JP2005132837A - Hyperglycemia inhibitor and method for producing the same - Google Patents

Hyperglycemia inhibitor and method for producing the same Download PDF

Info

Publication number
JP2005132837A
JP2005132837A JP2004296845A JP2004296845A JP2005132837A JP 2005132837 A JP2005132837 A JP 2005132837A JP 2004296845 A JP2004296845 A JP 2004296845A JP 2004296845 A JP2004296845 A JP 2004296845A JP 2005132837 A JP2005132837 A JP 2005132837A
Authority
JP
Japan
Prior art keywords
water
hyperglycemia
inhibitor
administration
purified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004296845A
Other languages
Japanese (ja)
Inventor
Kiyoteru Tobinaga
精照 飛永
Shinichi Tashiro
眞一 田代
Junichi Kitajima
潤一 北島
Shunichi Yokoe
俊一 横江
Kazuo Iguchi
和男 井口
Kinzo Watanabe
謹三 渡辺
I Samisoni Jimione
ジミオネ・アイ・サミソニ
Vakamoze Taraiashi
タライアシ・ヴァカモゼ
Albersberg Bill
ビル・アルバースベルグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004296845A priority Critical patent/JP2005132837A/en
Publication of JP2005132837A publication Critical patent/JP2005132837A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a new hyperglycemia inhibitor having high α-glucosidase inhibitory action, capable of producing a treating effect more excellent that those of already known treating agents for diabetes, and derived from a plant. <P>SOLUTION: The hyperglycemia inhibitor contains a metal conjugate of a pyrrolizidine alkaloid glycoside expressed by the formula as an active ingredient. The hyperglycemia inhibitor is produced by concentrating a methyl alcohol decoction of bark of Syzygium malaccense belonging to the family Myrtaceae under reduced pressure, subjecting the obtained concentrated residue to partition treatment between ethyl acetate and water, and further subjecting the obtained water layer to partition treatment between itself and n-butyl alcohol, so as to recover a solid product from the water phase. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、食後の血糖値上昇を抑制するための新規な血糖上昇抑制剤及びその製造方法に関するものである。さらに詳しくいえば、本発明は、熱帯地域例えば南太平洋諸島に自生する植物から得られるα‐グルコシダーゼ阻害作用を利用した新規な血糖上昇抑制剤及びその製造方法に関するものである。   The present invention relates to a novel antihyperglycemic agent for suppressing an increase in blood glucose level after a meal and a method for producing the same. More specifically, the present invention relates to a novel antihyperglycemic agent utilizing an α-glucosidase inhibitory action obtained from a plant native to a tropical region such as the South Pacific Islands, and a method for producing the same.

最近、消化管粘膜に存在する二糖類分解酵素、すなわちα‐グルコシダーゼの作用を阻害し、デンプンやオリゴ糖からのブドウ糖の生成を抑制することにより、血糖値上昇を抑制する糖尿病治療薬が多数知られているが、この中の大部分は天然素材の植物由来のものである。   Recently, many antidiabetic drugs have been known to inhibit the increase in blood glucose levels by inhibiting the action of disaccharide-degrading enzyme, α-glucosidase, present in the gastrointestinal mucosa and suppressing the production of glucose from starch and oligosaccharides. However, most of them are derived from natural plants.

ところで、糖尿病は、インスリン依存性(I型)と非依存性(II型)に分けられるが、後者が糖尿病全体の約90%を占めており、その病態はインスリン分泌の遅延と肝臓や筋肉などの組織におけるインスリン抵抗性のため、食事摂取後の高血糖によって特徴づけられる。   By the way, diabetes is divided into insulin dependence (type I) and non-dependence (type II), and the latter accounts for about 90% of all diabetes, and its pathological condition is delayed insulin secretion, liver and muscle, etc. Insulin resistance in other tissues is characterized by hyperglycemia after meal intake.

したがって、食事療法や運動療法によっても高血糖、特に食後過血糖がみられるときには、デンプンやショ糖の消化・吸収を遅延させ、血糖値の上昇を抑制すれば、膵β細胞からのインスリン分泌を促進させたり、インスリン注射をすることなく、血糖をコントロールすることが可能となる。   Therefore, when hyperglycemia, especially postprandial hyperglycemia, is observed even after diet and exercise therapy, insulin secretion from pancreatic β cells can be reduced by delaying the digestion and absorption of starch and sucrose and suppressing the increase in blood glucose level. It is possible to control blood sugar without promoting or injecting insulin.

一方、軽い症状の糖尿病治療に広く用いられているα‐グルコシダーゼ阻害剤は、小腸でのα‐グルコシダーゼを阻害することにより糖の吸収を遅延させ、食後の過血糖を抑制する薬理効果をもち、長期の使用で空腹時血糖価、HbA1c価(糖尿病の血糖管理の指標とされている成人ヘモグロビン)の改善も認められているが、このα‐グルコシダーゼ阻害剤は食後高血糖が目立つが、空腹時血糖があまり高くない症状、すなわち比較的軽症のII型糖尿病患者への適用が最もよいとされている。 On the other hand, α-glucosidase inhibitors widely used in the treatment of mildly ill diabetes have a pharmacological effect that inhibits postprandial hyperglycemia by delaying sugar absorption by inhibiting α-glucosidase in the small intestine, Improvement in fasting blood glucose level and HbA 1c level (adult hemoglobin, which is an index of blood glucose management in diabetes) has been observed with long-term use, but this α-glucosidase inhibitor is conspicuous in postprandial hyperglycemia, but fasting It is said that it is best applied to symptoms with relatively low blood glucose, that is, relatively mild type II diabetic patients.

これらの糖尿病治療薬の原料は、主に植物を原料として調製されているが、この原料となる植物としては、例えばマオウ(Ephedra Herb)(特許文献1参照)、ヘラクレウム・ラナツム(Heracleum lanatum)及びドロノキ(Populus)(特許文献2参照)、ニシキギ科のサラシア・ブリノイデス(Salacia prinoides)(特許文献3参照)、シソ(特許文献4参照)、紅景天属(Rhodiola)植物(特許文献5参照)、アオイ科フヨウ属植物(特許文献6参照)、エゾイシゲ(Pelvetia wrightii Okamura)(特許文献7参照)、トリコカウロン(Trichocaulon)属又はフーディア(Hoodia)属植物(特許文献8参照)、ハナバ葉(Lagerstroemia Speciosa、Linn又はPers.)(特許文献9参照)などがある。
他方、ピロリジデインアルカロイド(特許文献10及び11参照)及びその配糖体(非特許文献1、2参照)が弱いグルコシダーゼ阻害活性を示すことは知られている。
The raw materials for these anti-diabetic drugs are mainly prepared from plants as raw materials. Examples of plants used as the raw materials include Ephedra Herb (see Patent Document 1), Heracleum lanatum, and Heracleum lanatum. Populus (see Patent Document 2), Salacia prinoides (see Patent Document 3), perilla (see Patent Document 4), Rhodiola plant (see Patent Document 5) , Plants of the genus Fuaceae (see Patent Document 6), Pelvetia wrighti Okama (see Patent Document 7), Trichocaulon or Hoodia genus plants (see Patent Document 8), Hanaba leaves (La) erstroemia Speciosa, Linn or Pers.) (see Patent Document 9), and the like.
On the other hand, it is known that pyrrolidide alkaloids (see Patent Documents 10 and 11) and glycosides thereof (see Non-Patent Documents 1 and 2) exhibit weak glucosidase inhibitory activity.

特開平9−2963号公報(特許請求の範囲その他)JP-A-9-2963 (Claims and others) 特表平10−508880号公報(特許請求の範囲その他)JP 10-508880 A (Claims and others) 特開平11−29472号公報(特許請求の範囲その他)JP-A-11-29472 (Claims and others) 特開2000−102383号公報(特許請求の範囲その他)JP 2000-102383 (Claims and others) 特開2000−128793号公報(特許請求の範囲その他)JP 2000-128793 A (Claims and others) 特開2000−239164号公報(特許請求の範囲その他)JP 2000-239164 A (Claims and others) 特開2000−342224号公報(特許請求の範囲その他)JP 2000-342224 A (Claims and others) 特開2002−68994号公報(特許請求の範囲その他)JP 2002-68994 A (Claims and others) 特開2001−39880号公報(特許請求の範囲その他)JP 2001-39880 A (Claims and others) 特開平3−106883号公報(特許請求の範囲その他)Japanese Patent Laid-Open No. 3-106883 (Claims and others) 特開平3−141280号公報(特許請求の範囲その他)Japanese Patent Laid-Open No. 3-141280 (Claims and others) 「テトラヘドロン・レターズ(Tetrahedron Letters)」、第35巻、第42号、1994年、p.7849−7852"Tetrahedron Letters", Vol. 35, No. 42, 1994, p. 7849-7852 「カーボハイドレート・レターズ(Carbohydrate Letters)」、第2巻、第3号、1996年、p.167−174“Carbohydrate Letters”, Vol. 2, No. 3, 1996, p. 167-174

本発明は、高いα‐グルコシダーゼ阻害作用を有し、これまで知られている糖尿病治療薬よりも優れた治療効果を示す植物由来の新規な血糖上昇抑制剤を提供することを目的としてなされたものである。   The present invention has been made for the purpose of providing a novel plant-derived antihyperglycemic agent that has a high α-glucosidase inhibitory action and exhibits a therapeutic effect superior to that of known therapeutic agents for diabetes. It is.

最近、フィジーを含む南太平洋諸国では、食生活環境の変化から、1960年までは皆無であった糖尿病患者が急増し、大きな社会問題となっている。
ところで、この糖尿病を治療するために、いくつかの植物が用いられており、それらの中にはフトモモ科(Myrtaceae)に属するマレーフトモモ[Syzygium malaccense(L.)Merrill & Perry]、バンジロウ・グアバ[Psidium guajava(L.)]、デカスペルマム・フルティコサム(Decaspermum fruticosum Forst.)などが含まれているが、本発明者の研究の結果、この中のフィジー語でカビカ(Kavika)と称されるマレーフトモモの樹皮から得られる物質が強いα‐グルコシダーゼ阻害作用を示すことを見出し、この知見に基づいて本発明をなすに至った。
Recently, in the South Pacific countries including Fiji, due to changes in the dietary environment, there has been a rapid increase in the number of diabetic patients that had not existed until 1960, which has become a major social problem.
By the way, in order to treat this diabetes, several plants are used, and among them, the male yellow peach (Syzygium malaccense (L.) Merrill & Perry) belonging to Myrtaceae, Banjiro guava [ Psidium guajava (L.)], Decasperum fruticosum Forst. And the like, but as a result of the inventor's research, Malay peach called Kabika in Fiji It has been found that a substance obtained from bark exhibits a strong α-glucosidase inhibitory action, and the present invention has been made based on this finding.

すなわち、本発明は、

Figure 2005132837
で表わされるピロリジデインアルカロイド配糖体の金属結合体を有効成分としてなる血糖上昇抑制剤、及びフトモモ科(Myrtaceae)、マレーフトモモ[Syzygium malaccense(L.)Merrill & Perry]植物の樹皮のメチルアルコール浸出物を有効成分としてなる血糖上昇抑制剤、及びフトモモ科(Myrtaceae)、マレーフトモモ[Syzygium malaccense(L.)Merrill & Perry]植物の樹皮のメチルアルコール浸出液を減圧下に濃縮し、得られた濃縮残渣を酢酸エチルエステルと水との間で分配処理し、得られた水層についてさらにn‐ブチルアルコールとの間の分配処理を行ったのち、水層から固形分を回収することを特徴とする上記の血糖上昇抑制剤の製造方法を提供するものである。 That is, the present invention
Figure 2005132837
A blood glucose elevation inhibitor comprising a metal conjugate of a pyrrolidideine alkaloid glycoside represented by the formula, and methyl alcohol in the bark of a plant of Myrtaceae, Syzygium malaccense (L.) Merrill & Perry Antihyperglycemic agent comprising leachables as an active ingredient, and methyl alcohol exudate from bark of Myrtaceae and Syzygium malaccense (L.) Merrill & Perry plants under reduced pressure, and the resulting concentration The residue is partitioned between acetic acid ethyl ester and water, and the resulting aqueous layer is further partitioned between n-butyl alcohol and then the solid content is recovered from the aqueous layer. Said blood sugar elevation inhibitor There is provided a manufacturing method.

本発明の血糖上昇抑制剤は、例えばマレーフトモモの新鮮な樹皮を原料として製造することができる。
すなわち、先ずマレーフトモモの樹皮を、好ましくは粉砕して細かい粒状とする。このチップサイズは微細であればあるほど抽出効率が大きくなるが、あまり微細にすると取り扱いにくくなるので、通常は0.1〜3mm、好ましくは0.3〜1.5mmのサイズに粉砕して用いる。
The blood sugar elevation inhibitor of the present invention can be produced, for example, using fresh bark of male peach peach as a raw material.
That is, first, the bark of male peach is preferably pulverized into fine granules. The finer the chip size, the greater the extraction efficiency. However, if the chip size is too small, it becomes difficult to handle, so it is usually ground to 0.1 to 3 mm, preferably 0.3 to 1.5 mm. .

次に、このようにして得た粒状体をメチルアルコールのような抽出溶媒で浸出する。このメチルアルコールの使用量は、粒状体の体積割合で2〜10倍、好ましくは3〜6倍の範囲で選ばれる。浸出は室温下、静置して行うが、所望により浸出速度を速めるために加温したり、かきまぜることもできる。   Next, the granular material thus obtained is leached with an extraction solvent such as methyl alcohol. The amount of methyl alcohol used is selected in the range of 2 to 10 times, preferably 3 to 6 times, in terms of the volume ratio of the granular material. The leaching is carried out by standing at room temperature, but can be heated or agitated to increase the leaching rate if desired.

また、メチルアルコールを還流させながら行うこともできる。この際の抽出溶媒としては、メチルアルコールに対し、エチルアルコールやジメチルスルホキシド、ジメチルホルムアミドなどを添加して溶解力を増強したものを用いることもできる。浸出時間は、浸出条件より左右されるが、通常50〜180時間の範囲であり、多くの場合70〜150時間で十分である。   It can also be carried out while refluxing methyl alcohol. As the extraction solvent at this time, a solvent in which ethyl alcohol, dimethyl sulfoxide, dimethylformamide, or the like is added to methyl alcohol to enhance the dissolving power can also be used. The leaching time depends on the leaching conditions, but is usually in the range of 50 to 180 hours, and in many cases 70 to 150 hours is sufficient.

次に、このようにして得た浸出液から溶媒を留去して固体残渣を得る。この際、減圧や加熱を行って留去を促進させることが好ましい。
得られた残渣を、次いで非水溶性有機溶媒、例えば酢酸エチルエステルと水とで分配処理し、水層部をさらにn‐ブチルアルコールで分配処理し、水層を分離したのち、これを凍結乾燥することにより前記一般式(I)の化合物の金属結合体を得ることができる。
このものは、例えば、それを水に溶解させたのち、水酸化バリウム粉末を加え、生成した沈殿を除去し、凍結乾燥することにより精製することができる。
Next, the solvent is distilled off from the leachate thus obtained to obtain a solid residue. At this time, it is preferable to promote distillation by reducing pressure or heating.
The resulting residue is then partitioned with a water-insoluble organic solvent such as ethyl acetate and water, the aqueous layer is further partitioned with n-butyl alcohol, and the aqueous layer is separated and lyophilized. By doing so, a metal conjugate of the compound of the general formula (I) can be obtained.
This can be purified by, for example, dissolving it in water, adding barium hydroxide powder, removing the formed precipitate, and lyophilizing.

このようにして得た精製物は、α‐グルコシダーゼ阻害活性99.5%を示した。これに対し、市販されているα‐グルコシダーゼ阻害剤の放線菌の1種であるアクチノプレーンズ(Actinoplanes)属の培養液から得られるアカルボース(acarbose)及び同じく放線菌の培養液から得られたアミノ酸バリオールにグリセロールを脱水縮合させたボグリボース(voglibose)のα‐グルコシダーゼ阻害作用は、それぞれ90.6%及び98.7%であった。
このことより、本発明の血糖上昇抑制剤は、従来のものに匹敵する又はより優れた薬理効果を示すことが分る。
The purified product thus obtained showed 99.5% α-glucosidase inhibitory activity. On the other hand, acarbose obtained from a culture solution of Actinoplanes genus which is one of the actinomycetes of commercially available α-glucosidase inhibitors, and amino acid variol obtained from the culture solution of actinomycetes The α-glucosidase inhibitory effect of voglibose obtained by dehydrating glycerol with glycerol was 90.6% and 98.7%, respectively.
From this, it can be seen that the blood sugar elevation inhibitor of the present invention exhibits a pharmacological effect comparable to or superior to conventional ones.

このようにして得た精製物について、核磁気共鳴スペクトル1H−NMR及び13C−NMRを測定し、解析した結果、この主成分は、一般式(I)の化学構造をもつピロリジデインアルカロイド配糖体(Casuarine‐6‐O‐α‐D‐glucoside)であると同定された。
また、蛍光X線元素分析の結果、この精製物は、マグネシウム、カリウム、カルシウム、鉄、銅、亜鉛などの金属を含むことが分った。
そして、精製したカビカ(H)画分の酵素阻害活性は2.4μg/mlと高いにもかかわらず、単離精製したピロリジデインアルカロイド配糖体の酵素阻害活性は43μg/mlと弱いこと、これにマグネシウム塩又は亜鉛塩を加えると、18.5μg/ml又は5.7μg/mlに増大することからみて、本発明の血糖上昇抑制作用は、前記一般式(I)の化学構造をもつピロリジデインアルカロイド配糖体と金属との結合体に基づくものであることが分る。
As a result of measuring and analyzing nuclear magnetic resonance spectra 1 H-NMR and 13 C-NMR for the purified product thus obtained, this main component is a pyrrolidideine alkaloid having a chemical structure of the general formula (I). It was identified as a glycoside (Casuarine-6-O-α-D-glucoside).
As a result of fluorescent X-ray elemental analysis, it was found that the purified product contained metals such as magnesium, potassium, calcium, iron, copper, and zinc.
And, although the enzyme inhibitory activity of the purified mold (H) fraction is as high as 2.4 μg / ml, the enzyme inhibitory activity of the isolated and purified pyrrolididein alkaloid glycoside is as weak as 43 μg / ml, When magnesium salt or zinc salt is added to this, the increase in blood glucose level is increased to 18.5 μg / ml or 5.7 μg / ml. It can be seen that it is based on a conjugate of a didein alkaloid glycoside and a metal.

本発明の血糖値上昇抑制剤は、これまでのバンジロウ・グアバから抽出される血糖値上昇抑制剤に比べ、約3倍以上の抑制効果を示す。また、市販品例えばアカルボース又はボグリボースと比較しても同等若しくはより優れた抑制効果を示すので、α‐グルコシダーゼ阻害作用による血糖値上昇抑制剤として好適である。   The blood glucose level elevation inhibitor of the present invention exhibits a suppression effect of about 3 times or more compared to conventional blood sugar level elevation inhibitors extracted from bunjirou guava. In addition, since it exhibits the same or better inhibitory effect as compared with commercially available products such as acarbose or voglibose, it is suitable as a blood glucose level increase inhibitor by an α-glucosidase inhibitory action.

次に、実施例により本発明を実施するための最良の形態をさらに詳細に説明するが、本発明はこれらによりなんら限定されるものではない。
なお、この例におけるα‐グルコシダーゼ阻害作用は以下の方法により測定した。
Next, the best mode for carrying out the present invention will be described in more detail by way of examples, but the present invention is not limited to these at all.
In addition, the α-glucosidase inhibitory action in this example was measured by the following method.

(1)酵素・基質溶液の調製
ウイスター(Wistar系)ラット(6週令・オス)の小腸粘膜上部を洗浄後かき出し、粘膜1gに対し5mM濃度のEDTAを含む100mM濃度のリン酸カリウム緩衝液(pH7.0)を1ml加え、4℃においてホモジナイズ処理した。このようにして得た処理物を21,000×gで60分間遠心分離処理したのち、沈澱物に3%トリトンX−100を含む100mM濃度リン酸カリウム緩衝液(pH7.0)を遠心後の上清と同量加え、4℃で60分間かきまぜることにより可溶化させた。得られた溶液を110,000×gで90分間遠心処理し、得た上清を10mM濃度リン酸カリウム緩衝液を外液として24時間透析することにより酵素溶液を調製した。また、基質溶液としてはショ糖を用い、最終濃度を80mMとした。
(1) Preparation of Enzyme / Substrate Solution The upper mucosa of the small intestine of Wistar rats (6 weeks old, male) was washed out and scraped out, and 100 mM potassium phosphate buffer (containing 5 mM EDTA per 1 g mucosa) 1 ml of pH 7.0) was added and homogenized at 4 ° C. The treated product thus obtained was centrifuged at 21,000 × g for 60 minutes, and then 100 mM potassium phosphate buffer (pH 7.0) containing 3% Triton X-100 in the precipitate was centrifuged. The same amount as the supernatant was added and solubilized by stirring at 4 ° C. for 60 minutes. The obtained solution was centrifuged at 110,000 × g for 90 minutes, and the obtained supernatant was dialyzed for 24 hours using 10 mM potassium phosphate buffer as an external solution to prepare an enzyme solution. Further, sucrose was used as the substrate solution, and the final concentration was 80 mM.

(2)酵素活性測定
試験管中で基質溶液400μlに検体溶液100μlを最終濃度が1mg/mlになるように加え、さらに酵素100μlを加えて37℃において30分間反応させたのち、試験管を沸騰水浴中に2分間浸漬して反応を停止させた。
次いで、発色試薬(和光純薬社製、商品名「グルコースB−テストワコー」)3mlを分注し、これに反応液の一部(20μl)を加え、37℃で20分間反応させたのち、吸光度(A505)を測定することにより、グルコース濃度を求めた。また、検体がGOD活性へ及ぼす影響を考慮して、基質を最終濃度240mg/dlのグルコースとして、37℃において20分間反応させ、その結果に基づいて数値を補正した。
(2) Enzyme activity measurement In a test tube, add 100 μl of the sample solution to 400 μl of the substrate solution to a final concentration of 1 mg / ml, add 100 μl of the enzyme and react at 37 ° C. for 30 minutes, and then boil the test tube The reaction was stopped by immersing in a water bath for 2 minutes.
Next, 3 ml of a coloring reagent (trade name “Glucose B-Test Wako”, manufactured by Wako Pure Chemical Industries, Ltd.) was dispensed, and a part of the reaction solution (20 μl) was added thereto, followed by reaction at 37 ° C. for 20 minutes. The glucose concentration was determined by measuring the absorbance (A 505 ). In consideration of the influence of the specimen on GOD activity, the substrate was reacted at a final concentration of 240 mg / dl glucose for 20 minutes at 37 ° C., and the numerical value was corrected based on the result.

(3)タンパク定量
ロウリー(Lowry)法[「ジャーナル・オブ・バイオロジカル・ケミストリー(J.Biol.Chem.)」,第193巻,第265ページ(1951)参照]により行った。
(3) Protein quantification It was performed by the Lowry method [see “J. Biol. Chem.”, Vol. 193, page 265 (1951)].

新鮮なマレーフトモモ樹皮(平均粒径1mm)4.0kgを3倍体積のメチルアルコールに浸漬し、5日間抽出した。この抽出液から溶媒を減圧留去することにより粗抽出残渣(A)を得た。
次に、この粗抽出残渣(A)を同体積の酢酸エチルエステルと水との間で分配させ、酢酸エチル層から酢酸エチルエステル可溶分(B)2.7gを得た。一方、水層(C)をさらに同体積のn‐ブチルアルコールと水との間で分配させて、水層とn‐ブチルアルコール層に分け、n‐ブチルアルコール層からn‐ブチルアルコール可溶分(D)9.5gを回収し、またこの水層を凍結乾燥することにより、固体分(E)[以下未精製カビカ(E)という]108gを得た。
次いでこの未精製カビカ(E)を水に溶解し、水酸化バリウム粉末を加えて沈殿を生成させ、この沈殿を除いたのち、液相部分を凍結乾燥することにより、精製カビカ(F)を約60質量%の収率で得た。以上の方法の工程図を図1として示す。
4.0 kg of fresh male peach bark (average particle size: 1 mm) was immersed in 3 volumes of methyl alcohol and extracted for 5 days. The solvent was distilled off from the extract under reduced pressure to obtain a crude extraction residue (A).
Next, this crude extraction residue (A) was partitioned between the same volume of ethyl acetate and water, and 2.7 g of ethyl acetate soluble matter (B) was obtained from the ethyl acetate layer. On the other hand, the water layer (C) is further divided between n-butyl alcohol and water of the same volume, and is divided into an aqueous layer and an n-butyl alcohol layer. (D) 9.5 g was recovered, and the aqueous layer was freeze-dried to obtain 108 g of a solid (E) [hereinafter referred to as unpurified mold (E)].
Subsequently, this unpurified mold (E) is dissolved in water, and a barium hydroxide powder is added to form a precipitate. After removing this precipitate, the liquid phase portion is freeze-dried to obtain purified mold (F) about Obtained in a yield of 60% by weight. A process diagram of the above method is shown in FIG.

このようにして得た各画分のα‐グルコシダーゼ阻害率は、粗抽出残渣(A)98.0%、酢酸エチルエステル可溶分(B)9.0%、n‐ブチルアルコール可溶分(D)79.0%、未精製カビカ(E)99.1%、精製カビカ(F)99.5%であった。
また、阻害活性の基質特異性(IC50)を未精製カビカ(E)及び精製カビカ(F)について測定し、その結果を市販品のボグリボース及びアカルボースのそれとともに表1に示す。
The α-glucosidase inhibition rate of the fractions thus obtained was as follows: crude extraction residue (A) 98.0%, ethyl acetate soluble fraction (B) 9.0%, n-butyl alcohol soluble fraction ( D) 79.0%, unpurified mildew (E) 99.1%, and purified mildew (F) 99.5%.
Further, the substrate specificity (IC 50 ) of the inhibitory activity was measured for unpurified mold (E) and purified mold (F), and the results are shown in Table 1 together with those of commercially available voglibose and acarbose.

Figure 2005132837
Figure 2005132837

この表から分るように、未精製カビカ(E)及び精製カビカ(F)は市販品と同等の強い活性を示し、また広い範囲の酵素基質に対し阻害作用を有する。   As can be seen from this table, unpurified mold (E) and purified mold (F) have a strong activity equivalent to that of commercially available products and have an inhibitory action on a wide range of enzyme substrates.

この血糖上昇抑制を示す化合物を特定するため以下のような実験を行った。
すなわち、未精製カビカ(E)10gをShephadexLH−20を用いてカラムクロマトグラフィーに付し、始めに流出する部分のメタノール難溶部から精製カビカ(G)3gを得た。精製カビカ(G)は酵素基質にスクローゼを用いたときの酵素阻害活性はIC50が4.4μg/mlと著しく高い値を示した。さらに、精製カビカ(G)3gをカラム(Waters Carbohydrate Analysis Columun)を用いて高速液体クロマトグラフィーに付し、溶媒アセトニトリル:水=4:1にて流出させ、精製カビカ(H)1gを得た。この収率は新鮮マレーフトモモの樹皮に基づき約0.25質量%、未精製カビカ(E)に基づき約1質量%であった。この精製カビカ(H)について酵素阻害活性を調べたところ、IC502.4μg/mlとさらに活性が強まっていることが分った。以上の方法の工程図を図2として示す。
The following experiment was conducted in order to identify a compound exhibiting the suppression of blood glucose elevation.
That is, 10 g of unpurified mildew (E) was subjected to column chromatography using Shephadex LH-20, and 3 g of purified mildew (G) was obtained from the methanol-solubility part of the first flowing out portion. In purified mold (G), the enzyme inhibitory activity when sucrose was used as the enzyme substrate showed an extremely high IC 50 value of 4.4 μg / ml. Further, 3 g of purified mold (G) was subjected to high performance liquid chromatography using a column (Waters Carbohydrate Analysis Column), and was eluted with solvent acetonitrile: water = 4: 1 to obtain 1 g of purified mold (H). The yield was about 0.25% by weight based on fresh barberry peach bark and about 1% by weight based on unrefined mildew (E). When the enzyme inhibitory activity of this purified mold (H) was examined, it was found that the activity was further increased to IC 50 2.4 μg / ml. A process diagram of the above method is shown in FIG.

精製カビカ(G)2gをイオン交換樹脂(オルガノ株式会社製、アンバーライトCG120)を用いて吸着後、0.1Mアンモニア水により流出させ、高速液体クロマト上純粋な物質50mgを得た。この物質の核磁気共鳴スペクトル、1H−NMRを図3に、13C−NMRを図4に示す。これらのスペクトルを既知のデータ[テトラヘドロン・レターズ(Tetrahedron Letters)]、第35巻(第42号)、1994年、第7849〜7852ページ及びカーボハイドレート・レターズ(Carbohydrate Letters)]、第2巻(第3号)、1996年、第167〜174ページと対比した結果、

Figure 2005132837
で示されるカズアリン‐6‐O‐α‐D‐グルコシドと同定された。
また、蛍光X線元素分析装置[堀場製作所製、製品名「メサ(MESA)−500W」を用いて分析した結果、炭素、水素、酸素、窒素以外に表2に示す元素が含まれていることが分った。 After 2 g of purified mold (G) was adsorbed using an ion exchange resin (Amberlite CG120, manufactured by Organo Corporation), it was discharged with 0.1 M aqueous ammonia to obtain 50 mg of a pure substance on high performance liquid chromatography. FIG. 3 shows the nuclear magnetic resonance spectrum and 1 H-NMR of this substance, and FIG. 4 shows the 13 C-NMR. These spectra are known data [Tetrahedron Letters], Volume 35 (No. 42), 1994, pages 7849-7852 and Carbohydrate Letters], Volume 2. (No. 3), 1996, as a result of comparison with pages 167 to 174,
Figure 2005132837
It was identified as kazualin-6-O-α-D-glucoside.
Moreover, as a result of analysis using a fluorescent X-ray elemental analyzer [manufactured by Horiba, product name “MESA-500W”, the elements shown in Table 2 are included in addition to carbon, hydrogen, oxygen, and nitrogen. I found out.

Figure 2005132837
Figure 2005132837

実施例3で得たピロリジン・アルカロイド配糖体のα‐グルコシダーゼ阻害作用をスクラーゼを用いて試験したところIC5043μg/mlであり、精製カビカ(G)の阻害活性IC504.4μg/mlと比較して活性が約1/10と著しく弱いことが分った。 The α-glucosidase inhibitory action of the pyrrolidine alkaloid glycoside obtained in Example 3 was tested using sucrase. The IC 50 was 43 μg / ml, and the inhibitory activity IC 50 of purified mold (G) was 44 μg / ml. In comparison, the activity was found to be remarkably weak at about 1/10.

単離精製したカズアリン‐6‐O‐α‐D‐グルコシドの水溶液に、酢酸マグネシウム(Mg換算49wt%)又は酢酸亜鉛(Zn換算2.3wt%)を別々に加え、十分にかきまぜたのち、それぞれのα‐グルコシダーゼ阻害作用を調べた。
その結果、酢酸マグネシウムを加えたものはIC5018.5μg/ml、酢酸亜鉛を加えたものはIC505.7μg/mlと活性が増すことが判明した。
Separately, add magnesium acetate (49 wt% in terms of Mg) or zinc acetate (2.3 wt% in terms of Zn) separately to the aqueous solution of isolated and purified kazualin-6-O-α-D-glucoside. The inhibitory action of α-glucosidase was investigated.
As a result, it was found that the activity increased with the addition of magnesium acetate, IC 50 18.5 μg / ml, and the addition of zinc acetate with IC 50 5.7 μg / ml.

(血糖値上昇抑制効果)
正常Wistar系ラット、ストレプトゾトシン(streptozotocin)糖尿病ラット(以下STZという)と自然発症糖尿病ラット(以下GKラットという)に未精製カビカ(E)を7.5mg/kgの濃度で精製水に溶解したものを単回経口投与した。また、STZラットとしては7週令の正常Wistar系ラットを用い、STZ30mg/kgを尾静脈より2回連日投与し、糖負荷時血糖値が300mg/dl−350mg/dlに達したものを用いた。対照群には同量の精製水を投与した。検体投与15分後にスクロースを3.75mg/kgで経口投与し、投与30、60、120分後に尾静脈より採血し、その血漿グルコースをGOD法で測定した。その結果を経時的なグルコース量を示すグラフとして図5に示す。図中、■印は、試験群に対する結果であり、◆印は対照群に対する結果である。
(Inhibition effect on blood sugar level increase)
Normal Wistar rats, streptozotocin diabetic rats (hereinafter referred to as STZ) and spontaneously diabetic rats (hereinafter referred to as GK rats) prepared by dissolving unpurified mold (E) in purified water at a concentration of 7.5 mg / kg A single oral dose was given. In addition, 7-week-old normal Wistar rats were used as STZ rats, and STZ 30 mg / kg was administered twice daily from the tail vein, and the glucose level during glucose loading reached 300 mg / dl-350 mg / dl. . The same amount of purified water was administered to the control group. 15 minutes after sample administration, sucrose was orally administered at 3.75 mg / kg, blood was collected from the tail vein at 30, 60, and 120 minutes after administration, and the plasma glucose was measured by the GOD method. The results are shown in FIG. 5 as a graph showing the amount of glucose over time. In the figure, ■ indicates the results for the test group, and ◆ indicates the results for the control group.

この図から分るように、単回投与で未精製カビカ(E)投与群は比較した場合、正常ラット、糖尿病ラットともにスクロース投与後の血糖上昇を抑制した。特にスクロース投与30分後において有意な抑制が認められた。すなわち、正常ラットでは、スクロース負荷30分後に非投与群で198.4mg/dlであった血糖値が160.5mg/dlへと有意に抑制され(危険率1%以下)、また、60分で179.9mg/dlが158.3mg/dlに、129分で165.7mg/dlが152.7mg/dlにと、それぞれ有意に(危険率5%以下)低下していた。同様に、ストレプトゾトシンで糖尿病を引き起こさせたラットや、自然発症に罹患したラットでも、同様な効果が確認された。   As can be seen from this figure, when the unpurified mildew (E) administration group was compared with a single administration, the increase in blood glucose after administration of sucrose was suppressed in both normal rats and diabetic rats. In particular, significant suppression was observed 30 minutes after administration of sucrose. That is, in normal rats, the blood glucose level, which was 198.4 mg / dl in the non-administration group 30 minutes after sucrose loading, was significantly suppressed to 160.5 mg / dl (risk rate of 1% or less), and in 60 minutes 179.9 mg / dl was reduced to 158.3 mg / dl and 165.7 mg / dl was reduced to 152.7 mg / dl in 129 minutes, respectively (risk rate 5% or less). Similarly, similar effects were confirmed in rats that were caused by diabetes by streptozotocin and rats that were spontaneously affected.

(長期継続投与効果)
ラット7匹ずつの2グループに対し、それぞれ未精製カビカ(E)を7.5mg/kgずつ、又は37.5mg/kgずつ28日間投与した。また対照群には精製水を投与した。0、7、21及び28日目に尾静脈より採血を行い、その血漿グルコースを測定した。この結果をグラフとして図6に示す。図では対照群を◆印で、7.5mg/kg投与を■印で、37.5mg/kg投与を▲印で示した。また糖負荷後30分の血漿グルコースを測定し、その結果をグラフとして図7に示す。各数値は7個の平均値である。
(Long-term continuous administration effect)
Two groups of 7 rats each were administered unpurified mildew (E) at a dose of 7.5 mg / kg or 37.5 mg / kg for 28 days. In addition, purified water was administered to the control group. On days 0, 7, 21 and 28, blood was collected from the tail vein and the plasma glucose was measured. The results are shown as a graph in FIG. In the figure, the control group is indicated by ♦, 7.5 mg / kg administration is indicated by ■, and 37.5 mg / kg administration is indicated by ▲. Further, plasma glucose at 30 minutes after glucose loading was measured, and the results are shown as a graph in FIG. Each numerical value is an average value of 7 pieces.

これらの図から分るように、長期投与においても、未精製カビカ(E)を投与した群は、対照群と比較して、血糖値上昇抑制又は改善する傾向が認められる。すなわち、投与2〜3週以降では、ストレプトゾトシンで糖尿病を引き起こさせたラットの空腹時血糖を450mg/dl前後から350〜400mg/dlへ(図6)、また、糖負荷後30分の血糖を500mg/dl前後から400〜450mg/dlへとそれぞれ低下させた(図7)。   As can be seen from these figures, even in the long-term administration, the group administered with unpurified mold (E) tends to suppress or improve the increase in blood glucose level as compared with the control group. That is, after 2 to 3 weeks of administration, the fasting blood glucose of rats caused diabetes with streptozotocin was changed from about 450 mg / dl to 350 to 400 mg / dl (FIG. 6), and the blood sugar 30 minutes after glucose load was 500 mg. / Dl was reduced from about 400 to 450 mg / dl (FIG. 7).

膵臓ランゲルハンス島のβ細胞の状態を調べるため、β細胞内のインスリン量をインスリン抗体を用いた免疫染色を行った。染色キット(VACTASTAIN Elite ABC Rabbit IgG kit(Vector Laboratories,CA,U.S.A.)を使用し、一次抗体にAnti−porcin Insulin antibody(CAPPEL RESERCH REAGENTS)を、二次抗体にキットのGoat anti−rabbit IgG antibodyを用いた。
また、肝臓内の脂肪量は、オイルレッドオー(Oil Red O)法を行い、脂肪滴・中性脂肪を染色して観察した。
さらに、腎臓の糸球体の状況を調べるため、PAM染色を行い、腎糸球体基底膜を染色し、HE(ヘマトキシリン−エオジン)で核染色・後染色した。
In order to examine the state of β cells in pancreatic islets of Langerhans, the amount of insulin in β cells was immunostained using an insulin antibody. Using a staining kit (VACTASTAIN Elite ABC Rabbit IgG kit (Vector Laboratories, CA, USA), Anti-porin Insulin antibody (CAPPEL RESERCH REAGENTS) as a primary antibody, and secondary antibody as a secondary antibody kit Rabbit IgG antibody was used.
The amount of fat in the liver was observed by oil red O (Oil Red O) method, staining lipid droplets and neutral fat.
Further, in order to examine the state of the glomeruli of the kidney, PAM staining was performed, the kidney glomerular basement membrane was stained, and nuclear staining / post-staining was performed with HE (hematoxylin-eosin).

この結果、未精製カビカ(E)の長期投与群のランゲルハンス島は対照群のそれと比較して、インスリン含量が多いことが分った。また、形態的にも検体投与群のランゲルハンス島は正常に近いものが多かった。肝臓は対照群と比較して、脂肪量は少なかった。さらに、腎糸球体基底膜(メサンギウム領域)は投与群で正常に近いのに対し、対照群のそれは肥厚しており、また糸球体も萎縮傾向を示した。   As a result, it was found that the islets of Langerhans in the long-term administration group of unpurified mold (E) had a higher insulin content than that in the control group. In terms of morphology, the islets of Langerhans in the sample administration group were often close to normal. The liver had less fat compared to the control group. Furthermore, the glomerular basement membrane (mesangial region) was nearly normal in the administration group, whereas that in the control group was thickened, and the glomeruli also showed a tendency to atrophy.

(毒性試験)
(1)単回経口投与による毒性
未精製カビカ(E)をそれぞれ75、750、1000mg/kgを各群2匹の正常ラットに単回投与し、投与後14日間毒性を観察した。
この結果、本発明の血糖上昇抑制剤は急性毒性を有しないことが分った。
(Toxicity test)
(1) Toxicity after a single oral administration Unpurified mildew (E), 75, 750 and 1000 mg / kg, were each administered once to two normal rats in each group, and the toxicity was observed for 14 days after administration.
As a result, it was found that the blood sugar elevation inhibitor of the present invention has no acute toxicity.

(2)大量経口投与による毒性
未精製カビカ(E)を大量投与した群においても死亡はみられなかった。体重増加の抑制もみられなかった。GOT、GPT値は、750mg/kg投与群で投与1日後にGOP値の軽度な増加がみられたが、7日、14日後では異常はみられなかった。また、外観上の変化や病理組織学的な異常についても検討したが、いずれの群にも異常は認められなかった。
(2) Toxicity caused by large-scale oral administration No death was observed in the group that received large-scale administration of unpurified mildew (E). There was no suppression of weight gain. GOT and GPT values showed a slight increase in GOP value 1 day after administration in the 750 mg / kg administration group, but no abnormality was observed after 7 and 14 days. In addition, changes in appearance and histopathological abnormalities were examined, but no abnormalities were observed in any group.

本発明は、食後の血糖値上昇を抑制するための血糖上昇抑制剤として有用である。   The present invention is useful as a blood glucose increase inhibitor for suppressing an increase in blood glucose level after a meal.

実施例1の操作を示す工程図。FIG. 3 is a process diagram illustrating the operation of the first embodiment. 実施例2の操作を示す工程図。Process drawing which shows operation of Example 2. FIG. 実施例3で得た物質の1H−NMRスペクトル図。 1 H-NMR spectrum diagram of the substance obtained in Example 3. FIG. 実施例3で得た物質の13C−NMRスペクトル図。 13 C-NMR spectrum diagram of the substance obtained in Example 3. FIG. ショ糖を投与した正常ラットの血糖値上昇抑制に対する未精製カビカ(E)成分の効果を示すグラフ。The graph which shows the effect of the unpurified moldy (E) component with respect to suppression of a blood glucose level raise of the normal rat which administered sucrose. 糖尿病ラットに対する未精製カビカ(E)成分の効果を示すグラフ。The graph which shows the effect of an unpurified moldy (E) ingredient with respect to a diabetic rat. 糖尿病ラットの糖負荷後30分後の未精製カビカ(E)成分の効果を示すグラフ。The graph which shows the effect of an unpurified moldy (E) ingredient 30 minutes after sugar load of a diabetic rat.

Claims (3)

Figure 2005132837
で表わされるピロリジデインアルカロイド配糖体の金属結合体を有効成分としてなる血糖上昇抑制剤。
Figure 2005132837
A blood glucose elevation inhibitor comprising a metal conjugate of a pyrrolidideine alkaloid glycoside represented by the formula:
金属がマグネシウム、カルシウム及び亜鉛の中から選ばれた少なくとも1種である請求項1記載の血糖上昇抑制剤。   The blood sugar elevation inhibitor according to claim 1, wherein the metal is at least one selected from magnesium, calcium and zinc. フトモモ科(Myrtaceae)、マレーフトモモ[Syzygium malaccense(L.)Merrill & Perry]植物の樹皮のメチルアルコール浸出液を減圧下に濃縮し、得られた濃縮残渣を酢酸エチルエステルと水との間で分配処理し、得られた水層についてさらにn‐ブチルアルコールとの間の分配処理を行ったのち、水層から固形分を回収することを特徴とする請求項1又は2記載の血糖上昇抑制剤の製造方法。
The methyl alcohol leachate of bark of Myrtaceae and Syzygium malaccense (L. Merrill & Perry) plants was concentrated under reduced pressure, and the resulting concentrated residue was partitioned between ethyl acetate and water. And the obtained aqueous layer is further subjected to a partitioning treatment with n-butyl alcohol, and then the solid content is recovered from the aqueous layer. Method.
JP2004296845A 2003-10-09 2004-10-08 Hyperglycemia inhibitor and method for producing the same Pending JP2005132837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296845A JP2005132837A (en) 2003-10-09 2004-10-08 Hyperglycemia inhibitor and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003350926 2003-10-09
JP2004296845A JP2005132837A (en) 2003-10-09 2004-10-08 Hyperglycemia inhibitor and method for producing the same

Publications (1)

Publication Number Publication Date
JP2005132837A true JP2005132837A (en) 2005-05-26

Family

ID=34656058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296845A Pending JP2005132837A (en) 2003-10-09 2004-10-08 Hyperglycemia inhibitor and method for producing the same

Country Status (1)

Country Link
JP (1) JP2005132837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012555A3 (en) * 2006-07-27 2008-09-25 Isis Innovation Epitope reduction therapy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012555A3 (en) * 2006-07-27 2008-09-25 Isis Innovation Epitope reduction therapy

Similar Documents

Publication Publication Date Title
Pari et al. Antidiabetic activity of Boerhaavia diffusa L.: effect on hepatic key enzymes in experimental diabetes
Pari et al. Effect of tetrahydrocurcumin on blood glucose, plasma insulin and hepatic key enzymes in streptozotocin induced diabetic rats
Yadav et al. Combined treatment of sodium orthovanadate and Momordica charantia fruit extract prevents alterations in lipid profile and lipogenic enzymes in alloxan diabetic rats
Kong et al. A Chinese herbal medicine Ermiao wan reduces serum uric acid level and inhibits liver xanthine dehydrogenase and xanthine oxidase in mice
Ablat et al. Evaluation of antidiabetic and antioxidant properties of Brucea javanica seed
Pari et al. Efficacy of coumarin on hepatic key enzymes of glucose metabolism in chemical induced type 2 diabetic rats
AU2012266308B2 (en) Composition comprising cashew apple extract
Pradeepa et al. Biochemical evaluation of antidiabetic properties of Pithecellobium dulce fruits studied in streptozotocin induced experimental diabetic rats.
Veeramani et al. Protective effect of Cardiospermum halicacabum leaf extract on glycoprotein components on STZ–induced hyperglycemic rats
Ren et al. Structural characterization and tartary buckwheat polysaccharides alleviate insulin resistance by suppressing SOCS3-induced IRS1 protein degradation
Lamichhane et al. Angiopteris helferiana, a fern with great potential medicinal value: Antiadipogenic, anti-inflammatory, and anti-diabetic activity
JP2002212095A (en) alpha-GLUCOSIDASE INHIBITOR
KR20200120884A (en) A Pharmaceutical Composition For Blocking AGEs Production And Promoting AGEs Decomposition Comprising Extracts Of Juglans Mandshurica Maxim., Its Fractions, Or A Physiologically Active Compound Derived Therefrom As Active Ingredient
Quiming et al. In vitro α-glucosidase inhibition and antioxidant activities of partially purified Antidesma bunius fruit and Gynura nepalensis leaf extracts
CN110882302B (en) Natural composition for reducing uric acid, application thereof and xanthine oxidase inhibitor
KR101500836B1 (en) Complex extract of Quercus variabilis fractions and composition for treating or preventing diabetes comprising the same
JP2005132837A (en) Hyperglycemia inhibitor and method for producing the same
Syiem et al. Effects of Potentilla fulgens Linn. on carbohydrate and lipid profiles in diabetic mice
Amare Methanolic Extract of Myrsine africana Leaf Ameliorates Hyperglycemia and Dyslipidemia in Alloxan‐Induced Diabetic Albino Mice
CN112592328B (en) Diaryl heptane-chalcone polymer in alpinia katsumadai, and pharmaceutical composition and application thereof
Marghich et al. Antioxidant activity and inhibition of carbohydrate digestive enzymes activities of Artemisia campestris L.
Flores-Bocanegra et al. In vivo and in vitro α-glucosidase inhibitory activity of perfoliatin a from Melampodium Perfoliatum
JP2004010531A (en) Prophylactic or therapeutic composition for inflammation involving iv-type allergic reaction
James et al. Glucose tolerance test and some biochemical effect of Phyllanthus amarus aquoeus extacts on normaglycemic albino rats
CN108403729B (en) Preparation method of agrocybe cylindracea extract and application of agrocybe cylindracea extract in preparation of uric acid reducing medicine