JP2005132843A - Method for using stimulus sensitive material - Google Patents

Method for using stimulus sensitive material Download PDF

Info

Publication number
JP2005132843A
JP2005132843A JP2004321332A JP2004321332A JP2005132843A JP 2005132843 A JP2005132843 A JP 2005132843A JP 2004321332 A JP2004321332 A JP 2004321332A JP 2004321332 A JP2004321332 A JP 2004321332A JP 2005132843 A JP2005132843 A JP 2005132843A
Authority
JP
Japan
Prior art keywords
stimulus
polymer chain
stimuli
sensitive material
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004321332A
Other languages
Japanese (ja)
Inventor
Akira Mochizuki
明 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cellseed Inc
Original Assignee
Cellseed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cellseed Inc filed Critical Cellseed Inc
Priority to JP2004321332A priority Critical patent/JP2005132843A/en
Publication of JP2005132843A publication Critical patent/JP2005132843A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for using a stimulus sensitive material independently responding to each of a plurality of stimuli. <P>SOLUTION: This invention relates to the method for using the stimulus sensitive material comprising use of a block or graft copolymer expressed by the formula A<SB>m</SB>B<SB>n</SB>comprising a polymer chain A and a polymer chain B having mutually different solubility parameters, (in the formula, (m) and (n) are each an integer of 1-5), as the main constituting component, and changing affinity to a biological component and/or a medicament by independently changing either one of its space volume such as length, area or volume responding to at least two stimulus conditions. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は水の存在下において刺激を与える事により、空間量の変化を伴う刺激応答性材料に関する。更に詳しくは温度変化及び/又はpH変化により膨潤収縮を可逆的に繰り返すことの可能な材料の利用方法に関する。   The present invention relates to a stimulus-responsive material accompanied by a change in the amount of space by giving a stimulus in the presence of water. More specifically, the present invention relates to a method of using a material capable of reversibly repeating swelling and shrinkage due to temperature change and / or pH change.

これまでに刺激応答性を発現するポリマー、材料は多く知られており、その刺激としては温度、光、pH,イオン濃度、電位、溶媒親和力などが利用されている。   Many polymers and materials that exhibit stimulus responsiveness have been known so far, and temperature, light, pH, ion concentration, potential, solvent affinity, and the like are used as the stimulus.

例えば温度応答性を示す例としてはポリ−N−イソプロピルアクリルアミドを始めとしたアクリルアミド系ポリマー、ポリビニルメチルエーテルが、pH応答性を示す例としてはポリアクリル酸/PVAブレンド物などが知られており、人工筋肉をはじめとしたアクチュエーター、エネルギー変換用素材、薬剤のコントロールリリース、細胞培養などへの利用が試みられている。   For example, acrylamide polymers such as poly-N-isopropylacrylamide and polyvinyl methyl ether are known as examples showing temperature responsiveness, and polyacrylic acid / PVA blends are known as examples showing pH responsiveness, Attempts have been made to use artificial muscles and other actuators, energy conversion materials, controlled release of drugs, and cell culture.

このような刺激応答性は基本的には材料マトリクス中への液体(水)の吸収とマトリクス中からの液体(水)の排除の繰り返しにより起こるものである。従来の材料に於いては複数の刺激にそれぞれ応答するものはなく単一刺激単一応答であり単機能のものしか知られていなかった。そのために用途としては極めて限定されたものに成らざるを得なかった。   Such stimulus responsiveness is basically caused by repeated absorption of liquid (water) into the material matrix and elimination of liquid (water) from the matrix. In conventional materials, there is no single response to a plurality of stimuli, and only a single function and a single function are known. For this reason, the application has to be extremely limited.

本発明はこのような状況を鑑み、複数の刺激に対しそれぞれ独立して応答を示す刺激応答性材料の利用方法を提供する事にある。   In view of such a situation, the present invention is to provide a method of using a stimulus-responsive material that exhibits independent responses to a plurality of stimuli.

複数の刺激に応答させる為にはそれぞれの刺激応答性材料を混合すれば基本的には目的を達成させられると考えられるが、実際にはポリマーの多くはポリマー間で非相溶系であり混合しないのが通常であり、相溶系を見いだすことは大変な労力を必要とし、仮に相溶系を見いだしたとしても、用途展開は極めて限定されたものとなる。本発明者らは各刺激に応答するポリマーを用いブロック、或はグラフト共重合体とすることでこれらの問題点を解決出来る事を見いだした。即ち、本発明は以下によって達成される。   In order to respond to multiple stimuli, it is thought that the objective can be basically achieved by mixing each stimulus-responsive material, but in reality, many polymers are incompatible with each other and do not mix In general, finding a compatible system requires a great deal of effort, and even if a compatible system is found, the application development is extremely limited. The inventors of the present invention have found that these problems can be solved by using a polymer that responds to each stimulus to form a block or graft copolymer. That is, the present invention is achieved by the following.

(1)溶解度パラメーターの異なるポリマー鎖A及びポリマー鎖Bから構成される一般式AmBn(m、nは1〜5の整数)で示されるブロック又はグラフト共重合体を主構成成分とする材料を利用し、少なくとも2以上の刺激条件に対し独立して長さ、面積、体積のいずれかの空間量を変化させることで生体成分及び/又は薬剤との親和性を変化させることを特徴とする刺激応答性材料の利用方法。
(2)2以上の刺激の中に少なくとも温度変化及び/又はpH変化が含まれていることを特徴とする上記(1)記載の利用方法。
(3)刺激応答利用方法が生体成分及び/又は薬剤を分離精製することを特徴とする上記(1)又は(2)記載の利用方法。
(4)刺激応答利用方法が細胞を培養することを特徴とする上記(1)又は(2)の利用方法。
(1) Utilizing a material whose main constituent is a block or graft copolymer represented by the general formula AmBn (m, n is an integer of 1 to 5) composed of polymer chains A and B having different solubility parameters And a stimulus response characterized by changing the affinity with a biological component and / or a drug by independently changing the amount of space in length, area, or volume independently of at least two stimulus conditions. How to use sex materials.
(2) The use method according to (1), wherein at least a temperature change and / or a pH change is included in the two or more stimuli.
(3) The utilization method according to the above (1) or (2), wherein the stimulation response utilization method separates and purifies a biological component and / or a drug.
(4) The utilization method according to (1) or (2) above, wherein the stimulation response utilization method cultures cells.

本発明の刺激応答性材料の利用方法はその用途として人工筋肉、薬剤のコントロールリリース、蛋白質等の生体成分の分離精製、細胞培養などが中心になると考えられる事からマイルドな刺激に対し応答する事が望まれる。   The method of using the stimuli-responsive material of the present invention responds to mild stimuli because it is considered to be mainly used for artificial muscles, controlled release of drugs, separation and purification of biological components such as proteins, and cell culture. Is desired.

本発明に用いられる刺激応答性材料を構成する一般式AmBnで表されるブロック又はグラフト共重合体に於いてポリマー鎖A及びBは共に温度応答性を有する場合、一方が温度応答性、他方がpH応答性を有する場合、共にpH応答性を有する場合がある。温度応答性は0℃〜70℃の範囲で発現される事が望まれる。0℃以下では本発明の材料が使用される条件が水系であることから凍結等の問題が生じ、又、70℃以上では蛋白質等の生体成分にとって変成等の問題を起こさせるため望ましくない。pH応答性はpH3〜pH11の範囲で発現される事が望ましい。pH2以下、或はpH12以上では蛋白質等の生体成分にとって変成等の問題が起きるので望ましくない。A,B各ポリマー鎖が温度応答性の場合は転移温度の差が5℃以上で有ることが望ましい。これ以下では2次刺激に伴う相変化が不明瞭となり機能発現の面で望ましくない。又、A,B各ポリマー鎖がpH応答性である場合は一次及び二次の刺激となるpHの変化量は2以上であることが望ましい。これ以下では2次刺激に伴う変化が不明瞭になり機能発現の面で望ましくない。   In the block or graft copolymer represented by the general formula AmBn constituting the stimulus responsive material used in the present invention, when both of the polymer chains A and B have temperature responsiveness, one is temperature responsive and the other is When it has pH responsiveness, it may have pH responsiveness together. It is desired that the temperature responsiveness is expressed in the range of 0 ° C to 70 ° C. If it is 0 ° C. or lower, problems such as freezing occur because the conditions for using the material of the present invention are aqueous, and if it is 70 ° C. or higher, problems such as degeneration occur for biological components such as proteins. The pH responsiveness is desirably expressed in the range of pH 3 to pH 11. A pH of 2 or lower, or a pH of 12 or higher, is undesirable because problems such as degeneration occur for biological components such as proteins. When the polymer chains of A and B are temperature responsive, the difference in transition temperature is preferably 5 ° C. or more. Below this, the phase change associated with the secondary stimulus becomes unclear, which is undesirable in terms of function expression. When the polymer chains A and B are responsive to pH, it is desirable that the amount of change in pH that serves as a primary and secondary stimulus is 2 or more. Below this, changes associated with secondary stimulation become unclear, which is undesirable in terms of function expression.

温度応答性ポリマー鎖を誘導するモノマーとしてはN−イソプロピルアクリルアミドなどのN−アルキル置換アクリルアミド類、(メタ)アクリロイルオキシエチルピロリドン、ビニルメチルエーテルなどのビニルエーテル類など、又、ポリマー鎖としてはメチルセルロース、12%アセチル化ポリビニルアルコール、ポリエチレンオキシドなどが挙げられるが、温度応答能に影響を及ぼさない範囲で他のビニルモノマーと共重合しても構わない。具体的な例としてはメチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレートなどの(メタ)アクリル酸エステル類、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類、スチレン、塩化ビニル、N−ビニルピロリドンなどのビニル化合物、(メタ)アクリルアミド類などが利用できる。   N-alkyl-substituted acrylamides such as N-isopropylacrylamide, vinyl ethers such as (meth) acryloyloxyethyl pyrrolidone, vinyl methyl ether, etc. as monomers for deriving temperature-responsive polymer chains, methyl cellulose as the polymer chain, 12 % Acetylated polyvinyl alcohol, polyethylene oxide and the like can be mentioned, but they may be copolymerized with other vinyl monomers as long as the temperature responsiveness is not affected. Specific examples include (meth) acrylic esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, vinyl esters such as vinyl acetate and vinyl propionate, styrene, vinyl chloride, Vinyl compounds such as N-vinylpyrrolidone and (meth) acrylamides can be used.

pH応答性ポリマー鎖を誘導するモノマーとしては(メタ)アクリル酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸 などの解離基を有するモノマーが挙げられるが、pH応答能に影響を及ぼさない範囲での他のビニルモノマー例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレートなどの(メタ)アクリル酸エステル類、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類、スチレン、塩化ビニル、N−ビニルピロリドンなどのビニル化合物、(メタ)アクリルアミド類などと共重合可能である。   Monomers that induce a pH-responsive polymer chain include monomers having a dissociation group such as (meth) acrylic acid, styrenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, etc., but the pH-responsiveness is affected. Other vinyl monomers in a range such as (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, vinyl esters such as vinyl acetate and vinyl propionate, styrene, It can be copolymerized with vinyl compounds such as vinyl chloride and N-vinylpyrrolidone, and (meth) acrylamides.

A又はBで表されるポリマー鎖の分子量は1000から50000程度が望ましい。1000以下では刺激応答能が十分でなく空間量の変化が不十分となる。一方50000以上になると合成の点で難しくなる。   The molecular weight of the polymer chain represented by A or B is preferably about 1000 to 50000. If it is 1000 or less, the stimulus response capability is not sufficient, and the change in the space amount is insufficient. On the other hand, when it becomes 50000 or more, it becomes difficult in terms of synthesis.

本発明のブロック、或はグラフト共重合体の合成方法は公知の方法により作る事が可能である。ブロック共重合体を合成する場合、リビング重合法、両端或は片末端にアミノ基や水酸基、カルボキシル基などの反応性基を導入したポリマー鎖を合成しこれらをカップリングする方法、イニファーターを用いたラジカル重合法などが挙げられる。又、グラフト共重合体は、A鎖又はB鎖に対応するマクロモノマーを合成しこの後ラジカル或はアニオン重合を行うことにより合成する事が出来る。尚、pH応答性を発現するポリマー鎖は活性水素を有している為そのままアニオン重合やカップリング反応には供せない。その時にはエステル化などによりカルボキシル基を保護し共重合化の後に加水分解等で保護基をはずすことにより目的が達成される。   The method for synthesizing the block or graft copolymer of the present invention can be prepared by a known method. When synthesizing a block copolymer, a living polymerization method, a method of synthesizing a polymer chain having an amino group, a hydroxyl group, a carboxyl group or the like introduced at both ends or one end and coupling them, an iniferter is used. The radical polymerization method that has been used. The graft copolymer can be synthesized by synthesizing a macromonomer corresponding to the A chain or B chain and then performing radical or anionic polymerization. In addition, since the polymer chain which expresses pH responsiveness has active hydrogen, it cannot use for anion polymerization or a coupling reaction as it is. At that time, the purpose is achieved by protecting the carboxyl group by esterification and removing the protecting group by hydrolysis after copolymerization.

本発明に使用される一般式AmBnで表されるブロック、或はグラフト共重合体は刺激応答性は有するものの、条件によっては水に溶ける場合もあるので実用途を考えた場合、不溶化処理を行うことが望ましい。この方法としてはγ線照射による架橋、多官能性モノマーを用いることにる化学架橋などで達成できる。又、ポリビニルアルコールやポリ2−ヒドロキシエチルメタクリレートなどの水不溶性ゲル中に閉じ込めIPNとする事でも達成できる。   Although the block or graft copolymer represented by the general formula AmBn used in the present invention has stimuli responsiveness, it may be dissolved in water depending on the conditions. It is desirable. This method can be achieved by cross-linking by γ-ray irradiation or chemical cross-linking using a polyfunctional monomer. It can also be achieved by confining IPN in a water-insoluble gel such as polyvinyl alcohol or poly 2-hydroxyethyl methacrylate.

尚、本発明に於けるブロック、或はグラフト共重合体はA,Bの2元系であるが、ポリマ−鎖CあるいはD等を導入した多元系の共重合体とし、3種以上の刺激に対し応答可能とする事を排除するものではない。   The block or graft copolymer in the present invention is a binary system of A and B, but it is a multi-component copolymer into which a polymer chain C or D is introduced, and three or more kinds of stimuli are used. It does not exclude that response is possible.

本発明の一般式AmBnで表されるブロック、或はグラフト共重合体を主構成成分とする刺激応答性材料に於いては、A鎖、B鎖は溶解度パラメーターが異なる事から蛋白質、多糖類、脂質、細胞成分等の生体成分及び薬剤などとの親和性(相互作用)が異なる。従って2種類以上の物質に対し選択性を発現でき、各刺激に応じてこれらの基質の吸着、放出が独立に制御可能となる為、分離精製用材料又はコントロールリリース用材料として好適である。又、一次刺激、二次刺激に対してその都度体積変化を示すためアクチュエータとしてもこれまでにない高次の運動性を獲得できる。又、該刺激応答性材料は多孔質膜表面や多孔質ビーズ表面に固定化する事によりケミカルバルブ等として利用することもできる。   In the stimuli-responsive material mainly comprising a block or graft copolymer represented by the general formula AmBn of the present invention, the A chain and the B chain have different solubility parameters, so that proteins, polysaccharides, Affinities (interactions) with biological components such as lipids and cellular components and drugs are different. Therefore, selectivity can be expressed for two or more kinds of substances, and the adsorption and release of these substrates can be controlled independently according to each stimulus. Therefore, it is suitable as a material for separation and purification or a material for control release. In addition, since the volume changes with respect to the primary stimulus and the secondary stimulus each time, the actuator can obtain an unprecedented high-order mobility. In addition, the stimulus-responsive material can be used as a chemical valve or the like by immobilizing on the surface of the porous membrane or the surface of the porous beads.

以下に実施例を用い本発明を具体的に説明するが、本発明の範囲が実施例のみに制限されるものではない。   EXAMPLES The present invention will be specifically described below using examples, but the scope of the present invention is not limited to only the examples.

(実施例1)
ガラス重合管にN−イソプロピルアクリルアミド0.1mol、アゾビスイソブチロニトリル0.5mmol、アミノエタンチオール0.07mol、溶媒としてDMF30mlを仕込み、真空下に封管し60℃下で重合を行った。再沈精製後同定を行ったところ、1分子あたりアミノ基が1つ導入された数平均分子量2500の重合体(PIPAm)であることが分かった。
(Example 1)
A glass polymerization tube was charged with 0.1 mol of N-isopropylacrylamide, 0.5 mmol of azobisisobutyronitrile, 0.07 mol of aminoethanethiol, and 30 ml of DMF as a solvent, sealed in a vacuum and polymerized at 60 ° C. As a result of identification after reprecipitation purification, it was found to be a polymer (PIPAm) having a number average molecular weight of 2500 in which one amino group was introduced per molecule.

メタクリロイルオキシエチルピロリドン0.1mol、p,p’−ジイソシアナートジフェニルジスルフィド3mmolをパイレックスガラス製重合容器に取り、脱気後水銀ランプでUV照射し30℃下12時間光重合を行った。再沈精製後同定を行ったところ、数平均分子量7800、1分子中のイソシアナート数が1.98の重合体(PMEP)が得られた。   0.1 mol of methacryloyloxyethyl pyrrolidone and 3 mmol of p, p'-diisocyanate diphenyl disulfide were placed in a Pyrex glass polymerization container, degassed, and then irradiated with UV light from a mercury lamp and subjected to photopolymerization at 30 ° C. for 12 hours. As a result of identification after reprecipitation purification, a polymer (PMEP) having a number average molecular weight of 7,800 and an isocyanate number of 1.98 in one molecule was obtained.

上記片末端アミノ化PIPAmと両末端ジイソシアナート化MEPを反応前の末端官能基比(イソシアナート:アミノ基)が1:1になるようにDMFに溶解し0℃、48時間かけてカップリング反応を行い、ブロック共重合体を得た。   The one-terminal aminated PIPAm and both-end diisocyanated MEP are dissolved in DMF so that the ratio of terminal functional groups before the reaction (isocyanate: amino group) is 1: 1 and coupled at 0 ° C. for 48 hours. Reaction was performed and the block copolymer was obtained.

このブロック共重合体を含水下でDSCを測定したところ転移温度が34℃と50℃に観察された。該共重合体をDMFに溶解しブタンジオール、触媒としてピリジンを加えガラス板上にキャストしたのち、80℃に加熱、化学架橋を導入した。真空乾燥を行いDMF等を溜去後、冷水に浸漬し含水ゲルとした。該ゲルの温度を40℃にしたところ収縮し、次いで60℃にしたところ更に収縮し、各刺激に対し独立に応答する事が分かった。   When the DSC of this block copolymer was measured under water, the transition temperatures were observed at 34 ° C. and 50 ° C. The copolymer was dissolved in DMF, butanediol and pyridine as a catalyst were added and cast on a glass plate, and then heated to 80 ° C. to introduce chemical crosslinking. After vacuum drying and distilling off DMF and the like, it was immersed in cold water to obtain a hydrous gel. It was found that when the temperature of the gel was 40 ° C., it contracted and then when it was 60 ° C., it further contracted and responded independently to each stimulus.

(実施例2)
実施例1と同じ方法で片末端アミノ化PIPAmを調製した。また両末端ジイソシアナートのプレポリマーとしてポリトリメチルシリルメタクリル酸エステル(PTMSM)を実施例1と同様に光重合で調製した。両者でカップリング反応を行いブロック共重合化を行い、続いて反応系に1規定塩酸を加えシリルエステルを加水分解しイソプロピルアミドとメタクリル酸の共重合体を得た。再沈精製後、DMFに溶解しここにトルエンジイソシアナートを加え化学架橋を導入しゲル化させたのち溶媒置換し含水ゲルとした。
(Example 2)
Single-terminal aminated PIPAm was prepared in the same manner as in Example 1. In addition, polytrimethylsilyl methacrylate (PTMSM) was prepared by photopolymerization in the same manner as in Example 1 as a prepolymer of both terminal diisocyanates. Coupling reaction was carried out with both to perform block copolymerization, and then 1N hydrochloric acid was added to the reaction system to hydrolyze the silyl ester to obtain a copolymer of isopropylamide and methacrylic acid. After reprecipitation purification, it was dissolved in DMF, and toluene diisocyanate was added thereto to introduce chemical crosslinks to form a gel, followed by solvent substitution to obtain a hydrous gel.

該ゲルは30〜35℃を境にそれ以下では膨潤し、それ以上の温度では収縮した。次に40℃の温水に保持した該ゲルに水酸化ナトリウム水溶液を加えpH10にしたところ膨潤した。この系を20℃にしたところ該ゲルは更に膨潤し、各刺激に対し独立に応答する事が示された。   The gel swelled below 30-35 ° C. and shrunk above that temperature. Next, when the gel was maintained in warm water at 40 ° C. and an aqueous sodium hydroxide solution was added to adjust the pH to 10, the gel swelled. When the system was brought to 20 ° C., the gel was further swollen and shown to respond independently to each stimulus.

[発明の効果]
本発明において利用する刺激応答性材料は従来のものと異なり、多刺激に対し独立に応答する多機能性を有しているため各種メカノケミカル素材、アクチュエータなどの高性能化に寄与できる。
[The invention's effect]
The stimulus-responsive material used in the present invention is different from conventional ones, and has multi-functionality that responds independently to multi-stimulations, which can contribute to high performance of various mechanochemical materials and actuators.

Claims (4)

溶解度パラメーターの異なるポリマー鎖A及びポリマー鎖Bから構成される一般式AmBn(m、nは1〜5の整数)で示されるブロック又はグラフト共重合体を主構成成分とする材料を利用し、少なくとも2以上の刺激条件に対し独立して長さ、面積、体積のいずれかの空間量を変化させることで生体成分及び/又は薬剤との親和性を変化させることを特徴とする刺激応答性材料の利用方法。   Utilizing a material having a block or graft copolymer represented by the general formula AmBn (m, n is an integer of 1 to 5) composed of a polymer chain A and a polymer chain B having different solubility parameters as a main constituent, at least A stimulus-responsive material characterized in that the affinity with a biological component and / or a drug is changed by changing the amount of space in length, area, or volume independently for two or more stimulation conditions. How to Use. 2以上の刺激の中に少なくとも温度変化及び/又はpH変化が含まれていることを特徴とする請求項1記載の利用方法。   The use method according to claim 1, wherein at least a temperature change and / or a pH change is included in the two or more stimuli. 刺激応答利用方法が生体成分及び/又は薬剤を分離精製することを特徴とする請求項1又は2記載の利用方法。   3. The utilization method according to claim 1, wherein the stimulation response utilization method separates and purifies the biological component and / or the drug. 刺激応答利用方法が細胞を培養することを特徴とする請求項1又は2記載の刺激応答利用方法。   The method of using a stimulus response according to claim 1 or 2, wherein the method of using a stimulus response cultures cells.
JP2004321332A 2004-11-04 2004-11-04 Method for using stimulus sensitive material Pending JP2005132843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004321332A JP2005132843A (en) 2004-11-04 2004-11-04 Method for using stimulus sensitive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004321332A JP2005132843A (en) 2004-11-04 2004-11-04 Method for using stimulus sensitive material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28890393A Division JPH07138553A (en) 1993-11-18 1993-11-18 Stimulus-responsive material

Publications (1)

Publication Number Publication Date
JP2005132843A true JP2005132843A (en) 2005-05-26

Family

ID=34650946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321332A Pending JP2005132843A (en) 2004-11-04 2004-11-04 Method for using stimulus sensitive material

Country Status (1)

Country Link
JP (1) JP2005132843A (en)

Similar Documents

Publication Publication Date Title
Güven et al. A review on the radiation synthesis of copolymeric hydrogels for adsorption and separation purposes
Padmavathi et al. Structural characteristics and swelling behavior of poly (ethylene glycol) diacrylate hydrogels
Brøndsted et al. Hydrogels for site-specific oral drug delivery: synthesis and characterization
Bahram et al. An introduction to hydrogels and some recent applications
Eggenhuisen et al. Libraries of statistical hydroxypropyl acrylate containing copolymers with LCST properties prepared by NMP
Dutta et al. Temperature, pH and redox responsive cellulose based hydrogels for protein delivery
KR102505172B1 (en) Polymer films
Ullah et al. Classification, processing and application of hydrogels: A review
Brahim et al. Synthesis and hydration properties of pH-sensitive p (HEMA)-based hydrogels containing 3-(trimethoxysilyl) propyl methacrylate
US3931123A (en) Hydrophilic nitrite copolymers
Fundueanu et al. Poly (vinyl alcohol) microspheres with pH-and thermosensitive properties as temperature-controlled drug delivery
Pafiti et al. End-linked poly [2-(dimethylamino) ethyl methacrylate]–poly (methacrylic acid) polyampholyte conetworks: synthesis by sequential RAFT polymerization and swelling and SANS characterization
WO2003093327A1 (en) Gel having multiple network structure and method for preparation thereof
Reddy et al. Simultaneous and sequential micro-porous semi-interpenetrating polymer network hydrogel films for drug delivery and wound dressing applications
Achilleos et al. Amphiphilic model conetworks based on cross-linked star copolymers of benzyl methacrylate and 2-(dimethylamino) ethyl methacrylate: synthesis, characterization, and DNA adsorption studies
JPH0762054B2 (en) Crosslinked polymer particles
Ishida et al. Synthesis and property of temperature-responsive hydrogel with movable cross-linking points
JPS5833018B2 (en) Shinsuiseiji Yugotai Matrix Oyuusuru Ryousei Ion Kokantaino Seizouhouhou
Chen et al. pH-/temperature-sensitive carboxymethyl chitosan/poly (N-isopropylacrylamide-co-methacrylic acid) IPN: preparation, characterization and sustained release of riboflavin
David et al. Rapid deswelling response of poly (N-isopropylacrylamide)/poly (2-alkyl-2-oxazoline)/poly (2-hydroxyethyl methacrylate) hydrogels
CN109970933A (en) It is a kind of that there is temperature and the amphipathic nature block polymer of photoresponse and preparation method thereof in ionic liquid
CN113801262A (en) High-strength gel and preparation method thereof
Xu et al. Strategy to introduce a pendent micellar structure into poly (N-isopropylacrylamide) hydrogels
JP4217804B2 (en) Thermally responsive separation material and drug release capsule using thermoresponsive polymer derivative having upper limit solution critical temperature
Li et al. Thermoresponse improvement of poly (N-isopropylacrylamide) hydrogels via formation of poly (sodium p-styrenesulfonate) nanophases

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106