JP2005133603A - Intake gas temperature inferring device for engine - Google Patents

Intake gas temperature inferring device for engine Download PDF

Info

Publication number
JP2005133603A
JP2005133603A JP2003368861A JP2003368861A JP2005133603A JP 2005133603 A JP2005133603 A JP 2005133603A JP 2003368861 A JP2003368861 A JP 2003368861A JP 2003368861 A JP2003368861 A JP 2003368861A JP 2005133603 A JP2005133603 A JP 2005133603A
Authority
JP
Japan
Prior art keywords
intake
fuel
temperature
spray
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003368861A
Other languages
Japanese (ja)
Inventor
Takashi Nakazawa
孝志 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003368861A priority Critical patent/JP2005133603A/en
Publication of JP2005133603A publication Critical patent/JP2005133603A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide technolgy for inferring gas temperature in a cylinder accurately without requiring many matching processes irrespective of change of engine specifications by putting physical phenomenon related to behavior of intake gas in a suction system of an engine including the inside of the cylinder into a model. <P>SOLUTION: This engine provided with a fuel supply device for injecting and supplying fuel into the suction system is provided with a means A01 for obtaining suction air temperature, a means A02 for obtaining vaporization characteristic of fuel spray supplied to the suction system, a means A03 for obtaining gas flow speed and pressure in a section for which fuel is vaporized in the suction system, and a gas temperature computing means A04 for inferring temperature of mixed gas in the cylinder using the result of each means. Each means constitutes a model of phenomenon in which vaporization latent heat of floating fuel in suction air changes gas temperature so that gas temperature in the cylinder can be inferred by calculating gas temperature in a suction system part up to the inside of the cylinder on the downstream side more than a fuel supply section in the suction system. In this case, adaptation on desk becomes possible individually per change section in accordance with the model irrespective of change of specifications of the fuel supply device and control characteristics. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃エンジンのシリンダ内に吸入される空気ないし混合ガスの温度を推定する技術に関する。   The present invention relates to a technique for estimating the temperature of air or mixed gas sucked into a cylinder of an internal combustion engine.

内燃エンジンの燃料供給量や点火時期を最適制御し、あるいは発生トルクを正確に推定するためには吸気弁閉時もしくは圧縮開始時のガス温度を精度良く求める必要がある。吸入ガス温度推定に関する従来技術としては次の特許文献1〜3に開示されたものが知られている。   In order to optimally control the fuel supply amount and ignition timing of the internal combustion engine, or to accurately estimate the generated torque, it is necessary to accurately determine the gas temperature when the intake valve is closed or when compression starts. As the prior art relating to the estimation of the intake gas temperature, those disclosed in the following Patent Documents 1 to 3 are known.

特許文献1は、エンジンルームからの放熱量を内燃機関の単位時間あたりの発熱量から差し引いた残留熱量により吸入空気に伝わる熱量を推定する手法、およびクーラント温度に代表されるエンジン本体が蓄えている熱量から吸気系に伝わる分量を推定する手法に基づき外気温度を修正することにより吸気温度を推定する技術を開示している。特許文献2は、エンジンの吸気管圧力、スロットル通過空気量、スロットルから吸気弁までの吸気管体積から状態方程式を用いて吸気温度を推定する技術を開示している。特許文献3は、吸気を吸気ガス成分と残留ガス成分からなる混合ガスとして扱い、吸気ガスと残留ガスのそれぞれの温度、質量から所定の演算式を用いて混合ガス温度を算出する技術を開示している。
特開平09−189256号公報 特開平05−180057号公報 特開平11−148419号公報
Patent Document 1 stores a method for estimating the amount of heat transmitted to intake air by a residual heat amount obtained by subtracting a heat release amount from an engine room from a heat generation amount per unit time of an internal combustion engine, and an engine body represented by a coolant temperature. A technique for estimating the intake air temperature by correcting the outside air temperature based on a method for estimating the amount of heat transmitted to the intake system from the amount of heat is disclosed. Patent Document 2 discloses a technique for estimating the intake air temperature using an equation of state from the intake pipe pressure of the engine, the amount of air passing through the throttle, and the intake pipe volume from the throttle to the intake valve. Patent Document 3 discloses a technique for treating intake air as a mixed gas composed of an intake gas component and a residual gas component, and calculating a mixed gas temperature from each temperature and mass of the intake gas and the residual gas using a predetermined arithmetic expression. ing.
JP 09-189256 A Japanese Patent Laid-Open No. 05-180057 JP-A-11-148419

エンジンのシリンダ内における吸入ガス温度は、吸気中に供給された燃料の気化状態により変動し、特に燃料供給量と吸入空気流量の変動が大きい車両用エンジンではこの傾向が著しい。しかしながら、従来の手法ではこのような燃料の気化特性に関わる温度変動要因を十分に考慮していなかったため、基本的に温度の推定精度が低いという問題があった。   The intake gas temperature in the cylinder of the engine fluctuates depending on the vaporization state of the fuel supplied during intake, and this tendency is particularly remarkable in a vehicular engine in which fluctuations in the fuel supply amount and the intake air flow rate are large. However, since the conventional method does not sufficiently take into account the temperature variation factor related to the fuel vaporization characteristics, there is a problem that the temperature estimation accuracy is basically low.

精度については、マッチングという実験的手法による補正を行うことで実用的な水準にまで高めることは可能であるが、運転状態および運転環境が幅広く変化する内燃機関ではマッチングのための工数が非常に多くなるという課題がある。また、一度マッチングを完了しても仕様の異なる部品に交換するとその部品の特性が温度推定に及ぼす影響が不明であるところから、工数の多いマッチング作業を最初からやり直さなければならない。   The accuracy can be raised to a practical level by performing a correction using an experimental technique called matching, but in an internal combustion engine where the operating conditions and operating environment vary widely, the number of man-hours for matching is very large. There is a problem of becoming. In addition, once matching is completed, if the part is replaced with a part having a different specification, it is unclear how the characteristics of the part affect the temperature estimation. Therefore, the matching process with many man-hours must be repeated from the beginning.

本発明は、シリンダ内を含むエンジン吸気系の吸入ガスの挙動に関わる物理現象をモデル化することにより、エンジンの仕様変更にかかわらず多数のマッチング工程を要することなく正確にシリンダ内ガス温度を推定できる技術を提供する。   By modeling physical phenomena related to the behavior of intake gas in the engine intake system including the inside of the cylinder, the present invention accurately estimates the gas temperature in the cylinder without requiring many matching steps regardless of engine specification changes. Provide technology that can.

本発明では、吸気系に燃料を噴射供給する燃料供給装置を備えたエンジンを前提として、図7に示したようなガス温度推定モデルを形成する。図においてA01は吸入空気温度を求める手段、A02は吸気系に供給された燃料噴霧の気化特性を求める手段、A03は吸気系内の燃料気化対象部位のガス流速および圧力を求める手段、A04は前記各手段の結果を用いてシリンダ内の混合気温度を推定するガス温度演算手段である。   In the present invention, a gas temperature estimation model as shown in FIG. 7 is formed on the premise of an engine provided with a fuel supply device that injects and supplies fuel to the intake system. In the figure, A01 is a means for obtaining the intake air temperature, A02 is a means for obtaining the vaporization characteristics of the fuel spray supplied to the intake system, A03 is a means for obtaining the gas flow velocity and pressure of the fuel vaporization target portion in the intake system, and A04 is the above-mentioned Gas temperature calculation means for estimating the temperature of the air-fuel mixture in the cylinder using the result of each means.

前記構成は、吸気中に浮遊する燃料が蒸発するときの気化潜熱に基づきガス温度を変化させる現象を物理法則に則ってモデル化したものである。この場合、吸気系の燃料供給部位よりも下流のシリンダ内に至るまでの吸気系部分でのガス温度を検討することで目的とする吸気弁閉時のシリンダ内ガス温度を推定することができる。   The above-described configuration is obtained by modeling the phenomenon of changing the gas temperature based on the latent heat of vaporization when the fuel floating in the intake air evaporates according to the laws of physics. In this case, the gas temperature in the cylinder when the target intake valve is closed can be estimated by examining the gas temperature in the intake system portion up to the cylinder downstream of the fuel supply portion of the intake system.

本発明によれば、燃料噴射弁を始めとする燃料供給装置の仕様や制御特性の変更にかかわらず、モデルに従って変更箇所毎に個別に机上補正が可能となる。従ってエンジンの仕様変更に関わらず、正確な吸入ガス温度を得るためのマッチング工数を低減することができる。   According to the present invention, regardless of changes in the specifications and control characteristics of the fuel supply device including the fuel injection valve, desktop correction can be made individually for each changed portion according to the model. Therefore, the matching man-hours for obtaining an accurate intake gas temperature can be reduced regardless of changes in engine specifications.

以下、図面に基づき本発明の実施形態について説明する。図1はL−ジェトロニック方式のガソリン噴射エンジンに適用した本発明の一実施形態のシステムを説明するための概略図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram for explaining a system according to an embodiment of the present invention applied to an L-Jetronic gasoline injection engine.

吸気絞り弁23により調量される空気は、吸気コレクタ2に蓄えられた後、吸気マニフォールド3を介して各気筒の燃焼室5に導入される。燃料は各気筒の吸気ポート4に配置された燃料噴射弁21より、エアフロメータ32により検出される吸入空気流量と、クランク角センサ(33、34)からの信号に基づいて演算されるエンジン回転速度とに応じ、所定のタイミングで吸気ポート内に、より具体的には吸気ポートに遮るように存在する吸気弁15(傘裏部)に向けて、間欠的に噴射供給される。   The air metered by the intake throttle valve 23 is stored in the intake collector 2 and then introduced into the combustion chamber 5 of each cylinder via the intake manifold 3. The engine speed is calculated based on the intake air flow rate detected by the air flow meter 32 and the signal from the crank angle sensor (33, 34) from the fuel injection valve 21 arranged in the intake port 4 of each cylinder. Accordingly, the injection is intermittently supplied into the intake port at a predetermined timing, more specifically, toward the intake valve 15 (back of the umbrella) that exists so as to be blocked by the intake port.

吸気弁15に向けて噴射された燃料は、吸気と混合して混合気を作り、この混合気は吸気弁15を閉じることで燃焼室5内に閉じこめられ、ピストン6の上昇によって圧縮され、点火プラグ14により着火されて燃焼する。この燃焼によるガス圧がピストン6を押し下げる仕事を行い、このピストン6の往復運動はクランクシャフト7の回転運動へと変換される。燃焼後のガス(排気)は排気弁16が開いたとき排気通路8へと排出される。   The fuel injected toward the intake valve 15 is mixed with the intake air to form an air-fuel mixture. The air-fuel mixture is confined in the combustion chamber 5 by closing the intake valve 15, compressed by the rise of the piston 6, and ignited. It is ignited by the plug 14 and burns. The gas pressure due to the combustion works to push down the piston 6, and the reciprocating motion of the piston 6 is converted into the rotational motion of the crankshaft 7. The combusted gas (exhaust gas) is discharged into the exhaust passage 8 when the exhaust valve 16 is opened.

排気通路8には三元触媒9を備える。三元触媒9は排気の空燃比が理論空燃比を中心とした狭い範囲にあるとき、排気に含まれるHC、CO及びNOxを同時に効率よく除去できる。このため、エンジンコントローラ31では運転条件に応じて燃料噴射弁21からの基本燃料噴射量を定めると共に、三元触媒9の上流に設けた酸素センサ(図示しない)からの信号に基づいて空燃比をフィードバック制御する。   A three-way catalyst 9 is provided in the exhaust passage 8. The three-way catalyst 9 can efficiently remove HC, CO and NOx contained in the exhaust gas simultaneously when the air-fuel ratio of the exhaust gas is in a narrow range centered on the stoichiometric air-fuel ratio. For this reason, the engine controller 31 determines the basic fuel injection amount from the fuel injection valve 21 in accordance with the operating conditions, and sets the air-fuel ratio based on a signal from an oxygen sensor (not shown) provided upstream of the three-way catalyst 9. Feedback control.

上記の吸気絞り弁23はスロットルモータ24により駆動される。運転者が要求するトルクはアクセルペダル41の踏み込み量(アクセル開度)に現れるので、エンジンコントローラ31ではアクセルセンサ42からの信号に基づいて目標トルクを定め、この目標トルクを実現するための目標空気量を定め、この目標空気量が得られるようにスロットルモータ24を介して吸気絞り弁23の開度を制御する。   The intake throttle valve 23 is driven by a throttle motor 24. Since the torque required by the driver appears in the amount of depression of the accelerator pedal 41 (accelerator opening), the engine controller 31 determines a target torque based on a signal from the accelerator sensor 42, and a target air for realizing this target torque. The amount is determined, and the opening degree of the intake throttle valve 23 is controlled via the throttle motor 24 so that this target air amount is obtained.

また、主に燃費向上のため、EGR装置(EGR通路25、EGR弁26、アクチュエータ27からなる)と吸気弁作動角またはリフト量を可変制御する可変動弁機構29を備えている。   Further, mainly for improving fuel efficiency, an EGR device (comprising an EGR passage 25, an EGR valve 26, and an actuator 27) and a variable valve mechanism 29 that variably controls the intake valve operating angle or the lift amount are provided.

吸気絞り弁23にはそのスロットルチャンバ60に寒冷時の氷結防止のための加熱手段として温水ヒータ61が設けられており、この温水ヒータ61には温水通路62を介してエンジン本体から冷却水が供給される。スロットルチャンバ上流部−吸気コレクタ間にはブローバイガス通路63が接続しており、シリンダ隙間からクランクケースへと吹き抜けてきた未燃燃料成分を含むガスをスロットル上流部から取り入れた新気で置換し、シリンダヘットを経由して吸気コレクタ2に供給し燃焼処理するようにしている。吸気コレクタ2には燃料蒸発ガス処理装置のパージガス通路64が接続している。燃料タンク65内の燃料蒸発ガスは一時的にキャニスタ66に吸着されており、パージバルブ67が開かるとそのときに大気からキャニスタ内に導入される空気中に脱離し、空気と共に前記パージガス通路64を介して吸気コレクタ2に吸入される。   The intake throttle valve 23 is provided with a hot water heater 61 as a heating means for preventing freezing in the throttle chamber 60 during cold weather. Cooling water is supplied to the hot water heater 61 from the engine body via the hot water passage 62. Is done. A blow-by gas passage 63 is connected between the upstream portion of the throttle chamber and the intake collector, and the gas containing unburned fuel components blown from the cylinder gap to the crankcase is replaced with fresh air taken from the upstream portion of the throttle. The fuel is supplied to the intake collector 2 via the cylinder head for combustion treatment. A purge gas passage 64 of a fuel evaporative gas processing device is connected to the intake collector 2. The fuel evaporative gas in the fuel tank 65 is temporarily adsorbed by the canister 66. When the purge valve 67 is opened, the fuel evaporative gas is desorbed from the atmosphere into the air introduced into the canister at that time. Through the intake collector 2.

本発明の特徴は、吸気系に供給された燃料の気化による温度変化に着目してシリンダ内吸入ガス温度を推定することにあるが、この実施形態では前述のエンジン構成を前提として、図2に概念図として示したように、さらに吸気系の特定部分の壁面と吸入空気との間の伝熱作用による温度変化、パージガス、EGRガスなどの主として外部から吸気系に供給されるガスとの混合による温度変化、急加減速時のブースト変化や吸気絞り弁前後でのガスの断熱圧縮または膨脹に伴う温度変化を考慮したモデルをそれぞれ構築することにより、より精度の高い推定結果が得られるようにしている。   The feature of the present invention is to estimate the intake gas temperature in the cylinder by paying attention to the temperature change caused by the vaporization of the fuel supplied to the intake system. In this embodiment, FIG. As shown in the conceptual diagram, the temperature change due to the heat transfer effect between the wall surface of the specific part of the intake system and the intake air, and the mixing with the gas supplied to the intake system mainly from the outside such as purge gas and EGR gas By building models that take into account temperature changes, boost changes during sudden acceleration / deceleration, and temperature changes associated with adiabatic compression or expansion of gas before and after the intake throttle valve, it is possible to obtain more accurate estimation results. Yes.

吸入ガス温度推定の基準となる初期温度は、吸気に対する熱源となる要素から離隔していて内外からの伝熱を考慮しなくてもよい部分、例えば図1のエンジンシステムではヒータ61よりも上流のエアフロメータ32付近の吸気温度とする。前述のような熱源がない場合には、より吸気ポートに近い部分の吸気温度を温度推定のための基準とすることができる。車両に搭載されるエンジンではエンジンルーム内の雰囲気、外気温度、ラジエータの放射熱などの諸条件を考慮して前述の初期値としての吸気温度を推定することも可能であるが、一般に車両のエンジンルーム内の空気は複雑かつ不安定な温度分布を持っているので、これらの要素から精度良く温度推定することは難しいので、好ましくはエアフロメータ部等に温度センサ43を設けて吸気温度を直接的に検出する。   The initial temperature that serves as a reference for the intake gas temperature estimation is a portion that is separated from the heat source for intake air and that does not need to consider heat transfer from inside and outside, for example, in the engine system of FIG. The intake air temperature in the vicinity of the air flow meter 32 is set. When there is no heat source as described above, the intake air temperature at a portion closer to the intake port can be used as a reference for temperature estimation. In an engine mounted on a vehicle, it is possible to estimate the intake air temperature as the initial value in consideration of various conditions such as the atmosphere in the engine room, the outside air temperature, and the radiant heat of the radiator. Since the air in the room has a complicated and unstable temperature distribution, it is difficult to accurately estimate the temperature from these elements. Therefore, it is preferable to provide a temperature sensor 43 in the air flow meter or the like to directly control the intake air temperature. To detect.

次に前記混合気温度推定の詳細について説明する。なお、本明細書またはその添付図面では「*」を乗算記号として使用している。
1.初期吸気温度Ta0〜スロットルチャンバ通過後吸気温度Ta1
まず、エアフロメータ32部の吸気温度の推定値または検出値をTa0とする。この初期吸気温度Ta0を基準として、次に吸気絞り弁通過後の吸気温度Ta1を求める。このとき、絞り弁開度が大きいときにはTa1=Ta0とみなすことができる。絞り弁開度が小さいとき、すなわち吸気絞り弁23の通過後に吸気の断熱膨脹により温度低下が生じる条件下では次式(1)を用いてTa1を算出する。
Next, details of the mixture temperature estimation will be described. In this specification or the accompanying drawings, “*” is used as a multiplication symbol.
1. Initial intake air temperature Ta0 to intake air temperature Ta1 after passing through the throttle chamber
First, the estimated value or detected value of the intake air temperature of the air flow meter 32 is Ta0. Next, the intake air temperature Ta1 after passing through the intake throttle valve is obtained using the initial intake air temperature Ta0 as a reference. At this time, when the throttle valve opening is large, it can be considered that Ta1 = Ta0. When the throttle valve opening is small, that is, under the condition that the temperature drops due to adiabatic expansion of the intake air after passing through the intake throttle valve 23, Ta1 is calculated using the following equation (1).

Figure 2005133603
Figure 2005133603

Pa0:大気圧力
Pa1:コレクタ2部の圧力
Pa0、Pa1は、それぞれ圧力センサ44,45にて計測してもよいし、推定してもよい。κは空気の比熱比であり、標準状態では1.4を用いる。
2.ヒータ通過後の吸気温度Ta2
次にスロットルチャンバ60の氷結防止用ヒータ61部を通過した後の吸気温度Ta2を次式(2)にて算出する。
Pa0: Atmospheric pressure
Pa1: Pressure at the collector 2 part
Pa0 and Pa1 may be measured or estimated by the pressure sensors 44 and 45, respectively. κ is the specific heat ratio of air, and 1.4 is used in the standard state.
2. Intake air temperature Ta2 after passing through the heater
Next, the intake air temperature Ta2 after passing through the icing prevention heater 61 of the throttle chamber 60 is calculated by the following equation (2).

Figure 2005133603
Figure 2005133603

Tw:機関冷却水温度
Ta1:スロットルチャンバ通過後の吸気温度
K:冷却水の熱容量と熱伝達率で決まる定数
この場合、冷却水温度Twを壁面温度の代表値として、エンジン回転速度Neをガス流速および冷却水流速の代表値としてそれぞれ適用している。なお、説明は省略するが、吸気ポート4についても前述と同様にしてポート壁面からの熱伝達による温度推定を行うことができる。
3.外部ガス混合後の吸気温度Ta3
次にキャニスタ66からのパージガスおよび外部EGRガス、内部EGRガス(吸気行程以降のシリンダ内残留ガス)との混合後の混合気温度Ta3を算出する。図1のエンジンシステムでは吸気コレクタ2にブローバイガスを導入しているが、ここではEGRガス以外に外部から導入されるガスをパージガスに代表させて説明することとする。
3−1.内部EGRガス温度の推定
まず内部EGRガス温度Tevc5を算出する。排気温度センサ46より検出した排気温度に基づいて、排気バルブ閉弁時筒内温度Tevc0を算出する。排気バルブ閉弁時筒内温度Tevc0は、燃料噴射量とその時の仕事量との差に応じた熱量により変化するため、その様な特性を利用したテーブルから求めるようにしてもよい。
Tw: Engine coolant temperature
Ta1: Intake air temperature after passing through the throttle chamber
K: Constant determined by heat capacity and heat transfer coefficient of cooling water In this case, the cooling water temperature Tw is applied as a representative value of the wall surface temperature, and the engine rotational speed Ne is applied as a representative value of the gas flow rate and the cooling water flow rate. Although explanation is omitted, temperature estimation by heat transfer from the port wall surface can be performed for the intake port 4 in the same manner as described above.
3. Intake air temperature after mixing external gas Ta3
Next, an air-fuel mixture temperature Ta3 after mixing with the purge gas from the canister 66, external EGR gas, and internal EGR gas (residual gas in the cylinder after the intake stroke) is calculated. In the engine system of FIG. 1, blow-by gas is introduced into the intake collector 2, but here, gas introduced from the outside in addition to EGR gas will be representatively described as purge gas.
3-1. Estimation of internal EGR gas temperature First, the internal EGR gas temperature Tevc5 is calculated. Based on the exhaust temperature detected by the exhaust temperature sensor 46, the in-cylinder temperature Tevc0 when the exhaust valve is closed is calculated. Since the in-cylinder temperature Tevc0 when the exhaust valve is closed varies depending on the amount of heat corresponding to the difference between the fuel injection amount and the amount of work at that time, it may be obtained from a table using such characteristics.

次に排気圧カセンサ47より検出した排気圧力により排気バルブ閉弁時筒内圧力Pevcを推定する。排気バルブ閉弁時筒内圧力Pevcは、混合気体積と排気系の管内抵抗とで決まるため、混合気体積流量に応じたテーブルから求めるようにしてもよい。   Next, the in-cylinder pressure Pecv when the exhaust valve is closed is estimated from the exhaust pressure detected by the exhaust pressure sensor 47. The in-cylinder pressure Pecv when the exhaust valve is closed is determined by the mixture volume and the in-pipe resistance of the exhaust system, and may be obtained from a table corresponding to the mixture volume flow rate.

次に吸気弁開時の新気と混合前の排気圧力Peivcを算出する。ここで、
(a)吸気弁開タイミングが、排気弁閉タイミングより前、すなわちオーバラップ期間がある場合は、Peivc/Pevc=1.0とし、
(b)吸気弁開タイミングが、排気弁閉タイミングより後、すなわちオーバラップ期間がない場合は、Peivc/Pevcをバルブタイミングに応じたテーブルより算出するものとする。
Next, the fresh air when the intake valve is opened and the exhaust pressure Peivc before mixing are calculated. here,
(a) When the intake valve opening timing is before the exhaust valve closing timing, that is, when there is an overlap period, Peivc / Pevc = 1.0,
(b) When the intake valve opening timing is after the exhaust valve closing timing, that is, when there is no overlap period, Peivc / Pevc is calculated from a table corresponding to the valve timing.

その際、前述のテーブルは、排気弁閉と吸気弁開と上死点との関係からあらかじめ計算して値を設定する。具体的には、
(a)排気弁閉タイミングが上死点前の場合は、排気弁閉から上死点までは断熱圧縮されるため、Peivc/Pevc>1.0となるが、その後吸気弁開までは逆に断熱膨張されるためPeivc/Pevc<1.0となる。
(b)排気弁閉タイミングが上死点後の場合は、排気弁閉から吸気弁開までは断熱膨張されるためPeivc/Pevc<1.0となる。
At this time, the above-described table sets values by calculating in advance from the relationship among exhaust valve closing, intake valve opening, and top dead center. In particular,
(a) When the exhaust valve closing timing is before the top dead center, adiabatic compression is performed from the exhaust valve closing to the top dead center, so Peicc / Pevc> 1.0. Therefore, Peivc / Pevc <1.0.
(b) When the exhaust valve closing timing is after top dead center, since the adiabatic expansion is performed from the exhaust valve closing to the intake valve opening, Peivc / Pevc <1.0.

次に排気ガス比熱比SHEATRを算出する。図3は、前記排気ガス比熱比の算出テーブルであり、横軸は燃焼時の目標当量比TFBYA、縦軸は排気ガス比熱比SHEATRを示している。TFBYAはストイキ時の燃空比を1としたときの燃空比値である。なお、図中の点線はストイキの位置を示しており、燃焼当量比TFBYAがストイキ近傍にあるときは排気ガス比熱比SHEATRが小さくなり、リッチまたはリーン側になると排気ガス比熱比=SHEATRが大きくなる。また、図の太線矢印は排気バルブ閉時の筒内温度TEVCが変化した場合を示している。   Next, the exhaust gas specific heat ratio SHEATR is calculated. FIG. 3 is a calculation table of the exhaust gas specific heat ratio, where the horizontal axis indicates the target equivalent ratio TFBYA during combustion and the vertical axis indicates the exhaust gas specific heat ratio SHEATR. TFBYA is the fuel-air ratio value when the fuel-air ratio at stoichiometric is 1. The dotted line in the figure indicates the stoichiometric position. When the combustion equivalent ratio TFBYA is close to the stoichiometric ratio, the exhaust gas specific heat ratio SHEATR decreases, and when it becomes rich or lean, the exhaust gas specific heat ratio = SHEATR increases. . Also, the thick line arrow in the figure shows the case where the in-cylinder temperature TEVC when the exhaust valve is closed changes.

この様にして算出したPeivc/Pevc、排気ガス比勢比SHEATR、排気バルブ閉弁時筒内温度Tevc0から次式(3)を用いて内部EGRガス温度Tevcを算出する。   The internal EGR gas temperature Tevc is calculated from the thus calculated Peivc / Pevc, exhaust gas ratio SHEATR, and exhaust valve closing cylinder temperature Tevc0 using the following equation (3).

Figure 2005133603
Figure 2005133603

3−2.外部EGRガス温度の推定
次に外部EGRガス温度Tegrを算出する。まず排気温度センサ46より検出した排気温度に基づいて、EGRバルブ上流のEGRガス温度Tegr0を算出する。次に排気圧カセンサ47より検出した排気圧力によりEGRバルブ上流のEGRガス圧力Pegr0を算出する。次に圧力センサ45より検出または、吸入空気量と吸気温度、コレクタ体積より推定したコレクタ内圧力によりEGRバルブ下流のEGRガス圧力Pmを算出する。次に排気ガス比熱比SHEATR1を前述の図3と同様のテーブルから読み出す。この場合、図3の太線矢印はEGRバルブ上流のEGRガス温度Tegr0が変化した場合に相当する。
3-2. Estimation of external EGR gas temperature Next, the external EGR gas temperature Tegr is calculated. First, based on the exhaust gas temperature detected by the exhaust gas temperature sensor 46, the EGR gas temperature Tegr0 upstream of the EGR valve is calculated. Next, the EGR gas pressure Pegr0 upstream of the EGR valve is calculated from the exhaust pressure detected by the exhaust pressure sensor 47. Next, the EGR gas pressure Pm downstream of the EGR valve is calculated from the pressure sensor 45 or based on the pressure in the collector estimated from the intake air amount, the intake temperature, and the collector volume. Next, the exhaust gas specific heat ratio SHEATR1 is read out from the same table as in FIG. In this case, the thick arrow in FIG. 3 corresponds to the case where the EGR gas temperature Tegr0 upstream of the EGR valve changes.

この様にして算出したEGRバルブ上流のEGRガス圧力Pegr0、EGRバルブ下流のEGRガス圧力Pm、EGRバルブ上流のEGRガス温度Tegr0、排気ガス比熱比SHEATR1から次式(4)を用いて内部EGRガス温度Tegrを算出する。   From the EGR gas pressure Pegr0 upstream of the EGR valve, the EGR gas pressure Pm downstream of the EGR valve, the EGR gas temperature Tegr0 upstream of the EGR valve, and the exhaust gas specific heat ratio SHEATR1 calculated in this way, the internal EGR gas is calculated using the following equation (4). Calculate the temperature Tegr.

Figure 2005133603
Figure 2005133603

本実施形態では、外部EGRがコレクタ2部に戻る場合の温度を求めているが、コレクタ部ではなく、吸気ポートに戻るシステムもあり、その場合も同様の方法で算出することができる。
3−3.外部ガス混合時の温度推定
次にキャニスタ66からのパージガスならびに前記外部EGRガス、内部EGRガスとの混合後の混合気温度Ta3を次式(5)より算出する。
In the present embodiment, the temperature when the external EGR returns to the collector 2 part is obtained, but there is a system that returns to the intake port instead of the collector part, and in that case, it can be calculated by the same method.
3-3. Temperature Estimation at the Time of Mixing External Gas Next, the gas mixture temperature Ta3 after mixing with the purge gas from the canister 66, the external EGR gas, and the internal EGR gas is calculated from the following equation (5).

Figure 2005133603
Figure 2005133603

Ca:吸入空気の比熱
Ma:吸入空気量
Cegr:外部EGRガスの比熱
Megr:外部EGRガス量
Cevp:パージガスの比熱
Mevp:パージガス量
Tevp:パージガス温度
Cegrは燃焼TFBYAと外部EGRガス温度Tegrにより算出する。MegrはEGRバルブ開度より求まるEGRバルブ開口面積と、吸入負圧と排気圧力との比と相関があり、該相関関係を利用して求める。
Ca: Specific heat of intake air
Ma: Intake air volume
Cegr: Specific heat of external EGR gas
Megr: External EGR gas amount
Cevp: Specific heat of purge gas
Mevp: Purge gas amount
Tevp: purge gas temperature
Cegr is calculated from combustion TFBYA and external EGR gas temperature Tegr. Megr has a correlation with the EGR valve opening area obtained from the EGR valve opening and the ratio between the intake negative pressure and the exhaust pressure, and is obtained using the correlation.

Tevpは温度センサ48により直接検出し、Mevpはパージバルブ67の開度と圧力センサ73により検出されるパージ通路出口部(吸気コレクタ2)圧力との関数として求めることができる。ここで算出されるパージガス量はパージ時にキャニスタ66から導入される空気とキャニスタから脱離した燃料蒸発ガスの合計質量であり、この合計ガス流量と燃料蒸発ガスの脱離量の比つまりパージガスの燃料濃度に応じてパージガスの比熱を正確に決定することができる。   Tevp is directly detected by the temperature sensor 48, and Mevp can be obtained as a function of the opening degree of the purge valve 67 and the pressure of the purge passage outlet (intake collector 2) detected by the pressure sensor 73. The purge gas amount calculated here is the total mass of the air introduced from the canister 66 and the fuel evaporative gas desorbed from the canister during the purge, and the ratio of the total gas flow rate to the desorption amount of the fuel evaporative gas, that is, the fuel of the purge gas The specific heat of the purge gas can be accurately determined according to the concentration.

パージガスが保有する脱離燃料量の算出には各種の手法が考えられるが、ここではその一例として本出願人が特願2001-71562号(特開2002-276436号)にて提案している物理モデルを図4に示す。図においてB41は吸着量演算部であり、蒸発燃料の吸着量の前回値と脱離量の前回値とから現在の吸着量を演算する。B42は基準脱離量演算部であり、活性炭温度演算部B44からの活性炭温度、吸着量、所定の脱離定数および脱離指数から基準パージ流量時の脱離量を演算する。B43は流量相当脱離量演算部であり、パージ流量(パージ率*エンジン吸入空気量)と前記基準脱離量演算部B42の演算結果を用いてパージ流量に応じた脱離量を演算する。このキャニスタモデルでは前述のように蒸発燃料を吸着する活性炭の温度を脱離量演算に用いていることから、脱離量に応じた活性炭温度変化の影響を補償して正確な脱離量を得ることができる。
4.吸気弁通過時の混合気温度Ta4
次に吸気弁通過時の混合気温度Ta4を算出する。まず吸気ポート通過後の吸気温度Ta41を次式(6)より算出する。
Various methods are conceivable for calculating the amount of desorbed fuel held by the purge gas, and here, as an example, the physics proposed by the present applicant in Japanese Patent Application No. 2001-71562 (Japanese Patent Laid-Open No. 2002-276436). The model is shown in FIG. In the figure, B41 is an adsorption amount calculation unit, which calculates the current adsorption amount from the previous value of the adsorption amount of the evaporated fuel and the previous value of the desorption amount. B42 is a reference desorption amount calculation unit, which calculates the desorption amount at the reference purge flow rate from the activated carbon temperature, adsorption amount, predetermined desorption constant and desorption index from the activated carbon temperature calculation unit B44. B43 is a flow rate equivalent desorption amount calculation unit, which calculates a desorption amount corresponding to the purge flow rate using the purge flow rate (purge rate * engine intake air amount) and the calculation result of the reference desorption amount calculation unit B42. In this canister model, as described above, the temperature of the activated carbon that adsorbs the evaporated fuel is used in the desorption amount calculation, so that the influence of the change in the activated carbon temperature according to the desorption amount is compensated to obtain an accurate desorption amount. be able to.
4). Mixture temperature Ta4 when passing through intake valve
Next, an air-fuel mixture temperature Ta4 when passing through the intake valve is calculated. First, the intake air temperature Ta41 after passing through the intake port is calculated from the following equation (6).

Figure 2005133603
Figure 2005133603

Tw:機関冷却水温度
Ne:ガス流速または冷却水流速の代表値としてのエンジン回転速度
K:冷却水の熱容量ならびに熱伝達率で決まる定数
次に急加速時の断熱圧縮または急減速時の断熱膨張した場合の混合気温度Ta42を次式(7)より算出する。
Tw: Engine coolant temperature
Ne: Engine speed as a representative value of gas flow rate or cooling water flow rate
K: Constant determined by heat capacity and heat transfer coefficient of cooling water Next, the air-fuel mixture temperature Ta42 in the case of adiabatic compression during sudden acceleration or adiabatic expansion during sudden deceleration is calculated from the following equation (7).

Figure 2005133603
Figure 2005133603

Pm:吸気マニフォールド内の圧力
Pc:筒内圧力
MIXAIRSHR:混合気比熱比
急加速または急減速以外の運転条件では、PC=Pmである。急加速または急減速時は、本出願人による実験では1サイクル程度の間、急加速時にはPc<Pm、急減速時にはPc>Pmとなる。急加速または急減速の判定は、例えばアクセルセンサ42からの信号を用いて判定する。図5は前記混合気比熱比MIXAIRSHRを得るための算出テーブルであり、横軸は燃焼当量比TFBYA、縦軸は混合気比熱比MIXAIRSHRを示している。図中の点線はストイキを示し、比熱比MIXAIRSHRはリーン側のときは大きく、リッチ側の時は小さくなる。
Pm: Pressure in the intake manifold
Pc: In-cylinder pressure
MIXAIRSHR: Mixture specific heat ratio PC = Pm under operating conditions other than rapid acceleration or rapid deceleration. At the time of sudden acceleration or sudden deceleration, in the experiment by the present applicant, Pc <Pm at the time of sudden acceleration, and Pc> Pm at the time of sudden deceleration. The determination of sudden acceleration or sudden deceleration is made using a signal from the accelerator sensor 42, for example. FIG. 5 is a calculation table for obtaining the mixture specific heat ratio MIXAIRSHR. The horizontal axis represents the combustion equivalent ratio TFBYA, and the vertical axis represents the mixture specific heat ratio MIXAIRSHR. The dotted line in the figure indicates the stoichiometric ratio, and the specific heat ratio MIXAIRSHR is large on the lean side and small on the rich side.

次に吸気弁にて混合気がチョークを起こした場合の混合気温度Ta43を算出する。吸気弁リフト量を可変制御することによりで吸入空気量を制御する可変動弁機構では、特に低リフト量時に吸気弁にて混合気がチョークを起こすことが知られている。その場合、混合気温度=Ta43は次式(8)にて算出する。   Next, an air-fuel mixture temperature Ta43 when the air-fuel mixture causes choke at the intake valve is calculated. In a variable valve mechanism that controls the intake air amount by variably controlling the intake valve lift amount, it is known that the air-fuel mixture causes choke in the intake valve particularly at a low lift amount. In that case, the mixture temperature = Ta43 is calculated by the following equation (8).

Figure 2005133603
Figure 2005133603

Pc:吸気弁閉時筒内圧力
Pport:吸気ポート圧力(=コレクタ圧力Pm)
MIXAIRSHR:混合気比熱比(図5参照)
最後にTa4=Ta43として、吸気弁通過時の混合気温度算出処理を終了する。
5.吸気弁閉時の混合気温度Tivc
5−1.燃料気化潜熱の影響を考慮した温度推定(本願各請求項の発明に対応)
次に吸気弁閉時の混合気温度Tivcを算出するにあたり、まず噴射弁21より噴射された燃料が吸気ポートや燃焼室内で液滴の気化潜熱の影響を受けた場合の混合気温度Ta5を算出する。ここでは混合気温度Ta5算出のために必要となる、噴霧粒径分布(質量割合)に対する気化量Mx0'の算出手法につき説明する。
Pc: In-cylinder pressure when intake valve is closed
Pport: Intake port pressure (= collector pressure Pm)
MIXAIRSHR: Mixture specific heat ratio (see Fig. 5)
Finally, assuming that Ta4 = Ta43, the mixture temperature calculation process when the intake valve passes is terminated.
5). Mixture temperature Tivc when intake valve is closed
5-1. Temperature estimation considering the effect of latent heat of vaporization of fuel (corresponding to the invention of each claim of the present application)
Next, when calculating the mixture temperature Tivc when the intake valve is closed, first, the mixture temperature Ta5 when the fuel injected from the injection valve 21 is affected by the latent heat of vaporization of the droplets in the intake port and the combustion chamber is calculated. To do. Here, a method for calculating the vaporization amount Mx0 ′ with respect to the spray particle size distribution (mass ratio), which is necessary for calculating the mixture temperature Ta5, will be described.

まず、噴射弁噴霧の分岐モデルを図6−1のように設定する。すなわち、当該モデルを、噴霧粒径分布算出手段C41、噴射時気化割合算出手段C42、直接噴き入り割合算出手段C43、吸気系浮遊割合算出手段C44、燃焼室浮遊割合算出手段C45、吸気系付着割合割り振り手段C46、燃焼室付着割合割り振り手段C47、気化、浮遊割合算出手段C48から構成する。   First, the branch model of the injection valve spray is set as shown in FIG. In other words, the spray particle size distribution calculating means C41, the injection-time vaporization ratio calculating means C42, the direct injection ratio calculating means C43, the intake system floating ratio calculating means C44, the combustion chamber floating ratio calculating means C45, the intake system adhesion ratio. An allocation unit C46, a combustion chamber adhesion rate allocation unit C47, and a vaporization / floating rate calculation unit C48 are included.

まず、噴霧粒径分布算出手段C41では、エンジンコントローラ31内のROMに予め記憶されている噴霧の粒径分布を読み出してくる。ここで、噴霧の粒径分布は、粒径の小区分毎(粒径毎)の噴霧の質量割合を行列としたもので、噴霧の粒径分布の算出とはエンジンコントローラ31内のROMからこの粒径の小区分毎の噴霧の質量割合の行列を読み出してくる操作のことである。   First, the spray particle size distribution calculating means C41 reads the spray particle size distribution stored in advance in the ROM in the engine controller 31. Here, the particle size distribution of the spray is a matrix of the mass ratio of the spray for each small particle size classification (for each particle size), and the calculation of the spray particle size distribution is performed from the ROM in the engine controller 31. This is an operation to read out a matrix of the mass ratio of the spray for each small section of the particle size.

噴射時気化割合算出手段C42では、温度、圧力、流速等の信号から粒径の小区分毎の噴霧の気化率を算出し、これらを全ての粒径区分について総和することにより、噴射時の総噴霧のうちから気化する分である噴射時気化分X0'[%]を算出する。この結果、100−X0'の噴霧分XB[%]が吸気ポート4に気化することなく残留する。   The injection vaporization ratio calculating means C42 calculates the spray vaporization rate for each of the small particle size classifications from the signals such as temperature, pressure, flow velocity, etc., and sums these for all the particle size classifications to obtain the total during injection. Vaporization during injection X0 ′ [%], which is the amount of vaporization from the spray, is calculated. As a result, the spray XB [%] of 100−X0 ′ remains in the intake port 4 without being vaporized.

直接噴き入り割合算出手段C43では、噴射時気化割合算出手段C42からのこの残留噴霧分XB(=100−X0')を受け、これと噴射タイミングI/T、噴射弁21と吸気弁15の挟み角βとを用いて、吸気弁15または吸気ポート4に衝突することなく燃焼室5へと直接噴き入れられる噴霧分XD[%]を算出する。この結果、XB−XDの噴霧分XC[%]が吸気ポート4に残留する。この吸気ポート4に残留する噴霧分XCは吸気系浮遊割合算出手段C44に、また燃焼室5へと直接噴き入れられる噴霧分XDは燃焼室浮遊割合算出手段C45に出力される。   The direct injection ratio calculation means C43 receives this residual spray amount XB (= 100−X0 ′) from the injection-time vaporization ratio calculation means C42, and this, the injection timing I / T, and the sandwiching between the injection valve 21 and the intake valve 15 Using the angle β, a spray amount XD [%] that is directly injected into the combustion chamber 5 without colliding with the intake valve 15 or the intake port 4 is calculated. As a result, XB-XD spray XC [%] remains in the intake port 4. The spray XC remaining in the intake port 4 is output to the intake system floating ratio calculating means C44, and the spray XD directly injected into the combustion chamber 5 is output to the combustion chamber floating ratio calculating means C45.

吸気系浮遊割合算出手段C44では、粒径の小区分毎の噴霧の気化率を算出し、これらを全ての粒径区分について総和することにより、吸気ポート4での浮遊分X0''[%]を、また残りを吸気ポート壁4aと吸気弁壁15aとに付着する噴霧分(以下、吸気ポート壁4aに付着する噴霧分と吸気弁壁15aに付着する噴霧分とを総称して「吸気系付着分」という。)XE(=XC−X0'')[%]として算出する。   In the intake system floating ratio calculating means C44, the vaporization rate of the spray for each small particle size classification is calculated, and these are summed up for all the particle size classifications, so that the floating portion X0 ″ [%] at the intake port 4 is calculated. And the remainder of the spray that adheres to the intake port wall 4a and the intake valve wall 15a (hereinafter, the spray that adheres to the intake port wall 4a and the spray that adheres to the intake valve wall 15a are collectively referred to as “intake system”. Calculated as “attachment” XE (= XC−X0 ″) [%].

同様にして、燃焼室浮遊割合算出手段C45では粒径の小区分毎の噴霧の気化率を算出し、これらを全ての粒径区分について総和することにより、燃焼室5での浮遊分X0'''[%]を、また残りを燃焼室壁(上記のようにシリンダ面壁を除く)とシリンダ面壁52とに付着する噴霧分(以下、燃焼室壁に付着する噴霧分とシリンダ面壁52に付着する噴霧分とを総称して「燃焼室付着分」という。)XF(=XD−X0''')[%]として算出する。   Similarly, the combustion chamber floating ratio calculating means C45 calculates the vaporization rate of the spray for each of the small particle size divisions, and sums up these for all the particle size divisions, whereby the floating portion X0 '' in the combustion chamber 5 is calculated. '[%], And the remainder adheres to the combustion chamber wall (excluding the cylinder surface wall as described above) and the cylinder surface wall 52 (hereinafter referred to as the spray adhering to the combustion chamber wall and the cylinder surface wall 52). The spray is collectively called “combustion chamber deposit”.) Calculated as XF (= XD−X0 ′ ″) [%].

気化、浮遊割合算出手段C48ではこのようにして求められた噴射時気化分X0'、吸気ポート4での浮遊分X0''、燃焼室5での浮遊分X0'''の3つを合計して1噴射トータルでの気化、浮遊分X0を算出する。   The vaporization / floating ratio calculation means C48 adds up the three of the vaporization amount X0 ′ during injection, the floating portion X0 ″ at the intake port 4 and the floating portion X0 ′ ″ at the combustion chamber 5 thus obtained. Calculate vaporization and floating part X0 in one injection total.

一方、吸気系付着割合割り振り手段C46では吸気系付着分XEを、吸気弁壁15aに付着する分X1[%]と、ポート壁4aに付着する分X2[%]とに、また燃焼室付着割合割り振り手段C47では燃焼室付着分XFを、燃焼室壁に付着する分X3[%]と、シリンダ面壁52に付着する分X4[%]とにそれぞれ割り振る。   On the other hand, in the intake system adhesion ratio allocation means C46, the intake system adhesion part XE is divided into the part X1 [%] attached to the intake valve wall 15a and the part X2 [%] attached to the port wall 4a, and the combustion chamber adhesion ratio. The allocating means C47 allocates the combustion chamber adhering portion XF to the portion X3 [%] adhering to the combustion chamber wall and the portion X4 [%] adhering to the cylinder surface wall 52, respectively.

次に、噴霧分岐のモデル同定について項分け説明する。
〈1〉噴霧分岐のモデル同定(噴霧分岐全体プロセス)
図6−2は噴霧の各分岐分(X0、X1、X2、X3、X4)の推定(同定)に用いる噴霧分岐全体のプロセスをモデルで示したもので、噴射時からの燃料噴霧の分岐を図示のように時系列的に6つに分解している。
Next, a description will be given for the model identification of spray branching.
<1> Spray branch model identification (spray branch overall process)
Fig. 6-2 shows the process of the entire spray branch used for estimation (identification) of each spray branch (X0, X1, X2, X3, X4) as a model. As shown in the figure, it is decomposed into six in time series.

1)噴射時気化:
噴射時噴霧は粒径の異なる燃料噴霧の集まりである。従って、横軸に粒径D[μm]を、縦軸に噴霧の質量割合[%]を採れば、図6−2上段左端に示したように粒径Dに対して山形の分布(XA)を有し(太実線参照)、その山形の曲線で囲まれる面積が、噴射時の総噴霧の総和である100%になる。山形の分布を有する燃料噴霧のうちから一部が噴射時に気化し、残りは噴霧のまま滞留する。粒径の小さい噴霧ほど気化しやすいので、気化せずに残る噴霧の分布(細実線参照)は噴射時噴霧の分布(XA)より粒径の小さい側が小さなものとなる。これら2つの分布の間の面積分が噴射時に気化する噴霧分X0'[%]であり、100−X0'が気化せずに噴霧のまま滞留する噴霧分XB[%]である。
1) Vaporization during injection:
An injection spray is a collection of fuel sprays having different particle sizes. Therefore, if the particle diameter D [μm] is taken on the horizontal axis and the mass ratio [%] of the spray is taken on the vertical axis, as shown in the upper left corner of FIG. (See thick solid line), the area surrounded by the chevron curve is 100%, which is the total sum of the total spray during injection. A part of the fuel spray having a mountain-shaped distribution is vaporized at the time of injection, and the rest stays in the spray. Since the spray with a smaller particle size is more easily vaporized, the distribution of the spray that remains without being vaporized (see the thin solid line) is smaller on the smaller particle size side than the spray distribution during spraying (XA). The area between these two distributions is the spray X0 ′ [%] that is vaporized at the time of injection, and 100−X0 ′ is the spray XB [%] that remains without being vaporized.

2)噴射噴霧の燃焼室への直接噴き入り:
図6−2上段左より2番目の特性において、大きな山(太実線参照)は気化せずに吸気ポート4に残留する噴霧の分布であり、このうち燃焼室5へと直接噴き入れられる噴霧の分布を小さな山(細実線参照)で重ねて描いている。この小さな山の面積が燃焼室5へと直接噴き入れられる噴霧分XD[%]であり、XB−XDつまり大きな山と小さな山の間の面積分が吸気系に残留する噴霧分XC[%]である。
2) Injection spray directly into the combustion chamber:
In the second characteristic from the upper left of FIG. 6-2, a large mountain (see thick solid line) is a distribution of the spray that remains in the intake port 4 without being vaporized, and of this, the spray directly injected into the combustion chamber 5 The distribution is drawn over small mountains (see thin solid lines). This small mountain area is the spray fraction XD [%] that is directly injected into the combustion chamber 5, and XB-XD, that is, the spray fraction XC [%] where the area between the large mountain and the small mountain remains in the intake system. It is.

3)吸気系噴霧付着浮遊:
燃焼室5へと直接噴き入れられず吸気ポート(吸気系)に残留する噴霧のうち一部は噴霧のまま浮遊し(気化する分を含む)、残りは吸気系の壁面(ポート壁4aと吸気弁壁15a)とに付着する。粒径の小さい噴霧ほど噴霧のまま浮遊しやすいので、図6−2上段右から2番目の特性において吸気系の壁面に付着する噴霧の分布(細実線参照)は吸気系に残留する噴霧の分布(太実線参照)より粒径の小さい側が小さなものとなる。これら2つの分布の間の面積分が吸気系に噴霧のまま浮遊する分(吸気系での気中浮遊割合)X0''[%]であり、上記吸気系に残留する噴霧分XBからこの浮遊分X0''を差し引いた値が吸気系付着分XE(吸気系付着割合)[%]となる。
3) Inhalation system spray adhesion floating:
Part of the spray that is not directly injected into the combustion chamber 5 and remains in the intake port (intake system) floats as it is (including vaporization), and the rest is the wall surface of the intake system (port wall 4a and intake air). It adheres to the valve wall 15a). The smaller the particle size, the more likely it is to float as it is sprayed. Therefore, the distribution of the spray adhering to the wall surface of the intake system (see the thin solid line) in the second characteristic from the upper right of Fig. 6-2 is the distribution of the spray remaining in the intake system. The side with a smaller particle diameter is smaller than that (see thick solid line). The area between these two distributions is the amount that floats in the inhalation system as a spray (the air floating rate in the inhalation system) X0 '' [%], and this floating from the spray portion XB that remains in the inhalation system The value obtained by subtracting the minute X0 ″ is the intake system attachment XE (intake system attachment ratio) [%].

4)燃焼室噴霧付着浮遊:
燃焼室5へと直接噴き入れられる噴霧のうち一部は噴霧のまま燃焼室5内を浮遊し(気化する分を含む)、残りは燃焼室壁及びシリンダ面壁52に付着する。粒径の小さい噴霧ほど噴霧のまま浮遊しやすいので、図6−2下段右から2番目の特性において燃焼室壁及びシリンダ面壁52に付着する噴霧の分布(細実線参照)は燃焼室5へと直接噴き入れられる噴霧の分布(太実線参照)より粒径の小さい側が小さなものとなる。これら2つの分布の間の面積分が燃焼室5内で噴霧のまま浮遊する分(燃焼室5での気中浮遊割合)X0'''[%]であり、上記燃焼室5へと直接噴き入れられる噴霧分XDからこの浮遊分X0'''を差し引いた値が燃焼室壁付着分(燃焼室付着割合)XF[%]である。
4) Combustion chamber spray adhesion floating:
A part of the spray directly injected into the combustion chamber 5 floats in the combustion chamber 5 as a spray (including the portion to be vaporized), and the rest adheres to the combustion chamber wall and the cylinder surface wall 52. As the spray having a smaller particle size is more likely to float as it is, the distribution of the spray adhering to the combustion chamber wall and the cylinder surface wall 52 (see the thin solid line) in the second characteristic from the lower right of FIG. The side with a smaller particle size is smaller than the distribution of spray sprayed directly (see thick solid line). The area between these two distributions is the amount that floats in the combustion chamber 5 while being sprayed (the air floating ratio in the combustion chamber 5) X0 '''[%], and is directly injected into the combustion chamber 5 The value obtained by subtracting the floating portion X0 ′ ″ from the sprayed portion XD is the combustion chamber wall deposit (combustion chamber deposit ratio) XF [%].

5)吸気系噴霧付着場所:
図6−2上段右端の特性において、大きな山(太実線参照)は上記の吸気系付着分のXEの分布、小さな山(細実線参照)は吸気弁壁15aに付着する噴霧分の分布である。この小さな山の面積が吸気弁壁15aに付着する噴霧分X1[%]であり、上記吸気系付着分XEからこの吸気弁壁付着分X1を差し引いた値がポート壁付着分X2[%]である。
5) Intake system spray attachment location:
In the upper right characteristic of FIG. 6-2, the large mountain (see thick solid line) is the distribution of XE adhering to the intake system, and the small mountain (see thin solid line) is the distribution of spray adhering to the intake valve wall 15a. . The area of this small mountain is the spray X1 [%] adhering to the intake valve wall 15a, and the value obtained by subtracting this intake valve wall X1 from the intake system adhering XE is the port wall adhering X2 [%]. is there.

6)燃焼室噴霧付着場所:
図6−2下段右端の特性において、大きな山(太実線参照)は上記の燃焼室付着分XFの分布、小さな山(細実線参照)は燃焼室壁に付着する噴霧の分布である。この小さな山の面積が燃焼室壁付着分X3[%]であり、上記燃焼室付着分XFからこの燃焼室壁付着分X3を差し引いた値がシリンダ面壁付着分X4[%]である。
6) Combustion chamber spray deposit location:
In the characteristic at the lower right end of FIG. 6B, the large mountain (see thick solid line) is the distribution of the above-mentioned combustion chamber adhering portion XF, and the small mountain (see thin solid line) is the distribution of the spray adhering to the combustion chamber wall. The area of this small mountain is the combustion chamber wall deposit X3 [%], and the value obtained by subtracting this combustion chamber wall deposit X3 from the combustion chamber deposit XF is the cylinder surface wall deposit X4 [%].

このように、吸気系残留分XB、XC、直接噴き入れられる噴霧分XD、吸気系付着分XE、燃焼室壁付着分XF、噴射時気化分X0'、浮遊分X0''、X0'''は同じ単位[%]であるが、XAだけはこれらと相違して分布そのものを表している。   In this way, intake system residuals XB, XC, directly injected spray XD, intake system adhering XE, combustion chamber wall adhering XF, injection vaporization X0 ', floating X0' ', X0' '' Is the same unit [%], but only XA represents the distribution itself.

以下、上記の噴射時噴霧の粒径分布XA、各分岐分XB、XC、XD、XF、X0'、X0''、X0'''の算出方法を個別に詳述する。
〈2−1〉噴霧分岐のモデル同定(気化)
1)XA;噴射時噴霧の粒径分布:
噴射時噴霧の質量割合についての粒径分布XAは噴射弁21の噴霧計測結果を用いる。
Hereinafter, the calculation method of the particle size distribution XA of the spray during spraying and the branched portions XB, XC, XD, XF, X0 ′, X0 ″, and X0 ′ ″ will be described in detail.
<2-1> Model identification of spray branching (vaporization)
1) XA: Particle size distribution of spray during spraying:
As the particle size distribution XA for the mass ratio of the spray during injection, the spray measurement result of the injection valve 21 is used.

噴霧の粒径区分は、等間隔(例えば10μm毎)としてもよいし(図6−3の(a)参照)、2n毎に区分してもよい(図6−3の(b)参照)。粒径区分の数は多いほど精度がよくなるが、その反面でメモリ容量や演算時間が大きくなるので、CPUの能力に合わせて設計すればよい。 The particle size classification of the spray may be equally spaced (for example, every 10 μm) (see (a) of FIG. 6-3) or may be divided every 2 n (see (b) of FIG. 6-3). . The greater the number of particle size categories, the better the accuracy. However, on the other hand, the memory capacity and calculation time increase, so it may be designed according to the CPU capacity.

簡単には粒径区分を一つだけとしてもかまわない。これは、噴射時の総噴霧の平均の粒径を用いることを意味する。この場合、噴霧の蒸発割合や滞留割合を近似的に粒径から求めることとなり、粒径が似通った場合は実験値で蒸発、滞留特性を近似できる。ただし、噴霧の粒径分布が大きく変わる噴射法、噴射弁では合わないこととなるので、このときには噴霧の粒径分布を用いればよい。   For simplicity, only one particle size classification may be used. This means that the average particle size of the total spray during injection is used. In this case, the evaporation rate and the retention rate of the spray are approximately determined from the particle diameter, and when the particle diameters are similar, the evaporation and retention characteristics can be approximated by experimental values. However, since the spraying method and the injection valve in which the spray particle size distribution changes greatly do not match, the spray particle size distribution may be used at this time.

2)X0';噴射時気化分:
噴射時噴霧の気化については図6−4のように噴霧の質量をm、表面積をA、直径をD、噴霧の気化量をΔm、また、吸気ポート4の流速をV、吸気ポート4の温度をT、吸気ポート4の圧力(この圧力は大気圧より低くなり、大気圧を基準とすれば負圧となる。)をPとすると、気化率X0'と気化量Δmとは次式で表される。
X0'=Δm/m … (a1)
Δm=f(V,T,P)*A*t … (a2)
ここで、(a1)式のf(V,T,P)は単位表面積、単位時間当たりの蒸発量(この値を以下「気化特性」という。)で、気化特性f(V,T,P)は流速V、温度T、圧力Pの関数であることを表している。(a2)式のtは単位時間である。
2) X0 ': Evaporation during injection:
As for the vaporization of the spray during injection, as shown in FIG. 6-4, the mass of the spray is m, the surface area is A, the diameter is D, the amount of vaporization of the spray is Δm, the flow velocity of the intake port 4 is V, and the temperature of the intake port 4 Is T, and the pressure of the intake port 4 (this pressure is lower than the atmospheric pressure and becomes negative if the atmospheric pressure is used as a reference) is P, the vaporization rate X0 ′ and the vaporization amount Δm are expressed by the following equations. Is done.
X0 '= Δm / m… (a1)
Δm = f (V, T, P) * A * t… (a2)
Here, f (V, T, P) in the equation (a1) is a unit surface area and an evaporation amount per unit time (this value is hereinafter referred to as “vaporization characteristic”), and the vaporization characteristic f (V, T, P). Represents a function of flow velocity V, temperature T, and pressure P. In the formula (a2), t is a unit time.

この場合、A=D2*K1#、m=D3*K2#(K1#、K2#は定数)であるから、これらを(a1),(a2)式に代入し、さらにΔmを消去すると、次式が得られる。
X0'=ΣXAk*f(V,T,P)*A*t*KA#/Dk … (a3)
ここで、XAk はk番目の区分の粒径に対する質量割合、Dkはk番目の区分の粒径で、Σは粒径の全区分(kについて1から最大区分数まで)にわたって総和することを表している。KA#はガス流速Vの表面積での有効利用率(1より小さい定数)である。
In this case, since A = D2 * K1 # and m = D3 * K2 # (K1 # and K2 # are constants), substituting these into the equations (a1) and (a2) and deleting Δm The formula is obtained.
X0 '= ΣXAk * f (V, T, P) * A * t * KA # / Dk… (a3)
Where XAk is the mass ratio to the particle size of the kth segment, Dk is the particle size of the kth segment, and Σ represents the summation over all particle size categories (from 1 to the maximum number of categories for k) ing. KA # is the effective utilization rate (constant smaller than 1) at the surface area of the gas flow velocity V.

上記の気化特性f(V,T,P)は温度Tと流速Vとから図6−5を内容とする特性のマップを検索して求める。図6−5に示したように気化特性f(V,T,P)は温度Tが高くなるほど、また流速Vが大きくなるほど大きくなる。図6−5では横軸の温度を-40℃から300℃まで広く採っているが、実際には「温度範囲」と記した領域で噴霧の気化、蒸発が行われる。   The vaporization characteristic f (V, T, P) is obtained by searching a characteristic map having the contents shown in FIG. 6-5 from the temperature T and the flow velocity V. As shown in FIG. 6-5, the vaporization characteristic f (V, T, P) increases as the temperature T increases and the flow velocity V increases. In FIG. 6-5, the temperature on the horizontal axis is widely set from −40 ° C. to 300 ° C., but in reality, the vaporization and evaporation of the spray are performed in the region indicated as “temperature range”.

横軸の第2項の(Pa-P)/Pa・#KPTは、圧力Pによる温度補正分である。これは、圧力Pによる揮発性差、つまり低負荷時のように圧力Pが大気圧Paより低いときのほうが高負荷時のように圧力Pが低負荷時より高いときより蒸発量が多くなることを考慮したものである。   The second term (Pa-P) / Pa · # KPT on the horizontal axis is the temperature correction due to the pressure P. This is because the volatility difference due to pressure P, that is, when the pressure P is lower than the atmospheric pressure Pa as at low load, the amount of evaporation is larger than when the pressure P is higher than at low load as at high load. It is taken into consideration.

ところで、気化特性f(V,T,P)のパラメータのうち流速Vには、噴霧の貫通力による相対流速分と吸気の燃焼室吸入による流速分とがあるので、噴射時気化分X0'を噴霧貫通分と吸気気流分の合計として、つまり上記(a3)式に代えて次式により求める。
X0'=ΣXAk*f(V1,T,P)*A*t1*KA#/Dk+ΣXAk*f(V2,T,P)*A*t2*KA#/Dk … (a4)
V1:噴霧貫通力による噴霧の速度、
t1:噴霧の貫通に要する時間、
V2:吸気気流の速度、
t2:吸気気流に噴霧が暴露されている時間、
ここで、噴霧貫通力による噴霧の速度V1と噴霧の貫通に要する時間t1とは、噴射弁21に作用する燃圧Pfが決まれば一定値である。これらV1、t1の値は噴射弁21の仕様が決まれば定まる。燃圧Pfを可変に制御するエンジンでは、燃圧PfによりV1、t1が変化するので、燃圧Pfの関数として設定する。
By the way, among the parameters of the vaporization characteristics f (V, T, P), the flow velocity V includes a relative flow velocity due to the penetration force of the spray and a flow velocity due to the intake of the combustion chamber. The sum of the spray penetration and the intake airflow is obtained by the following equation instead of the above equation (a3).
X0 '= ΣXAk * f (V1, T, P) * A * t1 * KA # / Dk + ΣXAk * f (V2, T, P) * A * t2 * KA # / Dk… (a4)
V1: Spraying speed by spray penetration force,
t1: Time required for spray penetration,
V2: speed of intake airflow,
t2: The time that the spray is exposed to the intake airflow,
Here, the spray velocity V1 due to the spray penetration force and the time t1 required for the spray penetration are constant values if the fuel pressure Pf acting on the injection valve 21 is determined. The values of V1 and t1 are determined when the specifications of the injection valve 21 are determined. In an engine in which the fuel pressure Pf is variably controlled, V1 and t1 vary depending on the fuel pressure Pf, and therefore are set as a function of the fuel pressure Pf.

燃焼室5への空気の吸入は間欠的なので、吸気気流の速度(吸気ポート4の流速)V2はエンジン回転速度Neに比例する、つまりV2は次式により計算できる。
V2=Ne*#KV … (a5)
#KV:流速指数、
(a5)式の流速指数#KVは流路面積(吸気ポート4の流路面積)を気筒容積で割った値により定まる値である。この指数には単位合わせの分も含める。ここで、流路面積、気筒容積は図面より求めることができる。
Since the intake of air into the combustion chamber 5 is intermittent, the speed of the intake airflow (flow velocity of the intake port 4) V2 is proportional to the engine speed Ne, that is, V2 can be calculated by the following equation.
V2 = Ne * # KV… (a5)
#KV: Flow velocity index,
The flow velocity index #KV in the equation (a5) is a value determined by a value obtained by dividing the flow path area (flow path area of the intake port 4) by the cylinder volume. This index also includes unit alignment. Here, the flow path area and the cylinder volume can be obtained from the drawings.

噴霧の流速への曝され度合いを表す吸気気流の暴露時間t2は噴射タイミングI/Tとエンジン回転速度Neの影響を受けるので、噴射タイミングI/Tと回転速度Neから図6−6を内容とするマップを検索することにより求める。   Since the exposure time t2 of the intake airflow that represents the degree of exposure to the flow rate of the spray is affected by the injection timing I / T and the engine rotational speed Ne, FIG. Find by searching the map to be.

気化特性f(V,T,P)のパラメータのうち温度Tには吸気温度を用いる。ただし、残留ガス(外部EGRガスや内部EGRガス)を考慮するときにはこの残留ガスと混合したガス温度を用いる。このガス温度は吸気温度や水温から推定する。簡単には吸気温度と水温の単純平均値や加重平均値をガス温度の推定値とすればよい。吸気温度と水温はそれぞれのセンサ値を検出する。気化熱は無視し適合化で対応する。気化特性f(V,T,P)のパラメータのうち圧力Pには吸気圧力を用いる。吸気圧力は吸気コレクタ2に設けた圧力センサ45により検出する。   Of the parameters of the vaporization characteristics f (V, T, P), the intake air temperature is used as the temperature T. However, when considering the residual gas (external EGR gas or internal EGR gas), the gas temperature mixed with the residual gas is used. This gas temperature is estimated from the intake air temperature and the water temperature. Simply, a simple average value or a weighted average value of the intake air temperature and the water temperature may be used as the estimated value of the gas temperature. The intake air temperature and the water temperature detect the respective sensor values. Ignore the heat of vaporization and respond with adaptation. Of the parameters of the vaporization characteristic f (V, T, P), the intake pressure is used as the pressure P. The intake pressure is detected by a pressure sensor 45 provided in the intake collector 2.

3)XB;吸気ポートに残留する噴霧分:
このようにして噴射時気化分X0'が求まると、噴霧のまま吸気ポート4に残留する噴霧分XBは次式で与えられる。
XB=XA−X0' … (a6)
〈2−2〉噴霧分岐のモデル同定(直接噴き入り)
1)XD;燃焼室5へと直接噴き入れられる噴霧分:
噴射弁21からの噴霧は、排気行程中の噴射であれば吸気弁15が全閉しているので、吸気弁15、吸気ポート4にしか直撃しないのであるが、吸気弁傘裏部を狙って吸気行程で噴射するときには、図6−7のようにその一部が吸気弁15または吸気ポートに衝突することなく吸気弁15と弁シートの隙間を抜けて燃焼室5へと直接噴き入れられる。この直接噴き入り率をKXDとし、燃焼室5へと直接噴き入れられる噴霧分XDを次式により算出する。
XD=XB*KXD … (a7)
直接噴き入り率KXDは噴射タイミングのほか、噴射方向(噴射弁21の向きと吸気弁15の向き)の影響も受ける。そこで、噴射タイミングI/Tと噴射弁21の軸と吸気弁15の軸との挟み角βとから図6−8を内容とするマップを検索することにより直接噴き入り率KXDを求める。挟み角βは図面から求める。図6−8の特性は適合により求める。
3) XB: Spray remaining in the intake port:
When the vaporization amount X0 ′ during injection is obtained in this way, the spray amount XB remaining in the intake port 4 while being sprayed is given by the following equation.
XB = XA−X0 '(a6)
<2-2> Model identification of spray branching (direct injection)
1) XD: Spray amount directly injected into the combustion chamber 5:
If the spray from the injection valve 21 is an injection during the exhaust stroke, the intake valve 15 is fully closed, so it only hits the intake valve 15 and the intake port 4, but it aims at the back of the intake valve umbrella. When injecting in the intake stroke, a part thereof is directly injected into the combustion chamber 5 through the gap between the intake valve 15 and the valve seat without colliding with the intake valve 15 or the intake port as shown in FIG. This direct injection rate is defined as KXD, and the spray fraction XD that is directly injected into the combustion chamber 5 is calculated by the following equation.
XD = XB * KXD… (a7)
In addition to the injection timing, the direct injection rate KXD is also affected by the injection direction (the direction of the injection valve 21 and the direction of the intake valve 15). Therefore, the direct injection rate KXD is obtained by searching a map having the contents shown in FIGS. 6-8 from the injection timing I / T and the sandwich angle β between the axis of the injection valve 21 and the axis of the intake valve 15. The sandwiching angle β is obtained from the drawing. The characteristics shown in FIGS. 6-8 are obtained by matching.

また、可変動弁機構を備えるエンジンでは吸気弁の弁リフト、プロフィールも直接噴き入り率KXDに影響するので、当該エンジンでは次式により直接噴き入り率KXDを算出する。
KXD=KXD0*H/H0 … (a8)
H :吸気弁の最大リフト、
H0:基準最大リフト、
(a8)式のH0は可変動弁機構を働かせないときの吸気弁の最大リフトである。可変動弁機構を働かせるときには、通常、吸気弁の最大リフトHがH0より小さくなるので、その分直接噴き入り率が減る。そこで(a8)式によりその分の減量補正を行わせるものである。
Further, in an engine having a variable valve mechanism, the valve lift and profile of the intake valve also directly affect the injection rate KXD. Therefore, in the engine, the direct injection rate KXD is calculated by the following equation.
KXD = KXD0 * H / H0… (a8)
H: Maximum intake valve lift,
H0: Standard maximum lift,
H0 in the equation (a8) is the maximum lift of the intake valve when the variable valve mechanism is not operated. When the variable valve mechanism is operated, the maximum lift H of the intake valve is usually smaller than H0, so the direct injection rate is reduced accordingly. Therefore, the amount of decrease correction is performed by equation (a8).

2)XC;吸気系残留噴霧分:
このようにして直接噴き入れられる噴霧分XDが求まると、吸気系に残留する噴霧分XCは次式で与えられる。
XC=XB-XD … (a9)
〈2−3〉噴霧分岐のモデル同定(浮遊)
1)X0'';吸気系での浮遊分:
吸気ポート4に噴霧がくまなく分布し、図6−9のように各噴霧は重力加速度により空気に抗して落下するものと仮定する。こうした自然落下モデルでは、落下してポート壁4aに到達しない噴霧は浮遊し、ポート壁4aに到達した噴霧はポート壁4aに付着するとみなす。
2) XC: Inhalation system residual spray:
When the spray amount XD directly injected is thus obtained, the spray amount XC remaining in the intake system is given by the following equation.
XC = XB-XD (a9)
<2-3> Model identification of spray branch (floating)
1) X0 ″; Float in the intake system:
It is assumed that the spray is distributed throughout the intake port 4 and that each spray falls against the air by gravity acceleration as shown in FIGS. 6-9. In such a natural fall model, the spray that falls and does not reach the port wall 4a floats, and the spray that reaches the port wall 4a is considered to adhere to the port wall 4a.

ただし、自然落下では噴霧の落下速度は、速度あるいは速度の2乗の比例した空気抵抗がある場合を含めて粒径D(∝質量)に関係しないのであるが、本実施形態では噴霧の落下速度Vは粒径Dの関数であり、図6−10のように粒径Dが大きいほど大きくなるものとみなしている。   However, in the case of natural fall, the drop speed of the spray is not related to the particle diameter D (∝ mass), including the case where there is an air resistance proportional to the speed or the square of the speed. V is a function of the particle size D, and is assumed to increase as the particle size D increases as shown in FIG. 6-10.

噴霧の落下距離Lは、この落下速度Vに噴霧の浮遊時間(あるいは到達制限時間)tを掛けた値である。図6−10に壁面までの最大距離#L(ポート高さ#LP)を採ると、噴霧の落下距離Lがこの最大距離#L以上となる噴霧は全てポート壁4aに付着するので、粒径毎の浮遊分の特性は図6−10のように右下がりの特性となり、粒径毎の浮遊分が0以上の面積分を粒径について総和した値が吸気系での浮遊分X0''になる。これは次式により求めることができる。
X0''=Σ(1-Lk/#LP) … (a10)
ここで、Lkは粒径区分kにおける噴霧の到達距離である。このLkは、
Lk=Vk*tp … (a11)
の式により表されるので(Vkは粒径区分kにおける噴霧の落下速度、tpは浮遊時間(あるいは到達制限時間)としての噴射タイミングI/Tより圧縮行程開始までの時間)、これを(a10)式に代入すると、次式が得られる。
X0''=Σ(1-Vk*tp/#LP) … (a12)
この結果、粒径Dをパラメータとする小区分毎の噴霧の落下速度Vのテーブル(図6−10参照)を作成しておき、粒径区分kが1よりD0となるまで、(a12)式により総和すれば吸気系での浮遊分X0''を求めることができる。D0は図6−10において粒径毎の浮遊分が0となるときの粒径である。tpはエンジンコントローラ31内蔵のタイマにより計測させればよい。#LPは一定値であり、図面より求まる。
The spray drop distance L is a value obtained by multiplying the drop velocity V by the spray floating time (or arrival limit time) t. When the maximum distance #L (port height #LP) to the wall surface is taken in FIG. 6-10, all the sprays whose spray drop distance L is greater than this maximum distance #L adhere to the port wall 4a. As shown in Fig. 6-10, the characteristics of each floating part are downward-sloping, and the sum of the particle diameters of the area where the floating part for each particle size is 0 or more is the floating part X0 "in the intake system. Become. This can be obtained by the following equation.
X0 '' = Σ (1-Lk / # LP)… (a10)
Here, Lk is the spray reach distance in the particle size category k. This Lk is
Lk = Vk * tp… (a11)
(Vk is the spray drop velocity in the particle size category k, tp is the time from the injection timing I / T as the floating time (or the arrival limit time) to the start of the compression stroke), and this is expressed as (a10 Substituting into the formula gives the following formula:
X0 '' = Σ (1-Vk * tp / # LP)… (a12)
As a result, a table (see FIG. 6-10) of the spray drop speed V for each of the small sections using the particle diameter D as a parameter is prepared, and the expression (a12) is applied until the particle diameter section k becomes 1 from D0. By summing up, the floating part X0 '' in the intake system can be obtained. D0 is the particle size when the floating portion for each particle size becomes 0 in FIG. The tp may be measured by a timer built in the engine controller 31. #LP is a constant value and is obtained from the drawing.

2)X0''';燃焼室での浮遊分:
考え方は吸気系での浮遊分X0''と同様である。すなわち、燃焼室5内に噴霧がくまなく分布し、図6−9のように各噴霧は重力加速度により空気に抗して落下するものと仮定する。こうした自然落下モデルでは、落下してピストン冠面6aに到達しない噴霧は浮遊し、ピストン冠面6aに到達した噴霧は燃焼室(燃料室壁やシリンダ面壁52)に付着するとみなす。
2) X0 ''': Floating matter in the combustion chamber:
The idea is the same as the floating part X0 '' in the intake system. That is, it is assumed that sprays are distributed throughout the combustion chamber 5 and that each spray falls against the air by gravity acceleration as shown in FIGS. 6-9. In such a natural fall model, the spray that falls and does not reach the piston crown surface 6a floats, and the spray that reaches the piston crown surface 6a is considered to adhere to the combustion chamber (fuel chamber wall or cylinder surface wall 52).

また、噴霧の落下速度Vは粒径Dの関数であり、図6−10のように粒径Dが大きいほど大きくなるものとみなす。   The spray drop speed V is a function of the particle size D, and is assumed to increase as the particle size D increases as shown in FIG. 6-10.

噴霧の落下距離Lは、この落下速度Vに噴霧の浮遊時間(あるいは到達制限時間)tを掛けた値である。図6−10に壁面までの最大距離#Lである燃焼室高さ#LC(例えばピストン中央点で代表させる)を採ると、噴霧の落下距離Lがこの燃焼室高さ#LC以上となる燃料噴霧は全て燃焼室に付着するので、粒径毎の浮遊分の特性は図6−10のように右下がりの特性となり、粒径毎の浮遊分が0以上の面積分を粒径について総和した値が燃焼室での浮遊分X0'''になる。これは次式により求めることができる。
X0'''=Σ(1-Lk/#LC) … (a13)
ここで、Lkは粒径区分kにおける噴霧の到達距離であり、このLkは、
Lk=Vk*tc … (a14)
の式により表されるので(Vkは粒径区分kにおける噴霧の落下速度、tcは浮遊時間(あるいは到達制限時間)としての噴射タイミングI/T(または吸気行程開始)より圧縮行程終了(または燃焼開始)までの時間)、これを(a13)式に代入すると、次式が得られる。
X0'''=Σ(1-Vk*tc/#LC) … (a15)
この結果、粒径Dをパラメータとする小区分毎の噴霧の落下速度Vのテーブル(図6−10参照)を作成しておき、粒径区分が1よりD0となるまで、(a15)式により総和すれば燃焼室での浮遊分X0'''を求めることができる。D0は図6−10において粒径毎の浮遊分が0となるときの粒径である。tcはエンジンコントローラ31内蔵のタイマにより計測させればよい。#LCは一定値であり、図面より求まる。
The spray drop distance L is a value obtained by multiplying the drop velocity V by the spray floating time (or arrival limit time) t. If the combustion chamber height #LC (for example, represented by the piston center point), which is the maximum distance #L to the wall surface, is taken in FIG. 6-10, the fuel whose spray fall distance L is equal to or greater than the combustion chamber height #LC Since all of the spray adheres to the combustion chamber, the characteristics of the floating part for each particle size become a downward-sloping characteristic as shown in FIG. 6-10. The value becomes the float X0 '''in the combustion chamber. This can be obtained by the following equation.
X0 '''= Σ (1-Lk / # LC)… (a13)
Here, Lk is the spray reach distance in the particle size category k, and this Lk is
Lk = Vk * tc… (a14)
(Vk is the spray drop velocity in the particle size category k, tc is the end of the compression stroke (or combustion) from the injection timing I / T (or the start of the intake stroke) as the floating time (or arrival limit time) Substituting this into the equation (a13) gives the following equation:
X0 '''= Σ (1-Vk * tc / # LC)… (a15)
As a result, a table (see FIG. 6-10) of the spray drop speed V for each of the small sections with the particle diameter D as a parameter is prepared. Until the particle diameter section becomes D0 from 1, the equation (a15) is used. Summing up, it is possible to obtain the float X0 '''in the combustion chamber. D0 is the particle size when the floating portion for each particle size becomes 0 in FIG. tc may be measured by a timer built in the engine controller 31. #LC is a constant value and is obtained from the drawing.

3)XE、XF;吸気系、燃焼室に付着する分:
このようにして吸気系での浮遊分X0''、燃焼室での浮遊分X0'''が求まると、吸気系付着分XE、燃焼室付着分XFは次式で与えられる。
XE=XC-X0'' … (a16)
XF=XD-X0''' … (a17)
可変動弁機構を備えるエンジンでは、直接噴き入れられる噴霧の2次微粒化が促進されるため、直接噴き入れられる噴霧分XDと燃焼室での浮遊分X0'''の補正を行う。ここで、2次微粒化とは、吸気弁作動角可変機構が働くとき、吸気弁の最大リフトが小さくなって吸気弁と弁シートの隙間を流れる気流が、吸気弁作動角可変機構が働かないときより高速となり、そのぶん直接噴き入れられる噴霧の微粒化が促進されることをいう。
3) XE, XF: The amount adhering to the intake system and combustion chamber:
When the floating part X0 ″ in the intake system and the floating part X0 ′ ″ in the combustion chamber are obtained in this way, the intake system adhering part XE and the combustion chamber adhering part XF are given by the following equations.
XE = XC-X0 ''… (a16)
XF = XD-X0 '''… (a17)
In an engine equipped with a variable valve mechanism, secondary atomization of the spray directly injected is promoted, so that the spray XD directly injected and the floating X0 ′ ″ in the combustion chamber are corrected. Here, secondary atomization means that when the intake valve operating angle variable mechanism works, the maximum lift of the intake valve becomes small and the airflow flowing through the gap between the intake valve and the valve seat does not work for the intake valve operating angle variable mechanism. It is faster than that, and it means that atomization of the spray that is directly injected is promoted.

この2次微粒化によって粒径毎の浮遊分及び粒径毎の燃焼室での付着分の各分布が、図6−2下段の右から2番目の特性に示したように実線から破線の特性へと移行する。この破線特性の各分布とするには、直接噴き入れられる噴霧分XD及び燃焼室での浮遊分X0'''の各分布を粒径が小さくなる方向に2格子ずつずらすなどして補正し、この新たな補正後の各分布を用いて前述のようにして直接噴き入れられる噴霧分XD、燃焼室内での浮遊分X0'''を求め、これら求めたXD、X0'''を上記(32)式に用いる。
〈2−4〉噴霧分岐のモデル同定(付着部位)
1)X1、X2;吸気弁壁付着分、ポート壁付着分:
吸気系付着分XEの分布は図6−11において下側の太実線であり、このうち吸気弁壁付着分X1の分布は図19において下側の破線のようになり、2つの分布の間がポート壁付着分X2の分布である。従って、吸気系付着分XEを、吸気弁直撃率#DVRに応じて次式のように吸気弁壁付着分X1と、ポート壁付着分X2とに割り振る。
X1=XE*KX1 … (a18)
X2=XE-X1 … (a19)
ただし、KX1:吸気弁直撃率係数、
ここで、吸気弁直撃率係数KX1は吸気弁直撃率#DVRと圧力Pとから図6−12を内容とするマップを検索することにより求める。図6−12に示したように吸気弁直撃率係数KX1は吸気弁直撃率#DVRが大きくなるほど大きくなる。また、吸気弁直撃率#DVRが同じでも圧力Pが小さくなる低負荷時のほうが吸気弁直撃率係数KX1の値が小さくなる。図6−12において「負圧無」とは圧力Pが大気圧に近づく高負荷時のこと、「高負圧」とは圧力Pが大気圧より離れて小さくなる低負荷時のことである。吸気弁直撃率#DVRは、噴射弁21からの噴霧が吸気弁15に衝突する割合のことで、吸気ポート4と噴射弁噴霧の図面から算出できる。
As shown in the second characteristic from the right in the lower part of Fig. 6-2, the distribution of the floating part for each particle size and the deposit in the combustion chamber for each particle size by the secondary atomization are the characteristics from the solid line to the broken line. Migrate to In order to obtain each distribution of the broken line characteristic, each distribution of the spray component XD directly injected and the floating component X0 '''in the combustion chamber is corrected by shifting by two grids in the direction of decreasing the particle size. Using these new corrected distributions, the spray fraction XD directly injected as described above and the floating fraction X0 ′ ″ in the combustion chamber are obtained, and the obtained XD and X0 ′ ″ are calculated as (32 ) Used in the formula.
<2-4> Model identification of spray branch (attachment site)
1) X1, X2: Intake valve wall deposit, port wall deposit:
The distribution of the intake system adhering component XE is a lower solid line in FIG. 6-11, and the distribution of the intake valve wall adhering component X1 is as shown by the lower broken line in FIG. This is the distribution of port wall adhesion X2. Therefore, the intake system adhesion part XE is allocated to the intake valve wall adhesion part X1 and the port wall adhesion part X2 according to the intake valve direct hit rate #DVR as in the following equation.
X1 = XE * KX1… (a18)
X2 = XE-X1… (a19)
However, KX1: intake valve direct hit rate coefficient,
Here, the intake valve direct hit rate coefficient KX1 is obtained by searching a map having the contents shown in FIG. 6-12 from the intake valve direct hit rate #DVR and the pressure P. As shown in FIG. 6-12, the intake valve direct hit rate coefficient KX1 increases as the intake valve direct hit rate #DVR increases. Further, even when the intake valve direct hit rate #DVR is the same, the value of the intake valve direct hit rate coefficient KX1 is smaller at the time of low load where the pressure P is small. In FIG. 6-12, “no negative pressure” means a high load when the pressure P approaches atmospheric pressure, and “high negative pressure” means a low load when the pressure P becomes smaller than the atmospheric pressure. The intake valve direct hit rate #DVR is a rate at which the spray from the injection valve 21 collides with the intake valve 15 and can be calculated from the drawings of the intake port 4 and the injection valve spray.

2)X3、X4;燃焼室壁付着分、シリンダ面壁付着分:
燃焼室壁、シリンダ面壁52に付着する噴霧の分布を図6−11に重ねて示す。燃焼室付着分XFを、割り振り率KX4で次式のように燃焼室壁付着分X3と、シリンダ面壁付着分X4とに割り振る。
X4=XF*KX4 … (a20)
X3=XF-X4 … (a21)
ここで、噴霧流入のレイアウトによりシリンダ付着指標を定め、このシリンダ付着指標から図6−13を内容とするテーブルを検索して割り振り率KX4を求める。ここで、シリンダ指標は噴射弁21からの噴霧が吸気弁15と弁シートの隙間を抜けて燃焼室5内に入って各部壁に付着する燃料のうち、シリンダ壁に向かう割合を表すもので、例えば噴霧形状を円錐として吸気弁15と弁シートの隙間を抜ける割合をB、Bのうちシリンダ壁に向かう割合をAとすれば、A/Bをシリンダ指標として用いればよい。図6−13のように、割り振り率KX4はシリンダ付着指標が大きくなるほど大きくなる値である。シリンダ付着指標は流れのシミュレーションモデルや、単体試験での部位別壁流回収実験等の結果から設定することができる。
2) X3, X4: Combustion chamber wall deposit, cylinder surface wall deposit:
The distribution of the spray adhering to the combustion chamber wall and the cylinder face wall 52 is shown superimposed on FIG. The combustion chamber deposit XF is allocated to the combustion chamber wall deposit X3 and the cylinder surface wall deposit X4 as shown in the following equation at an allocation rate KX4.
X4 = XF * KX4… (a20)
X3 = XF-X4 (a21)
Here, a cylinder adhesion index is determined based on the spray inflow layout, and an allocation rate KX4 is obtained by searching a table having the contents shown in FIG. Here, the cylinder index represents the ratio of the fuel that sprays from the injection valve 21 passes through the gap between the intake valve 15 and the valve seat and enters the combustion chamber 5 and adheres to each wall toward the cylinder wall. For example, if the spray shape is a cone and the ratio of passing through the gap between the intake valve 15 and the valve seat is B, and the ratio of B toward the cylinder wall is A, A / B may be used as the cylinder index. As shown in FIG. 6-13, the allocation rate KX4 is a value that increases as the cylinder adhesion index increases. The cylinder adhesion index can be set from the result of a flow simulation model, a part-by-part wall flow recovery experiment in a unit test, or the like.

このようにして、図6−1に示した噴射弁噴霧の分岐モデルは、噴射弁21からの噴射時噴霧の各分岐割合X0、X1、X2、X3、X4を算出することができ、これらは従来の方法である温度、回転速度、負荷信号等の運転条件から直接マップやテーブルを使って求めるものと比べて、物理モデルを促進しているので、個別のエンジン実験による適合をほとんど無くすことができ、適合工数の低減や適合期間の短縮が可能となる特徴がある。   In this way, the branch model of the injection valve spray shown in FIG. 6A can calculate the branch ratios X0, X1, X2, X3, and X4 of the spray during injection from the injection valve 21, Compared to the conventional method that uses a map or table directly from the operating conditions such as temperature, rotation speed, load signal, etc., the physical model is promoted, so it is possible to eliminate the adaptation by individual engine experiments. It is possible to reduce the adaptation man-hours and shorten the adaptation period.

前述のようにして求めた噴射弁からの噴霧の分岐割合X0,X1,X2,X3,X4のうち、噴射弁からの噴霧の分岐割合X0と、噴射弁21から噴いた燃料噴射量Mfinとから噴霧粒径分布(質量割合)に対する気化量Mx0'=Mfin*X0を算出する。   Of the spray branching ratio X0, X1, X2, X3, X4 obtained from the injection valve as described above, the spray branching ratio X0 from the injection valve and the fuel injection amount Mfin injected from the injection valve 21 are used. Vaporization amount Mx0 ′ = Mfin * X0 is calculated with respect to the spray particle size distribution (mass ratio).

この噴霧粒径分布(質量割合)に対する気化量Mx0'を用いて、液滴のまま気化した場合の混合気温度低下代△TBvapは、噴霧粒径分布(質量割合)に対する気化量Mx0'と相関が強いので、定数=Kbvap#を用いて、次式(9)のように表せる。   Using the vaporization amount Mx0 'for this spray particle size distribution (mass ratio), the mixture temperature decrease allowance ΔTBvap when vaporized as droplets correlates with the vaporization amount Mx0' for the spray particle size distribution (mass ratio) Therefore, it can be expressed as the following equation (9) using the constant = Kbvap #.

Figure 2005133603
Figure 2005133603

そこで噴射弁21より噴射された燃料が吸気ポートや燃焼室内で液滴の気化潜熱の影響を受けた場合の混合気温度Ta5は次式(10)を用いて算出する。   Therefore, the mixture temperature Ta5 when the fuel injected from the injection valve 21 is affected by the latent heat of vaporization of the droplets in the intake port and the combustion chamber is calculated using the following equation (10).

Figure 2005133603
Figure 2005133603

5−2.吸気弁閉時のシリンダ内ガス温度の推定
次に吸気弁、排気弁、燃焼室壁・ピストン冠面、シリンダ壁からの熱伝達による混合気温度Ta6を算出する。まず次の手法により前記各部の壁温度を推定する。これは本出願人が特願2003-185133にて提案している温度推定手法であり、その概略を説明すると、この手法ではまず燃焼室を構成する部品として、例えば吸気弁につきエンジンの冷却水温度、吸入空気量、燃焼当量比、回転速度から平衡温度を算出し、次いで冷却水温度に対して一次遅れで変化する温度上昇量を用いて吸気弁の傘方向温度を算出する。これに対して、燃焼室壁、シリンダ壁など他のシリンダ構成部分の壁面温度については、前記吸気弁傘方向の平衡温度と時定数として与えられる温度変化割合とに所定の係数を掛けることで当該シリンダ構成部分の平衡温度と温度変化割合を求め、これと前回算出値とから当該シリンダ構成部分の温度を推定する。この手法は、吸気弁など特定部分の温度から他のシリンダ構成部分の温度を推定することから演算部の構成が簡略化でき、また特定部分の温度演算にあたって吸入空気量や燃焼当量比、回転数などの運転状態量を用いているためエンジン運転状態に応じた発熱量変化や冷却水の流量変化等の影響が反映した比較的正確な壁面温度が得られるという特徴がある。ただし言うまでも無くシリンダ内各部の壁面温度を求める手法はこれに限られるものではなく、対象部位によっては水温センサの検出値で壁面温度を代表させたあり、あるいは温度センサを用いて計測したりしてもよい。
5-2. Estimation of In-Cylinder Gas Temperature when the Intake Valve is Closed Next, an air-fuel mixture temperature Ta6 is calculated by heat transfer from the intake valve, exhaust valve, combustion chamber wall / piston crown, and cylinder wall. First, the wall temperature of each part is estimated by the following method. This is a temperature estimation method proposed by the present applicant in Japanese Patent Application No. 2003-185133. The outline of this method is as follows. First, in this method, as a component constituting the combustion chamber, for example, the cooling water temperature of the engine for each intake valve. Then, the equilibrium temperature is calculated from the intake air amount, the combustion equivalent ratio, and the rotation speed, and then the umbrella direction temperature of the intake valve is calculated using the temperature increase amount that changes with a first-order lag with respect to the coolant temperature. On the other hand, for the wall surface temperature of other cylinder components such as the combustion chamber wall and cylinder wall, the equilibrium temperature in the intake valve umbrella direction and the temperature change rate given as a time constant are multiplied by a predetermined coefficient. The equilibrium temperature and temperature change rate of the cylinder component are obtained, and the temperature of the cylinder component is estimated from this and the previous calculated value. This method can simplify the configuration of the calculation unit by estimating the temperature of other cylinder components from the temperature of a specific part such as an intake valve, and the intake air amount, combustion equivalent ratio, rotation speed can be calculated for the temperature calculation of the specific part. Therefore, there is a feature that a relatively accurate wall surface temperature reflecting the influence of a change in heat generation amount and a change in the flow rate of cooling water according to the engine operation state can be obtained. However, it goes without saying that the method for determining the wall surface temperature of each part in the cylinder is not limited to this, and depending on the target part, the wall surface temperature is represented by the detection value of the water temperature sensor, or it is measured using the temperature sensor. May be.

このようにして算出した吸気弁・排気弁、燃焼室壁、シリンダ壁、ピストン冠面の温度Twalliと、 請求項3の熱伝達式を用いて、次式(11)式から、前記各壁面部分からの熱伝達の影響を受けた場合のシリンダ内ガス温度Ta6(=Tivc)を算出する。   Using the intake valve / exhaust valve, combustion chamber wall, cylinder wall, piston crown surface temperature Twalli calculated in this way, and the heat transfer equation of claim 3, the following equation (11) In-cylinder gas temperature Ta6 (= Tivc) under the influence of heat transfer from is calculated.

Figure 2005133603
Figure 2005133603

ただしTwalliは前記シリンダ構成部分の壁温であり、シリンダヘッドの燃焼室壁とピストン冠面の温度Twall1、シリンダ壁温度Twall2、吸気弁傘部温度Twall3、排気弁傘部温度Twall4を表している。ここでシリンダ内各部壁面と吸入ガスとの間の受放熱モデルにつきより詳細に検討すると、シリンダ内のi=1〜4の各部(iの意義は前述のとおり)と吸入ガスとの間の受放熱の熱量Qは、質量M、比熱CgasのガスをΔT(K)だけ加熱するモデルとして、熱量保存則から次の式(12)のように表せる。   Here, Twalli is the wall temperature of the cylinder component, and represents the temperature Twall1, the cylinder wall temperature Twall2, the intake valve umbrella temperature Twall3, and the exhaust valve umbrella temperature Twall4 of the cylinder chamber combustion chamber wall and piston crown. Considering in more detail about the heat receiving / dissipating model between the wall surface of each part of the cylinder and the intake gas, the reception between each part of i = 1 to 4 in the cylinder (the meaning of i is as described above) and the intake gas. The heat quantity Q of heat release can be expressed as the following equation (12) from the law of conservation of heat as a model for heating a gas of mass M and specific heat Cgas by ΔT (K).

Figure 2005133603
Figure 2005133603

hi:各伝熱部の熱伝達率
Ai:伝熱面積
Tgasi:受熱前のガス温度(=吸気弁開時のシリンダ内吸入ガス温度)
ここで、熱伝達率hは、Woschniの改良式である次式(13)を用いて算出される。
hi: Heat transfer coefficient of each heat transfer section
Ai: Heat transfer area
Tgasi: Gas temperature before receiving heat (= intake gas temperature in cylinder when intake valve is open)
Here, the heat transfer coefficient h is calculated using the following equation (13), which is an improved equation of Woschni.

Figure 2005133603
Figure 2005133603

d:シリンダボア径
C1:定数
Cm:平均ピストン速度
既知である各熱伝達対象部の寸法値と定数をまとめ、これにピストン速度(ガス流速)を代表するエンジン回転速度に応じた修正を加えた係数をKiとして設定するものすると、結局前掲の式(12)は次のように表せる。
d: Cylinder bore diameter
C1: Constant
Cm: Average piston speed The dimensional values and constants of each known heat transfer target are summarized, and Ki is set to a coefficient that is modified according to the engine speed representing the piston speed (gas flow velocity). After all, the above formula (12) can be expressed as follows.

Figure 2005133603
Figure 2005133603

この式は、エンジン吸気系において吸入ガスの初期温度をT0としたときに、これに以後の任意のn箇所の熱伝達対象部位での伝熱による温度変化を積算することにより吸気弁閉時のシリンダ内ガス温度を推定できることを表している。   When the initial temperature of the intake gas is T0 in the engine intake system, the temperature change due to heat transfer at any n subsequent heat transfer target parts is added to this and the intake valve is closed. This means that the gas temperature in the cylinder can be estimated.

熱伝達対象部位が複数箇所にわたる場合において温度変化量を推定する順序は任意であるが、前記実施形態のように吸気の流れに従って上流から下流に向かって順次的にガス温度を求めるようにすることで、エンジンシステムの仕様上の相違、例えばエアフロメータ近傍に吸気温度センサがある場合、吸気コレクタ部に吸気温度センサがある場合、スロットルチャンバ部の氷結防止用ヒータの有無、そのレイアウトの相違等に対しても、吸入空気が加熱または冷却されてゆく流れに従って別個に演算式を修正でき、推定精度を向上させ、適合工数を減らすことができる。   The order of estimating the temperature change amount is arbitrary when there are a plurality of heat transfer target parts, but the gas temperature is obtained sequentially from upstream to downstream according to the flow of intake air as in the above embodiment. The difference in engine system specifications, for example, when there is an intake air temperature sensor in the vicinity of the air flow meter, when there is an intake air temperature sensor in the intake collector part, the presence or absence of the anti-icing heater in the throttle chamber part, the difference in the layout, etc. On the other hand, the arithmetic expression can be separately corrected according to the flow of the intake air heated or cooled, the estimation accuracy can be improved, and the number of adaptation man-hours can be reduced.

本発明の一実施形態を示す自動車用エンジンのシステム図。1 is a system diagram of an automobile engine showing an embodiment of the present invention. エンジンの吸入ガス温度変化に影響する種々の因子を吸気系の配置に沿って表した吸入ガス温度挙動に関する概念図。The conceptual diagram regarding the intake gas temperature behavior which represented the various factors which influence the intake gas temperature change of an engine along the arrangement | positioning of an intake system. 目標燃焼当量比および排気温度から排気ガス比熱比を与えるテーブルの説明図。Explanatory drawing of the table which gives exhaust gas specific heat ratio from target combustion equivalent ratio and exhaust temperature. キャニスタからの燃料蒸発ガスの脱離量を推定するためのモデル図。The model figure for estimating the desorption amount of the fuel evaporative gas from a canister. 目標燃焼当量比から混合気比熱比を与えるテーブルの説明図。Explanatory drawing of the table which gives air-fuel | gaseous mixture specific heat ratio from target combustion equivalent ratio. 噴射弁噴霧の分岐モデルのデータフロー図。The data flow figure of the branch model of injection valve spray. 噴霧分岐全体のプロセスを示すモデル図。The model figure which shows the process of the whole spray branch. 噴射時噴霧の質量割合についての粒径分布の特性図。The characteristic view of the particle size distribution about the mass ratio of the spray at the time of injection. 噴霧の気化率を説明するためのモデル図。The model figure for demonstrating the vaporization rate of spraying. 気化特性f(V、T、P)の特性図。The characteristic view of the vaporization characteristic f (V, T, P). 吸気気流の暴露時間の特性図。The characteristic figure of the exposure time of intake airflow. 噴霧の燃焼室への直接噴き入りを説明するためのモデル図。The model figure for demonstrating direct injection to the combustion chamber of spray. 噴射タイミングとβに対する直接噴き入り率の特性図。The characteristic figure of the direct injection rate with respect to injection timing and (beta). 噴霧の吸気系での浮遊、燃焼室での浮遊を説明するためのモデル図。The model figure for demonstrating the floating in the intake system of spray, and the floating in a combustion chamber. 噴霧落下速度と粒径毎の浮遊割合との特性図。The characteristic figure of the spray fall speed and the floating ratio for every particle size. 噴霧粒径分布を示す特性図。The characteristic view which shows spraying particle size distribution. 吸気弁直撃率と比X1/X2に対する吸気弁直撃率係数の特性図。The characteristic diagram of the intake valve direct hit rate coefficient with respect to the intake valve direct hit rate and the ratio X1 / X2. 比X3/X4に対する割り振り率の特性図。The characteristic figure of the allocation rate with respect to ratio X3 / X4. 本発明による吸入ガス温度推定のためのモデル図。The model figure for the intake gas temperature estimation by this invention.

符号の説明Explanation of symbols

2 吸気コレクタ
4 吸気ポート
5 燃焼室
6 ピストン
8 排気通路
15 吸気弁
16 排気弁
21 燃料噴射弁
23 吸気絞り弁
25 EGR通路
26 EGR弁
29 可変動弁機構
31 エンジンコントローラ
32 エアフロメータ
42 アクセルセンサ
43,46,48 温度センサ
44,45,47 圧力センサ
60 スロットルチャンバ
61 温水ヒータ
63 ブローバイガス通路
64 パージガス通路
65 燃料タンク
66 キャニスタ
67 パージバルブ
2 intake collector 4 intake port 5 combustion chamber 6 piston 8 exhaust passage 15 intake valve 16 exhaust valve 21 fuel injection valve 23 intake throttle valve 25 EGR passage 26 EGR valve 29 variable valve mechanism 31 engine controller 32 air flow meter 42 accelerator sensor 43, 46, 48 Temperature sensor 44, 45, 47 Pressure sensor 60 Throttle chamber 61 Hot water heater 63 Blow-by gas passage 64 Purge gas passage 65 Fuel tank 66 Canister 67 Purge valve

Claims (4)

エンジン吸気系に燃料を噴射供給する燃料供給装置を備えたエンジンにおいて、
吸入空気温度を求める手段と、
燃料噴霧の気化特性を求める手段と、
吸気系ないしシリンダ内の燃料気化対象部位のガス流速および圧力を求める手段と、
前記各手段の結果を用いてシリンダ内の混合気温度を推定するガス温度演算手段と、
を備えたことを特徴とするエンジンの吸入ガス温度推定装置。
In an engine equipped with a fuel supply device that injects and supplies fuel to the engine intake system,
Means for determining the intake air temperature;
Means for determining the vaporization characteristics of the fuel spray;
Means for determining the gas flow velocity and pressure of the fuel vaporization target portion in the intake system or cylinder;
Gas temperature calculation means for estimating the mixture temperature in the cylinder using the result of each means;
An intake gas temperature estimation device for an engine comprising:
前記燃料噴霧の気化特性は、
ガス流速、温度、圧力の少なくともいずれかに対する燃料蒸発量の変化特性である請求項1に記載のエンジンの吸入ガス温度推定装置。
The fuel spray vaporization characteristics are:
The engine intake gas temperature estimation device according to claim 1, which is a change characteristic of a fuel evaporation amount with respect to at least one of a gas flow rate, a temperature, and a pressure.
前記ガス温度演算手段は、
吸入空気温度、燃料噴霧の気化特性、吸気系内の燃料気化対象部位のガス流速および圧力を用いて吸気系内の浮遊燃料量を求める手段と、
前記浮遊燃料量と燃料の気化潜熱とを用いてシリンダ内の混合気温度を推定する温度推定手段と、
を備える請求項1に記載のエンジンの吸入ガス温度推定装置。
The gas temperature calculation means includes
Means for determining the amount of floating fuel in the intake system using the intake air temperature, the vaporization characteristics of the fuel spray, the gas flow velocity and pressure of the fuel vaporization target part in the intake system;
Temperature estimation means for estimating the temperature of the mixture in the cylinder using the floating fuel amount and the latent heat of vaporization of the fuel;
The intake gas temperature estimation device for an engine according to claim 1, comprising:
前記浮遊燃料量を求める手段は、
燃料噴射弁から噴射される燃料噴霧の質量についての粒径分布を決定する手段と、
この粒径分布に基づいて浮遊燃料量を算出するモデルから浮遊燃料量を算出する手段と、
を備える請求項3に記載のエンジンの吸入ガス温度推定装置。
The means for obtaining the amount of floating fuel is:
Means for determining a particle size distribution for the mass of fuel spray injected from the fuel injector;
Means for calculating the floating fuel amount from a model for calculating the floating fuel amount based on the particle size distribution;
An engine intake gas temperature estimation device according to claim 3.
JP2003368861A 2003-10-29 2003-10-29 Intake gas temperature inferring device for engine Pending JP2005133603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368861A JP2005133603A (en) 2003-10-29 2003-10-29 Intake gas temperature inferring device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368861A JP2005133603A (en) 2003-10-29 2003-10-29 Intake gas temperature inferring device for engine

Publications (1)

Publication Number Publication Date
JP2005133603A true JP2005133603A (en) 2005-05-26

Family

ID=34646400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368861A Pending JP2005133603A (en) 2003-10-29 2003-10-29 Intake gas temperature inferring device for engine

Country Status (1)

Country Link
JP (1) JP2005133603A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285418A (en) * 1987-05-19 1988-11-22 Nissan Motor Co Ltd Air quantity detector for engine
JPH0544527A (en) * 1991-08-19 1993-02-23 Nissan Motor Co Ltd Air-fuel ratio control device for engine
JPH07166922A (en) * 1993-12-13 1995-06-27 Nippon Soken Inc Fuel injection controller of internal combustion engine
JP2001342875A (en) * 2000-03-29 2001-12-14 Hitachi Ltd Fuel supply device of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285418A (en) * 1987-05-19 1988-11-22 Nissan Motor Co Ltd Air quantity detector for engine
JPH0544527A (en) * 1991-08-19 1993-02-23 Nissan Motor Co Ltd Air-fuel ratio control device for engine
JPH07166922A (en) * 1993-12-13 1995-06-27 Nippon Soken Inc Fuel injection controller of internal combustion engine
JP2001342875A (en) * 2000-03-29 2001-12-14 Hitachi Ltd Fuel supply device of internal combustion engine

Similar Documents

Publication Publication Date Title
JP4158679B2 (en) Engine intake gas temperature estimation device
CN105201674B (en) The control device of internal combustion engine
JP4603951B2 (en) Soot generation amount estimation device for internal combustion engine
JP6146192B2 (en) Diagnostic equipment
US9726531B2 (en) Estimation apparatus and method for cylinder intake air amount of internal combustion engine
CN101144435B (en) Engine control device
CN101707925B (en) Method of controlling the combustion of a diesel engine
JP2005133604A (en) Intake gas temperature inferring device for engine
JP5480048B2 (en) Control device for internal combustion engine
JP2005133601A (en) Intake gas temperature inferring device for engine
JP4692179B2 (en) Mixture concentration estimation device for internal combustion engine
JP2006257917A (en) Fuel injection control unit of internal combustion engine
JP4082329B2 (en) Engine fuel injection amount control device
JP2005133603A (en) Intake gas temperature inferring device for engine
JP6311797B2 (en) Fuel injection control device and fuel injection control method for internal combustion engine
JP4052196B2 (en) Engine fuel injection amount control device
JP4103726B2 (en) Engine fuel injection amount control device
JP4168864B2 (en) Engine fuel injection amount control device
JP2004162588A (en) Fuel injection control system of internal combustion engine
JP2005054643A (en) Fuel injection amount control device for engine
JP4254522B2 (en) Engine fuel injection amount control device
JP4600035B2 (en) Engine fuel injection amount control device
JP2005069081A (en) Fuel injection amount control device for engine
CN108223162A (en) Control the device and method of fuel injection
JP4182835B2 (en) Engine fuel injection amount control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219