JP2005130566A - Method of deducing lightning conductor damage - Google Patents

Method of deducing lightning conductor damage Download PDF

Info

Publication number
JP2005130566A
JP2005130566A JP2003361478A JP2003361478A JP2005130566A JP 2005130566 A JP2005130566 A JP 2005130566A JP 2003361478 A JP2003361478 A JP 2003361478A JP 2003361478 A JP2003361478 A JP 2003361478A JP 2005130566 A JP2005130566 A JP 2005130566A
Authority
JP
Japan
Prior art keywords
lightning
wire
steel tower
strike
lightning strike
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003361478A
Other languages
Japanese (ja)
Other versions
JP4286631B2 (en
Inventor
Koji Maeda
広治 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2003361478A priority Critical patent/JP4286631B2/en
Publication of JP2005130566A publication Critical patent/JP2005130566A/en
Application granted granted Critical
Publication of JP4286631B2 publication Critical patent/JP4286631B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Locating Faults (AREA)
  • Electric Cable Installation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for deducing the number of conductive wires, forming a lightning conductor that has been broken due to lightning strike and deducing the point of broken conductive wire on the lightning conductor. <P>SOLUTION: The deducing method includes a step (a) which acquires a distance between the point of lightning strike and a steel tower hoisting a lightning conductor which allows a lightning strike current to flow to the ground; a step (b) which extracts the steel tower within the prescribed range of distance and a lightning strike that occurs; a step (c) which acquires a discharge potential quantity from the discharge current waveform of the extracted lightning strike; a step (d) which acquires the relationship between the discharge potential quantity of lightning strike and the number of broken wires forming the lightning conductor, based on the thickness and kind of the lightning conductor hoisted by the extracted steel tower; and a step (e) which estimates the number of broken wires of the lightning conductor hoisted by the extracted steel tower, by collating the discharge potential quantity acquired by the step of acquiring the discharge potential quantity with the relationship. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、避雷線を形成する線材の落雷による破断本数及び線材が破断した避雷線上の位置を推定する方法に関する。   The present invention relates to a method for estimating the number of breaks caused by a lightning strike of a wire that forms a lightning protection wire and the position on the lightning protection wire where the wire is broken.

一般に、送電線路には、落雷が電力線に直撃するのを防ぐために、複数の線材を撚り合わせて形成した避雷線が敷設されている。この避雷線は、電力線の上方に架空されており、落雷を受けたときは、その雷撃電流が鉄塔を通って地面に流れるように構成されている。しかしながら、雷が本来の目的どおりに避雷線に落ちた場合でも、雷撃電流により避雷線を形成する線材が溶けて切れることがある。   Generally, a lightning conductor formed by twisting a plurality of wires is laid on the power transmission line in order to prevent lightning strikes directly on the power line. The lightning protection line is suspended above the power line, and when a lightning strike occurs, the lightning strike current flows to the ground through the steel tower. However, even if lightning falls on the lightning conductor as originally intended, the wire forming the lightning conductor may melt and break due to the lightning current.

このように避雷線の線材が切れた場合には、これが垂れ下がって電力線と接触し、送電線を流れる電流が避雷線に流れ込むため、電力供給ができなくなるという大きな問題に至る。   When the wire of the lightning conductor is cut in this way, it hangs down and comes into contact with the power line, and the current flowing through the power transmission line flows into the lightning line, resulting in a major problem that power supply cannot be performed.

また、避雷線は、全ての雷を受け止めることはできず、所定の大きさ(例えば、20kA以上)の雷が発生した場合には、この雷は電力線に落ちることになる。このように電力線に落ちた雷の雷撃電流は、電力線を通って鉄塔に到達し、電力線を吊るしている碍子上を通って電力線に流れ込むことにより、碍子を損傷することがある。このように碍子が損傷した場合には、電力線を流れる電力が碍子上を通って鉄塔側へ流れ込むため、電力を安定供給することができず、送電を停止しなければならない。送電線は、このような落雷による送電停止を考慮して、電力を常時送っている第1回線と、第1回線に故障等が発生したときに電力を送るための第2回線とで構成されている。   Further, the lightning protection line cannot receive all lightning, and when a lightning of a predetermined size (for example, 20 kA or more) occurs, this lightning falls to the power line. The lightning strike current of lightning that has fallen on the power line thus reaches the steel tower through the power line, and may flow into the power line through the insulator that suspends the power line, thereby damaging the insulator. When the insulator is damaged in this way, the electric power flowing through the electric power line flows over the insulator to the steel tower side, so that the electric power cannot be stably supplied and the power transmission must be stopped. The power transmission line is composed of a first line that constantly sends power in consideration of such a power stoppage due to lightning, and a second line that sends power when a failure or the like occurs in the first line. ing.

雷撃電流から碍子を保護するための手段としては、碍子の両端から延ばした金属棒を所定の間隔を開けて突き合わせたアークホーンと呼ばれる装置がある。これによれば、電力線を通って又は直接鉄塔に流れ込んだ雷撃電流が、碍子上ではなくアークホーンの金属棒の間でショート(以下「閃絡」という。)して電力線に流れ込むことによって、碍子の損傷を防ぐことができる。   As a means for protecting the insulator from the lightning strike current, there is an apparatus called an arc horn in which metal bars extending from both ends of the insulator are abutted at a predetermined interval. According to this, the lightning current that has flowed through the power line or directly into the tower is short-circuited (hereinafter referred to as “flash”) between the metal rods of the arc horn, not on the insulator, and flows into the power line. Can prevent damage.

このアークホーンを設置すれば、碍子の損傷を防ぐことはできるが、雷撃電流がアークホーンで閃絡した場合には、電力線を流れる送電電流がアークホーンの金属棒の間を渡って鉄塔側に流れ込みやすくなる。これにより、送電電流が電力線からアークホーンを通って地面に流れ込む“地絡”が発生する。また、雷撃電流値が大きい場合には、1つの鉄塔において複数の電力線が“地絡”することにより、この複数の電力線間で“短絡”したり、さらに大きな雷撃電流値の場合には、第2回線側の電力線においても“地絡”や“短絡”が発生する。   If this arc horn is installed, damage to the insulator can be prevented, but if the lightning strike current is flashed by the arc horn, the transmission current flowing through the power line crosses between the metal rods of the arc horn and goes to the tower side. It becomes easy to flow. This causes a “ground fault” in which the transmission current flows from the power line through the arc horn to the ground. In addition, when the lightning current value is large, a plurality of power lines “ground fault” in one steel tower, thereby “short-circuiting” between the power lines, or in the case of a larger lightning current value, “Ground fault” and “short circuit” also occur in the power lines on the two lines.

上記のように“短絡”や“地絡”が発生した場合には、電力の安定供給ができないため、その送電線における送電を停止することになる。これを“雷事故”という。また、雷事故が発生した送電線を“事故送電線”、雷事故の原因である短絡や地絡が発生した鉄塔を“事故鉄塔”、事故鉄塔に短絡や地絡を発生させた落雷を“事故雷”という。   When a “short circuit” or “ground fault” occurs as described above, power cannot be stably supplied, and power transmission on the transmission line is stopped. This is called “thunder accident”. In addition, “accident transmission line” refers to the transmission line in which a lightning accident has occurred, “an accident tower” refers to a steel tower that has caused a short circuit or ground fault, which is the cause of a lightning accident, and “a lightning strike that causes a short circuit or ground fault in an accident tower” Accident lightning.

上記のような雷事故が発生した場合には、事故鉄塔及び被害状況を確認し、一刻も早く修繕作業を行う必要があるため、事故鉄塔を的確に特定することが重要である。また、雷事故毎に事故雷の発生位置を特定できれば、事故雷が多く発生している範囲を求めることができ、その範囲内にある鉄塔にのみアレスタを設置するという合理的な雷事故対策を講じることができる。   When a lightning accident such as that described above occurs, it is necessary to check the accident tower and damage status, and to perform repair work as soon as possible. Therefore, it is important to accurately identify the accident tower. Also, if the location of the accident lightning can be identified for each lightning accident, it is possible to determine the range where many accidental lightnings are occurring, and take reasonable lightning accident countermeasures by installing arresters only on the steel towers within that range. Can be taken.

従来、事故雷及び事故鉄塔の特定には、落雷位置標定システム(Lightning Location System、以下「LLS」という。)が使用される。具体的には、“LLS”により雷事故発生時刻の1秒前後又は1分前後の時間範囲内に発生した落雷の位置(例えば、経緯度)及び時刻を抽出し、その落雷の最も近くに位置する鉄塔を事故鉄塔として特定する。   Conventionally, a lightning location system (hereinafter referred to as “LLS”) is used to identify accident lightning and accident towers. Specifically, the location of lightning strikes (for example, longitude and latitude) and time that occurred within a time range of about 1 second or about 1 minute of the lightning accident occurrence time due to “LLS”, and the position closest to the lightning strike The tower to be identified is identified as the accident tower.

LLSは、落雷によって発生する電磁波を直交ループアンテナで検出し、落雷の方位や磁界の波高値などを測定する複数(例えば、6つ)の落雷方位測定子局と、落雷方位測定子局において観測されたデータに基づいて落雷位置や雷撃電流値を求める落雷位置解析装置とで構成されている。   LLS detects electromagnetic waves generated by lightning strikes using orthogonal loop antennas, and observes them at multiple (for example, 6) lightning strike direction measurement slave stations and lightning strike direction measurement slave stations that measure the direction of lightning strikes and peak values of magnetic fields. And a lightning strike position analyzing device for obtaining a lightning strike position and a lightning strike current value based on the obtained data.

落雷位置解析装置は、2つの落雷方位測定子局において観測された方位データから三角測量の原理により落雷位置を求めるとともに、磁界の波高値と落雷点から落雷方位測定子局までの距離に基づいて電撃電流値を求め、コンピュータにそれらのデータを蓄積する。   The lightning strike position analyzer uses the triangulation principle to determine the location of lightning strikes from the orientation data observed at the two lightning strike direction measuring stations, and based on the peak value of the magnetic field and the distance from the lightning strike point to the lightning strike direction measuring station. The electric shock current value is obtained and the data is stored in the computer.

また、LLSでは、GPSを利用した衛星時計を利用することにより、落雷発生時刻を日本標準時に則して正確に把握することができるようになっている。   In LLS, a lightning occurrence time can be accurately grasped according to Japanese standard time by using a satellite clock using GPS.

そして、雷事故が発生した場合には、上記のLLSで得た情報から事故鉄塔や事故雷を推定し、これに基づいて地絡等の事故状況を確認すると共に、事故鉄塔周辺の避雷線の線材破断状況を調べることができる。しかしながら、避雷線に落ちた落雷が雷事故を引き起こさなければ、その落雷による線材の破断状況を把握することはできない。   And if a lightning accident occurs, the accident tower and the accident lightning are estimated from the information obtained by the above LLS, and the accident situation such as ground fault is confirmed based on this, and the lightning conductor around the accident tower is confirmed. The state of wire breakage can be examined. However, unless a lightning strike that falls on a lightning line causes a lightning accident, it is impossible to grasp the state of breakage of the wire due to the lightning strike.

そこで、従来、このような場合を想定し、一ヶ月に一回程度の割合で巡視を行っている。しかしながら、線材の破断本数が僅かであれば、巡視時の目視では線材破断状況を確認できない場合が多いため、近年、避雷線の線材破断状況を確実に把握するために、ヘリコプターを用いた上空からのハイビジョン撮影が行われている。しかしながら、この作業には、多大な費用が掛かるという問題がある。   Therefore, in the past, assuming such a case, patrols are performed once a month. However, if the number of wire breaks is small, the wire breakage status cannot often be confirmed by visual inspection at the time of patrol.In recent years, in order to ascertain the lightning wire breakage status of the lightning protection wire from the sky using a helicopter. High-definition photography is performed. However, there is a problem that this work is very expensive.

雷に関する研究や雷事故の実績等から、避雷線の線材の破断は、電荷量の多い雷撃に起因して発生するという見解がある。電荷量の多い雷撃は、冬季に多く発生し、放電継続時間が長い(例えば、100msec)ことから「長波尾雷」と呼ばれている。この長波尾雷の観測については、1960〜1980年代の観測記録が残されているのみであるため、それ以降行われていないと考えられる。そこで、避雷線の線材の破断と長波尾雷との因果関係を解明するために、長波尾雷の観測が行われている。   From the research on lightning and the results of lightning accidents, there is a view that the breakage of the wire of the lightning wire occurs due to lightning strikes with a large amount of charge. Lightning strikes with a large amount of charge occur frequently in winter and are called “long wave tail lightning” because of the long discharge duration (for example, 100 msec). The observation of this long wave tail lightning is considered to have not been carried out since then since only the observation records of the 1960s and 1980s remain. Therefore, long wave tail lightning has been observed to elucidate the causal relationship between the breakage of the lightning wire and the long wave tail lightning.

長波尾雷の観測には、落雷が発生したときに生じる電界及び磁界の変化を測定する長波尾雷観測装置が使用される。この長波尾雷観測装置は、落雷を検出すると、1μ秒毎に電界と磁界の測定を行い、これを所定の時間(例えば、1秒間)継続して得たデータをコンピュータに蓄積する。この長波尾雷観測装置で測定した電界及び磁界の変化から、落雷による放電電流波形を得ることができる。また、落雷発生時刻及び放電継続時間は、GPSを利用した衛星時計を利用することにより、日本標準時に則して正確に把握することができるようになっている。   For the observation of long wave tail lightning, a long wave tail lightning observation device that measures changes in electric and magnetic fields generated when a lightning strike occurs is used. When detecting a lightning strike, the long wave tail lightning observation device measures an electric field and a magnetic field every 1 μs and accumulates data obtained by continuing the measurement for a predetermined time (for example, 1 second) in a computer. From the change in electric field and magnetic field measured by this long wave tail lightning observation device, a discharge current waveform due to lightning can be obtained. The lightning occurrence time and the discharge duration can be accurately grasped in accordance with the Japanese standard time by using a satellite clock using GPS.

下記特許文献には、雷光信号のピークを検出してその入射方向から落雷の方向を特定し、同時に雷光の入射時点で計時動作を開始し、また雷音検出時点で計時動作を停止して時間差を求め、この時間差と音速との積から距離を求めることによって落雷位置を推定する“落雷位置測定装置”が記載されている。   In the following patent document, the lightning light signal peak is detected and the direction of lightning strike is specified from the incident direction, and at the same time, the timekeeping operation starts at the time of lightning incident, and the timekeeping operation is stopped at the time of lightning sound detection. Is described, and a “lightning strike position measuring device” is described in which a lightning strike position is estimated by obtaining a distance from the product of the time difference and the sound velocity.

特開平06−186325号公報Japanese Patent Laid-Open No. 06-186325

しかしながら、上記LLSによる事故雷及び事故鉄塔の特定方法では、避雷線を形成している線材が破断したことを把握できないため、その破断本数や破断した位置を推定することはできない。また、上記の“落雷位置測定装置”は、落雷の発生位置を推定するだけであり、LLSと同様に避雷線の線材破断本数や線材が破断した位置を推定することはできない。   However, in the method for identifying accident lightnings and accident towers by LLS, it is impossible to grasp that the wire forming the lightning protection wire has broken, and therefore the number of breaks and the broken position cannot be estimated. Further, the above “lightning strike position measuring device” only estimates the position where a lightning strike occurs, and cannot estimate the number of wire breakage of lightning conductors and the position where the wire breaks, similar to LLS.

本発明の目的は、避雷線を形成する線材の落雷による破断本数及び線材が破断した避雷線上の位置を推定する方法を提供することである。   An object of the present invention is to provide a method for estimating the number of breaks caused by lightning strikes of a wire forming a lightning protection wire and the position on the lightning protection wire where the wire is broken.

本発明の避雷線被害推定方法は、(a)雷撃電流を地面に流すための避雷線を架空している鉄塔と落雷発生位置との間の距離を求めるステップと、(b)前記距離が所定の範囲内にある鉄塔と発生した落雷を抽出するステップと、(c)前記抽出した落雷の放電電流波形から放電電荷量を求めるステップと、(d)前記抽出した鉄塔が架空している避雷線の種類及び太さに基づいて、落雷の放電電荷量と当該避雷線を形成している線材の破断本数との関係を求めるステップと、(e)前記放電電荷量を求めるステップで求めた放電電荷量と前記関係を照合することにより、前記抽出した鉄塔が架空している避雷線の線材破断本数を推定するステップとを含むことを特徴とする。   According to the lightning line damage estimation method of the present invention, (a) a step of obtaining a distance between a steel tower over which the lightning line for passing a lightning current to the ground and a lightning strike position is provided, and (b) the distance is predetermined. (C) a step of obtaining a discharge charge amount from a discharge current waveform of the extracted lightning strike, and (d) a lightning wire over which the extracted steel tower is suspended. And (e) the discharge charge obtained in the step of obtaining the discharge charge amount, based on the type and thickness of the lightning, and determining the relationship between the discharge charge amount of the lightning strike and the number of breaks of the wire forming the lightning protection wire. Estimating the number of wire rod breakage of the lightning conductor in which the extracted steel tower is aerial by comparing the amount with the relationship.

本発明の具体的態様では、前記(b)のステップでは、1つの落雷に対して前記所定範囲内にある鉄塔が複数あるときは、当該落雷から最も近くにある鉄塔を抽出する。   In a specific aspect of the present invention, in the step (b), when there are a plurality of steel towers within the predetermined range with respect to one lightning strike, the steel tower closest to the lightning strike is extracted.

また、前記(e)の照合により前記避雷線の線材が破断したと推定したときは、その照合の対象となった鉄塔と、これの両隣で当該避雷線を架空している鉄塔との間で、当該線材が破断したと推定することを特徴とする。   In addition, when it is estimated that the wire rod of the lightning conductor has been broken by the collation of (e), between the steel tower subject to the collation and the steel tower that suspends the lightning conductor on both sides of the steel tower. The wire is estimated to be broken.

また、前記(d)の関係は、避雷線の種類及び太さに基づいて予め求めておくことができる。   The relationship (d) can be obtained in advance based on the type and thickness of the lightning conductor.

本発明の避雷線被害推定方法によれば、避雷線を架空している鉄塔と落雷発生位置との距離が所定範囲内にあるとき、その鉄塔が架空している避雷線の種類及び太さに基づいて、落雷の放電電荷量と当該避雷線を形成している線材の破断本数との関係をもとめ、これと前記所定範囲内にある落雷の放電電荷量とを照合することにより、当該落雷による線材破断本数を推定することができる。これにより、避雷線の被害状況を容易に把握できるため、避雷線の点検に掛かる費用を大幅に削減することができる。この場合、1つの落雷に対し、所定範囲内にある鉄塔が複数あるときは、その落雷から最も近くにある鉄塔を抽出するのが好ましい。   According to the lightning line damage estimation method of the present invention, when the distance between the steel tower over which the lightning line is suspended and the position where the lightning strike is within a predetermined range, the type and thickness of the lightning line over which the steel tower is suspended. On the basis of the lightning discharge charge amount and the number of breaks of the wire forming the lightning protection wire, and comparing this with the lightning discharge charge amount within the predetermined range, The number of wire breaks can be estimated. Thereby, since the damage situation of a lightning conductor can be grasped | ascertained easily, the expense concerning the inspection of a lightning conductor can be reduced significantly. In this case, when there are a plurality of steel towers within a predetermined range for one lightning strike, it is preferable to extract the steel tower closest to the lightning strike.

また、前記照合により前記避雷線の線材が破断したと推定したときは、その照合の対象となった鉄塔と、これの両隣で当該避雷線を架空している鉄塔との間で、線材が破断したと推定することができる。   Further, when it is estimated that the wire rod of the lightning conductor has been broken by the collation, the wire rod is broken between the steel tower subject to the collation and the steel tower over which the lightning wire is suspended on both sides of the steel tower. Can be estimated.

また、避雷線の種類及び太さに基づいて、落雷の放電電荷量と当該避雷線を形成している線材の破断本数との関係を予め求めておくことが好ましい。   Moreover, it is preferable to obtain | require previously the relationship between the discharge charge amount of a lightning strike, and the fracture | rupture number of the wire which forms the said lightning conductor based on the kind and thickness of a lightning conductor.

図1は、本発明の実施例の避雷線被害推定方法のフローチャートで、コンピュータが行う演算処理を示す。   FIG. 1 is a flowchart of a lightning conductor damage estimation method according to an embodiment of the present invention, showing calculation processing performed by a computer.

まず、コンピュータは、LLS落雷データを読み込む(ステップ[以下、STと表記する]1)。具体的には、1又は複数の落雷が発生したとき、その落雷の発生位置(例えば、座標)、発生時刻、及び雷撃電流値をLLSから自動的に受けるように構成しておくのがよい。図2は、LLSから受けた落雷情報に基づいて、ある避雷線の周辺に発生した落雷の発生位置を示す。以下、実施例の避雷線被害推定方法の基本的な考え方を説明する。   First, the computer reads LLS lightning strike data (step [hereinafter referred to as ST] 1). Specifically, when one or a plurality of lightning strikes occur, it is preferable that the lightning occurrence position (for example, coordinates), the occurrence time, and the lightning strike current value are automatically received from the LLS. FIG. 2 shows the location of lightning strikes that occur around a certain lightning protection line based on lightning strike information received from the LLS. Hereinafter, the basic concept of the lightning conductor damage estimation method of the embodiment will be described.

次に、避雷線を架空している鉄塔と、ST1で読み込んだ落雷情報に含まれる落雷発生位置との間の距離を算定する(ST2)。具体的には、設備情報として予め判明している鉄塔の座標と、ST1でLLSから受けた落雷情報に含まれる落雷発生位置の座標とに基づいて、両者間の距離を算出すればよい。   Next, the distance between the steel tower over the lightning protection line and the lightning occurrence position included in the lightning strike information read in ST1 is calculated (ST2). Specifically, the distance between the two may be calculated based on the coordinates of the steel tower previously known as the facility information and the coordinates of the lightning occurrence position included in the lightning strike information received from the LLS in ST1.

ST2の算定の結果から、落雷発生位置から所定の距離内(例えば、1km以内)に鉄塔があるか否かを判別する(ST3)。図3は、このときの状態を図示したものであり、落雷発生位置を中心とする所定の半径(例えば、1km)の円を描いて、鉄塔と落雷発生位置との位置関係を明確に示したものである。   From the calculation result of ST2, it is determined whether or not there is a steel tower within a predetermined distance (for example, within 1 km) from the lightning strike position (ST3). FIG. 3 illustrates the state at this time and clearly shows the positional relationship between the steel tower and the lightning strike position by drawing a circle with a predetermined radius (eg, 1 km) centered on the lightning strike location. Is.

ST3の判別が“NO”、即ち、図3に示す円内に鉄塔が含まれていなければ、避雷線の線材を破断した可能性のある落雷が存在しないと推定し、ST1へ戻る。   If the determination in ST3 is “NO”, that is, if the steel tower is not included in the circle shown in FIG. 3, it is estimated that there is no lightning strike that may have broken the wire of the lightning arrester, and the process returns to ST1.

ST3の判別が“YES”、即ち、図3に示す円内に鉄塔がある場合には、その鉄塔と、当該円の中心を発生位置とする落雷とを抽出する(ST4)。図3では、図の中央上方及び中央下方にある落雷発生位置を中心とする円内に、それぞれ鉄塔が3つずつ含まれている。ここで、図の上方の落雷を“T1”、下方の落雷を“T2”とする。   If the determination in ST3 is “YES”, that is, if there is a steel tower in the circle shown in FIG. 3, the steel tower and a lightning strike with the center of the circle as the generation position are extracted (ST4). In FIG. 3, three steel towers are included in a circle centered on a lightning occurrence position at the upper center and lower center of the drawing. Here, an upper lightning strike in the figure is “T1”, and a lower lightning strike is “T2”.

次に、ST4で抽出した鉄塔のうち、抽出した落雷に最も近い鉄塔を抽出する(ST5)。具体的には、ST2で求めた両者間の距離を比較すればよい。図4は、落雷T1,T2の各々に最も近い鉄塔を1つずつ抽出した状態を示す。以下、落雷発生位置から所定の距離内(例えば、1km以内)にあって、各落雷発生位置に最も近い鉄塔を“近傍鉄塔”という。また、図3,図4では、1つの落雷に対して3つの鉄塔が抽出されたが、例えば、1つの落雷に対して鉄塔が1つのみ抽出されたときは、その鉄塔を近傍鉄塔とすればよい。   Next, among the towers extracted in ST4, the tower closest to the extracted lightning strike is extracted (ST5). Specifically, the distance between the two obtained in ST2 may be compared. FIG. 4 shows a state where one steel tower closest to each of the lightning strikes T1 and T2 is extracted. Hereinafter, a steel tower that is within a predetermined distance (for example, within 1 km) from a lightning occurrence position and is closest to each lightning occurrence position is referred to as a “neighboring steel tower”. 3 and 4, three steel towers are extracted for one lightning strike. For example, when only one steel tower is extracted for one lightning strike, the steel tower is regarded as a nearby steel tower. That's fine.

次に、電磁界波形データの読み込みを行い(ST6)、次のステップに移る。具体的には、ST4で抽出した各落雷T1,T2の発生時刻と同時刻に生じた電界及び磁界の変化に基づく電磁界波形データを長波尾雷観測装置から読み込めばよい。   Next, the electromagnetic field waveform data is read (ST6), and the process proceeds to the next step. Specifically, electromagnetic field waveform data based on changes in the electric and magnetic fields generated at the same time as the occurrence of each lightning strikes T1 and T2 extracted in ST4 may be read from the long wave tail lightning observation device.

ここで、長波尾雷観測装置は、送電線を流れる電流に起因する電界変化等のデータを取得しないように、一定の電界変化があった場合にデータ取得を開始するようにしておくのがよい。具体的には、落雷時に発生する短時間で大きな電界変化(例えば、1000kHz)を検知したときにデータ取得を開始するようにしておけばよい。   Here, the long wave tail lightning observation device should start data acquisition when there is a certain electric field change so as not to acquire data such as electric field change caused by the current flowing through the transmission line. . Specifically, data acquisition may be started when a large electric field change (for example, 1000 kHz) is detected in a short time that occurs during a lightning strike.

ST6で電磁界波形データを読み込んだ後、ST4で抽出した各落雷T1,T2の放電電荷量を求める(ST7)。具体的には、ST6で得た電磁界波形データと、ST1で得たLLS落雷データに含まる落雷T1,T2の雷撃電流値とに基づく放電電流波形から、各落雷T1,T2の雷撃電流値を放電継続時間で積分すればよい。計算の結果、例えば、落雷T1の放電電荷量を20C、落雷T2の放電電荷量を50Cとする。   After reading the electromagnetic field waveform data in ST6, the discharge charge amount of each lightning strike T1, T2 extracted in ST4 is obtained (ST7). Specifically, from the discharge current waveform based on the electromagnetic field waveform data obtained in ST6 and the lightning strike current values of lightning strikes T1 and T2 included in the LLS lightning strike data obtained in ST1, the lightning strike current value of each lightning strike T1 and T2. May be integrated with the discharge duration. As a result of the calculation, for example, the discharge charge amount of the lightning strike T1 is 20C, and the discharge charge amount of the lightning strike T2 is 50C.

図5は、ST6で得た電磁界波形データに、ST1で得たLLS落雷データに含まれる雷撃電流値を関連付けた落雷の放電電流波形の一例である。実施例では、落雷の放電電荷量の計算を容易にするために、放電電流波形を近似的に示したものを用いる。具体的には、グラフの原点を、ST6で得た実波形上で波高値が10%の点と90%の点とを通る直線が時間軸と交わる点、雷撃電流値が最大値“Ip”を示すまでの時間“t”を、実波形上で波高値が10%を示したときから90%を示したときまでの時間差を0.8で除したものとして近似的な波形を求めた。 FIG. 5 is an example of a lightning discharge current waveform in which the electromagnetic wave waveform data obtained in ST6 is associated with the lightning strike current value included in the LLS lightning strike data obtained in ST1. In the embodiment, in order to facilitate the calculation of the lightning discharge charge amount, an approximation of the discharge current waveform is used. Specifically, the origin of the graph is the point where the straight line passing through the point of 10% and 90% of the peak value on the actual waveform obtained in ST6 intersects the time axis, and the lightning current value is the maximum value “Ip”. The approximate waveform was obtained by dividing the time difference from when the peak value indicated 10% on the actual waveform to 90% by dividing the time “t 1 ” until indicated by “0.8” by 0.8. .

また、長波尾雷観測装置が電磁界波形データを1秒間継続して記録するように設定した場合において、落雷の放電継続時間が1秒間を超えたときは、電磁界波形データが途切れることになる。この場合、雷撃電流値が最大値を示したときから最大値の半分(50%)の値を示すまでの時間“t−t”を、雷撃電流値が最大値を示したときから放電が終了するまでの時間の半分と推定することにより、波形(図では鎖線表示)を想定する。 Further, when the long wave tail lightning observation device is set to continuously record the electromagnetic field waveform data for 1 second, the electromagnetic field waveform data is interrupted when the lightning strike duration exceeds 1 second. . In this case, the time “t 2 −t 1 ” from when the lightning strike current value shows the maximum value to when it reaches half the maximum value (50%) is discharged from when the lightning strike current value shows the maximum value. A waveform (indicated by a chain line in the figure) is assumed by estimating that it is half of the time until the process ends.

次に、ST5で抽出した近傍鉄塔が架空している避雷線の耐雷性能と、ST7で求めた各落雷T1,T2の放電電荷量とを照合する(ST8)。具体的には、コンピュータに格納されている鉄塔の設備情報に含まれる避雷線の種類及び太さに基づいて、落雷の放電電荷量と当該避雷線を形成している線材の破断本数との関係を求め、これと落雷の放電電荷量を対比する。   Next, the lightning protection performance of the lightning wire over which the nearby steel tower extracted in ST5 is collated with the discharge charge amount of each lightning strike T1, T2 obtained in ST7 (ST8). Specifically, based on the type and thickness of the lightning conductor included in the tower equipment information stored in the computer, the relationship between the lightning discharge charge amount and the number of breaks of the wire forming the lightning conductor. And compare this with the amount of lightning discharge charge.

図6は、落雷の放電電荷量と、ST5で抽出した近傍鉄塔が架空している避雷線を形成する線材の破断本数との関係を示すデータベースの一例である。実施例では、このように避雷線の種類及び太さに基づいて、落雷の放電電荷量と避雷線を形成している線材の破断本数との関係を予め求めておくことにより、コンピュータによる演算処理の高速化を図っている。実施例では、ST5において近傍鉄塔が2つ抽出されたが、両鉄塔が架空している避雷線は、線種が「AC」、全体太さが「70mm」、線材太さが「3.5mm/1本」、線材本数が「7本」の同一のものとする。   FIG. 6 is an example of a database showing the relationship between the discharge charge amount of lightning strikes and the number of breaks of the wire forming the lightning protection wire overlaid by the nearby steel tower extracted in ST5. In the embodiment, based on the type and thickness of the lightning conductor, the calculation processing by the computer is obtained in advance by determining the relationship between the discharge charge amount of the lightning strike and the number of breaks of the wire forming the lightning conductor. We are trying to speed up. In the example, two nearby steel towers were extracted in ST5. However, the lightning wire in which both steel towers are suspended has a line type of “AC”, an overall thickness of “70 mm”, and a wire rod thickness of “3.5 mm. / 1 ”and the number of wire rods is“ 7 ”.

そうすると、落雷T1,T2の放電電荷量が20Cと50Cなので、該当する避雷線の耐雷性能、即ち、データベース(図6)の太枠内のデータを照合すると、放電電荷量が20Cの落雷T1については避雷線の耐雷性能の方が上回っており、また、放電電荷量が50Cの落雷T2については、線材破断本数3本に対応する放電電荷量「40〜50C」、及び線材破断本数4本に対応する放電電荷量「45〜55C」に該当していることがわかる。   Then, since the discharge charges of lightning strikes T1 and T2 are 20C and 50C, when the lightning resistance performance of the corresponding lightning protection lines, that is, the data in the thick frame of the database (FIG. 6) is collated, the lightning strike T1 with a discharge charge of 20C The lightning resistance of the lightning protection wire exceeds the lightning resistance, and for the lightning strike T2 with a discharge charge of 50C, the discharge charge amount "40-50C" corresponding to three wire breaks and the number of wire breaks four It can be seen that this corresponds to the corresponding discharge charge amount “45 to 55C”.

図7及び図8は、落雷の放電電荷量と線材破断本数の関係(図6)を求めるために用いた資料で、実験結果等から判明している電線の耐雷性能を示す。実施例では、これらの資料に基づいて、避雷線を架空しているすべての鉄塔に対し、落雷の放電電荷量と線材破断本数の関係を示すデータベースを作成する。   FIGS. 7 and 8 are materials used to determine the relationship between the lightning discharge charge amount and the number of wire breaks (FIG. 6), and show the lightning resistance performance of the electric wires, which has been found from experimental results. In the embodiment, based on these materials, a database indicating the relationship between the lightning discharge charge amount and the number of broken wire rods is created for all steel towers carrying lightning conductors.

ST8の照合の結果から、設備被害状況を推定する(ST9)。具体的には、ST8の照合により、落雷T1については、避雷線の耐雷性能の方が放電電荷量よりも上回っているため、線材は破断していないと推定される。また、落雷T2については、放電電荷量(50C)が、線材破断本数が3本と4本に対応する電荷量の範囲に該当するため、避雷線を形成している線材が3〜4本破断したと推定される。   The equipment damage situation is estimated from the result of collation in ST8 (ST9). Specifically, it is presumed from the collation of ST8 that for lightning strike T1, the lightning resistance of the lightning protection wire exceeds the amount of discharge charge, so that the wire is not broken. For lightning strike T2, the discharge charge amount (50C) falls within the range of charge amounts corresponding to three and four wire breaks, so that the wire forming the lightning arrester breaks 3 to 4 wires. It is estimated that

さらに、上記のように落雷T2により避雷線の線材が破断したと推定されたときは、照合の対象となった鉄塔、即ち落雷T2に対する近傍鉄塔と、これの両隣で当該避雷線を架空している鉄塔との間で、線材が破断したと推定する。   Furthermore, when it is estimated that the wire of the lightning wire has been broken by the lightning strike T2 as described above, the lightning wire is suspended between the tower to be verified, that is, the nearby steel tower with respect to the lightning strike T2, and both sides thereof. It is estimated that the wire broke between the steel towers.

線材の破断本数と線材が破断した避雷線上の位置とを推定した後、その結果をコンピュータに接続されたモニタに出力する(ST10)。図9は、結果表示画面の一例で、ST9で推定した避雷線の線材破断本数と線材が破断した避雷線上の位置を示す。図では、「★」で示す落雷が「落雷T2」を示し、これに対する近傍鉄塔は、鉄塔番号が「241000」の鉄塔である。そうすると、この鉄塔241000の両隣で当該避雷線を架空している鉄塔は、鉄塔番号が「240000」、「242000」の2つの鉄塔であることがわかる。ST9では、近傍鉄塔と、これの両隣の鉄塔の間で線材が破断したと推定されたので、鉄塔240000と鉄塔241000の区間、鉄塔241000と鉄塔242000の区間に敷設されている避雷線を太線で表示した。   After estimating the number of breaks of the wire and the position on the lightning protection wire where the wire is broken, the result is output to a monitor connected to the computer (ST10). FIG. 9 is an example of the result display screen, and shows the number of the lightning breakage of the lightning conductor estimated in ST9 and the position on the lightning arresting line where the wire is broken. In the figure, a lightning strike indicated by “★” indicates “lightning strike T2”, and a nearby steel tower corresponding to this is a steel tower whose tower number is “241000”. Then, it can be seen that the steel towers over which the lightning wire is flanked on both sides of the steel tower 241000 are two steel towers with tower numbers “240000” and “242000”. In ST9, since it was estimated that the wire rod was broken between the nearby steel tower and the adjacent steel towers, the lightning conductors laid in the sections of the steel tower 240000 and the steel tower 241000, and the sections of the steel tower 241000 and the steel tower 242000 are indicated by thick lines. displayed.

その他、モニタには、設備被害発生状況、地図情報、エリア情報、送電線情報、落雷情報等を表示するのがよい。   In addition, the equipment damage occurrence status, map information, area information, power transmission line information, lightning strike information, etc. may be displayed on the monitor.

設備被害状況には、線材破断の原因である落雷の推定エネルギー(放電電荷量)、設備被害発生状況(例えば、線材破断本数3〜4本)、線材が破断した避雷線の区間を示す。   The equipment damage status indicates the estimated lightning strike energy (discharge charge amount) that is the cause of the wire breakage, the equipment damage occurrence status (for example, 3 to 4 wire breakage), and the section of the lightning conductor where the wire breaks.

地図情報は、図の地図に示す範囲の座標を示す。   The map information indicates the coordinates of the range shown on the map in the figure.

エリア情報は、送電線名、送電電圧、同時刻帯(例えば、2秒間)に発生した落雷の数を示す。   The area information indicates the transmission line name, the transmission voltage, and the number of lightning strikes that occurred in the same time zone (for example, 2 seconds).

送電線情報は、近傍鉄塔の番号及び座標を示す。   The power transmission line information indicates the number and coordinates of a nearby steel tower.

落雷情報は、線材破断の原因である落雷の発生日時、発生位置の座標、推定雷撃電流値を示す。   The lightning strike information indicates the lightning strike date and time, the coordinates of the occurrence position, and the estimated lightning strike current value, which are the causes of the wire breakage.

以上、本発明の実施例について説明したが、本発明はこれに限られない。例えば、実施例では、線材の破断本数及び避雷線上の破断位置を推定するため、図1のフローチャートのST3,ST4に示すように、当該避雷線を架空している鉄塔が落雷発生位置から所定の範囲内(例えば、1km以内)にあるか否かを判別しているが、落雷発生位置から所定の範囲内(例えば、1km以内)に避雷線が通っているか否かを判別するようにしてもよい。この場合、落雷発生位置の最寄の2つの鉄塔間を結ぶ直線と落雷発生位置との距離が前記所定の距離内にあるか否かを判別し、判別結果が“YES”であれば、前記2つの鉄塔のうち落雷発生位置に近い方の鉄塔の設備情報に基づいて、落雷の放電電荷量とその避雷線の線材破断本数との関係を求め、これと落雷の放電電荷量を照合すればよい。また、この場合にも、実施例と同様に、落雷の放電電荷量と避雷線の線材破断本数との関係を予め求めておき、データベース化してコンピュータに格納しておくことが好ましい。   As mentioned above, although the Example of this invention was described, this invention is not limited to this. For example, in the embodiment, in order to estimate the number of breaks of the wire and the break position on the lightning conductor, as shown in ST3 and ST4 of the flowchart in FIG. It is determined whether or not it is within the range (for example, within 1 km), but it is also possible to determine whether or not the lightning conductor is passing within a predetermined range (for example, within 1 km) from the lightning occurrence position. Good. In this case, it is determined whether or not the distance between the lightning occurrence position and the straight line connecting the two nearest towers of the lightning occurrence position is within the predetermined distance, and if the determination result is “YES”, Based on the equipment information of the tower that is closest to the location where the lightning strikes between the two towers, find the relationship between the lightning discharge charge and the number of wire breakage of the lightning conductor, and compare this with the lightning discharge charge. Good. In this case as well, as in the embodiment, it is preferable that the relationship between the lightning discharge charge amount and the number of lightning breakage of the lightning conductor is obtained in advance and stored in a computer as a database.

落雷発生位置と避雷線との間の距離を求める方法について説明する。まず、LLSデータに含まれる落雷発生位置の座標と、各鉄塔の設備情報に含まれる鉄塔の座標とを比較して、当該落雷発生位置の最寄りの鉄塔を2つ抽出する。抽出した2つの鉄塔の座標から、当該2つの鉄塔間を結ぶ直線“L”の式を求める。次に、この直線の傾きの逆数に“−1”を乗じた値を求め、これを傾きとして、上記落雷発生位置の座標を通る直線の式“L”を求める。直線“L”の式と“L”の式から両直線の交点の座標を求め、これと上記落雷発生位置の座標との間の距離を求めればよい。 A method for obtaining the distance between the lightning occurrence position and the lightning protection line will be described. First, the coordinates of the lightning occurrence position included in the LLS data are compared with the coordinates of the steel tower included in the facility information of each tower, and two nearest steel towers of the lightning occurrence position are extracted. From the extracted coordinates of the two steel towers, an equation of a straight line “L 1 ” connecting the two steel towers is obtained. Next, a value obtained by multiplying the reciprocal of the slope of this straight line by “−1” is obtained, and this is used as a slope to obtain a formula “L 2 ” of a straight line passing through the coordinates of the lightning strike position. Seeking expression and expression from both the linear intersection coordinates of "L 2" of the straight line "L 1", it may be obtained the distance between it and the coordinates of the lightning strike generating position.

また、避雷線の線材破断は、送電電圧の高い(例えば、500kV)送電線路、即ち鉄塔の中でも高さの大きいもの(例えば、80m)に架空されている送電線路において最も多く発生する。この点を考慮すると、実施例の“落雷の放電電荷量と線材破断本数の関係を示すデータベース(図6)”では、落雷の放電電荷量に対応して線材破断本数が定められているが、例えば、“鉄塔の高さ”や“鉄塔設置位置の標高”によって、このデータベースで得られる線材破断本数を補正することができる。例えば、図6のデータベースでは線材破断本数が4本と推定されたところを、“鉄塔の高さ”や“鉄塔設置位置の標高”が低い場合には、線材破断本数を2本に補正する役割を果たすことができる。   Further, the wire rod breakage of the lightning protection wire occurs most frequently in a power transmission line having a high power transmission voltage (for example, 500 kV), that is, a power transmission line suspended in a high height (for example, 80 m) among steel towers. In consideration of this point, in the “database indicating the relationship between the lightning discharge charge amount and the number of wire breaks” (FIG. 6) of the embodiment, the number of wire breakage is determined corresponding to the lightning discharge charge amount. For example, the number of wire breaks obtained in this database can be corrected by “the height of the steel tower” and “the altitude of the steel tower installation position”. For example, in the database shown in FIG. 6, when the number of wire breaks is estimated to be four, if the “steel tower height” or “the height of the tower installation position” is low, the role of correcting the number of wire breaks to two Can be fulfilled.

本発明の避雷線被害推定方法のフローチャート。The flowchart of the lightning conductor damage estimation method of this invention. ある避雷線の周辺に発生した落雷の発生位置を示す図。The figure which shows the generation | occurrence | production position of the lightning strike which generate | occur | produced around a certain lightning line. 避雷線を架空している鉄塔と落雷発生位置との位置関係を示す図。The figure which shows the positional relationship of the steel tower which flies over a lightning arrester, and a lightning strike location. 両者間の距離が所定範囲内にある鉄塔と落雷を抽出した状態を示す図。The figure which shows the state which extracted the steel tower and lightning strike in which the distance between both is in a predetermined range. 落雷の放電電流波形の一例。An example of a lightning discharge current waveform. 落雷の放電電荷量と線材破断本数の関係を示すデータベースの一例。An example of the database which shows the relationship between the electric discharge amount of a lightning strike, and a wire breakage number. 雷撃電流、放電継続時間、及び線材破断本数の関係を示すグラフ。The graph which shows the relationship between a lightning strike current, discharge continuation time, and a wire breakage number. 電荷量と線材破断本数の関係を示すグラフ。The graph which shows the relationship between an electric charge amount and the number of wire breaks. 線材破断本数と線材が破断した避雷線上の位置等を示す結果表示画面の一例。An example of a result display screen showing the number of wires broken and the position on the lightning protection wire where the wire was broken.

Claims (4)

(a)雷撃電流を地面に流すための避雷線を架空している鉄塔と落雷発生位置との間の距離を求めるステップと、
(b)前記距離が所定の範囲内にある鉄塔と発生した落雷を抽出するステップと、
(c)前記抽出した落雷の放電電流波形から放電電荷量を求めるステップと、
(d)前記抽出した鉄塔が架空している避雷線の種類及び太さに基づいて、落雷の放電電荷量と当該避雷線を形成している線材の破断本数との関係を求めるステップと、
(e)前記放電電荷量を求めるステップで求めた放電電荷量と前記関係を照合することにより、前記抽出した鉄塔が架空している避雷線の線材破断本数を推定するステップと
を含むことを特徴とする避雷線被害推定方法。
(A) determining a distance between a steel tower over which a lightning line for passing a lightning strike current to the ground and a lightning strike position;
(B) extracting the steel tower and the generated lightning strike with the distance within a predetermined range;
(C) obtaining a discharge charge amount from the extracted lightning discharge waveform of the lightning,
(D) determining the relationship between the amount of lightning discharge charge and the number of breaks of the wire forming the lightning protection line, based on the type and thickness of the lightning protection line over which the extracted steel tower is suspended;
(E) estimating the number of wire rod breakage of the lightning conductors in which the extracted steel towers are suspended by comparing the relationship with the discharge charge amount obtained in the step of obtaining the discharge charge amount. A method for estimating damage from lightning conductors.
請求項1記載の避雷線被害推定方法において、前記(b)のステップでは、1つの落雷に対して前記所定範囲内にある鉄塔が複数あるときは、当該落雷から最も近くにある鉄塔を抽出することを特徴とする避雷線被害推定方法。   The lightning line damage estimation method according to claim 1, wherein in the step (b), when there are a plurality of steel towers within the predetermined range for one lightning strike, a steel tower closest to the lightning strike is extracted. A method for estimating damage from lightning conductors. 請求項1又は2記載の避雷線被害推定方法において、前記(e)の照合により前記避雷線の線材が破断したと推定したときは、その照合の対象となった鉄塔と、これの両隣で当該避雷線を架空している鉄塔との間で、当該線材が破断したと推定することを特徴とする避雷線被害推定方法。   In the lightning wire damage estimation method according to claim 1 or 2, when it is estimated that the wire rod of the lightning wire is broken by the collation of (e), the steel tower that is the object of the collation, A method of estimating damage to a lightning wire, comprising estimating that the wire has broken between a steel tower over which the lightning wire is suspended. 請求項1乃至3のいずれか記載の避雷線被害推定方法において、前記(d)の関係は、避雷線の種類及び太さに基づいて予め求められることを特徴とする避雷線被害推定方法。
4. The lightning conductor damage estimation method according to claim 1, wherein the relationship of (d) is obtained in advance based on the type and thickness of the lightning conductor.
JP2003361478A 2003-10-22 2003-10-22 Lightning conductor damage estimation method Expired - Lifetime JP4286631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003361478A JP4286631B2 (en) 2003-10-22 2003-10-22 Lightning conductor damage estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003361478A JP4286631B2 (en) 2003-10-22 2003-10-22 Lightning conductor damage estimation method

Publications (2)

Publication Number Publication Date
JP2005130566A true JP2005130566A (en) 2005-05-19
JP4286631B2 JP4286631B2 (en) 2009-07-01

Family

ID=34641411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003361478A Expired - Lifetime JP4286631B2 (en) 2003-10-22 2003-10-22 Lightning conductor damage estimation method

Country Status (1)

Country Link
JP (1) JP4286631B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145442A (en) * 2011-01-12 2012-08-02 Chugoku Electric Power Co Inc:The Overhead ground line fusing estimation apparatus and fusing estimation method
JP2017009507A (en) * 2015-06-24 2017-01-12 東京電力ホールディングス株式会社 Lightning damage determination device and lightning damage determination system
CN108170964A (en) * 2018-01-02 2018-06-15 南方电网科学研究院有限责任公司 A kind of computational methods for tower grounding bulk potential of being struck by lightning

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145442A (en) * 2011-01-12 2012-08-02 Chugoku Electric Power Co Inc:The Overhead ground line fusing estimation apparatus and fusing estimation method
JP2017009507A (en) * 2015-06-24 2017-01-12 東京電力ホールディングス株式会社 Lightning damage determination device and lightning damage determination system
CN108170964A (en) * 2018-01-02 2018-06-15 南方电网科学研究院有限责任公司 A kind of computational methods for tower grounding bulk potential of being struck by lightning

Also Published As

Publication number Publication date
JP4286631B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
CN108169628A (en) Identification lightning fault property and the device and method for being accurately positioned trouble point
CN106771637B (en) Electric line inspection earthing threadiness state on-line monitoring method
CN105259443A (en) Intelligent lightning-protection online real-time monitoring system
JP4878783B2 (en) Lightning damage assumption device, lightning damage assumption method, lightning damage assumption program and recording medium
CN105652152B (en) A kind of Fault Locating Method and system of multiple line direct supply system contact net
US20180238947A1 (en) Method for sensing lightning-current parameters at installations having one or more capturing devices and lightning-current diversion paths
CN210431427U (en) Optical cable line fault positioning and visualization system based on AI image identification
CN104155568A (en) Method for accurately positioning lightning conductor, struck by lightning, of power transmission line
CN109799404B (en) Method and system for detecting degradation rate of surge protection device
CN114778959A (en) Intelligent lightning protection real-time online monitoring system
JP4286631B2 (en) Lightning conductor damage estimation method
CN207780159U (en) Identification lightning fault property and the device for being accurately positioned fault point
CN114155690A (en) Cable external-damage-prevention linkage early warning system and method
KR101099788B1 (en) Apparatus and method of determinating lightening induced flashover in transmission lines
CN108594104A (en) A kind of brushless exciter method for detecting fault of rotating diode and system
CN1987500A (en) On-line monitoring system method for overhead line by potential method
CN110543610A (en) Real-time lightning transmission line risk assessment method
JP4227876B2 (en) Accident tower estimation method and accident lightning estimation method
US20120176121A1 (en) Current passage indicator
CN116520072A (en) Cable fault positioning method and equipment
CN113640624A (en) Pre-discharge risk early warning system and method for insulation defect of power transmission line
JPH09236629A (en) Method and device for detecting earth steel tower of power transmission line
CN115792417B (en) Near electricity detection method and system for overhead working equipment
CN115308537B (en) Overhead ground wire lightning stroke positioning and strand damage monitoring method and system
CN116559564B (en) Ground wire information monitoring and analyzing system

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060919

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4286631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250