JP2005130807A - New peptide and antituberculous vaccine composed of the same peptide - Google Patents

New peptide and antituberculous vaccine composed of the same peptide Download PDF

Info

Publication number
JP2005130807A
JP2005130807A JP2003372782A JP2003372782A JP2005130807A JP 2005130807 A JP2005130807 A JP 2005130807A JP 2003372782 A JP2003372782 A JP 2003372782A JP 2003372782 A JP2003372782 A JP 2003372782A JP 2005130807 A JP2005130807 A JP 2005130807A
Authority
JP
Japan
Prior art keywords
peptide
vaccine
amino acid
ifn
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003372782A
Other languages
Japanese (ja)
Other versions
JP4472307B2 (en
Inventor
Yukio Koide
幸夫 小出
Mina Suzuki
美奈 鈴木
Hirotaka Aoeda
大貴 青枝
Minoru Nagata
年 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003372782A priority Critical patent/JP4472307B2/en
Publication of JP2005130807A publication Critical patent/JP2005130807A/en
Application granted granted Critical
Publication of JP4472307B2 publication Critical patent/JP4472307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antituberculous vaccine composed of a peptide corresponding to an epitope of tubercle bacillus by specifying the epitope of tubercle bacillus. <P>SOLUTION: It was found that a peptide composed of at least eight continuous amino acids from C terminal of amino acid sequence (TLAGKISVV) specifically stimulates T cell (CD8<SP>+</SP>) and imparts remarkably high IFN-γ amount. Consequently, the peptide composed of at least eight continuous amino acid from C terminal of a specific amino acid sequence (TLAGKISVV) can be used as the antituberculous vaccine. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、抗結核菌ワクチンとして有効なペプチドに関する。   The present invention relates to a peptide effective as an anti-tuberculosis vaccine.

結核菌(Mycobacterium tuberculosis)に有効なワクチンとして知られているBCGにはいくつかの問題点が指摘されていることから、成分ワクチンとしてペプチドから成る結核菌に有効なワクチンを探索する試みが多く成されている(特許文献1等)。
この結核菌の抗原として、Ag85A、Ag85BなどのAg85ファミリータンパク質はMycobacteriaに共通する主要なタンパク質であり、有効な感染防御抗原として働くことが知られている。
結核菌やBCGから分離されたタンパク質であるMPB/MPT51分子はこのファミリーに属し、その配列が解明されており(非特許文献1)、結核菌の防御抗原として機能する結果が得られている(非特許文献2)。
発明者らは、既にDNAワクチンを用いてこのMPB/MPT51のT細胞エピトープを同定することを試みているが(非特許文献3)、エピトープは同定されておらず、より正確な同定が望まれていた。
Several problems have been pointed out with BCG, which is known as a vaccine effective against Mycobacterium tuberculosis, and many attempts have been made to search for vaccines effective against M. tuberculosis consisting of peptides as component vaccines. (Patent Document 1 etc.).
As antigens of Mycobacterium tuberculosis, Ag85 family proteins such as Ag85A and Ag85B are major proteins common to Mycobacteria and are known to work as effective infection protective antigens.
The MPB / MPT51 molecule, which is a protein isolated from Mycobacterium tuberculosis and BCG, belongs to this family, and its sequence has been elucidated (Non-patent Document 1), and a result that functions as a protective antigen for Mycobacterium tuberculosis has been obtained ( Non-patent document 2).
The inventors have already attempted to identify the T cell epitope of MPB / MPT51 using a DNA vaccine (Non-patent Document 3), but the epitope has not been identified, and more accurate identification is desired. It was.

特表2001-515359Special table 2001-515359 Infection And Immunity, vol.65, No.9, p.3680-3685 (1997)Infection And Immunity, vol.65, No.9, p.3680-3685 (1997) Koide Y. et al., "Induction of protective cellular immunity against Mycobacterium tuberculosis using a DNA vaccine encoding MPB51 antigen carried by attenuated suicide Listeria monocytogenes and identification of T-cell epitopes of the antigen" Thirty-eight Research Conference on Tuberculosis and Leprosy, US-Japan Cooperative Medical Science Program, p32-38, 2003Koide Y. et al., "Induction of protective cellular immunity against Mycobacterium tuberculosis using a DNA vaccine encoding MPB51 antigen carried by attenuated suicide Listeria monocytogenes and identification of T-cell epitopes of the antigen" Thirty-eight Research Conference on Tuberculosis and Leprosy, US-Japan Cooperative Medical Science Program, p32-38, 2003 第76回細菌学会総会、鈴木美奈ら「DNAワクチンを用いたMycobacteriaの主要タンパクMPB/MPT51のT細胞エピトープの同定」平成15年4月1〜3日The 76th Annual Meeting of the Bacteriological Society, Mina Suzuki et al. “Identification of T cell epitopes of the major protein MPB / MPT51 of Mycobacteria using DNA vaccines” April 1-3, 2003

本発明は、結核菌のエピトープを特定し、このエピトープに相当するペプチドから成る抗結核菌ワクチンを提供することを目的とする。
本発明者らは、DNAワクチンを用いてMPB/MPT51分子内のT細胞エピトープの固定を試みてきている(非特許文献3)。しかし、エピトープとして有効なアミノ酸数は8〜10といわれており、今まで同定したと考えられたエピトープはこれより遥かに大きく、より正確にエピトープを同定することが求められていた。
It is an object of the present invention to specify an epitope of Mycobacterium tuberculosis and provide an anti-Mycobacterium tuberculosis vaccine comprising a peptide corresponding to this epitope.
The present inventors have attempted to fix a T cell epitope in the MPB / MPT51 molecule using a DNA vaccine (Non-patent Document 3). However, the number of effective amino acids as an epitope is said to be 8 to 10, and the epitope considered to have been identified so far is much larger than this, and it has been required to identify the epitope more accurately.

本発明者らは、BCG由来のMPB51分子の発現プラスミドpCI-MPB51を作成し、これでマウスを免疫し、この免疫マウス脾細胞を、結核菌又はBCGの一部分に相当するアミノ酸数が約20の合成ペプチドと共培養して、IFN-γ量を測定した。更に、このIFN-γ産生量の多いペプチド中のアミノ酸数が約10の合成ペプチドを用いてCD8+又はCD4+T細胞についてフローサイトメトリーを行った。その結果、T細胞(CD8+)を特異的に刺激してIFN-γを産生させるペプチド断片を特定することに成功した。この結果、顕著に高いIFN-γ量を与えるこのアミノ酸数が10のペプチドは、免疫マウス脾細胞に含まれるT細胞(CD8+)を特異的に刺激してIFN-γ量を増大させたものであるため、このT細胞(CD8+)のエピトープに相当するものと考えられる。 The present inventors made an expression plasmid pCI-MPB51 of BCG-derived MPB51 molecule, immunized the mouse with this, and immunized mouse splenocytes with about 20 amino acids corresponding to M. tuberculosis or a part of BCG. The amount of IFN-γ was measured by co-culture with the synthetic peptide. Furthermore, flow cytometry was performed on CD8 + or CD4 + T cells using a synthetic peptide having about 10 amino acids in the peptide with a large amount of IFN-γ production. As a result, they succeeded in identifying a peptide fragment that specifically stimulates T cells (CD8 + ) to produce IFN-γ. As a result, this peptide with 10 amino acids that gives a remarkably high amount of IFN-γ increased the amount of IFN-γ by specifically stimulating T cells (CD8 + ) contained in spleen cells of immunized mice. Therefore, it is considered to correspond to the epitope of this T cell (CD8 + ).

本発明者らは、上記の実験の結果、アミノ酸配列(TLAGKGISVV)のC末端から少なくとも8の連続するアミノ酸からなるペプチドが、T細胞(CD8+)を特異的に刺激して、顕著に高いIFN-γ量を与えることを見出し、本発明を完成させるに至った。
即ち、本発明は、(a)又は(b)のペプチドである。
(a)配列番号1で表されるアミノ酸配列のC末端から少なくとも8の連続するアミノ酸からなるペプチド
(b)(a)のペプチドのアミノ酸配列においてC末端を除く1又は2のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、T細胞(CD8+)に対して免疫活性を示すペプチド
As a result of the above-mentioned experiment, the present inventors have found that a peptide consisting of at least 8 consecutive amino acids from the C-terminal of the amino acid sequence (TLAGKGISVV) specifically stimulates T cells (CD8 + ), resulting in significantly higher IFN. The inventors have found that an amount of γ is given, and have completed the present invention.
That is, the present invention is the peptide (a) or (b).
(A) a peptide comprising at least 8 consecutive amino acids from the C-terminus of the amino acid sequence represented by SEQ ID NO: 1 (b) deletion of one or two amino acids except the C-terminus in the amino acid sequence of the peptide of (a), A peptide consisting of a substituted or added amino acid sequence and showing immunological activity against T cells (CD8 + )

配列番号1で表されるアミノ酸配列のC末端から少なくとも8の連続するアミノ酸からなるペプチドは、結核菌やBCGから分離されたタンパク質であるMPB/MPT51分子の部分であり、T細胞(CD8+)を特異的に刺激しIFN-γを産生するため、このT細胞(CD8+)のエピトープであると結論される。従って、このペプチドを抗結核菌ワクチンとして用いることができる。
このペプチドを、必要に応じて有効量のアジュバント及び調剤上許容し得る担体と共に含有してワクチン製剤とすることができる。
この製剤は、注射により皮下、皮内又は筋肉に注入する等適当な経路で患者に投与することができる。ワクチンの投与量は共に投与するアジュバントの有無等によって異なるが、一般的に1成人1投与あたり1μg〜100mgの量で投与する。本ワクチンと共にアジュバントを投与する場合、一般的には、1成人1投与あたり1ng〜1mgの量を投与する。アジュバントとしてはdimethyl dioctadecylammonium bromide (DDA, Eastman Kodak)、monophosphoryl lipid A(MPL, RIBI ImmunoChem Research Inc.)等を使用できる。
A peptide consisting of at least 8 consecutive amino acids from the C-terminal of the amino acid sequence represented by SEQ ID NO: 1 is a part of MPB / MPT51 molecule, which is a protein separated from M. tuberculosis and BCG, and is a T cell (CD8 + ) It is concluded that this is an epitope of this T cell (CD8 + ) because IFN-γ is specifically stimulated. Therefore, this peptide can be used as an anti-tuberculosis vaccine.
This peptide can be contained in a vaccine preparation together with an effective amount of an adjuvant and a pharmaceutically acceptable carrier as necessary.
This preparation can be administered to a patient by an appropriate route such as injection, subcutaneously, intradermally or intramuscularly. The dose of the vaccine varies depending on the presence or absence of an adjuvant to be administered together, but is generally administered in an amount of 1 μg to 100 mg per adult dose. When an adjuvant is administered together with the vaccine, generally an amount of 1 ng to 1 mg is administered per adult. As an adjuvant, dimethyl dioctadecylammonium bromide (DDA, Eastman Kodak), monophosphoryl lipid A (MPL, RIBI ImmunoChem Research Inc.), etc. can be used.

また、このペプチドにより定法に従ってマウス等の哺乳動物を免疫し、この哺乳動物のリンパ球や脾臓細胞を単離し、これとミエローマ細胞株と定法に従って融合させて複数のハイブリドーマを得ることができる。更に限界希釈によるクローニングを行い、ハイブリドーマの上清が本ペプチドと特異的に反応するようなハイブリドーマを選択し、選択したハイブリドーマの産生する抗体(モノクローナル抗体)を得ることができる。このような抗体は、このペプチドに特異的に反応するため、結核菌を検査したり、抗結核菌ワクチンを製造する場合にワクチンをクリーニングする際に有用である。この抗原抗体反応を検知する方法に特に制限はないが、イムノブロット法、ドットブロット法、ELISA法等を用いて行うことができる。   Further, a mammal such as a mouse can be immunized with this peptide according to a standard method, and lymphocytes and spleen cells of this mammal can be isolated and fused with a myeloma cell line according to a standard method to obtain a plurality of hybridomas. Further, cloning by limiting dilution is performed, and a hybridoma in which the hybridoma supernatant specifically reacts with the present peptide is selected, and an antibody (monoclonal antibody) produced by the selected hybridoma can be obtained. Since such an antibody reacts specifically with this peptide, it is useful for examining Mycobacterium tuberculosis or cleaning the vaccine when producing an anti-Mycobacterium tuberculosis vaccine. The method for detecting this antigen-antibody reaction is not particularly limited, but can be carried out using an immunoblot method, a dot blot method, an ELISA method or the like.

また、このペプチドをコードする塩基配列から成るオリゴヌクレオチドは、これを含むベクターを利用して、これを発現させることにより抗結核菌DNAワクチンとして使用できる。
ベクターとしては、原核または真核生物宿主細胞において自律複製可能または染色体中への組込み可能であって、目的DNAの転写が可能な位置にプロモーターを含有しているものを選択できる。ベクターはプラスミド、ファージを含むウイルス、コスミドなどである。ベクターにはさらに、選択マーカー、リボソーム結合部位、複製開始点、ターミネーター、エンハンサー、ポリリンカーなどを適宜含むことができる。細菌等の原核生物用や、菌類、酵母類、昆虫細胞、植物細胞、動物細胞等の真核生物用の種々の発現ベクターを用いることができる。
プロモーターとしては、市販の発現ベクターに予め組込まれているもの等を適宜選択して用いることができる。例えば、原核生物用としてtrpプロモーター、lacプロモーター、PLプロモーター、PRプロモーターなど、酵母用としてGAPプロモーター、ADHプロモーター、GPDプロモーターなど、動物細胞用としてサイトメガロウイルスプロモーター、SV40初期プロモーター、レトロウイルスプロモーター、乳腺細胞特異的プロモーターなど、植物細胞用としてカリフラワーモザイクウイルスの35Sプロモーターなどが挙げられる。
形質転換法として、塩化カルシウム法、燐酸カルシウム法、酢酸リチウム法、エレクトロポレーション法、プロトプラスト法、スフェロプラスト法、リポフェクション法、アグロバクテリウム法などを用いることができる。

以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。
Moreover, the oligonucleotide which consists of a base sequence which codes this peptide can be used as an anti- tubercle bacillus DNA vaccine by expressing this using the vector containing this.
As the vector, a vector that can autonomously replicate in a prokaryotic or eukaryotic host cell or can be integrated into a chromosome and contains a promoter at a position where transcription of the target DNA can be selected can be selected. Vectors include plasmids, phage-containing viruses, cosmids, and the like. The vector can further include a selection marker, a ribosome binding site, a replication origin, a terminator, an enhancer, a polylinker and the like as appropriate. Various expression vectors for prokaryotes such as bacteria and eukaryotes such as fungi, yeasts, insect cells, plant cells and animal cells can be used.
As the promoter, a promoter or the like previously incorporated into a commercially available expression vector can be appropriately selected and used. For example, trp promoter, lac promoter, PL promoter, PR promoter, etc. for prokaryotes, GAP promoter, ADH promoter, GPD promoter, etc. for yeast, cytomegalovirus promoter, SV40 early promoter, retrovirus promoter, mammary gland for animal cells Examples of cell-specific promoters include cauliflower mosaic virus 35S promoter for plant cells.
As the transformation method, calcium chloride method, calcium phosphate method, lithium acetate method, electroporation method, protoplast method, spheroplast method, lipofection method, Agrobacterium method and the like can be used.

The following examples illustrate the invention but are not intended to limit the invention.

プラスミドDNAワクチン(pCI-MPT51)の構成
MPT51をコードするDNAをプラスミドpMB49(長崎大学医学部大原直也氏より入手)からプライマー(配列番号2及び3)を用いてPCR法により増幅した。pMB49はM.bovis BCG Tokyo strainのMPB51遺伝子(Gene Bank/EMBL/CCBJ accession number: D26486)を含む。Xba Iで消化されたPCR断片を発現プラスミドpCI(Promega, Madison, WI)のサイトメガルウイルスのエンハンサー/プロモーター領域の下流に位置するXba I位置に挿入した。
Construction of Plasmid DNA Vaccine (pCI-MPT51) DNA encoding MPT51 was amplified by PCR from the plasmid pMB49 (obtained from Nagasaki University School of Medicine, Naoya Ohara) using primers (SEQ ID NOs: 2 and 3). pMB49 contains the MPB51 gene (Gene Bank / EMBL / CCBJ accession number: D26486) of M. bovis BCG Tokyo strain. The PCR fragment digested with Xba I was inserted into the expression plasmid pCI (Promega, Madison, Wis.) At the Xba I position located downstream of the cytomegal virus enhancer / promoter region.

マウスの免疫
HLA-A*トランスジェニック/マウスHMCクラスI欠損(HHD)マウス(パスツール研究所、フランス、F. Remonnler氏より入手)を遺伝子銃(Bio-Rad Laboratories)を用いて上記プラスミドDNAワクチン(pCI-MPT51)で免疫処置した。0.5mgの金粒子を1μgのプラスミドDNAワクチンでコートした。マウスを免疫するために、腹部の皮膚の毛を剃り70%エタノールで拭いた。このマウスに、1度に0.5mgの金粒子を2回打ち込んだ。マウスは一週間の間隔を空けて4回に分けて2μgのプラスミドDNAを4度打ち込んだ。
Mouse immunity
HLA-A * transgenic / mouse HMC class I deficient (HHD) mice (obtained from F. Remonnler, Pasteur Institute, France) using the above plasmid DNA vaccine (pCI-) using a gene gun (Bio-Rad Laboratories) MPT51) was immunized. 0.5 mg of gold particles was coated with 1 μg of plasmid DNA vaccine. To immunize the mice, the abdominal skin was shaved and wiped with 70% ethanol. The mice were injected twice with 0.5 mg of gold particles at a time. Mice were bombarded 4 times with 2 μg of plasmid DNA in four portions at weekly intervals.

ペプチドの合成
MPB51(配列番号4)について、図1に示すように、20アミノ酸から成るペプチドを10アミノ酸が重複するように選び、26種のペプチドを合成した。但し、最後のペプチド(255〜266)は12アミノ酸から成る。
Peptide synthesis As shown in FIG. 1, peptides consisting of 20 amino acids were selected for MPB51 (SEQ ID NO: 4) so that 10 amino acids overlap, and 26 peptides were synthesized. However, the last peptide (255-266) consists of 12 amino acids.

ELISAによるIFN-γ濃度測定
免疫したマウスから採取した脾臓細胞の懸濁液を、96穴プレートのRPMI/10FCS中で5μMの上記各ペプチドの存在下、37℃、5%CO2条件で培養した。24時間後に上清液を回収してIFN-γ濃度評価まで−20℃で保存した。
IFN-γ濃度はELIZA法で測定した。96穴ELISAプレート(E.I.A./R.I.A.プレートA/2)をキャプチャ抗体(抗murine IFN-γモノクローナル抗体(mAb) R4-6A2; BD PharMingen)で4℃で一晩コートし、0.05% Tween-20を含むPBSで洗浄し、Block Ace(大日本製作所)により37℃で2時間ブロックした。洗浄後、培養上清液をプレートに添加し、4℃で一晩インキュベートした。洗浄後、0.5μg/mlビオチンでラベルされた抗murine IFN-γモノクローナル抗体(mAb)(XMG1.2; BD PharMingen)をプレートに添加し、室温で1時間インキュベートした。洗浄後、0.1μg/mlのホースラディッシュペルオキシダーゼ(HRP)結合ストレプタビジン(streptavidine)(Vector Laboratories, Inc.)を添加した。次にこのプレートを室温で30分間インキュベートした。洗浄後、3,3',5,5'-テトラメチルベンゼンジヒドロクロライド(TMB, Sigma-Aldrich Japan)を用いて、結合したHRP結合ストレプタビジンを測定した。5分後、色反応を2M H2SO4で終了させ、EZS-ABSマイクロプレートリーダー(IWAKI)を用いて450nmの吸収を測定した。
結果を図2に示す。MPB51(図1、配列番号4)の51〜70番目(P51)が最も高いIFN-γ量を与えることが分かった。
Measurement of IFN-γ concentration by ELISA A suspension of spleen cells collected from an immunized mouse was cultured in RPMI / 10FCS in a 96-well plate in the presence of 5 μM of each peptide at 37 ° C. and 5% CO 2 . . After 24 hours, the supernatant was collected and stored at −20 ° C. until IFN-γ concentration evaluation.
IFN-γ concentration was measured by ELIZA method. A 96-well ELISA plate (EIA / RIA plate A / 2) is coated with capture antibody (anti-murine IFN-γ monoclonal antibody (mAb) R4-6A2; BD PharMingen) overnight at 4 ° C. and contains 0.05% Tween-20 The plate was washed with PBS and blocked with Block Ace (Dainippon Seisakusho) at 37 ° C for 2 hours. After washing, the culture supernatant was added to the plate and incubated overnight at 4 ° C. After washing, anti-murine IFN-γ monoclonal antibody (mAb) (XMG1.2; BD PharMingen) labeled with 0.5 μg / ml biotin was added to the plate and incubated at room temperature for 1 hour. After washing, 0.1 μg / ml horseradish peroxidase (HRP) -conjugated streptavidine (Vector Laboratories, Inc.) was added. The plate was then incubated for 30 minutes at room temperature. After washing, bound HRP-bound streptavidin was measured using 3,3 ′, 5,5′-tetramethylbenzene dihydrochloride (TMB, Sigma-Aldrich Japan). After 5 minutes, the color reaction was terminated with 2M H 2 SO 4 and the absorbance at 450 nm was measured using an EZS-ABS microplate reader (IWAKI).
The results are shown in FIG. It was found that the 51st to 70th positions (P51) of MPB51 (FIG. 1, SEQ ID NO: 4) give the highest amount of IFN-γ.

ペプチドの合成
次に、MPB51(図1、配列番号4)の(1)51〜70番目、(2)21〜29番目、(3)53〜61番目(TLAGKGISV)、及び(4)53〜62番目(TLAGKGISVV)から成るペプチドを合成した。
Synthesis of Peptide Next, MPB51 (FIG. 1, SEQ ID NO: 4) (1) 51-70th, (2) 21-29th, (3) 53-61th (TLAGKGISV), and (4) 53-62 A peptide consisting of the second (TLAGKGISVV) was synthesized.

フローサイトメトリーによる評価
抗原特異的T細胞サブセットについて、T細胞表現型及び細胞内IFN-γ合成を、同時フローサイトメトリー評価法により測定した。RBC(赤血球)を除去するために、実施例1で得た免疫脾臓細胞をACK溶解緩衝液で室温で5分間処理し、PRMI−1640培養液で2度洗浄し、PRMI/10FCS中に1×107細胞/mlの濃度で再懸濁した。この細胞(200μl)を、1000倍希釈のGolgiplugストック溶液(brefeldin A solution; BD PharMingen)中の5μMの上記合成ペプチドの存在又は不存在下で、37℃で4時間インキュベートした。次に細胞をFACS緩衝液(1%FCS及び0.1%NaN3を含むリン酸緩衝食塩水)で2度洗浄し、イソチオシアン酸フルオレッセイン(FITC)結合抗CD8抗体(53-6.7, BD PharMingen)及びCyChrome結合抗CD4抗体(RM4-5, BD PharMingen)で氷上で30分間染色し、2回洗浄し、続いてCytofix/Cytoperm キット(BD PharMingen)を用いて細胞内サイトカイン染色(ICS)を行った。IFN-γに対する細胞内サイトカイン染色はフィコエリトリン(PE)結合抗IFN-γ抗体(clone XMG1.2; BD PharMingen)を用いて行った。細胞を2回洗浄し、続いてFACS緩衝液に再懸濁した。これらをEPICSデジタルフローサイトメーター(EPICS XL; Beckman Coulter)で分析した。
Evaluation by Flow Cytometry For the antigen-specific T cell subset, T cell phenotype and intracellular IFN-γ synthesis were measured by simultaneous flow cytometry evaluation method. In order to remove RBC (red blood cells), the immune spleen cells obtained in Example 1 were treated with ACK lysis buffer for 5 minutes at room temperature, washed twice with PRMI-1640 medium, and 1 × in PRMI / 10FCS. Resuspended at a concentration of 10 7 cells / ml. The cells (200 μl) were incubated for 4 hours at 37 ° C. in the presence or absence of 5 μM of the synthetic peptide in a 1000-fold diluted Golgiplug stock solution (brefeldin A solution; BD PharMingen). The cells are then washed twice with FACS buffer (phosphate buffered saline containing 1% FCS and 0.1% NaN 3 ) and fluorescein isothiocyanate (FITC) -conjugated anti-CD8 antibody (53-6.7, BD PharMingen) And CyChrome-conjugated anti-CD4 antibody (RM4-5, BD PharMingen) for 30 minutes on ice, washed twice, followed by intracellular cytokine staining (ICS) using the Cytofix / Cytoperm kit (BD PharMingen) . Intracellular cytokine staining for IFN-γ was performed using a phycoerythrin (PE) -conjugated anti-IFN-γ antibody (clone XMG1.2; BD PharMingen). Cells were washed twice and subsequently resuspended in FACS buffer. These were analyzed with an EPICS digital flow cytometer (EPICS XL; Beckman Coulter).

結果を図3に示す。(4)MPB51(配列番号4)の53〜62番目から成るペプチドを用いた場合のT細胞(CD8)によるIFN-γの産生量が顕著に高いことがわかる。これは(3)MPB51の53〜61番目から成るペプチドを用いた場合と比較すると特に顕著である。
即ち、T細胞(CD8)がMPB51(配列番号4)の53〜62番目から成るペプチドに反応して、IFN-γを生産したことを示している。
これは、この(4)の配列がMPT51、即ち結核菌のT細胞エピトープであることを示すものであり、(3)と比較するとそのC末端に特徴があるといえる。更に、通常有効なエピトープは8〜10アミノ酸であると考えられているため、MPT51のエピトープは(4)の配列のC末端を含む8〜10アミノ酸から成る部分であるということができる。
The results are shown in FIG. (4) It can be seen that the amount of IFN-γ produced by T cells (CD8) when the peptide consisting of positions 53 to 62 of MPB51 (SEQ ID NO: 4) is used is remarkably high. This is particularly remarkable when compared with the case of using (3) a peptide consisting of the 53rd to 61st MPB51.
That is, it is shown that T cells (CD8) produced IFN-γ in response to the 53rd to 62nd peptides of MPB51 (SEQ ID NO: 4).
This indicates that the sequence of (4) is MPT51, that is, a T cell epitope of Mycobacterium tuberculosis, and it can be said that its C-terminus is characterized as compared with (3). Furthermore, since it is considered that an effective epitope is usually 8 to 10 amino acids, it can be said that the epitope of MPT51 is a portion consisting of 8 to 10 amino acids including the C-terminus of the sequence of (4).

MPT51分子の配列(配列番号4)を示す図である。It is a figure which shows the arrangement | sequence (sequence number 4) of MPT51 molecule | numerator. 実施例1のIFN-γ ELISAの結果を示す図である。縦軸はIFN-γ量を示す。PPD(精製ツベルクリン)は5μg/mlで陽性コントロールとして、Medium(培養液)は陰性コントロールとして用いた。FIG. 3 is a diagram showing the results of IFN-γ ELISA of Example 1. The vertical axis represents the amount of IFN-γ. PPD (purified tuberculin) was used as a positive control at 5 μg / ml, and Medium (culture medium) was used as a negative control. 実施例2のフローサイトメトリーの結果を示す図である。縦軸は細胞内IFN-γ陽性細胞数(%)を示す。Controlはペプチドを添加しないものを示す。FIG. 4 is a view showing the results of flow cytometry in Example 2. The vertical axis represents the number of intracellular IFN-γ positive cells (%). Control shows what does not add a peptide.

Claims (6)

(a)又は(b)のペプチド。
(a)配列番号1で表されるアミノ酸配列のC末端から少なくとも8の連続するアミノ酸からなるペプチド
(b)(a)のペプチドのアミノ酸配列においてC末端を除く1又は2のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、T細胞(CD8+)に対して免疫活性を示すペプチド
The peptide of (a) or (b).
(A) a peptide comprising at least 8 consecutive amino acids from the C-terminus of the amino acid sequence represented by SEQ ID NO: 1 (b) deletion of one or two amino acids except the C-terminus in the amino acid sequence of the peptide of (a), A peptide consisting of a substituted or added amino acid sequence and showing immunological activity against T cells (CD8 + )
請求項1に記載のペプチドから成る抗結核菌ワクチン。 An anti-tuberculosis vaccine comprising the peptide according to claim 1. 請求項1のペプチドに特異的に反応する抗体。 An antibody that specifically reacts with the peptide of claim 1. 請求項1のペプチドをコードする塩基配列から成るオリゴヌクレオチド。 An oligonucleotide comprising a base sequence encoding the peptide of claim 1. 請求項4に記載のオリゴヌクレオチドを含むベクター。 A vector comprising the oligonucleotide according to claim 4. 請求項5に記載のベクターから成る抗結核菌DNAワクチン。
An anti-tuberculosis DNA vaccine comprising the vector according to claim 5.
JP2003372782A 2003-10-31 2003-10-31 Novel peptide and anti-tuberculosis vaccine comprising this peptide Expired - Fee Related JP4472307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003372782A JP4472307B2 (en) 2003-10-31 2003-10-31 Novel peptide and anti-tuberculosis vaccine comprising this peptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372782A JP4472307B2 (en) 2003-10-31 2003-10-31 Novel peptide and anti-tuberculosis vaccine comprising this peptide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009278386A Division JP4883816B2 (en) 2009-12-08 2009-12-08 Method for detecting T cells (CD8 +) specific for Mycobacterium tuberculosis

Publications (2)

Publication Number Publication Date
JP2005130807A true JP2005130807A (en) 2005-05-26
JP4472307B2 JP4472307B2 (en) 2010-06-02

Family

ID=34649058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372782A Expired - Fee Related JP4472307B2 (en) 2003-10-31 2003-10-31 Novel peptide and anti-tuberculosis vaccine comprising this peptide

Country Status (1)

Country Link
JP (1) JP4472307B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133965A (en) * 2009-12-08 2010-06-17 Japan Science & Technology Agency Method for detecting specific t cell (cd8+) in tubercle bacillus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133965A (en) * 2009-12-08 2010-06-17 Japan Science & Technology Agency Method for detecting specific t cell (cd8+) in tubercle bacillus

Also Published As

Publication number Publication date
JP4472307B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
McShane et al. Enhanced immunogenicity of CD4+ T-cell responses and protective efficacy of a DNA-modified vaccinia virus Ankara prime-boost vaccination regimen for murine tuberculosis
Cao et al. Toxoplasma gondii: vaccination with a DNA vaccine encoding T-and B-cell epitopes of SAG1, GRA2, GRA7 and ROP16 elicits protection against acute toxoplasmosis in mice
US5591632A (en) Recombinant BCG
Barouch et al. Augmentation of immune responses to HIV-1 and simian immunodeficiency virus DNA vaccines by IL-2/Ig plasmid administration in rhesus monkeys
CN102666575B (en) Mycobacterial vaccines
WO1989012455A1 (en) Stress proteins and uses therefor
EP0305488B1 (en) Mycobacterial recombinants and peptides
Kolibab et al. Highly persistent and effective prime/boost regimens against tuberculosis that use a multivalent modified vaccine virus Ankara-based tuberculosis vaccine with interleukin-15 as a molecular adjuvant
JP2006042823A (en) Stress protein and use thereof
CN106103471A (en) The fusion of oligomeric antigen of mycobacterium
Lauer et al. Constitutive activation of the PrfA regulon enhances the potency of vaccines based on live-attenuated and killed but metabolically active Listeria monocytogenes strains
Vijh et al. Noncompetitive expansion of cytotoxic T lymphocytes specific for different antigens during bacterial infection
CN116003540B (en) Preparation and application of mycobacterium tuberculosis antigen composition PFHP010
Teixeira et al. Immunogenicity of a prime-boost vaccine containing the circumsporozoite proteins of Plasmodium vivax in rodents
KR101749993B1 (en) Recomvinant vaccinia virus strain and vaccine composition comprising the same
Saubi et al. Newborn Mice Vaccination with BCG. HIVA222+ MVA. HIVA Enhances HIV‐1‐Specific Immune Responses: Influence of Age and Immunization Routes
WO2020249756A1 (en) Fusion proteins for tuberculosis vaccines
Farshadpour et al. Design, construction and cloning of truncated ORF2 and tPAsp-PADRE-truncated ORF2 gene cassette from hepatitis E virus in the pVAX1 expression vector
Wu et al. DNA vaccine with discontinuous T‐cell epitope insertions into HSP65 scaffold as a potential means to improve immunogenicity of multi‐epitope Mycobacterium tuberculosis vaccine
Haeseleer et al. Stable integration and expression of the Plasmodium falciparum circumsporozoite protein coding sequence in mycobacteria
Shafifar et al. Selective APC-targeting of a novel Fc-fusion multi-immunodominant recombinant protein (tTax-tEnv: mFcγ2a) for HTLV-1 vaccine development
JP4883816B2 (en) Method for detecting T cells (CD8 +) specific for Mycobacterium tuberculosis
JP4472307B2 (en) Novel peptide and anti-tuberculosis vaccine comprising this peptide
Pastori et al. Induction of HIV-blocking anti-CCR5 IgA in Peyers's patches without histopathological alterations
Kong et al. Porphyromonas gingivalis B cell Antigen Epitope Vaccine, pIRES‐ragB'‐mGITRL, Promoted RagB‐Specific Antibody Production and Tfh Cells Expansion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees