JP2005131917A - Manufacturing method for composite optical element, and composite optical element - Google Patents

Manufacturing method for composite optical element, and composite optical element Download PDF

Info

Publication number
JP2005131917A
JP2005131917A JP2003370143A JP2003370143A JP2005131917A JP 2005131917 A JP2005131917 A JP 2005131917A JP 2003370143 A JP2003370143 A JP 2003370143A JP 2003370143 A JP2003370143 A JP 2003370143A JP 2005131917 A JP2005131917 A JP 2005131917A
Authority
JP
Japan
Prior art keywords
optical element
resin
glass substrate
resin composition
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003370143A
Other languages
Japanese (ja)
Inventor
Naohito Shiga
直仁 志賀
Masaru Morooka
優 諸岡
Hisashi Goto
尚志 後藤
Kunihisa Koo
邦寿 小尾
Michio Shirai
道雄 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003370143A priority Critical patent/JP2005131917A/en
Publication of JP2005131917A publication Critical patent/JP2005131917A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a composite optical element, which is composed of a glass substrate and a resin layer, by one-time molding, and to impart characteristics wherein a loss of light on an interface between the glass substrate and the resin layer is reduced to a low level. <P>SOLUTION: Metallic oxide particulates with a mean primary particle diameter of 1-20 nm are turned into an organosol wherein an organic compound serves as a dispersion medium; and after the organosol is mixed into an acrylic resin, the dispersion medium is removed so that a resin composition for the optical element can be manufactured. After the composition is applied to the glass substrate, a mold is positioned and brought into contact with the resin composition for the optical element, so that an optical form can be transferred; and in this state, the resin composition for the optical element is cured and molded, so that the composite optical element, wherein the glass substrate and the resin for the optical element are integrated together by forming the interface, can be manufactured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ガラス基材と光学素子用樹脂とが界面を形成して一体化した構成となっている複合型光学素子の製造方法及び複合型光学素子に関する。   The present invention relates to a method for manufacturing a composite optical element and a composite optical element, in which a glass substrate and an optical element resin are integrated by forming an interface.

ガラス基材と光学素子用樹脂とからなる複合型光学素子については、従前より種々提案されている。この複合型光学素子において、ガラス基材と樹脂層との界面では、ガラス基材表面への樹脂層の成形時における樹脂の硬化収縮や、成形後のガラス基材や樹脂の熱膨張・収縮に伴う応力や経時変化に対して充分な接着強度を有することが必要となる。特に、複合型光学素子を構成する樹脂層が比較的厚い層を形成する場合や樹脂層の中心側と周辺側との厚み偏差が大きい場合には、成形時における樹脂の硬化収縮や熱膨張・収縮に伴う応力により、樹脂層にヒケ、歪みが発生する等の転写不良や、樹脂層内に気泡が混入する等の成形不良が生じやすい。   Various types of composite optical elements composed of a glass substrate and a resin for optical elements have been proposed. In this composite optical element, at the interface between the glass substrate and the resin layer, the resin is cured and contracted during molding of the resin layer on the surface of the glass substrate, and the glass substrate and resin after molding are thermally expanded and contracted. It is necessary to have sufficient adhesive strength against the accompanying stress and change with time. In particular, when the resin layer constituting the composite optical element forms a relatively thick layer or when the thickness deviation between the center side and the peripheral side of the resin layer is large, the resin cure shrinkage or thermal expansion / Due to the stress accompanying the shrinkage, transfer defects such as sinks and distortions in the resin layer and molding defects such as bubbles mixed in the resin layer are likely to occur.

このような成形不良を生じることなく複合型光学素子を製造する方法として、特許第2849299号公報には、次のような方法が提案されている。この方法は、樹脂層を成形加工するための型に、樹脂層の完成形状に対して反転した光学形状を形成してキャビティーとし、このキャビティー内に、該キャビティーと略同体積の反応硬化型液状樹脂を充填して硬化させることにより第1の樹脂層を形成する第1の成形工程と、第1の樹脂層の開放側の硬化面上に前記反応硬化型液状樹脂を少量滴下し、該反応硬化型液状樹脂の上にガラス基材を載置して硬化させることにより第2の樹脂層を形成する第2の成形工程と、ガラス基材と第1の樹脂層と第2の樹脂層とが一体化された成形品を型から離型する離型工程とを具備するものである。
特許第2849299号公報
Japanese Patent No. 2849299 proposes the following method as a method of manufacturing a composite optical element without causing such molding defects. In this method, a mold for molding a resin layer is formed with an optical shape inverted with respect to the completed shape of the resin layer to form a cavity, and a reaction of approximately the same volume as the cavity is formed in the cavity. A first molding step of forming a first resin layer by filling and curing a curable liquid resin, and a small amount of the reaction curable liquid resin is dropped on the open cured surface of the first resin layer. A second molding step of forming a second resin layer by placing and curing a glass substrate on the reaction-curable liquid resin, a glass substrate, a first resin layer, and a second And a mold release step of releasing the molded product integrated with the resin layer from the mold.
Japanese Patent No. 2849299

しかしながら、上述した方法のように成形工程を2度に分けて行うことは、成形工数が大幅に増大する上、第2の樹脂層の上面が光学曲面を有する場合には、先に形成した第1の樹脂層の下面とその後に形成する第2の樹脂層の上面との高精度な位置出しが不可欠になり、成形操作が煩雑となる。   However, performing the molding process in two steps as in the method described above greatly increases the number of molding steps, and when the upper surface of the second resin layer has an optical curved surface, High-precision positioning of the lower surface of the first resin layer and the upper surface of the second resin layer formed thereafter is indispensable, and the molding operation becomes complicated.

また、樹脂層の屈折率がガラスの屈折率よりもかなり高く、この屈折率差によってガラス基材と樹脂層との界面では光の損失が顕著に生じる。   In addition, the refractive index of the resin layer is considerably higher than the refractive index of the glass, and this refractive index difference causes a significant loss of light at the interface between the glass substrate and the resin layer.

さらに、ガラス基材としてガラスプリズムを用い、このガラスプリズムの表面に樹脂層を形成する場合、プリズムの縁部側(尖端側)と基部側(肉厚側)とでは極端に厚さが異なることから、樹脂層の熱膨張・収縮や硬化収縮等により、プリズムの光学面における縁部側で面形状の変化が生じやすくなる問題がある。   Furthermore, when a glass prism is used as the glass substrate and a resin layer is formed on the surface of the glass prism, the thickness is extremely different between the edge side (pointed side) and the base side (thick side) of the prism. Therefore, there is a problem that the surface shape is likely to change on the edge side of the optical surface of the prism due to thermal expansion / contraction or curing shrinkage of the resin layer.

本発明は、上述した背景技術における成形工程を2度に分けて行うことにより、あるいは第1の樹脂層と第2の樹脂層との高精度な位置出しが必要になることにより、成形工数が大幅に増大するという課題と、ガラス基材と樹脂層との屈折率差によるガラス基材と樹脂層との界面での光の損失が生じるという課題に鑑みてなされたものであり、樹脂層が比較的厚い層を形成する場合や樹脂層の厚み偏差が大きい場合でも、1回の成形工程での成形を可能とすると共に、ガラス基材と樹脂層との界面での光の損失を小さく抑え、特にガラス基材がガラスプリズムの場合であってもガラスプリズムの面形状の変化を低減することが可能な複合型光学素子の製造方法及び複合型光学素子を提供することを目的とする。   The present invention reduces the number of molding steps by performing the molding process in the background art described above in two steps, or by requiring highly accurate positioning of the first resin layer and the second resin layer. It was made in view of the problem of a significant increase and the problem of loss of light at the interface between the glass substrate and the resin layer due to the difference in refractive index between the glass substrate and the resin layer. Even when a relatively thick layer is formed or when the resin layer has a large thickness deviation, it can be molded in a single molding process, and the loss of light at the interface between the glass substrate and the resin layer is kept small. In particular, an object of the present invention is to provide a composite optical element manufacturing method and composite optical element capable of reducing changes in the surface shape of the glass prism even when the glass substrate is a glass prism.

上記目的を達成するため、請求項1の発明の複合型光学素子の製造方法は、平均一次粒子径が1〜20nmの金属酸化物微粒子を有機化合物を分散媒としたオルガノゾルとし、このオルガノゾルをアクリル樹脂中に混練した後、分散媒を除去して光学素子用樹脂組成物を作製し、これをガラス基材に塗布した後、型を位置出しして光学素子用樹脂組成物に接触させて光学形状を転写し、この状態で光学素子用樹脂組成物を硬化して成形することにより、ガラス基材と光学素子用樹脂とが界面を形成して一体化した複合型光学素子を作製することを特徴とする。   In order to achieve the above object, a method for producing a composite optical element according to the first aspect of the present invention is to use metal oxide fine particles having an average primary particle diameter of 1 to 20 nm as an organosol using an organic compound as a dispersion medium. After kneading in the resin, the dispersion medium is removed to prepare a resin composition for optical elements, and this is applied to a glass substrate, and then the mold is positioned and brought into contact with the optical element resin composition for optical use. By transferring the shape and curing and molding the optical element resin composition in this state, it is possible to produce a composite optical element in which the glass substrate and the optical element resin are integrated to form an interface. Features.

請求項1の発明では、特定の平均一次粒子径の金属酸化物微粒子を有機化合物中に分散したオルガノゾルをアクリル樹脂に混合した後、分散媒を除去するため、混合する際には液状の有機化合物中に分散した状態で金属酸化物微粒子をアクリル樹脂中に分散することができる。このため、二次的な凝集を起こすことなくアクリル樹脂中に均一に分散することができ、金属酸化物微粒子の偏在等によって光学的特性が損なわれることがなくなる。   According to the first aspect of the present invention, an organic sol in which metal oxide fine particles having a specific average primary particle size are dispersed in an organic compound is mixed with an acrylic resin, and then the dispersion medium is removed. The metal oxide fine particles can be dispersed in the acrylic resin while being dispersed therein. For this reason, it can disperse | distribute uniformly in an acrylic resin, without raise | generating secondary aggregation, and an optical characteristic is not impaired by the uneven distribution of a metal oxide microparticle, etc.

アクリル樹脂は、液状状態で金属酸化物微粒子と混合でき、且つ硬化後に光学樹脂として透明性が高いものが得られる上、他の樹脂に比べて所望の機械的・熱的物性を得るための配合がし易いという利点がある。   Acrylic resin can be mixed with metal oxide fine particles in a liquid state, and can be obtained as a highly transparent optical resin after curing, as well as a compound for obtaining desired mechanical and thermal properties compared to other resins. There is an advantage that it is easy to do.

また、ガラス基材の表面に塗布する光学素子用樹脂組成物中に、平均一次粒子径が1〜20nmの金属酸化物微粒子を均一に含有していることにより、ガラス基材上に形成した光学素子用樹脂の熱膨張係数及び硬化反応による収縮が、アクリル樹脂単体を硬化させた場合よりも低減できるため、樹脂層が比較的厚い層を形成する場合や樹脂層の厚み偏差が大きい場合においても、1回の成形工程で成形できると共に、成形時や経時変化での光学面の面形状の変化を生ずることがなくなる。   In addition, the optical element formed on the glass substrate by uniformly containing metal oxide fine particles having an average primary particle diameter of 1 to 20 nm in the resin composition for optical elements applied to the surface of the glass substrate. Since the thermal expansion coefficient of the element resin and the shrinkage due to the curing reaction can be reduced as compared with the case of curing the acrylic resin alone, even when the resin layer is relatively thick or the thickness deviation of the resin layer is large In addition to being able to be molded in a single molding process, there is no change in the surface shape of the optical surface during molding or over time.

請求項2の発明は、請求項1記載の複合型光学素子の製造方法であって、前記金属酸化物微粒子が、球状の酸化ケイ素からなることを特徴とする。   A second aspect of the invention is a method for producing a composite optical element according to the first aspect, wherein the metal oxide fine particles are made of spherical silicon oxide.

請求項2の発明では、金属酸化物微粒子として、球状の酸化ケイ素を用いることにより、アクリル樹脂への分散性が良好となると共に、適宜の処理によってアクリル樹脂との相溶性や化学結合性を発現させることができる。   In the invention of claim 2, by using spherical silicon oxide as the metal oxide fine particles, the dispersibility in the acrylic resin is improved and the compatibility with the acrylic resin and the chemical bondability are expressed by an appropriate treatment. Can be made.

請求項3の発明の複合型光学素子は、少なくとも平均一次粒子径が1〜20nmの金属酸化物微粒子及びアクリル樹脂からなる光学素子用樹脂組成物とガラス基材とが界面を形成して一体化していることを特徴とする。   The composite optical element of the invention of claim 3 is formed by integrating an optical element resin composition comprising at least a metal oxide fine particle having an average primary particle diameter of 1 to 20 nm and an acrylic resin and a glass substrate to form an interface. It is characterized by.

請求項3の発明では、光学素子用樹脂組成物が金属酸化物微粒子とアクリル樹脂とによって形成されているため、ガラス基材上に形成した光学素子用樹脂の熱膨張係数及び硬化反応による収縮が、アクリル樹脂単体を硬化させた場合よりも低減できるため、成形時や経時変化での光学面の面形状の変化を生ずることがなくなる。また、ガラス基材の表面に成形した光学素子用樹脂の表面硬度も、アクリル樹脂単体を硬化させたよりも向上させることができる。さらに、アクリル樹脂とは異なる屈折率を有する金属酸化物微粒子を光学素子用樹脂組成物中に混入することにより、基材のガラスと硬化後の光学素子用樹脂との屈折率差を小さくすることができるため、ガラス基材と樹脂層との界面での光の損失を小さく抑えることができる。   In invention of Claim 3, since the resin composition for optical elements is formed with the metal oxide fine particles and the acrylic resin, the thermal expansion coefficient of the resin for optical elements formed on the glass substrate and the shrinkage due to the curing reaction are reduced. Since it can be reduced as compared with the case where the acrylic resin alone is cured, there is no change in the surface shape of the optical surface at the time of molding or over time. Moreover, the surface hardness of the resin for optical elements molded on the surface of the glass substrate can be improved as compared with the case where the acrylic resin alone is cured. Further, by mixing metal oxide fine particles having a refractive index different from that of the acrylic resin into the optical element resin composition, the difference in refractive index between the glass of the substrate and the cured optical element resin is reduced. Therefore, the loss of light at the interface between the glass substrate and the resin layer can be kept small.

請求項4の発明は、請求項1または2記載の複合型光学素子の製造方法であって、前記ガラス基材として、ガラスプリズムを用いることを特徴とする。   A fourth aspect of the invention is a method for producing a composite optical element according to the first or second aspect, wherein a glass prism is used as the glass substrate.

請求項5の発明は、請求項3記載の複合型光学素子であって、前記ガラス基材が、ガラスプリズムであることを特徴とする。   A fifth aspect of the present invention is the composite optical element according to the third aspect, wherein the glass substrate is a glass prism.

ガラス基材がガラスプリズムである場合には、プリズムの縁部側(尖端側)と基部側(肉厚側)とにおける基材の厚さが不均一である場合が多く、このため縁部側では部分的に薄く、光学素子用樹脂に残留する応力に対抗できない剛性となっている部位を有するこが多いが、請求項4及び5の発明では、光学素子用樹脂の熱膨張係数及び硬化反応による収縮がアクリル樹脂単体を硬化させた場合よりも低減できるため、プリズムのような不均一な厚さを有する基材表面にも光学素子用樹脂を形成できる。   When the glass substrate is a glass prism, the substrate thickness on the edge side (pointed side) and base side (wall thickness side) of the prism is often non-uniform. However, in many cases, the thermal expansion coefficient and the curing reaction of the optical element resin are present. Since the shrinkage due to can be reduced as compared with the case where the acrylic resin alone is cured, the resin for an optical element can also be formed on the surface of the substrate having a non-uniform thickness such as a prism.

本発明の複合型光学素子の製造方法によれば、二次的な凝集を起こすことなく金属酸化物微粒子をアクリル樹脂中に均一に分散することができ、金属酸化物微粒子の偏在等によって光学的特性が損なわれることがなくなる。また、ガラス基材上に形成した光学素子用樹脂の熱膨張係数及び硬化反応による収縮を低減できるため、樹脂層が比較的厚い層を形成する場合や樹脂層の厚み偏差が大きい場合においても、1回の成形工程で成形できると共に、成形時や経時変化での光学面の面形状の変化を生ずることがなくなる。しかも、基材のガラスと硬化後の光学素子用樹脂との屈折率差を小さくすることができるため、ガラス基材と樹脂層との界面での光の損失を小さく抑えることができる。   According to the method for manufacturing a composite optical element of the present invention, the metal oxide fine particles can be uniformly dispersed in the acrylic resin without causing secondary aggregation. The characteristics are not impaired. Moreover, since the thermal expansion coefficient of the resin for optical elements formed on the glass substrate and shrinkage due to the curing reaction can be reduced, even when the resin layer forms a relatively thick layer or when the resin layer has a large thickness deviation, In addition to being able to be molded in a single molding process, there is no change in the surface shape of the optical surface during molding or with time. And since the refractive index difference of the glass of a base material and resin for optical elements after hardening can be made small, the loss of the light in the interface of a glass base material and a resin layer can be suppressed small.

本発明の複合型光学素子によれば、ガラス基材上の光学素子用樹脂の熱膨張係数及び硬化反応による収縮を低減できるため、成形時や経時変化での光学面の面形状の変化を生ずることがなくなる。また、ガラス基材の表面に成形した光学素子用樹脂の表面硬度を向上させることができる。さらに、基材のガラスと硬化後の光学素子用樹脂との屈折率差を小さくすることができるため、ガラス基材と樹脂層との界面での光の損失を小さく抑えることができる。   According to the composite optical element of the present invention, since the thermal expansion coefficient of the resin for optical elements on the glass substrate and the shrinkage due to the curing reaction can be reduced, the surface shape of the optical surface changes during molding or over time. Nothing will happen. Moreover, the surface hardness of the resin for optical elements molded on the surface of the glass substrate can be improved. Furthermore, since the difference in refractive index between the glass of the base material and the cured resin for optical elements can be reduced, the loss of light at the interface between the glass base material and the resin layer can be kept small.

この実施の形態では、有機化合物を分散媒とした金属酸化物微粒子のオルガノゾルを作製し、このオルガノゾルをアクリル樹脂中に混練した後に分散媒を除去して光学素子用樹脂組成物を作製する。金属酸化物微粒子は、平均一次粒子径が1〜20nmであり、光学素子用樹脂組成物は、上記粒径の金属酸化物微粒子、アクリル樹脂及び反応開始剤を含有している。反応開始剤は、有機化合物に添加しても良く、アクリル樹脂に添加しても良く、分散媒を除去中あるいは除去した後に添加しても良い。   In this embodiment, an organosol of metal oxide fine particles using an organic compound as a dispersion medium is prepared, and after kneading this organosol in an acrylic resin, the dispersion medium is removed to prepare a resin composition for an optical element. The metal oxide fine particles have an average primary particle diameter of 1 to 20 nm, and the resin composition for an optical element contains the metal oxide fine particles having the above particle diameter, an acrylic resin, and a reaction initiator. The reaction initiator may be added to the organic compound, may be added to the acrylic resin, or may be added during or after the dispersion medium is removed.

このように作製した光学素子用樹脂組成物をガラス基材の表面に塗布した後、樹脂組成物を光学形状に成形するための型をガラス基材に対して位置出しして光学素子用樹脂組成物に接触させ、光学形状を転写する。この状態で樹脂組成物を、硬化して成形する。これにより、ガラス基材と硬化後の光学素子用樹脂とが界面を形成して一体化した複合型光学素子が作製される。   After coating the resin composition for optical elements thus produced on the surface of the glass substrate, a mold for molding the resin composition into an optical shape is positioned with respect to the glass substrate, and the resin composition for optical elements Contact the object and transfer the optical shape. In this state, the resin composition is cured and molded. Thus, a composite optical element in which the glass substrate and the cured optical element resin are integrated by forming an interface is produced.

上記光学素子用樹脂組成物を作製する際に、アクリル樹脂中での金属酸化物微粒子の分散性を良好なものとする。これにより、成形時や硬化後における経時変化でも光学面の面形状の変化を生ずることがなくなる。また、複合型光学素子を1回の成形工程でガラス基材上に成形できる。さらに、樹脂層に含有される金属酸化物微粒子によって樹脂層の屈折率が低下することから、ガラス基材と樹脂層との界面での光の損失を小さく抑えることができ、透明性、表面硬度に優れ、耐久性にも優れた所望の形状、厚さの複合型光学素子が得られる。   When producing the resin composition for an optical element, the dispersibility of the metal oxide fine particles in the acrylic resin is improved. As a result, the surface shape of the optical surface does not change even with a change with time during molding or after curing. Also, the composite optical element can be molded on the glass substrate in a single molding process. Furthermore, since the refractive index of the resin layer is lowered by the metal oxide fine particles contained in the resin layer, the loss of light at the interface between the glass substrate and the resin layer can be suppressed to a small level, and the transparency, surface hardness A composite optical element having a desired shape and thickness excellent in durability and durability can be obtained.

このような実施の形態では、平均一次粒子径が1〜20nmの金属酸化物微粒子を有機化合物からなる分散媒中に分散したオルガノゾルを、アクリル樹脂中に分散し、反応開始剤を加えて混練した後、金属酸化物微粒子の分散媒として使用した有機化合物を加熱、減圧蒸留等の方法で除去して粘度の高い光学素子用樹脂組成物とする。あるいは、金属酸化物微粒子を有機化合物からなる分散媒中に分散したオルガノゾルを、アクリル樹脂中に分散した後、金属酸化物微粒子の分散媒として使用した有機化合物を加熱、減圧蒸留等の方法で除去した後に反応開始剤を添加して混練することにより光学素子用樹脂組成物とする。   In such an embodiment, an organosol in which metal oxide fine particles having an average primary particle diameter of 1 to 20 nm are dispersed in a dispersion medium made of an organic compound is dispersed in an acrylic resin, and a reaction initiator is added and kneaded. Thereafter, the organic compound used as the dispersion medium for the metal oxide fine particles is removed by a method such as heating and vacuum distillation to obtain a resin composition for an optical element having a high viscosity. Alternatively, an organosol in which metal oxide fine particles are dispersed in a dispersion medium made of an organic compound is dispersed in an acrylic resin, and then the organic compound used as the dispersion medium for the metal oxide fine particles is removed by a method such as heating or vacuum distillation. Then, a reaction initiator is added and kneaded to obtain a resin composition for an optical element.

そして、これらの粘度の高い樹脂組成物をガラス基材上に塗布後、ガラス基材と型とを位置出ししてガラス基材上の光学素子用樹脂組成物に型を接触させ、光学素子用樹脂組成物に型の光学形状を転写し、樹脂層を硬化、成形して複合型光学素子とするものである。   And after apply | coating these resin compositions with high viscosity on a glass base material, a glass base material and a type | mold are positioned, a type | mold is made to contact the resin composition for optical elements on a glass base material, and it is for optical elements. The optical shape of the mold is transferred to the resin composition, and the resin layer is cured and molded into a composite optical element.

平均一次粒子径が1〜20nmの金属酸化物微粒子としては、ケイ素酸化物、ジルコニウム酸化物、チタン酸化物、スズ酸化物、アンチモン酸化物、ニオブ酸化物、セリウム酸化物、アルミニウム酸化物、亜鉛酸化物等の微粒子を使用することができる。粒子の形状は、球状、多角形状、不定形状、フレーク状、ファイバー状、針状、鎖状等を用いることができるが、アクリル樹脂との均質で高充填な分散が実現でき、透明性を確保するためには球状が好ましい。   Metal oxide fine particles having an average primary particle diameter of 1 to 20 nm include silicon oxide, zirconium oxide, titanium oxide, tin oxide, antimony oxide, niobium oxide, cerium oxide, aluminum oxide, and zinc oxide. Fine particles such as materials can be used. The shape of the particles can be spherical, polygonal, indeterminate, flake, fiber, needle, chain, etc., but it can achieve homogeneous and highly filled dispersion with acrylic resin, ensuring transparency In order to achieve this, a spherical shape is preferred.

金属酸化物微粒子としては、以上のような成分の複数を含む複合酸化物微粒子であっても良く、金属酸化物微粒子表面を他の金属酸化物、有機ケイ素化合物、有機金属化合物等により処理した表面修飾微粒子であっても良い。   The metal oxide fine particles may be composite oxide fine particles containing a plurality of the above components, and the surface of the metal oxide fine particles treated with other metal oxides, organosilicon compounds, organometallic compounds, etc. Modified fine particles may also be used.

複合酸化物微粒子としては、例えば、セリウム酸化物とチタン酸化物との複合酸化物微粒子、ケイ素酸化物、セリウム酸化物、チタン酸化物との複合酸化物微粒子等を用いることができる。表面修飾微粒子としては、例えば、チタン酸化物微粒子の分散媒中において表面にケイ素酸化物を析出させることによって得ることができる。金属酸化物表面を有機ケイ素化合物、有機金属化合物により処理する一例を挙げると、金属酸化物微粒子を含む分散媒中で所望の有機ケイ素化合物、有機金属化合物を添加して加熱攪拌することによって処理する方法がある。   As the composite oxide fine particles, for example, composite oxide fine particles of cerium oxide and titanium oxide, composite oxide fine particles of silicon oxide, cerium oxide, titanium oxide, or the like can be used. The surface-modified fine particles can be obtained, for example, by precipitating silicon oxide on the surface in a dispersion medium of titanium oxide fine particles. An example of treating the surface of a metal oxide with an organosilicon compound or an organometallic compound is as follows: a desired organosilicon compound or organometallic compound is added to a dispersion medium containing fine metal oxide particles, followed by heating and stirring. There is a way.

また、金属酸化物微粒子の表面を修飾することによって、元の金属酸化物微粒子の性質を調整することが可能になる。例えば、酸化ケイ素微粒子の場合には、各種官能基含有ポリイソシアネートによって前処理することにより、アクリル樹脂との相溶性及び化学結合性を発現させることが可能となる。また、チタン酸化物微粒子においては、その形態によっては光触媒作用が大きく、光学素子用樹脂組成物中に混合すると樹脂を経時的に分解するような悪影響を及ぼす場合、表面修飾することによってそのような作用を小さくすることが可能である。   Further, by modifying the surface of the metal oxide fine particles, it is possible to adjust the properties of the original metal oxide fine particles. For example, in the case of silicon oxide fine particles, it is possible to develop compatibility and chemical bonding with an acrylic resin by pretreatment with various functional group-containing polyisocyanates. Further, in the case of titanium oxide fine particles, the photocatalytic action is large depending on the form. It is possible to reduce the effect.

金属酸化物微粒子は、アクリル樹脂との親和性を有した液体からなる有機化合物を分散媒としたオルガノゾルの形態で混練する。このことによって、アクリル樹脂中への均一な分散を可能とするとともに、粉末を取り扱う場合に要求される除塵設備等が不要となり、作業環境が良好となるという効果も得られる。   The metal oxide fine particles are kneaded in the form of an organosol using an organic compound made of a liquid having an affinity for an acrylic resin as a dispersion medium. This makes it possible to uniformly disperse in the acrylic resin, eliminates the need for dust removal equipment required when handling the powder, and provides an effect of improving the working environment.

分散媒として使用する有機化合物としては、アクリル樹脂と相溶性が大きければ、一般に有機溶剤はもとよりアクリルモノマー等の粘度の低い有機化合物でも良い。また、分散媒として使用する有機化合物が、アクリル樹脂と相溶性が大きくない有機化合物の場合や、アクリル樹脂の粘度が大きくて混練が困難な場合には、加熱によって分散性を高めても良い。   As an organic compound used as a dispersion medium, an organic compound having a low viscosity such as an acrylic monomer as well as an organic solvent may be used as long as it is highly compatible with an acrylic resin. Further, when the organic compound used as the dispersion medium is an organic compound that is not highly compatible with the acrylic resin, or when the viscosity of the acrylic resin is large and kneading is difficult, the dispersibility may be increased by heating.

アクリル樹脂と金属酸化物微粒子を分散した後に、混練、加熱さらには減圧して分散媒としての有機化合物を除去することによって、金属酸化物微粒子が分散した光学素子用樹脂組成物を得ることができる。この加熱、減圧の際に、アクリル樹脂中で気泡が発生した場合には、アクリル樹脂の増粘と発泡が生じて透明体が得られなくなるため、気泡が発生しないように温度、減圧度を調整することが好ましい。   After the acrylic resin and the metal oxide fine particles are dispersed, the organic compound as the dispersion medium is removed by kneading, heating, and decompressing to obtain a resin composition for an optical element in which the metal oxide fine particles are dispersed. . If bubbles are generated in the acrylic resin during heating and decompression, the acrylic resin thickens and foams and a transparent body cannot be obtained. Adjust the temperature and degree of vacuum so that bubbles do not occur. It is preferable to do.

金属酸化物微粒子が有機化合物を分散媒としたオルガノゾルを得るために、水系ゾルを用いても良い。水系ゾルの方が、より微細な微粒子を含有するゾルや、シリカ以外のゾルを入手し易いためである。水系ゾルを用いる場合には、水系の分散媒を、アクリル樹脂と相溶性を有するアクリルモノマー等の粘度の低い有機化合物に溶媒置換し、結果として、有機化合物を分散媒としたオルガノゾルとすれば良い。水系ゾルをアクリル樹脂と相溶性を有する有機化合物に溶媒置換する際には、金属酸化物微粒子が二次凝集を起こさないように行うことが必要であり、このためには、例えば、濃度が40重量%を超えないように溶媒で充分に希釈しながら行う方法が挙げられる。   In order to obtain an organosol in which the metal oxide fine particles have an organic compound as a dispersion medium, an aqueous sol may be used. This is because the aqueous sol is easier to obtain a sol containing finer fine particles or a sol other than silica. In the case of using an aqueous sol, the aqueous dispersion medium is solvent-substituted with an organic compound having a low viscosity such as an acrylic monomer having compatibility with an acrylic resin, and as a result, an organosol using the organic compound as the dispersion medium may be used. . When replacing the water-based sol with an organic compound having compatibility with the acrylic resin, it is necessary to carry out so that the metal oxide fine particles do not cause secondary aggregation. There may be mentioned a method which is carried out while sufficiently diluting with a solvent so as not to exceed wt%.

本発明に使用する金属酸化物微粒子としては、平均粒子径1〜20nmのものが使用されるが、平均粒子径が1〜10nmであるものがさらに好ましい。金属酸化物微粒子の粒子径が1nm未満であると、金属酸化物微粒子が一次粒子のまま安定に存在し難く、安定した品質の光学素子用樹脂組成物が得られない、一方、20nmを超える場合には、不透明性が発現し易くなる。   As the metal oxide fine particles used in the present invention, those having an average particle diameter of 1 to 20 nm are used, and those having an average particle diameter of 1 to 10 nm are more preferable. When the particle diameter of the metal oxide fine particles is less than 1 nm, the metal oxide fine particles are difficult to stably exist as primary particles, and a stable quality resin composition for optical elements cannot be obtained. In this case, the opacity is easily developed.

また、可視光の波長である400nmないし600nmにおいては、金属酸化物微粒子とアクリル樹脂との屈折率差が0.15程度までであれば、ガラス素材上で光学素子用樹脂を厚さ数十mmに成形したものでも透明性を発現することができる。金属酸化物微粒子として、屈折率が1.45程度の酸化ケイ素を使用した場合には、通常のアクリル樹脂の屈折率が1.55±0.05の範囲内であるため、酸化ケイ素とアクリル樹脂との組み合わせにより、屈折率が1.45を超えて1.50未満もしくは1.60未満の範囲にすることができるため、ほとんどの透明硬化物を成形することができる。   In addition, when the visible light wavelength is 400 nm to 600 nm, if the refractive index difference between the metal oxide fine particles and the acrylic resin is up to about 0.15, the optical element resin is several tens of mm thick on the glass material. Transparency can be expressed even if it is molded in the same manner. When silicon oxide having a refractive index of about 1.45 is used as the metal oxide fine particles, the refractive index of a normal acrylic resin is in the range of 1.55 ± 0.05. In combination, the refractive index can be in the range of more than 1.45 and less than 1.50 or less than 1.60, so that most transparent cured products can be molded.

金属酸化物微粒子の配合量は、光学素子用樹脂組成物中の固形分の10〜70重量%であることが好ましい。10重量%未満では、光学素子用樹脂組成物の熱膨張係数及び硬化反応による収縮が、アクリル樹脂単体を硬化させた場合よりも充分に低減できない上、表面硬度や無機蒸着膜との密着性も不充分となる。一方、70重量%を超えると、クラックが生じたり、白濁し易くなり、透明性が不充分となる。   It is preferable that the compounding quantity of metal oxide microparticles | fine-particles is 10 to 70 weight% of solid content in the resin composition for optical elements. If it is less than 10% by weight, the thermal expansion coefficient of the optical element resin composition and the shrinkage due to the curing reaction cannot be sufficiently reduced as compared with the case where the acrylic resin alone is cured, and the surface hardness and the adhesion to the inorganic vapor deposition film are also reduced. It becomes insufficient. On the other hand, if it exceeds 70% by weight, cracks are likely to occur or white turbidity tends to occur, resulting in insufficient transparency.

用いるアクリル樹脂としては、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、シリコーン(メタ)アクリレート等の各種オリゴマーや、脂肪族アクリレート、脂環式アクリレート、芳香族アクリレート、各種官能基含有アクリレート等の単官能アクリレート及び多官能アクリレート等、各種モノマー等を選択することができ、これらの内の1種又は2種以上を併用することができる。これらのアクリル樹脂は、十分に精製されており、液状ではできる限り無色透明な状態のものを使用することが好ましい。   As acrylic resin to be used, various oligomers such as urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, polyether (meth) acrylate, silicone (meth) acrylate, aliphatic acrylate, alicyclic acrylate Various monomers such as monofunctional acrylates and polyfunctional acrylates such as aromatic acrylates and various functional group-containing acrylates can be selected, and one or more of these can be used in combination. These acrylic resins are sufficiently purified, and it is preferable to use those in a liquid state that is as colorless and transparent as possible.

反応開始剤としては、アゾイソブチロニトリルなどの各種アゾ化合物や、過酸化ベンゾイルなどの各種過酸化物などのラジカル反応用熱重合開始剤を使用することができるが、アセトフェノン系、ベンゾフェノン系、ベンゾイン系、チオキサントン系、その他ベンジル、アシルホスフィンオキサイド、カンファーキノン、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン(BTTB)などの光重合開始剤が形状転写性や量産性に優れる点で良好である。反応開始剤の光学素子用樹脂組成物中に占める割合は、好ましくは0.01〜10重量%、より好ましくは0.5〜7重量%である。10重量%を超えると、組成物の保存安定性や硬化物の特性に悪影響を及ぼすことがあり、0.01重量%未満では、硬化速度が低下することがある。   As the reaction initiator, various azo compounds such as azoisobutyronitrile and thermal polymerization initiators for radical reactions such as various peroxides such as benzoyl peroxide can be used, but acetophenone-based, benzophenone-based, Photopolymerization initiators such as benzoin, thioxanthone, benzyl, acylphosphine oxide, camphorquinone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone (BTTB) can be used for shape transfer and It is good in terms of excellent mass productivity. The proportion of the reaction initiator in the optical element resin composition is preferably 0.01 to 10% by weight, more preferably 0.5 to 7% by weight. If it exceeds 10% by weight, the storage stability of the composition and the properties of the cured product may be adversely affected. If it is less than 0.01% by weight, the curing rate may be reduced.

以上に加えて、色素系増感剤やアミン系増感剤等の硬化促進剤を加えても良く、シリコーン系界面活性剤、フッ素系界面活性剤、非イオン系界面活性剤を加えても良い。また、チキソトロピー性を与えるために、シリカ微粉末、ケイ酸アルミニウム、タルク等の無機質粉体等のチキソトロピー剤を加えることができるが、光学的特性に影響を及ぼさない量及び粒径とすることが必要である。また、滑り性を与えるためのスリップ剤としてシリコーンオイルや帯電防止剤等を添加しても良い。   In addition to the above, curing accelerators such as dye sensitizers and amine sensitizers may be added, and silicone surfactants, fluorine surfactants, and nonionic surfactants may be added. . In addition, thixotropic agents such as silica fine powder, aluminum silicate, inorganic powder such as talc can be added to give thixotropy, but the amount and particle size should not affect the optical properties. is necessary. Moreover, you may add a silicone oil, an antistatic agent, etc. as a slip agent for giving slipperiness.

さらに、耐候性を向上させるために、紫外線吸収剤や酸化防止剤を併用しても良く、着色剤、カップリング剤、変性剤、低応力化剤、離型剤等の添加剤を併用しても良い。この場合、カップリング剤は、光学素子用樹脂組成物中に添加することなく、ガラス基材の表面を予めカップリング剤で処理することによる使用でも良い。   Furthermore, in order to improve the weather resistance, an ultraviolet absorber or an antioxidant may be used in combination, and an additive such as a colorant, a coupling agent, a modifier, a stress reducing agent, a release agent, etc. may be used in combination. Also good. In this case, the coupling agent may be used by previously treating the surface of the glass substrate with the coupling agent without adding it to the optical element resin composition.

ガラス基材が接着性の乏しい硝材の場合には、予めガラス基材の表面に酸化ケイ素や酸化アルミニウムの蒸着層を設けたり、シリルイソシアネート化合物、クロロシラン化合物、パーヒドロポリシラザン、アルミニウム有機化合物、アルミナゾル、チタネート化合物、ジルコニウムアルコレート化合物等によって表面処理することが望ましい。   In the case where the glass substrate is a glass material with poor adhesion, a vapor deposition layer of silicon oxide or aluminum oxide is previously provided on the surface of the glass substrate, a silyl isocyanate compound, a chlorosilane compound, perhydropolysilazane, an aluminum organic compound, alumina sol, Surface treatment with a titanate compound, a zirconium alcoholate compound or the like is desirable.

本発明において、ガラス基材上に光学素子用樹脂組成物を硬化して成形する複合型光学素子は、金属酸化物微粒子を均一に分散させたアクリル樹脂に、反応開始剤を所定量添加して攪拌・混合した後、脱泡して、ガラスプリズム等のガラス基材上に塗布した後、所定の型を位置出しし、光学素子用樹脂組成物に接触させ、光学形状を転写し、硬化して成形することにより、ガラス基材と光学素子用樹脂とが界面を形成して一体化して得られる。塗布する光学素子用樹脂組成物を、粘度調整のために適当な沸点の溶剤によって若干希釈し、硬化前あるいは硬化過程初期に溶剤分を揮発除去する工程を実施しても良い。調整する粘度範囲としては、転写する形状にもよるが、数百mPa・sから数千mPa・sが好ましい。   In the present invention, a composite optical element that is molded by curing a resin composition for an optical element on a glass substrate is obtained by adding a predetermined amount of a reaction initiator to an acrylic resin in which metal oxide fine particles are uniformly dispersed. After stirring and mixing, defoaming and applying onto a glass substrate such as a glass prism, positioning a predetermined mold, contacting the resin composition for optical elements, transferring the optical shape, and curing Thus, the glass substrate and the optical element resin are integrally formed by forming an interface. The resin composition for optical elements to be applied may be slightly diluted with a solvent having an appropriate boiling point for viscosity adjustment, and a step of volatilizing and removing the solvent before curing or at the beginning of the curing process may be performed. The viscosity range to be adjusted is preferably from several hundred mPa · s to several thousand mPa · s although it depends on the shape to be transferred.

なお、ガラスプリズム等の一つの光学素子に光学面が複数ある場合には、上記の塗布工程から硬化工程までを、一つの光学素子の各面において、同時にあるいは順次行って複合型光学素子を作製しても良い。   When a single optical element such as a glass prism has a plurality of optical surfaces, the above-described coating process to curing process are performed simultaneously or sequentially on each surface of the single optical element to produce a composite optical element. You may do it.

(実施例1)
金属酸化物微粒子として、平均一次粒径が約15nmであるシリカ球形微粒子をメチルエチルケトン中に20重量%含有したオルガノシリカゾル(商品名「MEK−ST−UP」、日産化学工業(社)製)50gに、アクリル樹脂として1,6−へキサンジオールジアクリレート(商品名「HDODA」、ダイセル化学(社)製)10gを添加し、カップリング剤として3−(トリメトキシシリル)プロピルメタクリレート(商品名「MPTMOS」)10gを添加し、ロータリーエバポレーターで溶剤分を除去してから、80℃のホットプレート上で5時間攪拌した。増粘した時点で、1−ヒドロキシシクロへキシルフェニルケトンとベンゾフェノンの混合物からなる光重合開始剤(商品名「イルガキュア500」、チバ・スペシャリティケミカルズ(株)製)0.1gを添加し、脱泡することにより光学素子用樹脂組成物を得た。
(Example 1)
50 g of organosilica sol (trade name “MEK-ST-UP”, manufactured by Nissan Chemical Industries, Ltd.) containing 20% by weight of silica spherical fine particles having an average primary particle size of about 15 nm in methyl ethyl ketone as metal oxide fine particles 10 g of 1,6-hexanediol diacrylate (trade name “HDODA”, manufactured by Daicel Chemical Industries, Ltd.) was added as an acrylic resin, and 3- (trimethoxysilyl) propyl methacrylate (trade name “MPTMOS” was used as a coupling agent. “) 10 g was added, the solvent was removed with a rotary evaporator, and the mixture was stirred on a hot plate at 80 ° C. for 5 hours. When the viscosity is increased, 0.1 g of a photopolymerization initiator (trade name “Irgacure 500”, manufactured by Ciba Specialty Chemicals Co., Ltd.) consisting of a mixture of 1-hydroxycyclohexyl phenyl ketone and benzophenone is added, and defoamed. As a result, a resin composition for optical elements was obtained.

次に、この光学素子用樹脂組成物を塗布機に充填し、図1(a)で示すように、硝材がBSL−7((株)オハラ製)からなり、真空蒸着によって形成された金属薄膜により斜面がミラー面5となっているガラス三角プリズム2を成形機にセットし、一方の光学面であるA面に光学素子用樹脂組成物1を塗布した。   Next, this optical element resin composition is filled in a coating machine, and as shown in FIG. 1A, the glass material is made of BSL-7 (manufactured by OHARA INC.), And is a metal thin film formed by vacuum deposition. Then, the glass triangular prism 2 whose slope is the mirror surface 5 was set in a molding machine, and the optical element resin composition 1 was applied to the A surface which is one of the optical surfaces.

次に、図1(b)で示すように、離型性を有する凹レンズ型3を光学素子用樹脂組成物1に気泡が混入しないように接触させ、凹レンズ型3内に光学素子用樹脂組成物1を充填後、凹レンズ型3をガラス三角プリズム2の所定位置に位置出しし、他方の光学面であるB面より紫外線を照射した。紫外線の照射によって光学素子用樹脂組成物1を硬化させて凹レンズ部分6を成形後、凹レンズ型3を離型して、図1(c)で示す複合型光学素子4を得た。   Next, as shown in FIG. 1B, the concave lens mold 3 having releasability is brought into contact with the optical element resin composition 1 so that bubbles do not enter, and the optical element resin composition is placed in the concave lens mold 3. After filling 1, the concave lens mold 3 was positioned at a predetermined position of the glass triangular prism 2 and irradiated with ultraviolet rays from the B surface which is the other optical surface. The resin composition 1 for optical elements was cured by irradiation with ultraviolet rays to form the concave lens portion 6, and then the concave lens mold 3 was released to obtain a composite optical element 4 shown in FIG.

用いたガラス三角プリズム2は、A、B各光学面は約1cm角であった。ガラス三角プリズム2のA面に形成した凹レンズ部6の硬化物は、直径約10mm、中心肉厚約0.5mm、周辺肉厚約4.5mm、曲率半径約4.5mmの凹レンズ形状であった。また、照射した紫外線の積算光量は約4000mJ/cmであった。 The glass triangular prism 2 used had A and B optical surfaces of about 1 cm square. The cured product of the concave lens portion 6 formed on the A surface of the glass triangular prism 2 was a concave lens shape having a diameter of about 10 mm, a center thickness of about 0.5 mm, a peripheral thickness of about 4.5 mm, and a curvature radius of about 4.5 mm. . Moreover, the integrated light quantity of the irradiated ultraviolet rays was about 4000 mJ / cm 2 .

光学素子用樹脂組成物1を用い、同様の成形工程によって、直径20mm、厚み5mmの物性測定用の円盤を作製した。得られた成形体の400nmないし600nmの全光線透過率は95%であった。また、得られた凹レンズ部分も透明性が良好で鉛筆硬度は7Hであった。物性測定用の円盤では、熱膨張係数は約70ppm、紫外線による硬化収縮率は約7%であった。使用したアクリル樹脂の屈折率は、nd=1.510、酸化ケイ素微粒子の屈折率は、nd=1.457、光学素子用樹脂組成物1の硬化物の屈折率は、nd=1.492であった。   Using the optical element resin composition 1, a disk for measuring physical properties having a diameter of 20 mm and a thickness of 5 mm was produced by the same molding process. The total light transmittance of 400 nm to 600 nm of the obtained molded product was 95%. Moreover, the obtained concave lens part was also excellent in transparency, and the pencil hardness was 7H. In the disk for measuring physical properties, the thermal expansion coefficient was about 70 ppm, and the curing shrinkage due to ultraviolet rays was about 7%. The refractive index of the acrylic resin used is nd = 1.510, the refractive index of the silicon oxide fine particles is nd = 1.457, and the refractive index of the cured product of the resin composition for optical elements 1 is nd = 1.492. there were.

一方、上述したアクリル樹脂単体を同じ光重合開始剤(商品名「イルガキュア500」を用いて硬化させた硬化物は、鉛筆硬度は2Hで、熱膨張係数は約120ppm、紫外線による硬化収縮率は約11%であった。   On the other hand, a cured product obtained by curing the above acrylic resin alone using the same photopolymerization initiator (trade name “Irgacure 500”) has a pencil hardness of 2H, a thermal expansion coefficient of about 120 ppm, and a curing shrinkage due to ultraviolet rays of about 120 ppm. 11%.

上記工程で用いた光学素子用樹脂組成物1の代わりに、アクリル樹脂単体と光重合開始剤のみを用いて同様の処理によって比較例としての複合型光学素子を成形した。この凹レンズ面の面形状の変化を上述した実施例の複合型光学素子4と比較した。その結果、アクリル樹脂単体を使用した比較例の複合型光学素子では、成形直後でもニュートン縞が見えないほど面形状が崩れていたが、この実施例の複合型光学素子4では、ニュートン縞が判別可能であった。さらに、比較例及び実施例の複合型光学素子を、20℃で30分維持〜80℃で30分維持の冷熱サイクルを1サイクルとして10サイクル投入したところ、アクリル樹脂単体を使用した比較例の複合型光学素子はガラス基材と樹脂層の界面が剥がれ始めていたが、この実施例の複合型光学素子では剥がれが認められず、またニュートン縞の判別も可能であった。   Instead of the optical element resin composition 1 used in the above process, a composite optical element as a comparative example was molded by the same treatment using only an acrylic resin and a photopolymerization initiator. The change of the surface shape of the concave lens surface was compared with the composite optical element 4 of the above-described embodiment. As a result, in the composite type optical element of the comparative example using a single acrylic resin, the surface shape was broken so that the Newton stripes could not be seen even immediately after molding. In the composite type optical element 4 of this example, the Newton stripes were discriminated. It was possible. Furthermore, when the composite optical element of the comparative example and the example was put into 10 cycles with a cooling cycle of maintaining at 20 ° C. for 30 minutes to 80 ° C. for 30 minutes as one cycle, the composite of the comparative example using an acrylic resin alone In the mold type optical element, the interface between the glass substrate and the resin layer began to peel off, but in the composite type optical element of this example, no peeling was observed, and Newton stripes could be discriminated.

さらに、得られた本実施例の複合型光学素子4における凹レンズ部分6の表面及び円盤の表面のそれぞれを、アルゴンプラズマを用い、出力40W、処理時間60秒間の条件でプラズマ処理を行なった後、外側に向かって順に、ケイ素酸化物/ジルコニウム酸化物/ケイ素酸化物/ジルコニウム酸化物/ケイ素酸化物の5層からなる反射防止多層膜を真空蒸着法により形成した。各層の光学的膜厚は、最初のケイ素酸化物層、次のジルコニウム酸化物層とケイ素酸化物層とを合わせた等価膜層、次のジルコニウム酸化物層、最上層のケイ素酸化物層がそれぞれλ/4となるように形成し、設計波長λを520nmとした。得られた多層膜の反射干渉色は緑色を呈した。   Further, after each of the surface of the concave lens portion 6 and the surface of the disk in the composite optical element 4 obtained in this example was subjected to plasma processing using argon plasma under conditions of an output of 40 W and a processing time of 60 seconds, In order toward the outside, an antireflection multilayer film composed of five layers of silicon oxide / zirconium oxide / silicon oxide / zirconium oxide / silicon oxide was formed by vacuum deposition. The optical thickness of each layer is as follows: the first silicon oxide layer, the equivalent zirconium oxide layer combined with the next zirconium oxide layer and the silicon oxide layer, the next zirconium oxide layer, and the uppermost silicon oxide layer. It was formed so as to be λ / 4, and the design wavelength λ was 520 nm. The reflection interference color of the obtained multilayer film was green.

以上のようにして施した反射防止膜の密着性を、円盤に対する碁盤目剥離試験(JISD−0202)に基づいて検査した。この検査では、ガラス基材表面に1mm間隔に切れ目を入れて1平方mmのます目を100個形成し、その上へセロハン製粘着テープ(商品名「セロテープ」、ニチバン(社)製)を強く押し付けた後、表面から90度方向へ急に引っ張り剥離した後、反射コート被膜の残っているます目をもって密着性指標とした。その結果、ます目100個全て残っており、密着性も優れていることが分かった。   The adhesion of the antireflection film applied as described above was inspected based on a cross-cut peel test (JIS D-0202) with respect to a disk. In this inspection, 100 squares of 1 mm 2 are formed on the surface of the glass substrate by cutting at intervals of 1 mm, and a cellophane adhesive tape (trade name “Cello Tape”, manufactured by Nichiban Co., Ltd.) is strongly applied thereon. After pressing, the film was suddenly pulled away from the surface in the direction of 90 degrees, and then the remaining grid of the reflective coat film was used as an adhesion index. As a result, it was found that all 100 eyes remained and the adhesion was excellent.

このような実施例では、合成樹脂の成形の容易性という特徴を失うことなく、1回の成形工程で成形時や経時変化での光学面の面形状の変化を生ずることがない複合型光学素子を成形することができた。また、複合型光学素子では、各種光学素子用材料としての透明性を有しながら、ガラス基材と樹脂層との界面での光の損失を小さく抑えることができ、しかもその表面に保護層や反射防止薄膜を形成することが可能な密着性や表面便度も確保することが可能となっている。   In such an embodiment, a composite optical element in which the surface shape of the optical surface does not change at the time of molding or with time change in one molding process without losing the feature of easy molding of the synthetic resin. Could be molded. In addition, in the composite optical element, it is possible to suppress light loss at the interface between the glass substrate and the resin layer, while having transparency as a material for various optical elements. It is also possible to ensure adhesion and surface convenience that can form an antireflection thin film.

(実施例2)
実施例1に用いた金属酸化物微粒子(商品名「MEK−ST−UT」)に代えて、平均一次粒径が9nmのシリカ球形微粒子をイソプロピルアルコール中に25重量%含有したオルガノシリカゾル(商品名「IPA−ST−S」、日産化学工業(社)製)40gを用いた点以外は、実施例1と同様にして複合型光学素子及び透過率測定用の円盤を作製した。
(Example 2)
Instead of the metal oxide fine particles (trade name “MEK-ST-UT”) used in Example 1, an organosilica sol (trade name) containing 25% by weight of silica spherical fine particles having an average primary particle size of 9 nm in isopropyl alcohol. A composite optical element and a disc for measuring transmittance were prepared in the same manner as in Example 1 except that 40 g of “IPA-ST-S” (manufactured by Nissan Chemical Industries, Ltd.) was used.

得られた透過率測定用の円盤を用いて実施例1と同様に、400nmないし600nmの全光線透過率を測定したところ96%であった。また、得られた凹レンズ部分も透明性が良好であった。また、鉛筆便度は7Hであり、物性測定用の円盤では、熱膨張係数は約70ppm、紫外線による硬化収確率は約7%であった。   Using the obtained disc for measuring transmittance, the total light transmittance from 400 nm to 600 nm was measured in the same manner as in Example 1, and it was 96%. Moreover, the obtained concave lens part was also excellent in transparency. Further, the pencil convenience was 7H, and in the disk for measuring physical properties, the thermal expansion coefficient was about 70 ppm, and the cure yield probability by ultraviolet rays was about 7%.

さらに、実施例1と同様に、円盤に形成した反射防止膜の剥離試験、成形直後及び冷熱試験後の面形状の観察を行ったところ、実施例1と同様の結果となった。   Furthermore, as in Example 1, when the peel test of the antireflection film formed on the disk, the surface shape immediately after molding and the observation of the surface shape after the cooling test were performed, the same results as in Example 1 were obtained.

これにより、この実施例においても、合成樹脂の成形の容易性という特徴を失うことなく、1回の成形工程で成形時や経時変化での光学面の面形状の変化を生ずることがない複合型光学素子を成形することができた。また、複合型光学素子では、各種光学素子用材料としての透明性を有しながら、ガラス基材と樹脂層との界面での光の損失を小さく抑えることができ、しかもその表面に保護層や反射防止薄膜を形成することが可能な密着性や表面便度も確保することが可能となっている。   As a result, in this embodiment as well, a composite mold that does not cause a change in the shape of the optical surface at the time of molding or changes with time in one molding process without losing the feature of easy molding of the synthetic resin. The optical element could be molded. In addition, in the composite optical element, it is possible to suppress light loss at the interface between the glass substrate and the resin layer, while having transparency as a material for various optical elements. It is also possible to ensure adhesion and surface convenience that can form an antireflection thin film.

(実施例3)
実施例1に用いた金属酸化物微粒子(商品名「MEK−ST−UP」)に代えて、平均一次粒径が5nmのシリカ球形微粒子を水中に20重量%含有したシリカゾル(商品名「ST−OXS」、日産化学工業(社)製)50g中の水を、過剰のn−プロピルアルコールを添加した後に、水−アルコールの共沸混合物として蒸留して水を除去して溶媒置換したものを用いた以外は、実施例1と同様にして複合型光学素子と透過率測定用の円盤を作製した。
(Example 3)
Instead of the metal oxide fine particles (trade name “MEK-ST-UP”) used in Example 1, a silica sol containing 20 wt% silica spherical fine particles with an average primary particle size of 5 nm in water (trade name “ST-ST-UP”). OXS "(manufactured by Nissan Chemical Industries, Ltd.) 50 g of water was used after adding excess n-propyl alcohol and then distilling as a water-alcohol azeotrope to remove the water and solvent substitution. A composite optical element and a disk for measuring transmittance were produced in the same manner as in Example 1 except that.

得られた透過率測定用の円盤を用いて実施例1と同様に、400nmないし600nmの全光線透過率を測定したところ、98%であった。また、得られた凹レンズ部分も透明性が良好であった。また、鉛筆硬度は8Hであり、物性測定用の円盤では、熱膨張係数は約60ppm、紫外線による硬化収縮率は約6%であった。   Using the obtained disk for transmittance measurement, the total light transmittance from 400 nm to 600 nm was measured in the same manner as in Example 1 and found to be 98%. Moreover, the obtained concave lens part was also excellent in transparency. Further, the pencil hardness was 8H, and in the disk for measuring physical properties, the thermal expansion coefficient was about 60 ppm, and the curing shrinkage due to ultraviolet rays was about 6%.

さらに、実施例1と同様に、円盤に形成した反射防止膜の剥離試験、成形直後及び冷熱試験後の面形状の観察を行ったところ、実施例1と同様の結果となった。   Furthermore, as in Example 1, when the peel test of the antireflection film formed on the disk, the surface shape immediately after molding and the observation of the surface shape after the cooling test were performed, the same results as in Example 1 were obtained.

これにより、合成樹脂の成形の容易性という特徴を失うことなく、1回の成形工程で成形時や経時変化での光学面の面形状の変化を生ずることがない複合型光学素子を成形することができた。また、複合型光学素子では、各種光学素子用材料としての透明性を有しながら、ガラス基材と樹脂層との界面での光の損失を小さく抑えることができ、しかもその表面に保護層や反射防止薄膜を形成することが可能な密着性や表面便度も確保することが可能となっている。   Thereby, without losing the feature of easy molding of the synthetic resin, molding a composite optical element that does not cause a change in the shape of the optical surface during molding or over time in a single molding process. I was able to. In addition, in the composite optical element, it is possible to suppress light loss at the interface between the glass substrate and the resin layer, while having transparency as a material for various optical elements. It is also possible to ensure adhesion and surface convenience that can form an antireflection thin film.

(実施例4)
実施例1における複合型光学素子4での凹レンズ部分6を成形した後、図2(a)で示すように、他方の光学面であるB面を上にして成形機にセットし、実施例1で使用した光学素子用樹脂組成物1を用いて、実施例1と同様に、B面上に光学素子用樹脂組成物1を塗布した。そして、図2(b)で示すように、離型性に優れ紫外線透過性を有する自由曲面型7を光学素子用樹脂組成物1に気泡が混入しないように接触させて自由曲面型7内に光学素子用樹脂組成物1を充填した後、自由曲面型7を凹レンズ部分6と光学芯出し調整機にて位置出し調整し、自由曲面型7側より紫外線を照射することにより光学素子用樹脂組成物1を硬化した。光学素子用樹脂組成物1の硬化によって自由曲面レンズ部分8を成形した後、自由曲面型7を離型することにより図2(c)で示す複合型光学素子10を得た。
Example 4
After the concave lens portion 6 in the composite optical element 4 in Example 1 is molded, as shown in FIG. 2A, the other optical surface, B-side, is set on the molding machine, and Example 1 In the same manner as in Example 1, the optical element resin composition 1 was applied on the B surface using the optical element resin composition 1 used in the above. Then, as shown in FIG. 2 (b), the free curved surface mold 7 having excellent releasability and ultraviolet transparency is brought into contact with the optical element resin composition 1 so that no bubbles are mixed into the free curved surface mold 7. After filling the optical element resin composition 1, the free-form surface mold 7 is positioned and adjusted by the concave lens portion 6 and the optical centering adjuster, and irradiated with ultraviolet rays from the free-form surface mold 7 side, thereby the resin composition for the optical element. Product 1 was cured. After the free-form surface lens portion 8 was formed by curing the resin composition 1 for optical elements, the free-form surface mold 7 was released to obtain a composite optical element 10 shown in FIG.

この実施の形態においても、合成樹脂の成形の容易性という特徴を失うことなく、1回の成形工程で成形時や経時変化での光学面の面形状の変化を生ずることがない複合型光学素子を成形することができた。また、複合型光学素子では、各種光学素子用材料としての透明性を有しながら、ガラス基材と樹脂層との界面での光の損失を小さく抑えることができ、しかもその表面に保護層や反射防止薄膜を形成することが可能な密着性や表面便度も確保することが可能となる。   Also in this embodiment, a composite optical element that does not lose the characteristic of easy molding of the synthetic resin and does not change the surface shape of the optical surface at the time of molding or change with time in one molding process. Could be molded. In addition, in the composite optical element, it is possible to suppress light loss at the interface between the glass substrate and the resin layer, while having transparency as a material for various optical elements. It is possible to ensure adhesion and surface convenience that can form an antireflection thin film.

(比較例1)
実施例1の金属酸化物微粒子(商品名「MEK−ST−UP」)に代えて、平均一次粒径が75nmであるシリカ球形微粒子をイソプロピルアルコール中に30重量%含有したオルガノシリカゾル(商品名「IPA−ST−ZL」「日産化学工業(株)製」)を33g用いた点以外は、実施例1と同様にして成形した。得られた硬化物は完全に白濁化しており、透明性は確保できなかった。
(Comparative Example 1)
Instead of the metal oxide fine particles of Example 1 (trade name “MEK-ST-UP”), an organosilica sol containing 30% by weight of silica spherical fine particles having an average primary particle size of 75 nm in isopropyl alcohol (trade name “ It was molded in the same manner as in Example 1 except that 33 g of “IPA-ST-ZL” (manufactured by Nissan Chemical Industries, Ltd.) was used. The obtained cured product was completely turbid and transparency could not be secured.

(a)〜(c)は、実施例1の製造工程を示す断面図である。(A)-(c) is sectional drawing which shows the manufacturing process of Example 1. FIG. (a)〜(c)は、実施例4の製造工程を示す断面図である。(A)-(c) is sectional drawing which shows the manufacturing process of Example 4. FIG.

符号の説明Explanation of symbols

1 光学素子用樹脂組成物
2 ガラス基材
3 凹レンズ型
4 複合型光学素子
6 凹レンズ部分
DESCRIPTION OF SYMBOLS 1 Resin composition for optical elements 2 Glass base material 3 Concave lens type | mold 4 Composite type optical element 6 Concave lens part

Claims (5)

平均一次粒子径が1〜20nmの金属酸化物微粒子を有機化合物を分散媒としたオルガノゾルとし、このオルガノゾルをアクリル樹脂中に混練した後、分散媒を除去して光学素子用樹脂組成物を作製し、これをガラス基材に塗布した後、型を位置出しして光学素子用樹脂組成物に接触させて光学形状を転写し、この状態で光学素子用樹脂組成物を硬化して成形することにより、ガラス基材と光学素子用樹脂とが界面を形成して一体化した複合型光学素子を作製することを特徴とする複合型光学素子の製造方法。 A metal oxide fine particle having an average primary particle size of 1 to 20 nm is used as an organosol having an organic compound as a dispersion medium. The organosol is kneaded in an acrylic resin, and then the dispersion medium is removed to prepare a resin composition for an optical element. After applying this to the glass substrate, the mold is positioned and brought into contact with the optical element resin composition to transfer the optical shape, and in this state, the optical element resin composition is cured and molded. A method for producing a composite optical element, comprising producing a composite optical element in which a glass substrate and a resin for an optical element are integrated by forming an interface. 前記金属酸化物微粒子が、球状の酸化ケイ素からなることを特徴とする請求項1記載の複合型光学素子の製造方法。 2. The method of manufacturing a composite optical element according to claim 1, wherein the metal oxide fine particles are made of spherical silicon oxide. 少なくとも平均一次粒子径が1〜20nmの金属酸化物微粒子及びアクリル樹脂からなる光学素子用樹脂組成物とガラス基材とが界面を形成して一体化していることを特徴とする複合型光学素子。 A composite optical element characterized in that an optical element resin composition comprising at least an average primary particle diameter of 1 to 20 nm of metal oxide fine particles and an acrylic resin and a glass substrate are integrated to form an interface. 前記ガラス基材として、ガラスプリズムを用いることを特徴とする請求項1または2記載の複合型光学素子の製造方法。 The method of manufacturing a composite optical element according to claim 1, wherein a glass prism is used as the glass substrate. 前記ガラス基材が、ガラスプリズムであることを特徴とする請求項3記載の複合型光学素子。 The composite optical element according to claim 3, wherein the glass substrate is a glass prism.
JP2003370143A 2003-10-30 2003-10-30 Manufacturing method for composite optical element, and composite optical element Withdrawn JP2005131917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370143A JP2005131917A (en) 2003-10-30 2003-10-30 Manufacturing method for composite optical element, and composite optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370143A JP2005131917A (en) 2003-10-30 2003-10-30 Manufacturing method for composite optical element, and composite optical element

Publications (1)

Publication Number Publication Date
JP2005131917A true JP2005131917A (en) 2005-05-26

Family

ID=34647245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370143A Withdrawn JP2005131917A (en) 2003-10-30 2003-10-30 Manufacturing method for composite optical element, and composite optical element

Country Status (1)

Country Link
JP (1) JP2005131917A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126636A (en) * 2005-10-03 2007-05-24 Canon Inc Optical composite material and optical element
JP2010228441A (en) * 2009-03-06 2010-10-14 Sumitomo Chemical Co Ltd Method for welding liquid crystal polymer molding with glass substrate, and complex manufactured by the same
CN115151856A (en) * 2020-02-26 2022-10-04 Agc株式会社 Light guide plate and image display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126636A (en) * 2005-10-03 2007-05-24 Canon Inc Optical composite material and optical element
US8637588B2 (en) 2005-10-03 2014-01-28 Canon Kabushiki Kaisha Optical composite material and optical element
JP2010228441A (en) * 2009-03-06 2010-10-14 Sumitomo Chemical Co Ltd Method for welding liquid crystal polymer molding with glass substrate, and complex manufactured by the same
CN115151856A (en) * 2020-02-26 2022-10-04 Agc株式会社 Light guide plate and image display device
CN115151856B (en) * 2020-02-26 2024-03-29 Agc株式会社 Light guide plate and image display device

Similar Documents

Publication Publication Date Title
KR100968685B1 (en) Composition for forming low-refractive index film and base material with curing film thereof
JP7183150B2 (en) High refractive index nanocomposites
KR102353577B1 (en) Process for producing dispersion of fine inorganic particles, curable composition containing said dispersion, and cured object obtained therefrom
JP5099382B2 (en) 3D pattern forming material
TWI541533B (en) Fingerprint-resistant anti-reflection film
WO2001007938A1 (en) Resin-bond type optical element, production method therefor and optical article
JP2005338780A (en) Micro-lense
JPS60154338A (en) Information accumulation body
US5773489A (en) Dental inorganic-organic composite fillers
JP5551084B2 (en) Modeling method
WO2017099184A1 (en) Curable composition and cured product
JP2005060657A (en) Resin composition for hybrid lens, hybrid lens and lens system
JP6778646B2 (en) Manufacturing method of antireflection film, antireflection article, polarizing plate, image display device, module, liquid crystal display device with touch panel, and antireflection film
JP2010169708A (en) Composite optical element
JP5709706B2 (en) Paint for forming transparent film and substrate with transparent film
TWI535789B (en) Resin film, method for preparing resin film, and coating liquid
JP2007171555A (en) Hard coat film and optical functional film, optical lens and optical component
JP2005131917A (en) Manufacturing method for composite optical element, and composite optical element
JPS62256874A (en) Production of ultraviolet curable composition
JPH03145602A (en) Laminate and production thereof
JP6152630B2 (en) Optical film
JP2005003772A (en) Composition for optical material and optical element
JP2005036174A (en) Resin composition for optical material, and optical element using the composition
JP5443772B2 (en) Resin composition for composite optical element and composite optical element
JPH0228267A (en) Coating composition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109