JP2005134135A - Apparatus for measuring concentration of ozone water - Google Patents

Apparatus for measuring concentration of ozone water Download PDF

Info

Publication number
JP2005134135A
JP2005134135A JP2003367149A JP2003367149A JP2005134135A JP 2005134135 A JP2005134135 A JP 2005134135A JP 2003367149 A JP2003367149 A JP 2003367149A JP 2003367149 A JP2003367149 A JP 2003367149A JP 2005134135 A JP2005134135 A JP 2005134135A
Authority
JP
Japan
Prior art keywords
concentration
sensor
electromotive force
ozone
dissolved ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003367149A
Other languages
Japanese (ja)
Other versions
JP4397213B2 (en
Inventor
Satoshi Matsumoto
悟志 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aidenshi Co Ltd
Original Assignee
Aidenshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aidenshi Co Ltd filed Critical Aidenshi Co Ltd
Priority to JP2003367149A priority Critical patent/JP4397213B2/en
Publication of JP2005134135A publication Critical patent/JP2005134135A/en
Application granted granted Critical
Publication of JP4397213B2 publication Critical patent/JP4397213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for measuring the concentration of ozone water, which stably measures the concentration of dissolved ozone. <P>SOLUTION: A sensor 3 provided with a pair of electrodes 3a and 3b constituted of dissimilar metals having different ionization tendencies is immersed in a liquid to be measured to generate an electromotive force corresponding to the concentration of the dissolved ozone between the electrodes. In this case, by executing the manual operation of speedily shaking the sensor 3 in the state immersed in the liquid to be measured, the electromotive force is outputted in a rippling state. Its output voltage is supplied for a peak hold part 12 via a voltage amplification part 11 to acquire a peak value. On the basis of the peak value, the lighting of an indicator 6c by a LED in a concentration display part 6 is controlled to display the concentration of the dissolved ozone. Since it is known that the peak value indicates an approximately constant value to the concentration of dissolved ozone, stable concentration values of dissolved ozone are acquired even in the case that the sensor part is vibrated by manual shaking. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、溶存オゾン(オゾンが溶解した水)の溶存オゾン濃度を測定するオゾン水濃度測定装置に関し、さらに詳しくは、イオン化傾向の異なる異種金属による電極を被測定液中に直接浸漬することで起電力を得るガルバニセル法を応用した、いわゆる裸電極式のオゾン水濃度測定装置に関するものである。   The present invention relates to an ozone water concentration measuring device for measuring the dissolved ozone concentration of dissolved ozone (water in which ozone is dissolved), and more specifically, by directly immersing electrodes made of dissimilar metals having different ionization tendencies in a liquid to be measured. The present invention relates to a so-called bare electrode type ozone water concentration measuring apparatus using a galvanic cell method for obtaining an electromotive force.

従来、オゾン水のオゾン濃度を測定する方式には、紫外線吸収方式と滴定方式(KI法)とが、最も信頼性が高いものとして利用されている。しかしながら、これらの方式を採用した測定装置はきわめて高価であり、最近においては機構が簡易で応答性が早く、連続測定も可能な電極式センサーを利用した測定装置が簡便に利用できるものとして注目されている。   Conventionally, as a method for measuring the ozone concentration of ozone water, an ultraviolet absorption method and a titration method (KI method) are used as the most reliable ones. However, measuring devices employing these methods are extremely expensive, and recently, a measuring device using an electrode-type sensor that has a simple mechanism, quick response, and is capable of continuous measurement has attracted attention as being easily usable. ing.

電極式センサーを利用したオゾン水濃度測定装置としては、オゾン水と一対の電極との間をオゾン透過膜で仕切る隔膜式と、電極を直接オゾン水中に浸漬する裸電極式とが提案されている。後者の裸電極式は、一対の電極を特定の異種金属の組み合わせで構成し、対接した一対の電極をオゾン水中に浸漬することで、両電極間にオゾン濃度に見合った起電力が得られることを利用したものである。   As an ozone water concentration measuring device using an electrode type sensor, there are proposed a diaphragm type in which ozone water and a pair of electrodes are partitioned by an ozone permeable film, and a bare electrode type in which the electrode is directly immersed in ozone water. . The latter bare electrode type comprises a pair of electrodes made of a combination of specific dissimilar metals, and an electromotive force corresponding to the ozone concentration can be obtained between both electrodes by immersing the pair of electrodes in contact with each other in ozone water. It is something that uses that.

これは、溶液中にイオン化傾向の異なる一対の電極を所定の間隔をおいて浸漬することで、起電力が発生するいわゆるガルバニ電池の原理(ガルバニセル法)を応用したものであり、この裸電極式のオゾン水濃度測定装置に関しては、例えば次に示す特許文献1に示されている。
特開平8−304334号公報
This is the application of the so-called galvanic cell principle (galvanic cell method) in which electromotive force is generated by immersing a pair of electrodes with different ionization tendency in a solution at a predetermined interval. Regarding the ozone water concentration measuring apparatus, for example, Patent Document 1 shown below is shown.
JP-A-8-304334

ところで、前記したガルバニセル法を利用するには、電極として前記したとおりイオン化傾向が異なる二種類以上の金属や、金属化合物を利用すればよいが、オゾンによって前記電極を構成する金属が酸化されるなどの問題が発生し、電極の表面を常に研磨しなければならないというメンテナンスが必要となる。そこで、後述する実施の形態においては、一対の電極の一方に金(Au)を用い、他方に銀塩化銀(Ag/AgCl)を用いた構成とされている。これにより、電極表面がオゾンにより酸化物に変化することが抑制され、また後述するこの発明による独自の作用効果により、安定した測定結果を得ることが可能となる。   By the way, in order to use the above-described galvanic cell method, as described above, two or more kinds of metals or metal compounds having different ionization tendencies may be used as described above, but the metal constituting the electrode is oxidized by ozone. Therefore, the maintenance that the surface of the electrode must always be polished is necessary. Therefore, in an embodiment to be described later, gold (Au) is used for one of the pair of electrodes, and silver silver chloride (Ag / AgCl) is used for the other. Thereby, it is possible to suppress the electrode surface from being changed to oxide by ozone, and to obtain a stable measurement result due to the unique operational effects of the present invention described later.

前記したガルバニセル法の基本原理を利用する場合には、一般的には次に示す式1によって求められる起電力を利用することになる。
E=−ΔG/nF ……(式1)
ただし、E:起電力
ΔG:ギプスエネルギー
n:反応に関する電子数
F:ファラデー定数
When the basic principle of the galvanic cell method described above is used, an electromotive force obtained by the following equation 1 is generally used.
E = −ΔG / nF (Formula 1)
Where E: electromotive force
ΔG: Gypsum energy
n: Number of electrons related to the reaction
F: Faraday constant

しかしながら、前記したように一方に金を用い、他方に銀塩化銀を用いたセンサー電極を利用した後述する測定装置においては、所定の範囲の溶存オゾン濃度に対応してセンサー間に生ずる起電力は、次に示す式2によって求めることができる。
E=k・f1(ν)・T・f2(Cl-)・f3(R)・C ……(式2)
ただし、E:起電力
k:濃度変換係数
f1(ν):センサー移動速度の関数
T:水温
f2(Cl-):塩素イオン濃度の関数
f3(R):電極間抵抗値の関数
C:オゾン濃度
However, as described above, in the measuring apparatus described later using a sensor electrode using gold on one side and silver silver chloride on the other side, the electromotive force generated between the sensors corresponding to the dissolved ozone concentration in a predetermined range is The following equation 2 can be obtained.
E = k · f1 (ν) · T · f2 (Cl -) · f3 (R) · C ...... ( Equation 2)
Where E: electromotive force
k: Density conversion coefficient
f1 (ν): Function of sensor moving speed
T: Water temperature
f2 (Cl -): function of chlorine ion concentration
f3 (R): Function of interelectrode resistance
C: Ozone concentration

前記した式2に示すように、センサー移動速度、水温、塩素イオン濃度を所定の条件に設定し、起電力を測定することで、溶存オゾン濃度が演算できることがわかる。ここで、前記したセンサー移動速度と起電力の関係について考察すると、溶存オゾン水にセンサーを静止状態で浸漬させた場合には、電極表面近傍にあるオゾンがセンサーと反応して、オゾンが瞬時に分解されてしまうため、分極が起こり起電力は低下する。よって、ガルバニセル法を利用した溶存オゾン測定器は、常に新しいオゾンを電極表面に供給するために、電極を振動させるなどの対処を図らなければならない。   As shown in Equation 2 above, it is understood that the dissolved ozone concentration can be calculated by setting the sensor moving speed, the water temperature, and the chlorine ion concentration to predetermined conditions and measuring the electromotive force. Here, considering the relation between the sensor moving speed and the electromotive force, when the sensor is immersed in dissolved ozone water in a stationary state, the ozone near the electrode surface reacts with the sensor, and the ozone instantly changes. Since it is decomposed, polarization occurs and the electromotive force decreases. Therefore, a dissolved ozone measuring device using the galvanic cell method must take measures such as vibrating the electrode in order to constantly supply new ozone to the electrode surface.

図1は溶存オゾン濃度が一定の場合におけるセンサー移動速度と、センサー起電力の関係を示したものである。この図1に示す特性から理解できるとおり、センサー移動速度が一定以上になると起電力が頭打ちになることがわかる。そこで、前記した特許文献1に示された従来のオゾン水濃度測定装置においては、機械的にセンサー電極を一定速度で振動(往復動)させたり、回転させるなどの機構を設けることで、センサー起電力を安定化させる工夫がなされている。   FIG. 1 shows the relationship between the sensor moving speed and the sensor electromotive force when the dissolved ozone concentration is constant. As can be understood from the characteristics shown in FIG. 1, it can be seen that the electromotive force reaches its peak when the sensor moving speed exceeds a certain level. Therefore, in the conventional ozone water concentration measuring apparatus disclosed in Patent Document 1, a sensor starter is provided by mechanically vibrating (reciprocating) or rotating the sensor electrode at a constant speed. A device to stabilize electric power is made.

しかしながら、センサー電極を機械的に一定速度で振動(往復動)させたり、回転させるなどの機構を設けることは、その機構およびこれを駆動させる駆動部を備えることによるコストアップは免れず、また前記機構および駆動部のメンテナンスが必要になるなどの問題点が残される。   However, providing a mechanism such as mechanically vibrating (reciprocating) or rotating the sensor electrode at a constant speed is unavoidable due to an increase in cost due to the mechanism and a drive unit for driving the mechanism. Problems such as the need for maintenance of the mechanism and the drive unit remain.

この発明は、前記した問題点に着目してなされたものであり、前記したセンサー電極を振動させたり回転させるなどの機構およびその駆動部を除去し、実用レベルの範囲における溶存オゾン濃度を、容易にかつ安定的に測定することができるオゾン水濃度測定装置を提供することを課題とするものである。   The present invention has been made paying attention to the above-mentioned problems, and by removing the mechanism for driving and rotating the sensor electrode and its driving unit, the dissolved ozone concentration within the practical level can be easily obtained. It is another object of the present invention to provide an ozone water concentration measuring apparatus that can measure stably and stably.

前記した課題を解決するためになされたこの発明にかかるオゾン水濃度測定装置は、請求項1に記載のとおり、異種金属により形成され、被測定液中に浸漬される一対の電極を備えたセンサーと、前記センサーにおける電極間に生成される起電力のピーク値を検出してホールドするピークホールド手段と、前記ピークホールド手段によってホールドされた電圧値に対応して溶存オゾン濃度の表示を行なう濃度表示手段とを具備した点に特徴を有する。   The ozone water concentration measuring apparatus according to the present invention, which has been made to solve the above-mentioned problems, is a sensor comprising a pair of electrodes formed of a dissimilar metal and immersed in a liquid to be measured. And a peak hold means for detecting and holding the peak value of the electromotive force generated between the electrodes in the sensor, and a concentration display for displaying the dissolved ozone concentration corresponding to the voltage value held by the peak hold means And a means.

この場合、請求項2に記載のとおり、前記センサーを構成する一対の電極間には、被測定液の溶存オゾン濃度に対する前記起電力の直線性を調整する抵抗体が接続されていることが望ましい。これに加えて、請求項3に記載のとおり、前記センサーを構成する一方の電極材として金(Au)を、他方の電極材として銀塩化銀(Ag/AgCl)を用いた構成とすることが望ましい。   In this case, as described in claim 2, a resistor for adjusting linearity of the electromotive force with respect to the dissolved ozone concentration of the liquid to be measured is preferably connected between the pair of electrodes constituting the sensor. . In addition, as described in claim 3, gold (Au) is used as one electrode material constituting the sensor, and silver silver chloride (Ag / AgCl) is used as the other electrode material. desirable.

前記したオゾン水濃度測定装置によると、センサーを構成する電極間に生成される起電力のピーク値がホールドされ、このホールド値に基づいて溶存オゾン濃度が表示される。このようにピークホールド手段を備える技術的な裏付けは、次に説明する技術的な根拠によるものである。すなわち、本件の発明者は被測定液中に浸漬させた状態のセンサー部を手振りによって振動させた場合において、安定して起電力を測定することができるか否かについて種々検討した。しかし、手振り方式によると一定のセンサー移動速度を保つことは難しく、結果として起電力に波を打つ現象が発生することが判明している。その一例を図2に示しており、横軸が時間(t)で縦軸が起電力(E)で示されている。   According to the ozone water concentration measuring apparatus described above, the peak value of the electromotive force generated between the electrodes constituting the sensor is held, and the dissolved ozone concentration is displayed based on this hold value. The technical support provided with the peak hold means as described above is based on the technical basis described below. That is, the inventor of the present case has studied variously whether or not the electromotive force can be stably measured when the sensor unit immersed in the liquid to be measured is vibrated by hand shaking. However, it has been found that it is difficult to maintain a constant sensor moving speed according to the hand-shaking method, and as a result, a phenomenon in which a wave is applied to the electromotive force occurs. An example is shown in FIG. 2, where the horizontal axis is time (t) and the vertical axis is electromotive force (E).

図2に示されたように、手振り方式によると起電力に波を打つ現象が発生するものの、その起電力のピーク値に着目してさらに検討を重ねた結果、このピーク値は溶存オゾン濃度に対してほぼ一定の値を示すことが見出された。それ故、前記したようにセンサーを構成する電極間に生成される起電力のピーク値を得ることで、たとえセンサー部を手振りによって振動させた場合においても、安定した溶存オゾン濃度の値を得ることが可能となることが検証された。   As shown in FIG. 2, although the phenomenon of pulsing the electromotive force occurs according to the hand shaking method, further investigations have been made focusing on the peak value of the electromotive force. On the other hand, it was found to show an almost constant value. Therefore, by obtaining the peak value of the electromotive force generated between the electrodes constituting the sensor as described above, it is possible to obtain a stable dissolved ozone concentration value even when the sensor unit is vibrated by hand shaking. It has been verified that this is possible.

前記した請求項1に記載のオゾン水濃度測定装置によると、手振り方式により安定した溶存オゾン濃度の値を得ることが可能となるので、特許文献1に示された従来の構成のように、センサー電極を機械的に振動させたり回転させるなどの機構およびその駆動部を除去することができる。したがって、安価にして実用範囲における溶存オゾン濃度を、容易にかつ安定的に測定することが可能となる。   According to the ozone water concentration measuring apparatus according to claim 1 described above, a stable dissolved ozone concentration value can be obtained by a hand-waving method. Therefore, as in the conventional configuration shown in Patent Document 1, a sensor is used. The mechanism for mechanically vibrating or rotating the electrode and its driving unit can be removed. Therefore, it is possible to easily and stably measure the dissolved ozone concentration in a practical range at a low cost.

また、請求項2に記載の測定装置によると、センサーを構成する一対の電極間に、溶存オゾン濃度に対する起電力の直線性を調整することができる抵抗体を接続した構成とされるので、前記した効果に加え、濃度表示部を駆動する場合の信号処理に便利なリニアリティーを得ることができる。   Moreover, according to the measuring apparatus of Claim 2, since it is set as the structure which connected the resistor which can adjust the linearity of the electromotive force with respect to dissolved ozone concentration between a pair of electrodes which comprise a sensor, In addition to the effects described above, it is possible to obtain linearity that is convenient for signal processing when the density display unit is driven.

さらに、請求項3に記載の測定装置によると、センサーを構成する電極材として、前記した素材の組み合わせを選択したことで、センサーを構成する電極材がオゾンによって酸化されるのを抑制させることができる。これにより、長期にわって測定結果の安定性を確保することができ、信頼性の高い測定装置を提供することができる。   Furthermore, according to the measuring apparatus of Claim 3, it can suppress that the electrode material which comprises a sensor is oxidized by ozone by selecting the combination of the above-mentioned raw material as an electrode material which comprises a sensor. it can. Thereby, stability of a measurement result can be ensured over a long period of time, and a highly reliable measurement apparatus can be provided.

以下、この発明にかかるオゾン水濃度測定装置について、図に示す実施の形態に基づいて説明する。図3はこの発明にかかる測定装置の外観構成例を示したものである。図3に示すように、このオゾン水濃度測定装置は全体的に丸みを持たせた直方体形状の把持部1と、その長手方向の端部より延出されたロッド状部材2と、このロッド状部材2の先端部に取り付けられたセンサー部3より構成されている。前記把持部1の一側面には、その上部より下部に向かって順に、装置の動作状態を示すLEDによる電源ランプ4、溶存オゾン濃度の測定動作を実行させるための測定ボタン5、複数個のLEDを縦方向に配列した濃度表示部6が配置されている。   Hereinafter, an ozone water concentration measuring apparatus according to the present invention will be described based on embodiments shown in the drawings. FIG. 3 shows an external configuration example of the measuring apparatus according to the present invention. As shown in FIG. 3, this ozone water concentration measuring apparatus has a rectangular parallelepiped gripping portion 1 that is rounded as a whole, a rod-shaped member 2 that extends from the end in the longitudinal direction, and the rod-shaped member. The sensor unit 3 is attached to the tip of the member 2. On one side of the grip portion 1, in order from the upper part to the lower part, a power lamp 4 using an LED indicating the operation state of the apparatus, a measurement button 5 for executing a measurement operation of the dissolved ozone concentration, and a plurality of LEDs Is arranged in the vertical direction.

図3に示す外観構成を備えた測定装置を利用するにあたっては、図示せぬ例えばビーカー等の容器に被測定液であるオゾン水を所定量採り、測定ボタン4を押しながら、センサー部3をオゾン水に漬ける。そして、センサー部3をオゾン水に漬けた状態で速めに振る操作(例えば1秒間に4往復程度)を実行することで、濃度表示部6にLEDが点灯される。そして、この濃度表示部6におけるLEDの点灯状態によって、オゾン水における溶融オゾン濃度を読み取ることができる。   When using the measuring apparatus having the external configuration shown in FIG. 3, a predetermined amount of ozone water as a liquid to be measured is taken in a container such as a beaker (not shown), and the sensor unit 3 is moved to ozone while pressing the measurement button 4. Soak in water. Then, by performing an operation (for example, about 4 reciprocations per second) of shaking the sensor unit 3 in ozone water, the LED is lit on the concentration display unit 6. And the molten ozone density | concentration in ozone water can be read by the lighting state of LED in this density | concentration display part 6. FIG.

図4は、図3に示した測定装置の電気的な内部構成の概要をブロック図によって示したものである。符号3で示すセンサー部には、すでに説明したとおり、一対の電極3a,3bが具備され、これが被測定液中に浸漬されることで、ガルバニセルとして作用する。この実施の形態においては、前記センサー部3を構成する一方の電極材(作用極材)として金(Au)が用いられ、他方の電極材(対極材)として銀塩化銀(Ag/AgCl)が用いられている。この組み合わせにより、オゾン水により比較的効率的に起電力を発生し、またオゾンにより、それぞれの電極材が酸化されるのを抑制させることができる。   FIG. 4 is a block diagram showing an outline of the electrical internal configuration of the measuring apparatus shown in FIG. As already described, the sensor portion indicated by reference numeral 3 is provided with a pair of electrodes 3a and 3b, which act as a galvanic cell by being immersed in the liquid to be measured. In this embodiment, gold (Au) is used as one electrode material (working electrode material) constituting the sensor unit 3, and silver / silver chloride (Ag / AgCl) is used as the other electrode material (counter electrode material). It is used. By this combination, it is possible to generate electromotive force relatively efficiently with ozone water, and to suppress oxidation of each electrode material by ozone.

前記したセンサー部3を構成する一対の電極3a,3b間には、抵抗体R1 が接続されている。この抵抗体の作用は後で詳しく説明するが、この抵抗体R1 の抵抗値を選択することで、溶存オゾン濃度に対する起電力の直線性の範囲を調整することができる。前記センサー部3によってもたらされる両端電圧(起電力)は、信号増幅部11として機能するオペアンプ11aの反転入力端子および非反転入力端子にそれぞれ供給される。   A resistor R1 is connected between the pair of electrodes 3a and 3b constituting the sensor section 3 described above. Although the action of this resistor will be described in detail later, the range of the linearity of the electromotive force with respect to the dissolved ozone concentration can be adjusted by selecting the resistance value of this resistor R1. The both-end voltage (electromotive force) provided by the sensor unit 3 is supplied to the inverting input terminal and the non-inverting input terminal of the operational amplifier 11a functioning as the signal amplification unit 11, respectively.

この信号増幅部11によって電圧増幅された出力は、ピークホールド手段としてのピークホールド部12に供給される。このピークホールド部12には、前記信号増幅部11からの出力電圧を半波整流する図示せぬダイオード等を含むピーク検出回路12aと、ピーク検出回路12aによって得られるピーク値をホールドするコンデンサC1 、およびこのコンデンサC1 の両端電圧を除々に放電させる高抵抗の抵抗体R2 などが具備されている。そして、コンデンサC1 によってホールドされたピーク値は、インピーダンス変換されるなどして、濃度表示部6に供給される。   The output amplified by the signal amplification unit 11 is supplied to a peak hold unit 12 as a peak hold unit. The peak hold unit 12 includes a peak detection circuit 12a including a diode (not shown) for half-wave rectifying the output voltage from the signal amplification unit 11, a capacitor C1 for holding a peak value obtained by the peak detection circuit 12a, And a high-resistance resistor R2 for gradually discharging the voltage across the capacitor C1. Then, the peak value held by the capacitor C1 is supplied to the concentration display unit 6 through impedance conversion or the like.

なお、前記したピークホールド部12は、すでに説明したとおりセンサー部3をオゾン水に浸漬して振ることで発生する起電力のピーク値を捕らえるものであり、例えば図2に示した起電力(E)のピーク値を検出するように機能する。   In addition, the above-described peak hold unit 12 captures the peak value of the electromotive force generated by immersing the sensor unit 3 in ozone water and shaking as already described. For example, the electromotive force (E shown in FIG. ) Function to detect the peak value.

前記濃度表示部6には、ピークホールド部12から供給されるホールド電圧を受けて、これをデジタルデータに変換するA/D変換器6aが具備され、このA/D変換器6aによってもたらされるデジタルデータは、LEDドライバー6bに供給されるように構成されている。このLEDドライバー6bには、複数のLEDによる表示体6cが接続されており、LEDドライバー6bは、結果としてピークホールド部12から供給されるホールド電圧に対応して、表示体6cの点灯数を制御するように作用する。したがって、この表示体6cの点灯数により、前記したとおりオゾン水における溶融オゾン濃度を読み取ることができる。   The density display unit 6 is provided with an A / D converter 6a that receives a hold voltage supplied from the peak hold unit 12 and converts the hold voltage into digital data, and a digital signal provided by the A / D converter 6a. The data is configured to be supplied to the LED driver 6b. The LED driver 6b is connected to a display body 6c of a plurality of LEDs, and the LED driver 6b controls the number of lighting of the display body 6c corresponding to the hold voltage supplied from the peak hold unit 12 as a result. Acts like Therefore, as described above, the molten ozone concentration in the ozone water can be read from the number of lighting of the display body 6c.

図5は、前記したセンサー部3を構成する一対の電極3a,3b間に接続される抵抗体R1 の抵抗値をパラメータとした時の溶存オゾン濃度と、起電力との関係を示したものである。これによると、電極間の抵抗値が大きい場合(例えば、抵抗なし=OPEN)においては、低い溶融オゾン濃度において起電力が頭打ちとなる。一方、前記抵抗値が小さくなるほど、起電力のレベルが小さくなるが、溶存オゾン濃度に対する起電力の直線性、すなわちリニアリティーが良好になることがわかる。よって、濃度測定装置の測定レンジと増幅誤差の兼ね合いから適当な抵抗値を選択すれば、濃度表示処理に便利な、リニアリティーを得ることができる。   FIG. 5 shows the relationship between the dissolved ozone concentration and the electromotive force when the resistance value of the resistor R1 connected between the pair of electrodes 3a and 3b constituting the sensor unit 3 is used as a parameter. is there. According to this, when the resistance value between the electrodes is large (for example, no resistance = OPEN), the electromotive force reaches a peak at a low molten ozone concentration. On the other hand, it can be seen that the level of electromotive force decreases as the resistance value decreases, but the linearity of electromotive force with respect to the dissolved ozone concentration, that is, linearity is improved. Therefore, if an appropriate resistance value is selected from the balance between the measurement range of the concentration measuring apparatus and the amplification error, linearity convenient for the concentration display process can be obtained.

なお、前記した式2から理解されるとおり、この実施の形態にかかるオゾン水濃度測定装置においては、水温が上昇すると起電力も上昇するが、例えばサーミスタなどを用いて温度補償することにより、濃度表示値を補正することができる。また、測定水温範囲を限定することにより、測定誤差を製品仕様の誤差範囲内に収める方法もある。この場合も、測定水温で再校正することにより、より正確な濃度測定を可能にすることができる。   In addition, as understood from the above-described equation 2, in the ozone water concentration measurement apparatus according to this embodiment, the electromotive force increases as the water temperature increases. For example, the concentration is compensated by temperature compensation using a thermistor or the like. The display value can be corrected. There is also a method of limiting the measurement water temperature range so that the measurement error falls within the error range of the product specification. In this case as well, more accurate concentration measurement can be performed by recalibrating with the measured water temperature.

また、前記した式2から理解されるとおり、前記起電力は塩素イオン濃度関数にも依存する。この実施の形態にかかる測定装置に用いられるセンサー3は、純水ベースの溶存オゾン水では、ほとんど起電力がなく、水道水ベースの溶存オゾン水では、ある濃度(例えば3ppm程度)で、頭打ちになってしまうことが実験の結果判明している。この理由は、センサーの作用極材として金を用い、対極材として銀塩化銀電極を用いているが、水の電気伝導率や塩素イオン濃度により、電極間に発生する起電力が阻害されるためと考えられる。   Moreover, as understood from the above-described equation 2, the electromotive force depends on the chlorine ion concentration function. The sensor 3 used in the measuring apparatus according to this embodiment has almost no electromotive force in pure water-based dissolved ozone water, and tap water-based dissolved ozone water has reached a certain level (for example, about 3 ppm). As a result of experiments, it has been found that The reason for this is that gold is used as the working electrode material of the sensor and a silver-silver chloride electrode is used as the counter electrode material, but the electromotive force generated between the electrodes is hindered by the electrical conductivity of water and the chlorine ion concentration. it is conceivable that.

よって、前記したオゾン水濃度測定装置を利用して安定した起電力を得るためには、ある一定以上の飽和食塩水などを被測定液に必要量滴下後測定すれば、起電力の安定化と、溶存オゾン濃度測定可能範囲の拡大を図ることができる。また、測定液水質の測定可能範囲の拡大も可能にすることができる。   Therefore, in order to obtain a stable electromotive force using the above-described ozone water concentration measuring device, if a necessary amount of saturated saline solution or the like is measured after being dropped into the liquid to be measured, the electromotive force is stabilized. The range in which the dissolved ozone concentration can be measured can be expanded. In addition, the measurable range of the measurement liquid water quality can be expanded.

溶存オゾン濃度が一定の場合におけるセンサー移動速度と、センサー起電力の関係を示した特性図である。It is the characteristic view which showed the relationship between the sensor moving speed and the sensor electromotive force when the dissolved ozone concentration is constant. センサー部を手振りによって振動させた場合における起電力の発生状況を示した特性図である。It is the characteristic view which showed the generation | occurrence | production state of the electromotive force at the time of vibrating a sensor part by hand gesture. この発明にかかるオゾン水濃度測定装置の外観構成例を示した斜視図である。It is the perspective view which showed the example of an external appearance structure of the ozone water concentration measuring apparatus concerning this invention. 図3に示した測定装置の電気的な内部構成の概要を示すブロック図である。It is a block diagram which shows the outline | summary of the electrical internal structure of the measuring apparatus shown in FIG. センサー部を構成する一対の電極間に接続される抵抗体の抵抗値をパラメータとした時の溶存オゾン濃度と、起電力との関係を示した特性図である。It is the characteristic view which showed the relationship between the dissolved ozone density | concentration when using the resistance value of the resistor connected between a pair of electrodes which comprise a sensor part as a parameter, and an electromotive force.

符号の説明Explanation of symbols

1 把持部
2 ロッド状部材
3 センサー部
3a,3b 電極
4 電源ランプ
5 測定ボタン
6 濃度表示部
6a A/D変換器
6b LEDドライバー
6c 表示体
11 信号増幅部
11a オペアンプ
12 ピークホールド部
12a ピーク検出回路
DESCRIPTION OF SYMBOLS 1 Gripping part 2 Rod-shaped member 3 Sensor part 3a, 3b Electrode 4 Power lamp 5 Measurement button 6 Concentration display part 6a A / D converter 6b LED driver 6c Display body 11 Signal amplification part 11a Operational amplifier 12 Peak hold part 12a Peak detection circuit

Claims (3)

異種金属により形成され、被測定液中に浸漬される一対の電極を備えたセンサーと、前記センサーにおける電極間に生成される起電力のピーク値を検出してホールドするピークホールド手段と、前記ピークホールド手段によってホールドされた電圧値に対応して溶存オゾン濃度の表示を行なう濃度表示手段とを具備したことを特徴とするオゾン水濃度測定装置。   A sensor comprising a pair of electrodes formed of a dissimilar metal and immersed in the liquid to be measured, a peak hold means for detecting and holding a peak value of an electromotive force generated between the electrodes in the sensor, and the peak An ozone water concentration measuring apparatus comprising: concentration display means for displaying a dissolved ozone concentration corresponding to the voltage value held by the holding means. 前記センサーを構成する一対の電極間には、被測定液の溶存オゾン濃度に対する前記起電力の直線性を調整する抵抗体が接続されていることを特徴とする請求項1に記載のオゾン水濃度測定装置。   The ozone water concentration according to claim 1, wherein a resistor for adjusting linearity of the electromotive force with respect to a dissolved ozone concentration of a liquid to be measured is connected between a pair of electrodes constituting the sensor. measuring device. 前記センサーを構成する一方の電極材として金(Au)を、他方の電極材として銀塩化銀(Ag/AgCl)を用いたことを特徴とする請求項1または請求項2に記載のオゾン水濃度測定装置。   The concentration of ozone water according to claim 1 or 2, wherein gold (Au) is used as one electrode material constituting the sensor and silver silver chloride (Ag / AgCl) is used as the other electrode material. measuring device.
JP2003367149A 2003-10-28 2003-10-28 Ozone water concentration measuring device Expired - Lifetime JP4397213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003367149A JP4397213B2 (en) 2003-10-28 2003-10-28 Ozone water concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003367149A JP4397213B2 (en) 2003-10-28 2003-10-28 Ozone water concentration measuring device

Publications (2)

Publication Number Publication Date
JP2005134135A true JP2005134135A (en) 2005-05-26
JP4397213B2 JP4397213B2 (en) 2010-01-13

Family

ID=34645243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367149A Expired - Lifetime JP4397213B2 (en) 2003-10-28 2003-10-28 Ozone water concentration measuring device

Country Status (1)

Country Link
JP (1) JP4397213B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171119A (en) * 2005-12-26 2007-07-05 Nikka Micron Kk Sensor for detecting concentration of aqueous ozone solution
JP2008020207A (en) * 2006-07-10 2008-01-31 Nikka Micron Kk Concentration detection sensor of ozone water
US8042377B2 (en) * 2008-02-04 2011-10-25 Bell Helicopter Textron Inc. System and method for testing of transducers
JP2012145436A (en) * 2011-01-12 2012-08-02 Nikka Micron Kk Cleaning method of ozone water sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378053A (en) * 1986-09-20 1988-04-08 Horiba Ltd Gas analyzer
JPH02298858A (en) * 1989-05-15 1990-12-11 O D S:Kk Water-soluble ozone detecting/measuring sensor
JPH0650932A (en) * 1992-07-29 1994-02-25 Japan Storage Battery Co Ltd Galvanic-cell type oxidizing gas sensor
JPH08136501A (en) * 1994-11-11 1996-05-31 V M C:Kk Ozone water sensor
JPH1019828A (en) * 1996-07-02 1998-01-23 Zexel Corp Portable ozone detector
JPH10123092A (en) * 1996-10-16 1998-05-15 Koji Takamura Gas sensor
JPH10300719A (en) * 1997-04-23 1998-11-13 V M C:Kk Ozone water concentration measuring instrument

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378053A (en) * 1986-09-20 1988-04-08 Horiba Ltd Gas analyzer
JPH02298858A (en) * 1989-05-15 1990-12-11 O D S:Kk Water-soluble ozone detecting/measuring sensor
JPH0650932A (en) * 1992-07-29 1994-02-25 Japan Storage Battery Co Ltd Galvanic-cell type oxidizing gas sensor
JPH08136501A (en) * 1994-11-11 1996-05-31 V M C:Kk Ozone water sensor
JPH1019828A (en) * 1996-07-02 1998-01-23 Zexel Corp Portable ozone detector
JPH10123092A (en) * 1996-10-16 1998-05-15 Koji Takamura Gas sensor
JPH10300719A (en) * 1997-04-23 1998-11-13 V M C:Kk Ozone water concentration measuring instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171119A (en) * 2005-12-26 2007-07-05 Nikka Micron Kk Sensor for detecting concentration of aqueous ozone solution
JP2008020207A (en) * 2006-07-10 2008-01-31 Nikka Micron Kk Concentration detection sensor of ozone water
US8042377B2 (en) * 2008-02-04 2011-10-25 Bell Helicopter Textron Inc. System and method for testing of transducers
JP2012145436A (en) * 2011-01-12 2012-08-02 Nikka Micron Kk Cleaning method of ozone water sensor

Also Published As

Publication number Publication date
JP4397213B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
EP3227671A1 (en) Contaminant detection device and method
JP6469687B2 (en) Electrochemical sensor device and electrochemical sensing method
MX2007003348A (en) Method and apparatus for conditioning a sensor for measuring oxidation reduction potential.
JP4397213B2 (en) Ozone water concentration measuring device
US20200268292A1 (en) pH SENSOR AND CALIBRATION METHOD FOR THE pH SENSOR
JP7479366B2 (en) Liquid analysis device and sensor unit
JP4317847B2 (en) Ozone water concentration detection sensor
JP5978868B2 (en) Test piece for measuring biological components, measuring device main body, and biological component measuring device including them
US4798655A (en) Multiparameter analytical electrode structure and method of measurement
JP2850514B2 (en) PH meter with life expectancy display
JP2014052259A5 (en)
JP4256387B2 (en) Ozone water concentration meter
JP2007322268A (en) Concentration measuring device and method
KR100629683B1 (en) Apparatus for measuring oxygen-permeability of films and electrochemical oxygen-permeability measurement using same
JP2006118907A (en) Suction type water quality meter
JP2000298110A (en) Oxidation-reduction current measuring device
JP2008281420A (en) Comparison electrode degradation detector
JP3838435B2 (en) Hypochlorous acid concentration measuring device
US11460432B1 (en) Extended life electrode measurement method and apparatus
JP2007093540A (en) Device and method for measuring effective chlorine concentration
JP2000131283A (en) Detecting analyzer for positive and negative ion in liquid
JP4322555B2 (en) Residual chlorine concentration measuring method and residual chlorine concentration measuring device
JP2001250804A (en) Method of controlling nitrite ion with hydrogen peroxide
JPH04155254A (en) Detector
JP2005062133A (en) Residual chlorine concentration measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4397213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151030

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term