算出し、測定した電流値をこの電流強度の変化率で補正し、補正後の電流値と電流から放射線量への換算定数を使用して、データ解析手段13により演算処理して放射線量を求める。
本実施の形態によれば、気体中の水分量を補正して放射線量を求めるので、精度の高い放射線測定が行える。
Therefore, the relationship between the ratio of the current value due to positive ions and negative ions, which changes according to the amount of moisture in the gas determined in advance, and the rate of change in current intensity due to negative ions, and the negative ions and positive ions measured as described above. The rate of change of current intensity is calculated from the ratio of current values obtained by, and the measured current value is corrected with the rate of change of current intensity. Using the corrected current value and the conversion constant from current to radiation dose, the data The radiation amount is obtained by arithmetic processing by the analyzing means 13.
According to the present embodiment, since the radiation dose is obtained by correcting the moisture content in the gas, highly accurate radiation measurement can be performed.

次に本発明の第6の実施の形態について図6を参照して説明する。
図6において、36は図1に示す気体拡散装置に代わって測定室2の気体入口側に取り付けられた粒子捕集装置で、その中央部には大気を測定室2内に取り入れるための気体取り入れ口37が形成されている。
Next, a sixth embodiment of the present invention will be described with reference to FIG.
In FIG. 6, reference numeral 36 denotes a particle collecting device attached to the gas inlet side of the measurement chamber 2 in place of the gas diffusion device shown in FIG. 1, and a gas intake for taking the atmosphere into the measurement chamber 2 at the center thereof. A mouth 37 is formed.

一方、気体循環経路8に設けられた粒子捕集装置10の出口は測定室2に循環帰還されずに大気中へ放出されるようになっている。
本実施の形態による放射線測定装置であると、測定室2内には、気体取り入れ口37を通じて外気を取り入れ、この際粒子捕集手段36により外気中のエアロゾルを捕集する。
On the other hand, the outlet of the particle collecting device 10 provided in the gas circulation path 8 is discharged into the atmosphere without being circulated back to the measurement chamber 2.
In the radiation measuring apparatus according to the present embodiment, outside air is taken into the measurement chamber 2 through the gas inlet 37, and at this time, the aerosol in the outside air is collected by the particle collecting means 36.

測定室2内に取り入れられた気体は図1に示す第1の実施の形態で説明したのと同様にイオン化され、また、気体送風手段19で発生した高速の気体を複数個の気体噴出装置17のノズル先端から測定対象物1に吹き付けられ、測定対象物1の表面に生成されたイオンが剥離され、電離電流が測定される。
イオンを収集されたあとの気体は粒子捕集装置10を通って浄化され、外気中に放出される。
The gas introduced into the measurement chamber 2 is ionized in the same manner as described in the first embodiment shown in FIG. 1, and the high-speed gas generated by the gas blowing means 19 is converted into a plurality of gas ejection devices 17. The nozzle tip is sprayed onto the measuring object 1 and the ions generated on the surface of the measuring object 1 are peeled off, and the ionization current is measured.
The gas after collecting the ions is purified through the particle collecting device 10 and released into the outside air.

本実施の形態によれば、イオンを収集されたあとの気体は測定室2内に帰還させることなく、粒子捕集装置10を通って浄化され、外気中に放出させるので気体の帰還経路を省略することができ、測定装置を簡素化、小型化するとともに、測定対象物1に対する感度位置依存性が小さくなり、精度の高い放射線測定が行える。   According to the present embodiment, the gas after collecting the ions is purified through the particle collecting device 10 without being returned to the measurement chamber 2 and released into the outside air, so that the gas return path is omitted. In addition to simplifying and downsizing the measurement apparatus, the sensitivity position dependency on the measurement object 1 is reduced, and highly accurate radiation measurement can be performed.

次に本発明の第7の実施の形態について図7を参照して説明する。
図7において、38は放射線の測定対象物である複数本の原子炉用燃料棒39を収納した収納容器、17は原子炉用燃料棒の軸方向に沿って測定室2の壁に取り付けられた複数個の気体噴出装置である。
Next, a seventh embodiment of the present invention will be described with reference to FIG.
In FIG. 7, 38 is a storage container for storing a plurality of reactor fuel rods 39, which are radiation measurement objects, and 17 is attached to the wall of the measurement chamber 2 along the axial direction of the reactor fuel rods. A plurality of gas ejection devices.

本実施の形態による放射線測定装置であると、原子炉用燃料棒39の軸方向に取り付けられた、複数個の気体噴出装置17から気体を噴出し、原子炉用燃料棒39の表面近傍に生成されたイオンを剥離し、イオン収集装置9に通じる気体循環経路8に効率的に移送するので、原子炉用燃料棒39の軸方向の感度差が小さくなり精度の高い放射線測定が行える。   In the radiation measuring apparatus according to the present embodiment, gas is ejected from a plurality of gas ejection devices 17 attached in the axial direction of the nuclear reactor fuel rod 39 and generated near the surface of the nuclear reactor fuel rod 39. The separated ions are peeled off and efficiently transferred to the gas circulation path 8 leading to the ion collector 9. Therefore, the difference in sensitivity in the axial direction of the nuclear reactor fuel rod 39 is reduced, and high-precision radiation measurement can be performed.

ここで、原子炉用燃料棒39の放射線量測定装置は、気体中の電離イオンの生成密度が格段に大きいα放射線に対して極めて感度が高いので、例えば、原子炉用燃料棒39の表面に対して、α線を放出する核種の汚染検査に利用できる。
また、原子炉用燃料棒39に加えて、原子炉用燃料集合体、放射性廃棄物を固化処理し収納した容器の表面汚染検査にも同様に利用できる。
Here, the radiation dose measuring device for the nuclear reactor fuel rod 39 is extremely sensitive to α radiation having a remarkably large generation density of ionized ions in the gas. In contrast, it can be used for contamination inspection of nuclides that emit alpha rays.
Further, in addition to the nuclear reactor fuel rod 39, the reactor fuel assembly and the radioactive contamination can be used for the surface contamination inspection of the container containing the solidified treatment.

次に本発明の第8の実施の形態について図8を参照して説明する。
図8において、40は測定対象としての測定対象空間で、この測定対象空間40に対して気体を噴射する複数個の気体噴出装置17を測定室2の壁に取り付けている。
Next, an eighth embodiment of the present invention will be described with reference to FIG.
In FIG. 8, reference numeral 40 denotes a measurement target space as a measurement target, and a plurality of gas ejection devices 17 that inject gas into the measurement target space 40 are attached to the wall of the measurement chamber 2.

本実施の形態による放射線測定装置であると、測定対象物として形のある固体に限定されることなく、複数個の気体噴出装置17から高速の気体を測定室2内の測定対象空間40内に噴出し、測定対象空間40内の気体5を攪拌して滞留することなく気体循環経路8まで移送し、放射線測定を行う。
したがって、本発明で言う測定対象物には上記測定対象空間も含まれる。
イオン収集装置9を通過後の気体は粒子捕集手段36で浄化され、外気に放出される。
In the radiation measuring apparatus according to the present embodiment, the high-speed gas is supplied from the plurality of gas ejection devices 17 into the measurement target space 40 in the measurement chamber 2 without being limited to a solid having a shape as the measurement target. The gas 5 in the measurement target space 40 is ejected and transferred to the gas circulation path 8 without stagnating, and radiation measurement is performed.
Therefore, the measurement object referred to in the present invention includes the measurement object space.
The gas after passing through the ion collector 9 is purified by the particle collecting means 36 and released to the outside air.

本実施の形態によれば、測定対象空間の電離イオンを移送し測定するので、広い空間の測定対象1に対しても、滞留イオンを減少させ空間位置に起因する感度差を小さくすることができ、精度の高い放射線測定が行える。   According to the present embodiment, since ionized ions in the measurement target space are transferred and measured, it is possible to reduce the residual ions and reduce the sensitivity difference due to the spatial position even for the measurement target 1 in a wide space. Highly accurate radiation measurement can be performed.

本発明の第1の実施の形態による放射線測定装置のブロック構成図。The block block diagram of the radiation measuring device by the 1st Embodiment of this invention. 本発明の第2の実施の形態による放射線測定装置のブロック構成図。The block block diagram of the radiation measuring device by the 2nd Embodiment of this invention. 本発明の第3の実施の形態による放射線測定装置のブロック構成図。The block block diagram of the radiation measuring device by the 3rd Embodiment of this invention. 本発明の第4の実施の形態による放射線測定装置のブロック構成図。The block block diagram of the radiation measuring device by the 4th Embodiment of this invention. 本発明の第5の実施の形態による放射線測定装置のブロック構成図。The block block diagram of the radiation measuring device by the 5th Embodiment of this invention. 本発明の第6の実施の形態による放射線測定装置のブロック構成図。The block block diagram of the radiation measuring device by the 6th Embodiment of this invention. 本発明の第7の実施の形態による放射線測定装置のブロック構成図。The block block diagram of the radiation measuring device by the 7th Embodiment of this invention. 本発明の第8の実施の形態による放射線測定装置のブロック構成図。The block block diagram of the radiation measuring device by the 8th Embodiment of this invention. 従来の放射線測定装置を示すブロック構成図。The block block diagram which shows the conventional radiation measuring device. 従来の別の放射線測定装置を示すブロック構成図。The block block diagram which shows another conventional radiation measuring apparatus.

符号の説明Explanation of symbols

1…放射線の測定対象物、2…測定室、3…吸引装置、5…気体、6…電離電流測定装置、7、32、35…データ処理装置、8…気体循環経路、9…イオン収集装置、10、25、36…粒子捕集装置、12…気体送風装置、13…電圧印加装置、14…気体収束装置、15…気体拡散装置、16…送風装置、17…気体噴出装置、18…送風パイプ、19…気体送風装置、20…開閉装置、21…開閉制御装置、22…回転装置、23…回転角度検出装置、24…整流板、26…撮影装置、27…第1の粒子捕集装置、28…第2の粒子捕集装置、29…電荷収集装置、30、33…導電体、31…電荷測定装置、34…帯電装置、37…気体取り入れ口、39…原子炉用燃料棒、40…測定対象空間。
DESCRIPTION OF SYMBOLS 1 ... Radiation measuring object, 2 ... Measurement chamber, 3 ... Suction device, 5 ... Gas, 6 ... Ionization current measuring device, 7, 32, 35 ... Data processing device, 8 ... Gas circulation path, 9 ... Ion collector DESCRIPTION OF SYMBOLS 10, 25, 36 ... Particle collection device, 12 ... Gas blower, 13 ... Voltage application device, 14 ... Gas converging device, 15 ... Gas diffusion device, 16 ... Air blower, 17 ... Gas ejection device, 18 ... Air blow Pipe 19, Gas blower 20, Opening / closing device 21, Opening / closing control device 22, Rotating device 23, Rotating angle detection device 24, Rectifying plate 26, Shooting device 27, First particle collecting device 28 ... second particle collecting device, 29 ... charge collecting device, 30, 33 ... conductor, 31 ... charge measuring device, 34 ... charging device, 37 ... gas inlet, 39 ... reactor fuel rod, 40 ... measurement target space.

Claims (12)

放射線の測定対象物を気体と共に収納する測定室と、前記測定対象物の放射線により電離された電離イオンを含む前記測定室内の気体を循環させる気体循環経路と、前記気体循環経路に設けられたイオン収集装置と、前記イオン収集装置により収集されたイオンから電離電流を測定する電離電流測定装置と、前記電離電流測定装置により測定された電離電流を基に測定対象物の放射線量を演算処理するデータ処理装置と、前記測定室内に収納された測定対象物をその周囲から取り囲むように設けられ、測定対象物に気体を吹き付ける複数個の気体噴出装置と、前記気体噴出装置に気体を送る気体送風装置とからなることを特徴とする放射線測定装置。   A measurement chamber for storing a measurement object of radiation together with a gas, a gas circulation path for circulating a gas in the measurement chamber containing ionized ions ionized by radiation of the measurement object, and ions provided in the gas circulation path Data that computes the radiation dose of the measurement object based on the ionization current measured by the collection device, the ionization current measurement device that measures the ionization current from the ions collected by the ion collection device, and the ionization current measurement device A processing device, a plurality of gas ejection devices that are provided so as to surround the measurement object stored in the measurement chamber from the periphery thereof, and a gas blower that sends gas to the gas ejection device A radiation measuring apparatus comprising: 前記測定室の気体出口側に設けた第1の粒子捕集装置と、前記イオン収集装置の気体の流れの下流側に設けられ、前記第1の粒子捕集装置の捕集対象粒径より小さい捕集対象粒径を有する第2の粒子捕集装置とを有することを特徴とする請求項1記載の放射線測定装置。   The first particle collection device provided on the gas outlet side of the measurement chamber and the downstream side of the gas flow of the ion collection device, and smaller than the collection target particle size of the first particle collection device The radiation measuring apparatus according to claim 1, further comprising a second particle collecting device having a particle size to be collected. 前記測定室の気体出口側と前記イオン収集装置との間の気体循環経路に設けられ、前記気体循環経路から絶縁された導電体と、この導電体をプラス及びマイナスに帯電させる帯電装置とを有し、前記導電体をプラスに帯電した場合に測定した電離電流の値と、前記導電体をマイナスに帯電した場合に測定した電離電流の値より放射線量を補正するようにしたことを特徴とする請求項1記載の放射線測定装置。   Provided in a gas circulation path between the gas outlet side of the measurement chamber and the ion collector, a conductor insulated from the gas circulation path, and a charging device for charging the conductor positively and negatively. The radiation dose is corrected based on the ionization current value measured when the conductor is positively charged and the ionization current value measured when the conductor is negatively charged. The radiation measuring apparatus according to claim 1. 放射線の測定対象物を気体と共に収納する測定室と、測定対象物の放射線により電離された電離イオンを含む前記測定室内の気体を循環させる気体循環経路と、前記気体循環経路に設けられた電荷収集装置と、前記電荷収集装置により収集された積算電荷量から電荷量を測定する電荷測定装置と、前記電荷測定装置により測定された電荷を基に測定対象物の放射線量を演算処理するデータ処理装置と、前記測定室内に収納された測定対象物をその周囲から取り囲むように設けられ、測定対象物に気体を吹き付ける複数個の気体噴出装置と、前記気体噴出装置に気体を送る気体送風装置とからなる放射線測定装置。   A measurement chamber for storing a measurement object of radiation together with gas, a gas circulation path for circulating gas in the measurement chamber containing ionized ions ionized by radiation of the measurement object, and charge collection provided in the gas circulation path Device, charge measuring device for measuring the charge amount from the accumulated charge amount collected by the charge collecting device, and data processing device for calculating and processing the radiation dose of the measurement object based on the charge measured by the charge measuring device And a plurality of gas ejection devices that are provided so as to surround the measurement object stored in the measurement chamber from the periphery thereof, and a gas blower that sends gas to the gas ejection device. A radiation measuring device. 前記気体噴出装置が測定対象物に対してその位置が自由に変更可能であることを特徴とする請求項1または4のいずれかに記載の放射線測定装置。   The radiation measuring apparatus according to claim 1, wherein the position of the gas ejection device can be freely changed with respect to the measurement object. 前記複数個の気体噴出装置と前記気体送風装置との間に設けられ、各気体噴出装置に送られる送風量を開閉制御する開閉バルブを有する開閉装置と、前記開閉装置の開閉バルブの開閉を制御する開閉制御装置とを有することを特徴とする請求項1または4のいずれかに記載の放射線測定装置。   An opening / closing device provided between the plurality of gas ejection devices and the gas blowing device, and having an opening / closing valve for controlling the opening / closing of the amount of air sent to each gas ejection device, and controlling the opening / closing of the opening / closing valve of the opening / closing device. The radiation measuring apparatus according to claim 1, further comprising an opening / closing control device that performs the operation. 前記測定対象物を回転させる回転装置と、測定対象物の回転角度を検出する回転角度検出装置とを有し、測定対象物の回転角度に応じて前記開閉装置の開閉バルブの開閉を制御するようにしたことを特徴とする請求項6記載の放射線測定装置。   A rotation device that rotates the measurement object; and a rotation angle detection device that detects a rotation angle of the measurement object, and controls opening and closing of the opening and closing valve of the opening and closing device according to the rotation angle of the measurement object. The radiation measuring apparatus according to claim 6, wherein 前記気体噴出装置から前記測定室内に気体を噴出した時に電離電流または電荷を測定し、測定した電離電流または電荷の値を基に放射線量を求めることを特徴とする請求項1または4のいずれかに項記載の放射線測定装置。   The ionization current or charge is measured when gas is ejected from the gas ejection device into the measurement chamber, and the radiation dose is obtained based on the measured ionization current or charge value. The radiation measuring apparatus according to item 2. 前記測定対象物の映像を撮影する撮影装置を設け、この撮影装置の映像信号から測定対象物の回転角度を検出するようにしたことを特徴とする請求項7記載の放射線測定装置。   The radiation measuring apparatus according to claim 7, wherein an imaging apparatus that captures an image of the measurement object is provided, and a rotation angle of the measurement object is detected from an image signal of the imaging apparatus. 前記測定室の気体入口側に取り付けられ、大気を前記測定室内に取り入れる気体取り入れ口を形成した第1の粒子捕集装置と、前記気体循環径路を流れてきた気体を電離電流を測定後、大気中に放出する第2の粒子捕集装置とを有することを特徴とする請求項1または4のいずれかに記載の放射線測定装置。   A first particle collecting device which is attached to the gas inlet side of the measurement chamber and forms a gas intake port for taking the atmosphere into the measurement chamber, and after measuring the ionization current of the gas flowing through the gas circulation path, The radiation measuring apparatus according to claim 1, further comprising: a second particle collecting device that is released into the inside. 前記測定対象物が原子炉用燃料棒であることを特徴とする請求項1または4のいずれかに記載の放射線測定装置。   The radiation measurement apparatus according to claim 1, wherein the measurement object is a nuclear fuel rod. 前記測定対象物は測定対象空間であることを特徴とする請求項1または4のいずれかに記載の放射線測定装置。

The radiation measurement apparatus according to claim 1, wherein the measurement object is a measurement object space.

JP2003370688A 2003-10-30 2003-10-30 Radiation measurement equipment Expired - Fee Related JP4181012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370688A JP4181012B2 (en) 2003-10-30 2003-10-30 Radiation measurement equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370688A JP4181012B2 (en) 2003-10-30 2003-10-30 Radiation measurement equipment

Publications (2)

Publication Number Publication Date
JP2005134239A true JP2005134239A (en) 2005-05-26
JP4181012B2 JP4181012B2 (en) 2008-11-12

Family

ID=34647628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370688A Expired - Fee Related JP4181012B2 (en) 2003-10-30 2003-10-30 Radiation measurement equipment

Country Status (1)

Country Link
JP (1) JP4181012B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198980A (en) * 2006-01-27 2007-08-09 Toshiba Corp Radiation measuring apparatus and its measuring method
JP2007263804A (en) * 2006-03-29 2007-10-11 Toshiba Corp Radiation measuring device and method
JP2008046030A (en) * 2006-08-18 2008-02-28 Toshiba Corp Radioactivity measuring apparatus and method
JP2009025112A (en) * 2007-07-19 2009-02-05 Natl Inst Of Radiological Sciences Radioactivity detection method and radioactivity detector
CN110621229A (en) * 2017-06-29 2019-12-27 株式会社岛津制作所 Radiation measuring instrument and radiation imaging apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198980A (en) * 2006-01-27 2007-08-09 Toshiba Corp Radiation measuring apparatus and its measuring method
JP2007263804A (en) * 2006-03-29 2007-10-11 Toshiba Corp Radiation measuring device and method
JP2008046030A (en) * 2006-08-18 2008-02-28 Toshiba Corp Radioactivity measuring apparatus and method
JP2009025112A (en) * 2007-07-19 2009-02-05 Natl Inst Of Radiological Sciences Radioactivity detection method and radioactivity detector
CN110621229A (en) * 2017-06-29 2019-12-27 株式会社岛津制作所 Radiation measuring instrument and radiation imaging apparatus

Also Published As

Publication number Publication date
JP4181012B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
KR101913973B1 (en) Particle detection sensor
CN105021501B (en) Detect the sensor and detection method of suspended particulate substance quality concentration in air
JP4181012B2 (en) Radiation measurement equipment
JP4155493B2 (en) Radioactive waste treatment system
JP4131824B2 (en) Radiation measurement equipment
JP6139270B2 (en) Alpha radioactivity measurement system and measurement method
JP4834825B2 (en) Radiation measurement apparatus and radiation measurement method
JP4127780B2 (en) Radiation measurement equipment
JP2006329853A (en) Dust collecting body and dust monitor
JP4427175B2 (en) β radioactivity analyzer
JP3866554B2 (en) Gas analyzer
JP5646308B2 (en) Radiation measurement equipment
JPH04363849A (en) Electron beam device
JP2006105872A (en) Radiation measuring device and method
US9691648B2 (en) Particle supply device and particle supply method
JP6565558B2 (en) Radiation source position control device, radiation source storage container, correction map generation method, and Compton camera controller
JP2006046972A (en) Radiation ray measurement device and ion detector
Rebuffel et al. SINDBAD: a simulation software tool for multienergy X-ray imaging
JP4810352B2 (en) Radioactivity measuring device
JP2005156462A (en) Alpha-radioactivity measuring apparatus and method
US5969354A (en) Electron analyzer with integrated optics
JPH03141546A (en) Device and method for measuring electrons
KR20130116986A (en) Particle complex characteristic measurement apparatus
JP2010044041A (en) Measuring apparatus
Yoo et al. Identification and sizing of particle defects in semiconductor-wafer processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees