JP2005133736A - Bush of copper alloy for automatic transmission - Google Patents

Bush of copper alloy for automatic transmission Download PDF

Info

Publication number
JP2005133736A
JP2005133736A JP2003366824A JP2003366824A JP2005133736A JP 2005133736 A JP2005133736 A JP 2005133736A JP 2003366824 A JP2003366824 A JP 2003366824A JP 2003366824 A JP2003366824 A JP 2003366824A JP 2005133736 A JP2005133736 A JP 2005133736A
Authority
JP
Japan
Prior art keywords
copper alloy
graphite
less
automatic transmission
bush
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003366824A
Other languages
Japanese (ja)
Inventor
Katsuto Ito
克人 伊藤
Hiroshi Ito
寛 伊藤
Daisuke Yoshitome
大輔 吉留
Hiromi Yokota
裕美 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP2003366824A priority Critical patent/JP2005133736A/en
Publication of JP2005133736A publication Critical patent/JP2005133736A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bush of copper alloy for an automatic transmission that is Pb-free. <P>SOLUTION: This bush of copper alloy for an automatic transmission comprises copper alloy excluding Pb, but including graphite in a slide surface. Graphite particles are exposed by 3 area% or more in the slide surface. Favorable lubrication characteristics are achieved especially in a case of use with surface roughness (Ra) of 1μm or less in the slide surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はオートマチックトランスミッション(以下A/Tという)用銅合金製ブシュに関するものであり、さらに詳しく述べるならばPbを含有しない銅合金を使用したブシュに関するものである。   The present invention relates to a bush made of a copper alloy for an automatic transmission (hereinafter referred to as A / T), and more particularly to a bush using a copper alloy containing no Pb.

自動車のA/Tのブシュは、オーバードライブサンギヤリヤブシュ(over-drive sun gear rear bush)、オーバードライブサンギヤフロントブシュ(over-drive sun gear front bush) 、サンギヤリヤブシュ(sun gear rear bush)、サンギヤフロントブシュ(sun gear front bush)などとしてA/Tに組み込まれている。このブシュはGO-STOPが繰り返されて、油膜が形成されない状況が頻発するため、境界潤滑条件下での耐摩耗性や耐焼付性が重要である。   Automotive A / T bushings include over-drive sun gear rear bush, over-drive sun gear front bush, sun gear rear bush, sun gear Built into A / T as sun gear front bush. Since this bush often repeats GO-STOP and the oil film is not formed, wear resistance and seizure resistance under boundary lubrication conditions are important.

従来のA/Tに使用された銅合金は環境汚染物質であるPb を約10〜20%以上含有し、硬質粒子により耐摩耗性を付与するものであった。   Conventional copper alloys used for A / T contain about 10 to 20% or more of Pb, which is an environmental pollutant, and impart wear resistance with hard particles.

焼結銅合金に関する従来技術を説明する。
焼結含油軸受に関する特許文献1によると、Fe:20〜64wt%, Cu:27〜59wt%, Zn:6〜 24wt%, Sn: 0.06〜0.6wt%, Al: tr〜3wt%, Mn:0.1〜3wt%を含有し、前記Feの粒子を被覆率90%以上のCuで被覆した圧粉焼結材が開示され、またさらに、10〜150μmであり、微粉をカットした黒鉛、Pbなどの固体潤滑剤を0.5〜5wt%添加した焼結材も開示されている。
この焼結材では、20wt%以上という多量のFeにより強化を図るとともに、CuによりFe粒子を被覆してなじみ性を高めたものである。この焼結材は含油軸受であるためにPbなどの軟質成分は必須でなく、強化となじみ性を重視しており、さらに含油させるために気孔率を15〜28vol%と高くしている。また、焼結後サイジングを行っている。
Prior art relating to sintered copper alloys will be described.
According to Patent Document 1 concerning sintered oil-impregnated bearings, Fe: 20 to 64 wt%, Cu: 27 to 59 wt%, Zn: 6 to 24 wt%, Sn: 0.06 to 0.6 wt%, Al: tr to 3 wt%, Mn: 0.1 A compacted sintered material containing ~ 3wt% and coated with Cu with the Fe particles covered with Cu of 90% or more is disclosed, and further, it is 10 ~ 150μm, and solids such as graphite and Pb with fine powder cut A sintered material added with 0.5 to 5 wt% of a lubricant is also disclosed.
This sintered material is strengthened by a large amount of Fe of 20 wt% or more, and has improved compatibility by coating Fe particles with Cu. Since this sintered material is an oil-impregnated bearing, a soft component such as Pb is not essential, emphasis is placed on strengthening and conformability, and the porosity is increased to 15 to 28 vol% for further oil impregnation. In addition, sizing is performed after sintering.

同様に焼結ベアリングに関する特許文献2によると、青銅母材に、好ましくは50μm以下の酸化アルミニウム又は窒化ケイ素粒子を埋め込んだ含油焼結ベアリングが開示されている。焼結後マンドレルを通すいわゆるサイジングを行いベアリングを製造している。   Similarly, Patent Document 2 relating to sintered bearings discloses an oil-impregnated sintered bearing in which aluminum oxide or silicon nitride particles of preferably 50 μm or less are embedded in a bronze base material. The bearing is manufactured by so-called sizing through a mandrel after sintering.

特許文献3には、10〜40%Pb, 0.1〜10%Sn, 10〜30%のMo,Co,Fe3P, FeB, Fe2B,Ni もしくはCo系自溶合金などの硬質粒子、残部Cuからなる焼結銅合金が開示されている。この焼結銅合金は多量に含有されたPb故に流体潤滑条件で腐食が起こり易いので、本出願人は特許文献4で、Pb含有量を10%未満に設定し、硬質粒子の大多数をCu粒子内、Cu粒子の粒界、Cu粒子とPb粒子の境界に分散させた摺動材料を提案した。この材料設計の考え方は、Pb量低減による耐摩耗性不足を硬質粒子分散箇所の特定により補っているところにある。
特許第2617334号明細書 特許第2697941号明細書 特開昭57−50884号公報 米国特許第5303617号明細書
In Patent Document 3, hard particles such as 10-40% Pb, 0.1-10% Sn, 10-30% Mo, Co, Fe 3 P, FeB, Fe 2 B, Ni, or Co-based self-fluxing alloys, the balance A sintered copper alloy comprising Cu is disclosed. Since this sintered copper alloy contains a large amount of Pb, corrosion is likely to occur under fluid lubrication conditions. Therefore, in the patent document 4, the Pb content is set to less than 10%, and the majority of hard particles are made of Cu. A sliding material dispersed in the grain, the grain boundary of Cu grain, and the boundary between Cu grain and Pb grain was proposed. The idea of this material design is that the lack of wear resistance due to the reduction of the Pb content is compensated by specifying the hard particle dispersion points.
Japanese Patent No. 2617334 Japanese Patent No.2697941 JP-A-57-50884 US Patent No. 5303617

冒頭で述べたように、現用のA/Tのブシュ用銅合金はPbを含有しており、Pbを完全にはなくすることはできなかった。前掲特許文献4は流体潤滑条件下の腐食に着目しており、境界潤滑条件下の耐焼付性を考慮していなかった。   As stated at the beginning, the current copper alloy for bushings of A / T contained Pb, and Pb could not be completely eliminated. The above-mentioned Patent Document 4 focuses on corrosion under fluid lubrication conditions and does not consider seizure resistance under boundary lubrication conditions.

本発明は、上述の問題を解決するために、Pbを含有せず黒鉛を含有する銅合金からなり、摺動面に3面積%以上の黒鉛粒子が露出され、特に摺動面の表面粗さ(Ra)が1μm以下で使用される場合に優れた性能を発揮することを特徴とするA/T用銅合金製ブシュを提供するものである。   In order to solve the above-mentioned problem, the present invention is made of a copper alloy containing no graphite but containing Pb, and 3% by area or more of graphite particles are exposed on the sliding surface, and particularly the surface roughness of the sliding surface. The present invention provides a copper alloy bushing for A / T that exhibits excellent performance when (Ra) is used at 1 μm or less.

本発明においては硬質粒子を含有することが好ましい。硬質粒子とはとは銅合金より実質的に硬い粒子であり、銅合金の耐摩耗性を高めるものである。硬質粒子は具体的にはFe2P,Fe3P, FeB, Fe2B,Mo,Fe-Cr, Fe-Mn, Fe-Ni, Fe-Si, Fe-W, Fe-Mo, Fe-V, Fe-Ti, Fe-Nb, CuP, Cr, SiC, TiC, WC, B4C, TiN, 立方晶BN, Si3N4, SiO2, ZrO2, Al2O3, Si-Mn, Cu-Si, FeS, Ni もしくはCo系自溶合金などである。さらに、好ましい硬質粒子はFe3Pである。
硬質粒子の量が1wt%未満であると耐摩耗性が低く、一方10wt%を超えると相手材の摩耗が多くなり、かつ焼結材の強度が低下する。
In the present invention, it is preferable to contain hard particles. The hard particles are particles that are substantially harder than the copper alloy and enhance the wear resistance of the copper alloy. Specifically, hard particles are Fe 2 P, Fe 3 P, FeB, Fe 2 B, Mo, Fe-Cr, Fe-Mn, Fe-Ni, Fe-Si, Fe-W, Fe-Mo, Fe-V , Fe-Ti, Fe-Nb, CuP, Cr, SiC, TiC, WC, B 4 C, TiN, cubic BN, Si 3 N 4 , SiO 2 , ZrO 2 , Al 2 O 3 , Si-Mn, Cu -Si, FeS, Ni or Co-based self-fluxing alloys. Further preferred Fe particles are Fe 3 P.
If the amount of hard particles is less than 1 wt%, the wear resistance is low, while if it exceeds 10 wt%, the wear of the counterpart material increases and the strength of the sintered material decreases.

A/Tブシュなどの境界潤滑条件で使用される銅合金には従来Pbが不可欠であった。これはPb相が境界潤滑条件で自己潤滑性を発揮するが、黒鉛などの固体潤滑材はPbに匹敵する自己潤滑性をもたないからである。一方、黒鉛は自己潤滑性を有するが、なじみ性はPbに比べ不良であるために、固体接触状態は継続し、この状態では黒鉛の自己潤滑性により焼付を防止するためには所定面積以上黒鉛が露出する必要がある。本発明においては、摺動面に3面積%以上露出した黒鉛粒子は境界潤滑条件下での焼付を防止する。   Conventionally, Pb has been indispensable for copper alloys used under boundary lubrication conditions such as A / T bushings. This is because the Pb phase exhibits self-lubricating properties under boundary lubrication conditions, but solid lubricants such as graphite do not have self-lubricating properties comparable to Pb. On the other hand, graphite has a self-lubricating property, but its conformability is poorer than that of Pb, so that the solid contact state continues. Need to be exposed. In the present invention, graphite particles exposed at 3% by area or more on the sliding surface prevent seizure under boundary lubrication conditions.

本発明の銅合金は上記成分の他に、必要により、質量%で、15%以下のSn, 5%以下のZn, 3%以下のP, 3%以下のNi, 10%以下のFe などの1種もしくは2種以上を含有することができるが、Pbは腐食をもたらすので含有しない。   In addition to the above components, the copper alloy of the present invention may contain, if necessary, 15% or less Sn, 5% or less Zn, 3% or less P, 3% or less Ni, 10% or less Fe, etc. One or more kinds may be contained, but Pb is not contained because it causes corrosion.

本発明に係る焼結銅合金の製造方法は特許文献4のカラム4、第52〜65行に説明された2段焼結法により製造することができる。使用時には、表面を削りとり所定の表面粗さ及び黒鉛露出面積を確保することが必要である。   The method for producing a sintered copper alloy according to the present invention can be produced by the two-stage sintering method described in Patent Document 4, column 4, lines 52 to 65. In use, it is necessary to scrape the surface to ensure a predetermined surface roughness and graphite exposed area.

表面粗さ(Ra)が1μm以上の場合、固体接触状態から流体潤滑へ移行する前に、黒鉛の上に銅合金がかぶさり、自己潤滑性が発揮できなくなる。表面粗さ(Ra)が1μm以下の場合、黒鉛の上に銅合金がかぶさることはなく、黒鉛が摺動面に露出し良好な潤滑性を発揮できるので、特に良好な性能が得られる。
従来のPb含有焼結銅合金ではPbのなじみ性が優れているから、摺動面粗さを小さくすることは耐焼付性の面で望ましいが、必須ではない。Pbは銅合金との結合性が良いため、多量に含有されることができる。これに対して、黒鉛は、銅合金との結合性が悪く脱落しやすく又、含有量を増やしすぎると、組織の強度も下がるため、Pbほど多量に含有させられない。少量でPbと同等の耐焼付性を確保させるためには、黒鉛の露出率及び好ましくは表面粗さをコントロールすることが必要である。
以下、実施例により本発明を詳しく説明する。
When the surface roughness (Ra) is 1 μm or more, before the transition from the solid contact state to the fluid lubrication, the copper alloy is covered on the graphite and the self-lubricating property cannot be exhibited. When the surface roughness (Ra) is 1 μm or less, the copper alloy is not covered on the graphite, and the graphite is exposed on the sliding surface and can exhibit good lubricity, so that particularly good performance can be obtained.
Since the conventional Pb-containing sintered copper alloy has excellent compatibility with Pb, it is desirable in terms of seizure resistance to reduce the sliding surface roughness, but it is not essential. Pb can be contained in a large amount because Pb has a good bondability with a copper alloy. On the other hand, graphite has a poor bondability with a copper alloy and easily falls off, and if the content is excessively increased, the strength of the structure also decreases, so that it cannot be contained as much as Pb. In order to ensure seizure resistance equivalent to Pb in a small amount, it is necessary to control the exposure rate and preferably the surface roughness of graphite.
Hereinafter, the present invention will be described in detail by way of examples.

図1はCuFe3P系焼結合金の黒鉛量(wt%)、粒径と黒鉛露出率(面積%)との関係を示すグラフである。なお、焼結合金の表面は粗さ(Ra)が1.0μmとなるように仕上げた。
黒鉛露出率は黒鉛量とともに増加するが、同じ黒鉛量でも粒径が小さい方が黒鉛露出率が小さくなっている。
FIG. 1 is a graph showing the relationship between the graphite amount (wt%), particle size, and graphite exposure rate (area%) of a CuFe 3 P-based sintered alloy. The surface of the sintered alloy was finished so that the roughness (Ra) was 1.0 μm.
Although the graphite exposure rate increases with the amount of graphite, the smaller the particle size, the smaller the graphite exposure rate even with the same amount of graphite.

上記黒鉛露出率の差は、表面仕上げの際にCu合金が展伸され、黒鉛を被覆するために生じる。黒鉛粒径が小さければ被覆されやすく、粒径が大きい場合はすべては被覆されず、露出する部分が大きくなる。   The difference in the graphite exposure rate occurs because the Cu alloy is stretched during the surface finishing and coats the graphite. If the graphite particle size is small, it is easy to coat, and if the particle size is large, everything is not coated, and the exposed part becomes large.

図2は黒鉛露出率と焼付き荷重の関係を示すグラフである。
焼付き荷重の測定は3ピン/ディスク試験(周速:3m/s、潤滑方法:ATF(T-4)30mg塗布)により行った。負荷荷重印加方法は図3のとおりであった。
図2より焼付き荷重下限は黒鉛露出率により決定されることが分かる。以上のような結果から黒鉛露出率を3%以上に限定した。
FIG. 2 is a graph showing the relationship between the graphite exposure rate and the seizure load.
The seizure load was measured by a 3-pin / disk test (peripheral speed: 3 m / s, lubrication method: ATF (T-4) 30 mg applied). The load application method was as shown in FIG.
It can be seen from FIG. 2 that the lower limit of seizure load is determined by the graphite exposure rate. From the above results, the graphite exposure rate was limited to 3% or more.

図4はCuFe3P系焼結合金の表面粗さ(Ra)と焼付き荷重の関係を示すグラフである。焼付き荷重の測定法は前述の方法と同じである。表面粗さは黒鉛量とその粒径を変化させることにより、図4の横軸の範囲に設定した。図4より摺動面粗さが1μm以下とすることにより焼付き荷重が高くなることが分かる。 FIG. 4 is a graph showing the relationship between the surface roughness (Ra) of the CuFe 3 P-based sintered alloy and the seizure load. The measuring method of the seizure load is the same as that described above. The surface roughness was set in the range of the horizontal axis in FIG. 4 by changing the amount of graphite and its particle size. FIG. 4 shows that the seizure load increases when the sliding surface roughness is 1 μm or less.

図5は、図4に関して言及した焼結合金の黒鉛量(wt%)と表面粗さ(Ra)の関係を黒鉛粒径をパラメータとし示したグラフである。このグラフより次のことが分かる。
・ 表面粗さ(Ra)は黒鉛量(wt%)及び粒径が大きくなるにつれて粗くなる。
(b)黒鉛粒子が5μmと微粒であると、表面粗さ(Ra)は黒鉛量(wt%)に拘わらずほぼ一定である。これは微粒黒鉛は、銅合金中から脱落しにくく、脱落した場合の空孔も小さいためである。
FIG. 5 is a graph showing the relationship between the graphite amount (wt%) and the surface roughness (Ra) of the sintered alloy mentioned with reference to FIG. This graph shows the following.
-The surface roughness (Ra) becomes rougher as the amount of graphite (wt%) and the particle size increase.
(b) When the graphite particles are as fine as 5 μm, the surface roughness (Ra) is almost constant regardless of the graphite amount (wt%). This is because fine graphite is difficult to drop out of the copper alloy, and the vacancies when dropped are small.

表面粗さの測定は次の方法で表面を仕上げた平板で測定した。
試験機:汎用旋盤
試験材:焼結板
チップ:0.8R
送り:0.105mm
回転数:500rpm
トラック径:12.5〜32.5mm
The surface roughness was measured on a flat plate whose surface was finished by the following method.
Testing machine: General-purpose lathe Test material: Sintered plate Chip: 0.8R
Feed: 0.105mm
Rotation speed: 500rpm
Track diameter: 12.5-32.5mm

以上説明したように、本発明によるとPbを添加しなくともA/Tブシュとして十分な耐焼付性をもつ銅合金が得られる。   As described above, according to the present invention, a copper alloy having sufficient seizure resistance as an A / T bush can be obtained without adding Pb.

黒鉛露出率と焼付き荷重の関係を示すグラフである。It is a graph which shows the relationship between a graphite exposure rate and a seizing load. 焼付き荷重測定試験における荷重印加パターンを示すグラフである。It is a graph which shows the load application pattern in a seizure load measurement test. 黒鉛量と黒鉛露出率の関係を示すグラフである。It is a graph which shows the relationship between a graphite amount and a graphite exposure rate. 摺動面粗さと焼付き荷重の関係を示すグラフである。It is a graph which shows the relationship between a sliding surface roughness and a seizure load. 黒鉛量と表面粗さの関係を示すグラフである。It is a graph which shows the relationship between the amount of graphite and surface roughness. 表1、No.1の材料の顕微鏡組織写真である。It is a microscope picture of the material of Table 1 and No. 1.

Claims (4)

Pbを含有せず黒鉛を含有する銅合金からなり、摺動面に3面積%以上の黒鉛粒子が露出されていることを特徴とするオートマチックトランスミッション用銅合金製ブシュ。 A copper alloy bushing for an automatic transmission, which is made of a copper alloy not containing Pb and containing graphite, and 3% by area or more of graphite particles are exposed on the sliding surface. 摺動面の表面粗さ(Ra)が1μm以下で使用されることにより良好な軸受特性を発揮することを特徴とする請求項1記載のオートマチックトランスミッション用銅合金製ブシュ。 2. A copper alloy bushing for an automatic transmission according to claim 1, wherein the bearing has good bearing characteristics when used with a surface roughness (Ra) of 1 [mu] m or less. 前記銅合金は、さらに硬質粒子を1〜10wt%含有し、裏金に焼結し積層してなる請求項1又は2記載のオートマチックトランスミッション用銅合金製ブシュ。 The copper alloy bushing for an automatic transmission according to claim 1 or 2, wherein the copper alloy further contains 1 to 10 wt% of hard particles, and is sintered and laminated on a back metal. 前記銅合金がさらに、重量%で、15%以下のSn, 5%以下のZn, 3%以下のP, 3%以下のNi, 10%以下のFeからなる群より選択された1種もしくは2種以上の元素を含有することを特徴とする請求項1から3までの何れか1項記載のオートマチックトランスミッション用銅合金製ブシュ。 The copper alloy may further comprise one or two selected from the group consisting of 15% or less of Sn, 5% or less of Zn, 3% or less of P, 3% or less of Ni, and 10% or less of Fe, by weight. The copper alloy bushing for an automatic transmission according to any one of claims 1 to 3, characterized in that it contains more than one element.
JP2003366824A 2003-10-28 2003-10-28 Bush of copper alloy for automatic transmission Pending JP2005133736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003366824A JP2005133736A (en) 2003-10-28 2003-10-28 Bush of copper alloy for automatic transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003366824A JP2005133736A (en) 2003-10-28 2003-10-28 Bush of copper alloy for automatic transmission

Publications (1)

Publication Number Publication Date
JP2005133736A true JP2005133736A (en) 2005-05-26

Family

ID=34645001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003366824A Pending JP2005133736A (en) 2003-10-28 2003-10-28 Bush of copper alloy for automatic transmission

Country Status (1)

Country Link
JP (1) JP2005133736A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129226A1 (en) * 2012-02-29 2013-09-06 株式会社ダイヤメット Sintered alloy having excellent abrasion resistance
JP2016524652A (en) * 2013-05-08 2016-08-18 フェデラル−モーグル ヴィースバーデン ゲーエムベーハーFederal−Mogul Wiesbaden Gmbh Copper alloy, use of copper alloy, bearing having copper alloy, and method of manufacturing bearing made of copper alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129226A1 (en) * 2012-02-29 2013-09-06 株式会社ダイヤメット Sintered alloy having excellent abrasion resistance
CN104039995A (en) * 2012-02-29 2014-09-10 大冶美有限公司 Sintered alloy having excellent abrasion resistance
JPWO2013129226A1 (en) * 2012-02-29 2015-07-30 株式会社ダイヤメット Sintered alloy with excellent wear resistance
EP2918693A1 (en) * 2012-02-29 2015-09-16 Diamet Corporation Sintered alloy superior in wear resistance
US9663844B2 (en) 2012-02-29 2017-05-30 Diamet Corporation Sintered alloy superior in wear resistance
JP2016524652A (en) * 2013-05-08 2016-08-18 フェデラル−モーグル ヴィースバーデン ゲーエムベーハーFederal−Mogul Wiesbaden Gmbh Copper alloy, use of copper alloy, bearing having copper alloy, and method of manufacturing bearing made of copper alloy
US10508322B2 (en) 2013-05-08 2019-12-17 Federal-Mogul Wiesbaden Gmbh Copper alloy, use of a copper alloy, bearing having a copper alloy, and method for producing a bearing composed of a copper alloy

Similar Documents

Publication Publication Date Title
JP4675563B2 (en) Bearing and manufacturing method thereof
JP4380274B2 (en) Method for producing ferrous copper-based sintered oil-impregnated bearing alloy
JP5374722B2 (en) Abrasion-resistant lead-free alloy bushing and method for producing the same
US6015775A (en) Self-lubricating sintered sliding material and method for manufacturing the same
KR100814656B1 (en) Free copper alloy sliding material
JP2001240925A (en) Copper series sliding material
JP5580882B2 (en) Slide bearing material
JP2001081523A (en) Coppery sliding material
KR101516852B1 (en) Lead-free copper-based sintered sliding material and sliding part
JP2001220630A (en) Copper series sliding material
JP3274261B2 (en) Copper-based sliding material
JP2010533756A (en) Lead-free sintered lubricating material and sintered powder for its production
JP2004019759A (en) Sliding member
JP3484444B2 (en) Sliding member
TW482825B (en) Composite metal powder for sintered bearings, and sintered oil-retaining bearing
JP3213193B2 (en) Sliding composition and sliding member
JP2001221231A (en) Sliding material
JPH11293368A (en) Copper sliding alloy
GB2367062A (en) Sliding material and lubricating composition
JP2005133736A (en) Bush of copper alloy for automatic transmission
JP2021099134A (en) Sintered oil-impregnated bearing and manufacturing method of the same
WO1998004756A1 (en) Sliding material having excellent abrasion resistance
JP2001107106A (en) Coppery sintered sliding material
JP2005213290A (en) Lubricant composition
GB2216543A (en) Sintered oil retaining bearing