JP2005131902A - Injection welding molding method for resin molding - Google Patents

Injection welding molding method for resin molding Download PDF

Info

Publication number
JP2005131902A
JP2005131902A JP2003369877A JP2003369877A JP2005131902A JP 2005131902 A JP2005131902 A JP 2005131902A JP 2003369877 A JP2003369877 A JP 2003369877A JP 2003369877 A JP2003369877 A JP 2003369877A JP 2005131902 A JP2005131902 A JP 2005131902A
Authority
JP
Japan
Prior art keywords
molding
primary
injection
molded body
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003369877A
Other languages
Japanese (ja)
Inventor
Atsushi Tsuboi
淳 坪井
Kazuo Izumi
和男 泉
Taketeru Kiyu
建輝 邱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003369877A priority Critical patent/JP2005131902A/en
Publication of JP2005131902A publication Critical patent/JP2005131902A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding method which enhances bonding strength brought about by injection welding, by optimizing the property of a part, serving as a surface to be joined with a secondary molding, of a primary molding. <P>SOLUTION: The secondary molding is molded by injecting a secondary molding material as the same thermoplastic resin to the primary molding premolded from a thermoplastic resin such as a polyamide, so that the primary molding can be joined to the secondary molding by the injection welding while being remelted. Temperatures of molten resins when the primary and secondary moldings are molded are each set higher by the order of 50-100°C than a melting point of a material itself, and a difference between a temperature of a mold and a temperature of a molten resin when the primary molding is molded is set to be in the range of 220°C±20°C. According to such conditions, a skin layer of the part, serving as the surface to be joined with the secondary molding, of the primary molding is made ultrathin, so that the bonding strength brought about by the injection welding can be increased. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、中空容器等の成形に多用される熱可塑性樹脂成形品の射出溶着成形方法に関し、特にダイスライドインジェクション法(Die Slide Injection=DSI法)やダイロータリーインジェクション法(Die Rotary Injection=DRI法)に代表されるように、例えば一次成形体を成形したならばその一次成形体をキャビティに残したまま一旦型開きして、金型のスライド動作により二次成形体の成形のためのキャビティを確保した上で再度型締めし、二次成形材料を射出して二次成形体を成形することにより、同時に一次成形体と射出溶着(融着)により接合するようにした射出溶着成形方法に関するものである。   The present invention relates to a method for injection-welding a thermoplastic resin molded product frequently used for molding a hollow container or the like, and in particular, a die slide injection method (Die Slide Injection = DSI method) or a die rotary injection method (Die Rotary Injection = DRI method). ), For example, if a primary molded body is molded, the mold is temporarily opened while the primary molded body remains in the cavity, and a cavity for molding the secondary molded body is formed by sliding the mold. It relates to an injection welding molding method in which a mold is clamped again after being secured, a secondary molding material is injected to form a secondary molded body, and simultaneously joined to the primary molded body by injection welding (fusion). It is.

なお、ダイロータリーインジェクション法はダイスライドインジェクション法を基本とした金型回転方式による中空品成形方法であって、金型が例えば120度ごとに正転と反転を繰り返しながら一次成形と二次成形を同時に行うもので、一回の金型の開閉動作ごとに一つの成形品が得られる生産性の高い成形方法である。   The die rotary injection method is a hollow product molding method based on a die rotation method based on the die slide injection method, and the mold performs primary molding and secondary molding while repeating normal rotation and inversion every 120 degrees, for example. The molding method is performed at the same time, and is a highly productive molding method in which one molded product is obtained for each opening and closing operation of the mold.

例えば自動車のエンジンルーム内に配置されるリザーバタンク等の中空容器をダイスライドインジェクション法を基本とした射出溶着成形方法によって成形する技術が特許文献1に記載されている。   For example, Patent Document 1 discloses a technique for molding a hollow container such as a reservoir tank disposed in an engine room of an automobile by an injection welding molding method based on a die slide injection method.

この特許文献1に記載の技術では、一次成形体の成形後であって且つ二次成形材料の射出による二次成形体たる二次接合層の成形の前に、一方の一次成形体の内部にフィルター等の内装部品を装着した上で一次成形体同士を突き合わせ、それに続いて上記二次接合層を成形することにより、一次成形体同士の間に内装部品を挟持しつつそれら三者を一体に溶着接合するようにしている。
特開2002−59454号公報
In the technique described in Patent Document 1, after molding the primary molded body and before molding the secondary bonding layer as the secondary molded body by injection of the secondary molding material, After attaching interior parts such as filters, the primary molded bodies are butted together, and then the secondary bonding layer is formed, so that the three parts are integrated while holding the interior parts between the primary molded bodies. We are trying to weld.
JP 2002-59454 A

上記のような射出溶着による接合では、例えば従来から広く採用されている振動溶着に比べて大きな溶着接合強度が得られるとされてはいるものの、適正な溶着強度を得るための溶着メカニズムもしくは成形条件との相関が未だ十分に解明されていないのが実状であり、特に中空状の容器としての気密性や耐圧強度を確保する上で溶着接合強度の低下やばらつきがないことが最も重要であるにもかかわらず、時として溶着接合強度の低下やばらつきが発生し、溶着接合強度の安定性および信頼性の面でなおも改善の余地を残している。   In the joining by injection welding as described above, for example, a welding mechanism or molding conditions for obtaining an appropriate welding strength is obtained, although it is said that a larger welding joint strength is obtained as compared with vibration welding widely used conventionally. The reality is that the correlation with the above has not been fully elucidated, and it is most important that there is no decrease or variation in weld joint strength, especially in order to ensure airtightness and pressure resistance as a hollow container. Nevertheless, sometimes the weld joint strength decreases and varies, and there is still room for improvement in terms of stability and reliability of the weld joint strength.

特に、一次成形体と二次成形材料の射出による二次成形体たる二次接合層との間には、射出開始の時間差に基づく温度差が歴然と存在し、二次接合層となるべき高温の二次成形樹脂材料は、既に界面での固化が進行している一次成形体の表面に熱を伝えつつその一部を再溶融させながら所定の空間に充填されるかたちとなる。そのため、とりわけ一次成形体のうち二次接合層との接合面となるべき部分の性状は溶着接合強度の向上の上で重要な要素となり、当該部分の性状の最適化が強く要望されている。   In particular, there is clearly a temperature difference based on the time difference at the start of injection between the primary molded body and the secondary bonded layer that is the secondary molded body by injection of the secondary molding material. The secondary molded resin material is filled into a predetermined space while transferring heat to the surface of the primary molded body which has already been solidified at the interface and remelting a part thereof. For this reason, the properties of the portion to be the joint surface with the secondary bonding layer in the primary molded body is an important factor in improving the welded joint strength, and there is a strong demand for optimization of the properties of the portion.

本発明はこのような課題に着目してなされたものであり、一次成形体のうち二次成形体との接合面となるべき部分の性状の最適化を図り、もって射出溶着による接合部の強度向上を図った成形方法を提供しようとするものである。   The present invention has been made paying attention to such problems, and optimizes the properties of the portion of the primary molded body that should become the joint surface with the secondary molded body, thereby strengthening the joint portion by injection welding. An object of the present invention is to provide an improved molding method.

請求項1に記載の発明は、熱可塑性樹脂である一次成形材料をもって予め成形した一次成形体に対し、同じく熱可塑性樹脂である二次成形材料を射出して二次接合層を成形することにより、一次成形体の一部を再溶融しつつ二次成形体と射出溶着により溶着接合するようにした射出溶着成形方法を前提とする。   According to the first aspect of the present invention, by injecting a secondary molding material that is also a thermoplastic resin into a primary molded body that is previously molded with a primary molding material that is a thermoplastic resin, a secondary bonding layer is molded. The premise is an injection welding molding method in which a part of the primary molded body is remelted and welded to the secondary molded body by injection welding.

その上で、一次成形体を成形する際の一次成形材料の溶融樹脂温度を一次成形材料そのものの融点よりも50〜100℃程度高く設定して、一次成形体のうち少なくとも二次接合層との接合面となるべき部分のスキン層を極薄化したことを特徴とする。   Then, the molten resin temperature of the primary molding material at the time of molding the primary molded body is set to be about 50 to 100 ° C. higher than the melting point of the primary molding material itself, and at least the secondary bonding layer of the primary molded body It is characterized in that the skin layer of the part to be the joint surface is extremely thinned.

なお、上記のスキン層は金型に最初に接触して冷却されることにより形成されるいわゆる非晶構造のものであるが、その溶融樹脂温度が高いほど固化が緩慢となるが故にその厚みが薄くなる傾向にある。   The above-mentioned skin layer has a so-called amorphous structure formed by first contacting the mold and being cooled. However, the higher the molten resin temperature, the slower the solidification. It tends to be thinner.

上記の方法には、請求項2に記載のように、熱可塑性樹脂である一次成形材料をもって予め成形した半割り状の二つの一次成形体同士を突き合わせた上で、その突き合わせ部近傍に同じく熱可塑性樹脂である二次成形材料を射出して二次成形体として二次接合層を成形することにより、一次成形体の一部を再溶融しつつ一次成形体同士を射出溶着により接合するようにした方法をも含むものとする。   In the above-described method, as described in claim 2, after the two halved primary molded bodies that have been molded in advance with the primary molding material that is a thermoplastic resin are butted together, By injecting the secondary molding material, which is a plastic resin, and molding the secondary bonding layer as a secondary molded body, the primary molded bodies are joined by injection welding while remelting a part of the primary molded body. This method is also included.

例えば、予め成形してある二つの一次成形体を金型にセットして予備加熱した上で双方の一次成形体同士を突き合わせ、それに続いて二次成形材料を射出して二次成形体を成形することにより、一次成形体の一部を再溶融しつつ一次成形体同士を射出溶着により接合するものとする。   For example, two primary molded bodies that have been molded in advance are set in a mold, preheated, both primary molded bodies are butted together, and then a secondary molding material is injected to form a secondary molded body. Thus, the primary molded bodies are joined by injection welding while remelting a part of the primary molded bodies.

もちろん、請求項3に記載のように、一次成形体の成形と二次接合層の成形による溶着接合とを、ダイスライドインジェクション法(ダイロータリーインジェクション法を含む)により連続して行う方法としてもよい。   Of course, as described in claim 3, the primary molded body and the welding joint by the secondary bonding layer may be continuously performed by a die slide injection method (including a die rotary injection method). .

成形材料としては、例えば請求項6に記載のように、一次成形材料および二次成形材料のうちいずれか一方もしくは双方の成形材料がポリアミド、ポリアセタール、ポリエステルのうちのいずれかとする。   As the molding material, for example, as described in claim 6, one or both of the primary molding material and the secondary molding material is polyamide, polyacetal, or polyester.

この場合、請求項7に記載のように、一次成形材料および二次成形材料のうちいずれか一方もしくは双方の成形材料がガラス繊維等を強化繊維とする繊維強化樹脂であってもよい。   In this case, as described in claim 7, one or both of the primary molding material and the secondary molding material may be fiber reinforced resin having glass fibers or the like as reinforcing fibers.

したがって、請求項1に記載の発明では、二次成形の際にその二次成形材料が一次成形体の表層部を再溶融させ、特の最表面の極薄のスキン層を相溶性良く溶かし込みながら双方の界面に非晶構造の溶着層を形成することで、一次成形体と二次成形体とが射出溶着によって接合される。そのため、溶着接合部での溶着接合強度が大幅に向上するとともに、そのばらつきも小さくなって溶着接合強度の安定化が図れるようになる。   Therefore, in the invention according to the first aspect, the secondary molding material remelts the surface layer portion of the primary molded body during the secondary molding, and dissolves a special ultrathin skin layer on the outermost surface with good compatibility. However, the primary molded body and the secondary molded body are joined by injection welding by forming an amorphous structure weld layer on both interfaces. For this reason, the weld joint strength at the weld joint is greatly improved, and the variation is reduced, so that the weld joint strength can be stabilized.

特に、請求項4記載のように、二次成形体を成形する際の二次成形材料の溶融樹脂温度を二次成形材料そのものの融点よりも50〜100℃程度高く設定したり、あるいは請求項5に記載のように、一次成形体を成形する際の金型温度と溶融樹脂温度との温度差を220℃±20℃の範囲に設定することにより、上記溶着接合強度の向上と安定化効果が一段と顕著となる。   In particular, as described in claim 4, the molten resin temperature of the secondary molding material when molding the secondary molded body is set higher by about 50 to 100 ° C. than the melting point of the secondary molding material itself, or As described in 5, the temperature difference between the mold temperature and the molten resin temperature when molding the primary molded body is set in the range of 220 ° C. ± 20 ° C., thereby improving the welding joint strength and stabilizing effect. Becomes more prominent.

図1以下の図面は本発明の好ましい実施の形態を示しており、ここでは樹脂成形品である中空状の容器として自動車のエンジンルーム内に配置されるパワーステアリングシステム用オイルリザーバタンク(以下、単にタンクという)1を成形する場合の例を示している。   1 and the following drawings show a preferred embodiment of the present invention. Here, an oil reservoir tank (hereinafter simply referred to as an oil reservoir tank for a power steering system) disposed in an engine room of an automobile as a hollow container that is a resin molded product. An example in the case of molding 1) (referred to as a tank) is shown.

図1,2に示すように、タンク1は、一次成形体としての半割り状のアッパタンク2およびロアタンク3と、内装部品であるフィルター4とから構成される。アッパタンク2とロアタンク3はいずれも熱可塑性樹脂材料であるポリアミド(例えばナイロン6(登録商標)等)によって半割り形態である略有底円筒状に形成されていて、両者の開口面同士が突き合わされてタンク本体を形成することになる。なお、アッパタンク2にはオイル供給口5が、ロアタンク3にはリターンチューブ6とアウトレットチューブ7がそれぞれ一体に形成されているとともに、ロアタンク3の内周には後述するようにフィルター4を位置決めするための環状溝8(図3参照)が形成されている。   As shown in FIGS. 1 and 2, the tank 1 includes a halved upper tank 2 and a lower tank 3 as primary molded bodies, and a filter 4 that is an interior part. Each of the upper tank 2 and the lower tank 3 is formed in a substantially bottomed cylindrical shape which is a half-divided shape by polyamide (for example, nylon 6 (registered trademark)) which is a thermoplastic resin material, and the opening surfaces of both are abutted. The tank body is formed. An oil supply port 5 is formed in the upper tank 2, and a return tube 6 and an outlet tube 7 are integrally formed in the lower tank 3, and a filter 4 is positioned on the inner periphery of the lower tank 3 as will be described later. An annular groove 8 (see FIG. 3) is formed.

フィルター4は、上下にアッパフランジ9とロアフランジ10とを備えた樹脂製で且つ円筒状のもので、上面および筒状部11の開口部には濾材としてメッシュ状のフィルターエレメント12が一体成形されている。このフィルター4をロアタンク3に挿入したときには、図3に示すようにロアフランジ10が環状溝8に係合する一方でアッパフランジ9の周縁の挟持片13がロアタンク3の開口面に当接して、ロアタンク3に対してフィルター4が位置決めされるようになっている。   The filter 4 is made of resin and has a cylindrical shape with an upper flange 9 and a lower flange 10 on the upper and lower sides. A mesh-like filter element 12 is integrally formed as a filter medium on the upper surface and the opening of the cylindrical portion 11. Yes. When the filter 4 is inserted into the lower tank 3, as shown in FIG. 3, the lower flange 10 engages with the annular groove 8, while the clamping piece 13 on the periphery of the upper flange 9 contacts the opening surface of the lower tank 3, The filter 4 is positioned with respect to 3.

そして、上記のようにフィルター4が内挿されたロアタンク3とアッパタンク2とを、それぞれの開口面を突き合わせ面としてアッパフランジ9の挟持片13を挟持しつつ突き合わせた上で、その突き合わせ部の外周側に二次成形体たる二次接合層として環状のベルト部14を射出成形することにより、このベルト部14の成形に基づく射出溶着接合によってアッパタンク2とフィルター4およびロアタンク3の三者が一体化されることになる。   Then, the lower tank 3 and the upper tank 2 in which the filter 4 is inserted as described above are butted together while sandwiching the sandwiching pieces 13 of the upper flange 9 with the respective opening surfaces as butting surfaces, and the outer periphery of the butting portion By forming an annular belt portion 14 as a secondary bonding layer as a secondary molded body on the side, the upper tank 2, the filter 4 and the lower tank 3 are integrated by injection welding based on the molding of the belt portion 14. Will be.

このタンク1は、例えばダイスライドインジェクション法を基本とした図4以下に示すような射出成形法によって成形される。   The tank 1 is formed by, for example, an injection molding method as shown in FIG. 4 and subsequent drawings based on a die slide injection method.

図4に示す射出成形用の金型は、図示外の型締めシリンダの伸縮作動によって進退作動する可動型15と、可動型15と対向する位置においてシフトシリンダ16の伸縮作動によりスライド作動するスライド型17とから構成されていて、可動型15には先に述べたアッパタンク2の成形を司るキャビティが、スライド型17には同じくロアタンク3の成形を司るキャビティがそれぞれに形成されている。そして、同図に示すように可動型15とスライド型17とが正対している状態で型締めしたときには、双方のキャビティ同士が所定量だけオフセットするように設定されている。   The injection mold shown in FIG. 4 includes a movable mold 15 that moves forward and backward by an expansion / contraction operation of a mold clamping cylinder (not shown), and a slide mold that slides by an expansion / contraction operation of the shift cylinder 16 at a position facing the movable mold 15. The movable mold 15 has a cavity for forming the upper tank 2 described above, and the slide mold 17 has a cavity for forming the lower tank 3. Then, as shown in the figure, when the mold is clamped with the movable mold 15 and the slide mold 17 facing each other, both cavities are set to be offset by a predetermined amount.

図4の型締め状態において、ランナ18を通して各キャビティに一次成形材料であるポリアミド等の溶融樹脂材料を射出,充填することにより一次成形体であるアッパタンク2とロアタンク3を同時に射出成形(一次成形)する。一次成形体であるアッパタンク2およびロアタンク3の材料である一次成形材料としては、例えばマトリックス樹脂にポリアミド(PA)として代表的なナイロン6を用い、これに強化繊維としてガラス繊維フィラーを30wt%含有したもの(PA6−GF30、例えば、東レ社製 強化ナイロン6 CM1011G−30)を使用する。   In the mold-clamped state of FIG. 4, the upper tank 2 and the lower tank 3 which are primary molded bodies are simultaneously injection-molded (primary molding) by injecting and filling molten resin materials such as polyamide which is the primary molding material into the cavities through the runners 18. To do. As a primary molding material which is a material of the upper tank 2 and the lower tank 3 which are primary molded bodies, for example, nylon 6 which is a typical polyamide (PA) is used as a matrix resin, and 30 wt% of a glass fiber filler is contained therein as a reinforcing fiber. (PA6-GF30, for example, reinforced nylon 6 CM1011G-30 manufactured by Toray Industries, Inc.) is used.

成形後、アッパタンク2とロアタンク3をそれぞれの型15,17のキャビティに残したままで図5に示すように一旦型開きし、ランナ18やゲート相当部として付帯している非製品部領域を除去する一方で、別工程で予め成形しておいたフィルター4をロアタンク3内に嵌合,挿入して位置決めする。   After the molding, the upper tank 2 and the lower tank 3 are left in the cavities of the respective molds 15 and 17, and the molds are once opened as shown in FIG. 5 to remove the runner 18 and the non-product part region attached as the gate equivalent part. On the other hand, the filter 4 molded in advance in a separate process is fitted and inserted into the lower tank 3 for positioning.

続いて、図6に示すようにシフトシリンダ16の収縮動作によりスライド型17を所定量だけ上昇動作させて可動型15とスライド型17とをオフセットさせ、その可動型15側のアッパタンク2とスライド型17側のロアタンク3とを正対させる。その状態で可動型15を前進させて、図7に示すように可動型15とスライド型17がオフセットした状態のままで双方の型15,17同士を型締めし、これをもって図3に示すようにアッパタンク2とロアタンク3の開口面同士を突き合わせつつ、両者の間にフィルター4のアッパフランジ9に付帯している挟持片13を挟み込む。これにより、図1に示すように、アッパタンク2とロアタンク3の突き合わせ部の外周には、二次接合層としてのベルト部14を成形するためのキャビティが形成される。   Subsequently, as shown in FIG. 6, the slide mold 17 is raised by a predetermined amount by the contraction operation of the shift cylinder 16 to offset the movable mold 15 and the slide mold 17, and the upper tank 2 and the slide mold on the movable mold 15 side are offset. Directly face the lower tank 3 on the 17th side. In this state, the movable mold 15 is advanced, and the molds 15 and 17 are clamped together with the movable mold 15 and the slide mold 17 being offset as shown in FIG. 7, and as shown in FIG. While sandwiching the opening surfaces of the upper tank 2 and the lower tank 3, a clamping piece 13 attached to the upper flange 9 of the filter 4 is sandwiched therebetween. As a result, as shown in FIG. 1, a cavity for forming the belt portion 14 as the secondary bonding layer is formed on the outer periphery of the abutting portion between the upper tank 2 and the lower tank 3.

この状態で、ランナ19を通して上記キャビティに二次成形材料であるポリアミド等の溶融樹脂材料を射出,充填することにより、二次成形体たる二次接合層であるベルト部14をリング状に射出成形(二次成形)する。そして、このベルト部14の射出成形をもってアッパタンク2とフィルター4およびロアタンク3の三者が射出溶着により接合される。なお、二次成形材料としては、相溶性を考慮して一次成形材料と全く同一の樹脂材料を使用する。   In this state, a molten resin material such as polyamide, which is a secondary molding material, is injected and filled into the cavity through the runner 19, whereby the belt portion 14, which is a secondary bonding layer, which is a secondary molded body, is injection-molded into a ring shape. (Secondary molding). The upper tank 2, the filter 4, and the lower tank 3 are joined by injection welding with the injection molding of the belt portion 14. As the secondary molding material, the same resin material as the primary molding material is used in consideration of compatibility.

この後、上記ベルト部14の固化を待って図8に示すように可動型15を後退させて型開きし、成形品であるタンク1を取り出す。   Thereafter, after the belt portion 14 is solidified, as shown in FIG. 8, the movable die 15 is moved backward to open the die, and the tank 1 as a molded product is taken out.

このようなタンク1の射出溶着成形において、一次成形材料である樹脂温度を高くして一次成形体たるアッパタンク2およびロアタンク3の表面に形成されるスキン層を極力薄くし、なお且つ二次成形材料である樹脂温度も高くして、一次成形体側への溶け込み量が大きな溶着層を形成することで、溶着接合部での力学特性すなわち射出溶着による接合強度が大幅に向上することが判明した。   In such injection welding molding of the tank 1, the temperature of the resin, which is the primary molding material, is increased to make the skin layers formed on the surfaces of the upper tank 2 and the lower tank 3 as the primary molding as thin as possible, and the secondary molding material It has been found that by increasing the resin temperature and forming a weld layer with a large amount of penetration into the primary molded body, the mechanical properties at the weld joint, that is, the joint strength by injection welding, are greatly improved.

ここで、一次成形条件すなわち一次成形体であるアッパタンク2およびロアタンク3の成形条件と、二次成形条件すなわち二次成形体であるベルト部(二次接合層)14の成形条件である射出溶着条件、および二次成形後の射出溶着による接合部での接合強度との相関について調べた。この射出溶着による接合部でのせん断試験結果を表1に示す。   Here, primary molding conditions, that is, molding conditions of the upper tank 2 and the lower tank 3 that are primary molded bodies, and secondary welding conditions, that is, injection welding conditions that are molding conditions of the belt part (secondary bonding layer) 14 that is a secondary molded body. And, the correlation with the joint strength at the joint by injection welding after the secondary molding was investigated. Table 1 shows the results of a shear test at the joint by this injection welding.

せん断試験に供される試験片(テストピース)は、図9に示すようにJIS1号のダンベル型試験片21を径方向で二分したいわゆる半割り形状の一次成形体21Aを上記のタンク1と同じ材料で一次成形し、次いでその一次成形体21AをJIS1号のダンベル型試験片21に相当するキャビティに挿入して、残りの半分を二次成形体と21Bして上記のベルト部14と同じ材料で成形するのと同時に射出溶着により接合して、同図(C)に示すJIS1号のダンベル型試験片21を表1に示す試料C〜Qとして複数本ずつ作製した。なお、それぞれの試料(試験片)C〜Qの一次成形条件および二次成形条件(射出用溶着条件)は表1に示すとおりとした。   As shown in FIG. 9, the test piece (test piece) used for the shear test is the same as the tank 1 in the so-called half-shaped primary molded body 21 </ b> A obtained by bisecting the JIS No. 1 dumbbell-shaped test piece 21 in the radial direction. The material is primary molded, and then the primary molded body 21A is inserted into a cavity corresponding to the dumbbell-shaped test piece 21 of JIS No. 1, and the other half is a secondary molded body 21B, and the same material as the belt portion 14 described above. At the same time as molding in step (b), bonding was performed by injection welding, and a plurality of dumbbell-shaped test pieces 21 of JIS1 shown in FIG. The primary molding conditions and secondary molding conditions (injection welding conditions) for each sample (test piece) C to Q were as shown in Table 1.

各試料C〜Qには、図9の(C)に示すように一次成形体21Aと二次成形体21Bのそれぞれに両者の界面に届く切り込み22をオフセットさせて形成した上で、引張試験を行って射出溶着による接合部でのせん断強度を求めた。同時に、せん断強度測定後の各試料C〜Qについて走査型電子顕微鏡を用いて破断面の観察を行った。また、これとは別に、射出溶着後の試料C〜Qについて中央部で切断し、樹脂に抱埋後に研磨を施して光学顕微鏡で射出溶着による接合部の組織を観察してみた。   Each sample C to Q is formed by offsetting a notch 22 reaching the interface between the primary molded body 21A and the secondary molded body 21B as shown in FIG. The shear strength at the joint by injection welding was determined. At the same time, the fracture surface of each sample C to Q after the measurement of shear strength was observed using a scanning electron microscope. Separately from this, samples C to Q after injection welding were cut at the center, polished after being embedded in resin, and the structure of the joint portion by injection welding was observed with an optical microscope.

図10は、表1に示した二次成形時の射出速度と一次成形時の樹脂温度をプロットして、射出溶着による接合部でのせん断強さへの影響を示したグラフである。同図から明らかなように、一次成形時の樹脂温度が高いほどせん断強さも大きくなることが明確に表れている。その一方、せん断強さに対する二次成形時の射出速度の明確な影響は見られない。同図から明らかなように、せん断強度の向上は一次成形時に樹脂温度の大きく依存することがうかがえる。   FIG. 10 is a graph plotting the injection speed at the time of secondary molding and the resin temperature at the time of primary molding shown in Table 1 and showing the effect on the shear strength at the joint due to injection welding. As is clear from the figure, it is clearly shown that the shear strength increases as the resin temperature during the primary molding increases. On the other hand, there is no clear influence of the injection speed during secondary molding on the shear strength. As is apparent from the figure, it can be seen that the improvement of the shear strength greatly depends on the resin temperature during the primary molding.

また図11は、表1に示した二次成形時の射出温度をプロットして、射出溶着による接合部でのせん断強さとの関係を示したグラフである。同図から明らかなように、一次成形だけでなく二次成形時の樹脂温度も高いほどせん断強さが大きくなり、図10との関連から一次成形,二次成形ともに樹脂温度を290℃にするとそのせん断強さが40MPa以上まで高くなることがわかる。   FIG. 11 is a graph plotting the injection temperature at the time of the secondary molding shown in Table 1 and showing the relationship with the shear strength at the joint by injection welding. As is apparent from the figure, the shear strength increases as the resin temperature in the secondary molding as well as in the primary molding increases, and if the resin temperature is 290 ° C. in both the primary molding and the secondary molding in relation to FIG. It can be seen that the shear strength increases to 40 MPa or more.

図12,13は先に述べた破断面の観察結果を示し、せん断強さが低いもの(29MPa)では図12から明らかなように界面の溶着が不十分であるために表面が平滑であり、せん断強さが高いもの(47MPa)では図13から明らかなように溶着層が形成されているために延性破壊を起こしていることがよくわかる。   12 and 13 show the observation results of the fracture surface described above, and in the case of low shear strength (29 MPa), the surface is smooth because the interface is insufficiently welded, as is apparent from FIG. It is well understood that ductile fracture is caused in the case of high shear strength (47 MPa) because the weld layer is formed as apparent from FIG.

図14,15は同じく先に述べた組織観察の結果を示し、せん断強さが低いもの(29MPa)では図14から明らかなように明確な溶着層が観察されず、一方、せん断強さが高いもの(47MPa)では図15から明らかなように約8μm以上の厚さの溶着層が形成されていることが明確に観察できた。   FIGS. 14 and 15 also show the results of the structure observation described above. In the case of low shear strength (29 MPa), a clear welded layer is not observed as apparent from FIG. 14, while the shear strength is high. As can be seen from FIG. 15, it was clearly observed that a weld layer having a thickness of about 8 μm or more was formed in the case (47 MPa).

このように、一次成形材料の溶融樹脂温度と二次成形材料の溶融樹脂温度が共に高ければ高いほど、二次成形の際の溶着部での相溶性が良く、射出溶着による接合部での接合強度すなわちせん断強度が大幅に向上することがわかる。より具体的には、表1から明らかなように、一次成形材料の溶融樹脂温度と二次成形材料の溶融樹脂温度を共に290℃に設定した試料L〜Nが最もせん断強度が高く、次いで、せん断強度が高い順に、一次成形材料の溶融樹脂温度を245℃、二次成形材料の溶融樹脂温度を305℃にそれぞれ設定した試料O〜Q、一次成形材料の溶融樹脂温度を245℃、二次成形材料の溶融樹脂温度を290℃にそれぞれ設定した試料I〜Kの順となっている。   Thus, the higher the molten resin temperature of the primary molding material and the molten resin temperature of the secondary molding material, the better the compatibility at the welded part in the secondary molding, and the joining at the joined part by injection welding. It can be seen that the strength, that is, the shear strength is greatly improved. More specifically, as apparent from Table 1, samples L to N in which the molten resin temperature of the primary molding material and the molten resin temperature of the secondary molding material are both set to 290 ° C. have the highest shear strength, Samples O to Q in which the molten resin temperature of the primary molding material is set to 245 ° C., the molten resin temperature of the secondary molding material is set to 305 ° C., and the molten resin temperature of the primary molding material is 245 ° C. Samples I to K were set in this order in which the molten resin temperature of the molding material was set to 290 ° C.

言い換えるならば、本実施の形態で使用している一次成形材料および二次成形材料であるところのPA6−GF30材の融点が225℃であることを考慮すると、一次成形材料の溶融樹脂温度をその融点よりも50〜100℃程度高く設定し、さらに二次成形材料の溶融樹脂温度を同様にその融点よりも50〜100℃程度高く設定して成形することが成形品のせん断強度の向上の上で有利であることがわかる。特に、一次成形時の金型の通常設定温度70〜90℃と溶融樹脂温度との温度差を220℃±20℃の範囲に設定するとせん断強度の向上効果が一段と顕著となる傾向にあることになる。   In other words, considering that the melting point of the PA6-GF30 material which is the primary molding material and the secondary molding material used in the present embodiment is 225 ° C., the molten resin temperature of the primary molding material is In order to improve the shear strength of the molded article, it is set to be about 50 to 100 ° C. higher than the melting point, and further, the molten resin temperature of the secondary molding material is similarly set to about 50 to 100 ° C. higher than the melting point. It turns out that it is advantageous. In particular, when the temperature difference between the normal set temperature of 70 to 90 ° C. of the mold at the time of primary molding and the molten resin temperature is set in the range of 220 ° C. ± 20 ° C., the effect of improving the shear strength tends to become more prominent. Become.

以上のことは、一次成形体の樹脂温度が高ければ高いほど金型内での固化が緩慢となり、最終的に固化した一次成形体の最表面に形成される非晶構造のスキン層の厚みが薄くなるためで、二次成形の際にその二次成形材料である溶融樹脂が一次成形体のスキン層を相溶性良く溶かし込みながら溶着層を形成し、その結果としてせん断強度の向上につながっているものと推測される。なお、せん断強度が最も優れている試料L〜Nにつき各複数個ずつの一次成形体の最表面のスキン層の厚みを測定したところ、その平均値は0.039mmであった。これに対して、それ以外の試料C〜KおよびO〜Qのつき各複数個ずつの一次成形体の最表面のスキン層の厚みを測定したところ、その平均値は0.063mmであった。   As described above, the higher the resin temperature of the primary molded body, the slower the solidification in the mold, and the thickness of the amorphous structure skin layer formed on the outermost surface of the finally solidified primary molded body This is because the molten resin, which is the secondary molding material, dissolves the skin layer of the primary molded body with good compatibility during the secondary molding, and forms a welded layer, resulting in improved shear strength. Presumed to be. In addition, when the thickness of the skin layer of the outermost surface of each primary molded object was measured for each of the samples L to N having the highest shear strength, the average value was 0.039 mm. On the other hand, when the thickness of the skin layer on the outermost surface of the primary molded body of each of the other samples C to K and O to Q was measured, the average value was 0.063 mm.

このように、一次成形体の成形条件である溶融樹脂温度が高く、且つその表面のスキン層の厚みが小さいほどせん断強度の向上に寄与していることがわかる。   Thus, it can be seen that the higher the molten resin temperature, which is the molding condition of the primary molded body, and the smaller the thickness of the skin layer on the surface, the more the shear strength is improved.

本発明に係る成形方法によって成形される成形品の一例としてリザーバタンクの構造を示す半断面図。The half sectional view which shows the structure of a reservoir tank as an example of the molded article shape | molded by the shaping | molding method which concerns on this invention. 図1に示すリザーバタンクの半断面斜視図。FIG. 2 is a half sectional perspective view of the reservoir tank shown in FIG. 1. 同じく図1に示すリザーバタンクの分解図。The exploded view of the reservoir tank similarly shown in FIG. 図1に示すリザーバタンクをダイスライドインジェクション法によって成形する際の型締め状態の概略説明図。The schematic explanatory drawing of the mold clamping state at the time of shape | molding the reservoir tank shown in FIG. 1 by the die slide injection method. 図4の状態から一旦型開きしたときの概略説明図。The schematic explanatory drawing when a mold is once opened from the state of FIG. 図5の状態からスライド型をスライド動作させたときの概略説明図。FIG. 6 is a schematic explanatory diagram when the slide mold is slid from the state of FIG. 5. 図6の状態から再度型締めしたときの概略説明図。Schematic explanatory drawing when the mold is clamped again from the state of FIG. 図7の状態から再度型開きしたときの概略説明図。Schematic explanatory drawing when a mold is opened again from the state of FIG. 図4〜8に示した成形法で成形される成形品の射出溶着部でのせん断強度の測定に供される試験片の説明図。Explanatory drawing of the test piece used for the measurement of the shear strength in the injection welding part of the molded article shape | molded by the shaping | molding method shown in FIGS. 二次射出速度とせん断強度との関係を示すグラフ。The graph which shows the relationship between secondary injection speed and shear strength. 二次樹脂温度とせん断強度との関係を示すグラフ。The graph which shows the relationship between secondary resin temperature and shear strength. せん断強度が29MPaのときのせん断による破断面の顕微鏡写真。The microscope picture of the fracture surface by shearing when the shear strength is 29 MPa. 同じくせん断強度が47MPaのときのせん断による破断面の顕微鏡写真。Similarly, a photomicrograph of a fracture surface caused by shearing when the shear strength is 47 MPa. せん断強度が29MPaのときの一次成形体と二次成形体との溶着部断面の顕微鏡写真。The microscope picture of the weld part cross section of a primary molded object and a secondary molded object when shear strength is 29 Mpa. 同じくせん断強度が47MPaのときの一次成形体と二次成形体との溶着部断面の顕微鏡写真。Similarly, the microscope picture of the weld part cross section of a primary molded object and a secondary molded object when shear strength is 47 Mpa.

符号の説明Explanation of symbols

1…リザーバタンク(成形品もしくは中空状の容器)
2…アッパタンク(一次成形体)
3…ロアタンク(二次成形体)
4…フィルター(内装部品)
13…挟持片
14…ベルト部(二次接合層もしくは二次成形体)
1 ... Reservoir tank (molded product or hollow container)
2 ... Upper tank (primary molded product)
3. Lower tank (secondary molded product)
4 ... Filter (interior parts)
13 ... clamping piece 14 ... belt part (secondary joining layer or secondary molded object)

Claims (7)

熱可塑性樹脂である一次成形材料をもって予め成形した一次成形体に対し、同じく熱可塑性樹脂である二次成形材料を射出して二次成形体を成形することにより、一次成形体の一部を再溶融しつつ二次成形体と射出溶着により接合するようにした樹脂成形品の射出溶着成形方法であって、
一次成形体を成形する際の一次成形材料の溶融樹脂温度を一次成形材料そのものの融点よりも50〜100℃程度高く設定して、一次成形体のうち少なくとも二次成形体との接合面となるべき部分のスキン層を極薄化したことを特徴とする樹脂成形品の射出溶着成形方法。
A part of the primary molded body is re-formed by injecting a secondary molded material, which is also a thermoplastic resin, into a primary molded body that has been molded in advance with a primary molding material that is a thermoplastic resin. An injection welding molding method for a resin molded product which is joined by injection welding with a secondary molded body while melting,
The molten resin temperature of the primary molding material at the time of molding the primary molded body is set to be about 50 to 100 ° C. higher than the melting point of the primary molding material itself, so that at least a joint surface with the secondary molded body of the primary molded body is formed. An injection welding molding method for a resin molded product, characterized in that the skin layer of the power portion is extremely thinned.
熱可塑性樹脂である一次成形材料をもって予め成形した半割り状の二つの一次成形体同士を突き合わせた上で、その突き合わせ部近傍に同じく熱可塑性樹脂である二次成形材料を射出して二次成形体として二次接合層を成形することにより、一次成形体の一部を再溶融しつつ一次成形体同士を射出溶着により接合するようにしたことを特徴とする請求項1に記載の樹脂成形品の射出溶着成形方法。   After butt-joining two half-shaped primary molded bodies molded in advance with a primary molding material that is a thermoplastic resin, a secondary molding material that is also a thermoplastic resin is injected into the vicinity of the butt portion to perform secondary molding. 2. The resin molded product according to claim 1, wherein the primary molded body is joined by injection welding while remelting a part of the primary molded body by molding a secondary bonding layer as a body. Injection molding method. 一次成形体の成形と二次成形体の成形による射出溶着接合とを、ダイスライドインジェクション法により連続して行うことを特徴とする請求項2に記載の樹脂成形品の射出溶着成形方法。   3. The method of injection welding molding of a resin molded product according to claim 2, wherein the molding of the primary molded body and the injection welding joining by molding of the secondary molded body are continuously performed by a die slide injection method. 二次成形体を成形する際の二次成形材料の溶融樹脂温度を二次成形材料そのものの融点よりも50〜100℃程度高く設定したことを特徴とする請求項1〜3のいずれかに記載の樹脂成形品の射出溶着成形方法。   The molten resin temperature of the secondary molding material at the time of molding the secondary molded body is set to be about 50 to 100 ° C higher than the melting point of the secondary molding material itself. Injection molding method for resin molded products. 一次成形体を成形する際の金型温度と溶融樹脂温度との温度差を220℃±20℃の範囲に設定したことを特徴とする請求項1〜4のいずれかに記載の樹脂成形品の射出溶着成形方法。   The resin molded product according to any one of claims 1 to 4, wherein a temperature difference between a mold temperature and a molten resin temperature in molding the primary molded body is set in a range of 220 ° C ± 20 ° C. Injection welding molding method. 一次成形材料および二次成形材料のうち少なくともいずれか一方の成形材料がポリアミド、ポリアセタール、ポリエステルのうちのいずれかのものであることを特徴とする請求項1〜5のいずれかに記載の樹脂成形品の射出溶着成形方法。   6. The resin molding according to claim 1, wherein at least one of the primary molding material and the secondary molding material is one of polyamide, polyacetal, and polyester. Injection molding method of products. 一次成形材料および二次成形材料のうち少なくともいずれか一方の成形材料が繊維強化樹脂であることを特徴とする請求項1〜6のいずれかに記載の樹脂成形品の射出溶着成形方法。   7. The method of injection-molding a resin molded product according to claim 1, wherein at least one of the primary molding material and the secondary molding material is a fiber reinforced resin.
JP2003369877A 2003-10-30 2003-10-30 Injection welding molding method for resin molding Pending JP2005131902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003369877A JP2005131902A (en) 2003-10-30 2003-10-30 Injection welding molding method for resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003369877A JP2005131902A (en) 2003-10-30 2003-10-30 Injection welding molding method for resin molding

Publications (1)

Publication Number Publication Date
JP2005131902A true JP2005131902A (en) 2005-05-26

Family

ID=34647050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003369877A Pending JP2005131902A (en) 2003-10-30 2003-10-30 Injection welding molding method for resin molding

Country Status (1)

Country Link
JP (1) JP2005131902A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031924A (en) * 2014-07-30 2016-03-07 アスモ株式会社 Foreign matter detection sensor
JP2019024014A (en) * 2018-10-17 2019-02-14 株式会社デンソー Foreign matter detection sensor
JP2020029065A (en) * 2018-08-24 2020-02-27 紀州技研工業株式会社 Filter device
JP2020506099A (en) * 2017-08-14 2020-02-27 ジュン、アン、テック、カンパニー、リミテッドJoong Ang Tech Co., Ltd Method of manufacturing hollow injection molded article and hollow injection molded article manufactured using the same
JP2021043077A (en) * 2019-09-11 2021-03-18 日本製鉄株式会社 Strength test method and strength test piece

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031924A (en) * 2014-07-30 2016-03-07 アスモ株式会社 Foreign matter detection sensor
JP2020506099A (en) * 2017-08-14 2020-02-27 ジュン、アン、テック、カンパニー、リミテッドJoong Ang Tech Co., Ltd Method of manufacturing hollow injection molded article and hollow injection molded article manufactured using the same
JP2020029065A (en) * 2018-08-24 2020-02-27 紀州技研工業株式会社 Filter device
JP2019024014A (en) * 2018-10-17 2019-02-14 株式会社デンソー Foreign matter detection sensor
JP2021043077A (en) * 2019-09-11 2021-03-18 日本製鉄株式会社 Strength test method and strength test piece
JP7260788B2 (en) 2019-09-11 2023-04-19 日本製鉄株式会社 Strength test method and strength test piece

Similar Documents

Publication Publication Date Title
JP4431086B2 (en) Blow molding mold apparatus, resin hollow body manufacturing method using the blow molding mold apparatus, and resin hollow molded body manufactured by the manufacturing method
KR101837761B1 (en) Methods and a system for component mounting arrangement
US7588809B2 (en) Hollow body of synthetic resin, method and mold for injection molding of the hollow body
JP2006192919A (en) Fuel tank for automobile and its manufacturing method
WO2005118255A1 (en) Die assembly for blow molding, process for producing hollow molded item of resin with use of the die assembly, and hollow molded item of resin produced by the process
JP2008155587A (en) Manufacturing method of hollow resin molded product
JP6771196B2 (en) Resin pipe and its manufacturing method
JP2005131902A (en) Injection welding molding method for resin molding
CN106394233B (en) Fuel tank comprising welded components
JP6400399B2 (en) Composite structure of metal and reinforced fiber thermoplastic resin and method for producing the same
JPH0716945A (en) Method and mold for molding hollow product
JP5706658B2 (en) Body fluid purification column, manufacturing method and manufacturing apparatus thereof
CA2477532C (en) Manufacturing apparatus of resin boot for constant-velocity universal joint and method of manufacturing resin boot for constant-velocity universal joint, and resin boot for constant-velocity universal joint
US20200307043A1 (en) Resin injection molding method
JP2002067089A (en) Method for forming hollow molding of synthetic resin, molding and mold therefor
JP6418102B2 (en) Manufacturing method of resin fuel tank
JP2002370250A (en) Method for resin blow-molded product, molded product and mold therefor
JP3972843B2 (en) Method for molding hollow molded article and molding die used therefor
JP2003245944A (en) Method for injection-molding multilayered hollow body made of synthetic resin
JP2001062925A (en) Molded product and manufacture of the same
JP2000043126A (en) Preform of two-layered constitution for stretch blow molding
JP3656124B2 (en) Method for molding hollow molded article and mold for molding
JP3892625B2 (en) Molding method and apparatus by joining hollow molded articles and hollow molded article molded by the molding method by joining
JP2006159682A (en) Mold for insert molding and insert molding method of resin molded product
JP2002361681A (en) Holding method of hollow molded article of synthetic resin, molded article and mold therefor