JP2005129810A - Optical element, and immersion type projection aligner - Google Patents

Optical element, and immersion type projection aligner Download PDF

Info

Publication number
JP2005129810A
JP2005129810A JP2003365369A JP2003365369A JP2005129810A JP 2005129810 A JP2005129810 A JP 2005129810A JP 2003365369 A JP2003365369 A JP 2003365369A JP 2003365369 A JP2003365369 A JP 2003365369A JP 2005129810 A JP2005129810 A JP 2005129810A
Authority
JP
Japan
Prior art keywords
optical element
protective film
liquid
optical
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003365369A
Other languages
Japanese (ja)
Inventor
Atsunobu Murakami
敦信 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003365369A priority Critical patent/JP2005129810A/en
Publication of JP2005129810A publication Critical patent/JP2005129810A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a protective film having high liquid resistance and high laser resistance whereby an optical element can be protected from liquid, in an aligner whereto an immersion method is applied. <P>SOLUTION: In an optical element 13 wherein the protective film 12 is formed on the surface of an optical substrate 11, the difference between each protruding portion and each recessed portion of irregular shapes is so reduced by applying uniformly constant pressure to the surface of the protective film 12 during a predetermined time, and by polishing the protruding portions of the irregular shapes of its surface as to flatten the surface of the optical element. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光学基板の表面に保護膜が形成された光学素子及びこの光学素子が設けられた液浸型投影露光装置に関するものである。   The present invention relates to an optical element having a protective film formed on the surface of an optical substrate, and an immersion type projection exposure apparatus provided with the optical element.

次世代ステッパーである液浸型投影露光装置において、液体と光学素子との界面にて、液の浸透などによる光学素子の劣化が起こりやすい。そのため、光学素子を液体から保護するための保護膜が必要となる。また、液浸型投影露光装置では、ArF(エキシマ)レーザ等の高出力レーザを光源とするため、保護膜は、レーザ耐性の高い光学薄膜であることも要求される。   In an immersion type projection exposure apparatus that is a next-generation stepper, the optical element is likely to be deteriorated due to liquid penetration at the interface between the liquid and the optical element. Therefore, a protective film for protecting the optical element from the liquid is required. Further, since the immersion type projection exposure apparatus uses a high-power laser such as an ArF (excimer) laser as a light source, the protective film is also required to be an optical thin film having high laser resistance.

従来、ステッパー用の光学薄膜には紫外域で透明なレーザ耐性の高い膜材料が用いられていた。特に、耐水性の必要な光学素子に関してはDLC(Diamond Like Carbon)などの緻密な膜が用いられている。   Conventionally, a film material with high laser resistance that is transparent in the ultraviolet region has been used for an optical thin film for a stepper. In particular, a dense film such as DLC (Diamond Like Carbon) is used for an optical element that requires water resistance.

ところが、DLC膜などは緻密ではあるが、紫外域での吸収が大きく、ArF(エキシマ)レーザを用いる液浸型投影露光装置において、光学素子の保護膜として使用するのは困難である。   However, although a DLC film or the like is dense, absorption in the ultraviolet region is large, and it is difficult to use it as a protective film for an optical element in an immersion projection exposure apparatus using an ArF (excimer) laser.

そこで、フッ化マグネシウム(MgF)等を光学素子の最表面に成膜することにより、保護膜として使うことが考えられる。 Thus, it is conceivable to use magnesium fluoride (MgF 2 ) or the like as a protective film by forming a film on the outermost surface of the optical element.

しかしながら、フッ化マグネシウムなどの成膜した表面状態は、DLC膜に比べて凹凸があり平坦性に欠ける。そのため、膜強度が劣り、液体やレーザに対する耐性に関して問題がある。   However, the surface state on which magnesium fluoride or the like is formed has irregularities and lacks flatness compared to the DLC film. Therefore, the film strength is inferior, and there is a problem with respect to resistance to liquids and lasers.

本発明は、かかる点に鑑み、液体やレーザに対する耐性の高い保護膜を有する光学素子及びこの光学素子が設けられた液浸型投影露光装置を提供することを課題としている。   In view of the above, the present invention has an object to provide an optical element having a protective film highly resistant to liquid and laser and an immersion type projection exposure apparatus provided with the optical element.

請求項1に記載の発明は、光学基板の表面に保護膜を形成した光学素子において、該保護膜の表面に所定の時間一定の圧力を均一に加えて前記表面の凹凸形状の凸部を研磨することにより、前記凹凸形状の凸部と凹部の差を小さくして前記表面を平坦化したことを特徴とする。   According to the first aspect of the present invention, in the optical element in which a protective film is formed on the surface of the optical substrate, the surface of the protective film is uniformly applied with a constant pressure for a predetermined time to polish the convex and concave portions on the surface. By doing so, the difference between the convex and concave portions of the concavo-convex shape is reduced to flatten the surface.

請求項2に記載の発明は、光学基板の表面に保護膜を形成した光学素子において、該保護膜の表面に粒子状の物質を塗布して前記表面の凹凸形状の凹部に前記粒子状の物質を入り込ませることにより、前記凹凸形状の凸部と凹部の差を小さくして前記表面を平坦化したことを特徴とする。   According to a second aspect of the present invention, in the optical element in which a protective film is formed on the surface of the optical substrate, a particulate substance is applied to the surface of the protective film, and the particulate substance is formed in the concave and convex portions on the surface The surface is flattened by reducing the difference between the convex and concave portions of the concavo-convex shape.

請求項3に記載の発明は、請求項2の構成に加えて、前記粒子状の物質は、前記保護膜と同一物質であることを特徴とする。   According to a third aspect of the present invention, in addition to the structure of the second aspect, the particulate material is the same material as the protective film.

請求項4に記載の発明は、請求項2又は3の構成に加えて、前記保護膜はフッ化マグネシウムからなり、前記粒子状の物質は前記保護膜と同一物質であるフッ化マグネシウムからなることを特徴とする。   According to a fourth aspect of the invention, in addition to the configuration of the second or third aspect, the protective film is made of magnesium fluoride, and the particulate substance is made of magnesium fluoride which is the same substance as the protective film. It is characterized by.

請求項5に記載の発明は、請求項1又は2の構成に加えて、前記保護膜は、該保護膜の表面の凹凸の差が10Å以下であることを特徴とする。   According to a fifth aspect of the present invention, in addition to the structure of the first or second aspect, the protective film is characterized in that a difference in unevenness on the surface of the protective film is 10 mm or less.

請求項6に記載の発明は、請求項1乃至5のいずれか一つに記載の光学素子を、露光対象物と対面する位置に配置し、前記光学素子と前記露光対象物の間を液体で満たしたことを特徴とする。   According to a sixth aspect of the present invention, the optical element according to any one of the first to fifth aspects is disposed at a position facing the exposure object, and a liquid is provided between the optical element and the exposure object. It is characterized by satisfying.

請求項1に記載の発明によれば、光学基板の表面に保護膜を形成した光学素子において、該保護膜の表面に所定の時間一定の圧力を均一に加えて前記表面の凹凸形状の凸部を研磨することにより、前記凹凸形状の凸部と凹部の差を小さくして前記表面を平坦化したので、保護膜の表面積を減らすことにより、液体と接する界面での物性変化が起こる確率を減少させるため、膜強度が上がる。したがって、液体やレーザに対する耐性の高い保護膜を得ることができる。さらに、液体と光学素子との界面を有する光学機器において、液の浸透などによる光学素子の劣化を低減させる事ができる。   According to the first aspect of the present invention, in the optical element in which a protective film is formed on the surface of the optical substrate, the surface of the protective film is uniformly applied with a constant pressure for a predetermined period of time, so that the convex and concave portions on the surface are formed. Since the surface is flattened by reducing the difference between the convex and concave portions of the concavo-convex shape by reducing the surface area, reducing the surface area of the protective film reduces the probability of changes in physical properties at the interface contacting the liquid Therefore, the film strength increases. Therefore, it is possible to obtain a protective film having high resistance to liquid and laser. Furthermore, in an optical device having an interface between a liquid and an optical element, it is possible to reduce deterioration of the optical element due to liquid penetration.

請求項2に記載の発明によれば、光学基板の表面に保護膜を形成した光学素子において、該保護膜の表面に粒子状の物質を塗布して前記表面の凹凸形状の凹部に前記粒子状の物質を入り込ませることにより、前記凹凸形状の凸部と凹部の差を小さくして前記表面を平坦化したので、保護膜の表面積を減らすことにより、液体と接する界面での物性変化が起こる確率を減少させるため、膜強度が上がる。したがって、液体やレーザに対する耐性の高い保護膜を得ることができる。さらに、液体と光学素子との界面を有する光学機器において、液の浸透などによる光学素子の劣化を低減させる事ができる。   According to the second aspect of the present invention, in the optical element in which the protective film is formed on the surface of the optical substrate, the particulate material is applied to the surface of the protective film, and the particulates are formed in the concave and convex portions on the surface. Since the surface is flattened by reducing the difference between the convex and concave portions of the concavo-convex shape by entering the material, the probability that a change in physical properties at the interface in contact with the liquid will occur by reducing the surface area of the protective film Increases the film strength. Therefore, it is possible to obtain a protective film having high resistance to liquid and laser. Furthermore, in an optical device having an interface between a liquid and an optical element, it is possible to reduce deterioration of the optical element due to liquid penetration.

請求項3に記載の発明によれば、請求項2の構成に加えて、前記粒子状の物質は、前記保護膜と同一物質であるので、粒子状物質を比較的平易な方法で塗り込むことにより保護膜表面を平坦化することができる。   According to the third aspect of the present invention, in addition to the configuration of the second aspect, the particulate substance is the same substance as the protective film, and therefore, the particulate substance is applied by a relatively simple method. Thus, the surface of the protective film can be flattened.

請求項4に記載の発明によれば、請求項2又は3の構成に加えて、前記保護膜はフッ化マグネシウムからなり、前記粒子状の物質は前記保護膜と同一物質であるフッ化マグネシウムからなるので、液体に対する耐性の高い物質で保護膜を作製することができる。   According to the invention described in claim 4, in addition to the configuration of claim 2 or 3, the protective film is made of magnesium fluoride, and the particulate substance is made of magnesium fluoride which is the same substance as the protective film. Thus, the protective film can be made of a substance having high resistance to liquid.

請求項5に記載の発明によれば、請求項1又は2の構成に加えて、前記保護膜は、該保護膜の表面の凹凸の差が10Å以下であるので、より液体やレーザに対する耐性の高い保護膜を提供できる。   According to the fifth aspect of the invention, in addition to the configuration of the first or second aspect, the protective film is more resistant to liquids and lasers because the difference in irregularities on the surface of the protective film is 10 mm or less. A high protective film can be provided.

請求項6に記載の発明によれば、請求項1乃至5のいずれか一つに記載の光学素子を、露光対象物と対面する位置に配置し、前記光学素子と前記露光対象物の間を液体で満たしたので、液体やレーザに対する耐性の高い液浸型投影露光装置を提供できる。   According to invention of Claim 6, the optical element as described in any one of Claims 1 thru | or 5 is arrange | positioned in the position which faces an exposure target object, Between the said optical element and the said exposure target object. Since it is filled with liquid, it is possible to provide an immersion type projection exposure apparatus having high resistance to liquid and laser.

以下、本発明の実施の形態について説明する。
[発明の実施の形態1]
Embodiments of the present invention will be described below.
Embodiment 1 of the Invention

以下、本発明の実施の形態について、図1及び図2を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2.

図1は、本発明の実施の形態1に係る光学素子の概念図及び保護膜表面の拡大概念図であり、この光学素子13は、光学基板11の表面は液体17から保護するための保護膜12が成膜されて構成されている。   FIG. 1 is a conceptual diagram of an optical element according to Embodiment 1 of the present invention and an enlarged conceptual diagram of the surface of a protective film. This optical element 13 is a protective film for protecting the surface of an optical substrate 11 from a liquid 17. 12 is formed and formed.

この保護膜12は、その表面に所定の時間一定の圧力を均一に加えて表面の凹凸形状の凸部を研磨することにより、凹凸形状の凸部と凹部の差dを小さくして表面を平坦化してある。   The surface of the protective film 12 is flattened by uniformly applying a constant pressure to the surface for a predetermined period of time to polish the concave and convex portions on the surface, thereby reducing the difference d between the convex and concave portions on the surface. It has become.

図2は、本発明の実施の形態1に係る液浸型投影露光装置の接液部分の概略図である。   FIG. 2 is a schematic view of a liquid contact portion of the immersion type projection exposure apparatus according to the first embodiment of the present invention.

液浸型投影露光装置1は、光学素子13、投影光学系14、ステージ15、照明光学系(不図示)、光源(不図示)から構成される。光源から照射されたレーザ光は、照明光学系からマスクを介してマスクパターンを投影した後、投影光学系14を経て光学素子13で縮小されステージ15に設置した露光対象物、例えばシリコンウエハー16に投影露光される。光学素子13及びシリコンウエハー16は液体17によって満たされた状態で露光が行われる。液体17は、大気に比べて屈折率が高いため、解像度の高い露光を実施することができる。   The immersion type projection exposure apparatus 1 includes an optical element 13, a projection optical system 14, a stage 15, an illumination optical system (not shown), and a light source (not shown). The laser light emitted from the light source projects a mask pattern from the illumination optical system through the mask, and then is reduced by the optical element 13 through the projection optical system 14 and is applied to an exposure object such as a silicon wafer 16 placed on the stage 15. Projection exposure. The optical element 13 and the silicon wafer 16 are exposed while being filled with the liquid 17. Since the liquid 17 has a higher refractive index than that of the atmosphere, exposure with high resolution can be performed.

上述のように、液浸型投影露光装置1では、光学素子13とシリコンウエハー16との間を所定の液体17で満たした状態で光源からレーザが発射されて露光が行われる。保護膜12は、保護膜12の表面を平坦化することにより保護膜12の強度が高められ、液体17やレーザに対して耐性が高い。
[発明の実施の形態2]
As described above, in the immersion type projection exposure apparatus 1, exposure is performed by emitting a laser from a light source in a state where the space between the optical element 13 and the silicon wafer 16 is filled with the predetermined liquid 17. The protective film 12 increases the strength of the protective film 12 by flattening the surface of the protective film 12, and is highly resistant to the liquid 17 and the laser.
[Embodiment 2 of the Invention]

以下、本発明の実施の形態2について、図3を用いて説明する。
図3は、本発明の実施の形態2に係る光学素子の概念図及び保護膜表面の拡大概念図であり、この光学素子13は、保護膜12の表面に粒子状物質18を塗布して表面の凹凸形状の凹部に粒子状物質18を入り込ませることにより、凹凸形状の凸部と凹部の差dを小さくして表面を平坦化してある。
Hereinafter, Embodiment 2 of the present invention will be described with reference to FIG.
FIG. 3 is a conceptual diagram of an optical element according to Embodiment 2 of the present invention and an enlarged conceptual diagram of the surface of the protective film. This optical element 13 is formed by applying a particulate material 18 to the surface of the protective film 12. By allowing the particulate matter 18 to enter the concave and convex portions, the difference d between the concave and convex portions and the concave portions is reduced to flatten the surface.

他の構成及び作用は、本発明の実施の形態1と同様であるので、同一の構成には同一の符号を付して、その説明を省略する。   Since other configurations and operations are the same as those of the first embodiment of the present invention, the same components are denoted by the same reference numerals and description thereof is omitted.

以下、実施例を用いて本発明の実施の形態を説明する。
[実施例1]
Embodiments of the present invention will be described below using examples.
[Example 1]

本発明の実施の形態1に係る成膜後の膜表面を研磨する方法を実施例1として、以下に説明する。   A method for polishing the film surface after film formation according to Embodiment 1 of the present invention will be described below as Example 1.

光学素子13の光学基板11に蛍石、保護膜12の材料としてフッ化マグネシウムを用い、研磨方法として、拭き布(商品名BEMCOT:旭化成製)による擦りを行う。   Fluorite is used for the optical substrate 11 of the optical element 13, and magnesium fluoride is used as the material for the protective film 12. As a polishing method, rubbing with a wiping cloth (trade name BEMCOT: manufactured by Asahi Kasei) is performed.

直径30mm、厚さ3mmの蛍石平行平板の光学基板11上に、真空蒸着法にてフッ化マグネシウムの保護膜12をおよそ1000Å形成する。   A protective film 12 made of magnesium fluoride is formed on a fluorite parallel plate optical substrate 11 having a diameter of 30 mm and a thickness of 3 mm by a vacuum evaporation method.

その後、サンプルを平板上に設置し、潤滑材としてメタノールをしみこませたBEMCOTでコート面を擦る。擦りは、5kgw程度の圧力で1分間行う。   Thereafter, the sample is placed on a flat plate, and the coated surface is rubbed with BEMOT impregnated with methanol as a lubricant. The rubbing is performed for 1 minute at a pressure of about 5 kgw.

擦り無しサンプルと擦り有りサンプルの表面粗さを原子間力顕微鏡(AFM:Atomic Force Microscopy)を用いて表面粗さ(凸部と凹部の差d)(Å)を計測した。この表面粗さの自乗和平均(RMS:Root Mean Square)を表1に示す。   The surface roughness (difference d between the convex portion and the concave portion) (Å) of the surface roughness of the sample without rubbing and the sample with rubbing was measured using an AFM (Atomic Force Microscope). Table 1 shows the root mean square (RMS) of the surface roughness.

Figure 2005129810
Figure 2005129810

表1に示すように、真空蒸着による成膜では、表面の粗さは上記のように、RMS値で十数Åとなる。それに比べて、擦り有りサンプルの表面粗さのRMS値は、半分以下となった。   As shown in Table 1, in the film formation by vacuum deposition, the surface roughness becomes an tens of thousands as the RMS value as described above. In comparison, the RMS value of the surface roughness of the rubbed sample was less than half.

このサンプルにレーザ照射を行い、照射前後での透過率の変化を測定した。測定に用いるレーザ照射用サンプルホルダーを図4に示す。ステンレス製のサンプルホルダー21に評価用サンプルとして上述の方法で作製した光学素子13と未コート石英基板22をセットし、ホルダー内部を純水17で満たす。この時、評価サンプルのコート面は純水17と接するように設置する。レーザ照射前後の透過率変化を表2に示す。   This sample was irradiated with laser, and the change in transmittance before and after irradiation was measured. A sample holder for laser irradiation used for the measurement is shown in FIG. The optical element 13 and the uncoated quartz substrate 22 produced by the above-described method as a sample for evaluation are set in a sample holder 21 made of stainless steel, and the holder is filled with pure water 17. At this time, the coated surface of the evaluation sample is placed in contact with the pure water 17. Table 2 shows the transmittance change before and after the laser irradiation.

Figure 2005129810
Figure 2005129810

ここで、レーザ照射条件として、波長を193.nm、フルエンス(fluence)を5mJ/cm2、ショット数を10E7shots、発振周波数500Hzとした。   Here, as a laser irradiation condition, the wavelength is set to 193. nm, fluence was 5 mJ / cm 2, the number of shots was 10E7 shots, and the oscillation frequency was 500 Hz.

表2に示すように、擦り有りのサンプルでは透過率低下はほとんど見られなかった。これはコート面の表面粗さが小さくなったため、純水17との接触中にレーザが照射されても、保護膜12の強度が高いため、保護膜12の劣化が減少したためである。
[実施例2]
As shown in Table 2, almost no decrease in transmittance was observed in the sample with rubbing. This is because the surface roughness of the coated surface is reduced, and even when a laser is irradiated during contact with the pure water 17, the strength of the protective film 12 is high, so that the deterioration of the protective film 12 is reduced.
[Example 2]

本発明の実施の形態2に係る成膜後の膜表面にナノ粒子を塗布する方法を実施例2として、以下に説明する。   A method for applying nanoparticles to the film surface after film formation according to Embodiment 2 of the present invention will be described below as Example 2.

光学基板11に蛍石、保護膜12の材料としてフッ化マグネシウム、塗布方法として、ナノ粒子法(Sol-gel法の一種)によって、フッ化マグネシウム膜の塗布を行う。   Magnesium fluoride film is applied to the optical substrate 11 by fluorite, magnesium fluoride as a material of the protective film 12, and a nanoparticle method (a kind of Sol-gel method) as a coating method.

実施例1と同様に、蛍石基板11上に保護膜12としてフッ化マグネシウムを1000Å形成する。以下、光学基板11上にナノ粒子法に基づくフッ化マグネシウム膜の作製方法に関して説明する。   Similarly to Example 1, 1000 of magnesium fluoride is formed on the fluorite substrate 11 as the protective film 12. Hereinafter, a method for producing a magnesium fluoride film based on the nanoparticle method on the optical substrate 11 will be described.

得られる液のフッ化マグネシウム濃度が1.0%となるよう、酢酸マグネシウムのメタノール溶液にフッ酸のメタノール希釈液を十分撹拌しながら添加した。この液をポリテトラフルオロエチレン(PTFE)製のセルに入れ、さらにステンレス製の圧力容器に入れて、135℃で24時間加熱・加圧処理した。冷却後、液を取り出し、エバポレーターで3.0wt%まで濃縮し、塗布液とした。次いで、光学基板11をスピンコーターにセットし、直径80mm、厚さ4mmの円板状の基板に塗布液を滴下後、液が乾くまで1500r.p.mで回転してフッ化マグネシウム膜の塗布を行った。その後150℃で2時間アニールを行った。なお、アニール温度は、100℃〜200℃、アニール時間は1〜3時間の間で行えば良い。   A methanol dilution of hydrofluoric acid was added to a methanol solution of magnesium acetate with sufficient stirring so that the magnesium fluoride concentration of the resulting liquid was 1.0%. This liquid was put into a cell made of polytetrafluoroethylene (PTFE), and further put into a stainless steel pressure vessel, and heated and pressurized at 135 ° C. for 24 hours. After cooling, the liquid was taken out and concentrated to 3.0 wt% with an evaporator to obtain a coating liquid. Next, the optical substrate 11 was set on a spin coater, and after applying the coating liquid onto a disk-shaped substrate having a diameter of 80 mm and a thickness of 4 mm, 1500 r. p. The film was rotated at m to apply a magnesium fluoride film. Thereafter, annealing was performed at 150 ° C. for 2 hours. The annealing temperature may be 100 ° C. to 200 ° C., and the annealing time may be 1 to 3 hours.

この方法を用いることによって、真空蒸着で形成したフッ化マグネシウム膜の表面の段差に、フッ化マグネシウム粒子18を塗り込むことで表面積を減少させる効果がある。   By using this method, there is an effect of reducing the surface area by applying magnesium fluoride particles 18 to the level difference of the surface of the magnesium fluoride film formed by vacuum deposition.

塗り無しサンプルと塗り有りサンプルの表面粗さ(凸部と凹部の差d)(Å)をAFMにて計測した。この表面粗さのRMS値を算出すると表3に示す。   The surface roughness (difference d between the convex part and the concave part) (Å) of the uncoated sample and the coated sample was measured by AFM. The RMS value of the surface roughness is calculated and shown in Table 3.

Figure 2005129810
Figure 2005129810

表3に示すように、擦り有りサンプルの表面粗さのRMS値は、擦り無しサンプルに比べて半分以下となった。   As shown in Table 3, the RMS value of the surface roughness of the sample with rubbing was less than half that of the sample without rubbing.

このサンプルにレーザ照射を行い、照射前後での透過率の変化を測定する。測定には実施例1と同じく図4のサンプルホルダーを用いた。レーザ照射前後の透過率変化を表4に示す。   Laser irradiation is performed on this sample, and the change in transmittance before and after irradiation is measured. For the measurement, the sample holder shown in FIG. Table 4 shows the change in transmittance before and after laser irradiation.

Figure 2005129810
Figure 2005129810

なお、レーザ照射条件は、実施例1と同条件である。   The laser irradiation conditions are the same as those in Example 1.

表4に示すように、塗り有りのサンプルでは透過率低下はほとんど見られなかった。これはコート面の表面粗さが小さくなったため、水との接触へのレーザ照射による膜の変化および基板への影響が減少したためであると推測できる。   As shown in Table 4, almost no decrease in transmittance was observed in the coated sample. It can be presumed that this is because the surface roughness of the coated surface is reduced, and the change in the film and the influence on the substrate due to the laser irradiation to the contact with water are reduced.

なお、本発明においては、保護膜12を研磨する方法を実施例1として、保護膜12上に粒子状物質18を塗布する方法を実施例2として説明したが、実施例2で述べた方法で保護膜12上に粒子状物質18を塗布し、アニールした後に、実施例1で述べた方法で保護膜12を研磨しても良い。その場合、実施例1や実施例2を単独に行った場合に比べて、より保護膜12の表面は平坦化される。   In the present invention, the method of polishing the protective film 12 is described as Example 1, and the method of applying the particulate matter 18 on the protective film 12 is described as Example 2. However, the method described in Example 2 is used. After the particulate matter 18 is applied on the protective film 12 and annealed, the protective film 12 may be polished by the method described in the first embodiment. In that case, the surface of the protective film 12 is flattened more than in the case where Example 1 or Example 2 is performed alone.

上述の実施の形態においては、投影光学系14とシリコンウエハー16との間を局所的に液体17で満たす液浸型投影露光装置を採用しているが、特開平6−124873号公報に開示されているような露光対象の基板を保持したステージを液槽の中で移動させる液浸型投影露光装置や、特開平10−303114号公報に開示されるようなステージ上に所定の深さの液体槽を形成し、その中に基板を保持する液浸型投影露光装置にも本発明を適用可能である。   In the above-described embodiment, an immersion type projection exposure apparatus that locally fills the space between the projection optical system 14 and the silicon wafer 16 with the liquid 17 is disclosed in JP-A-6-124873. An immersion type projection exposure apparatus that moves a stage holding a substrate to be exposed in a liquid tank, or a liquid having a predetermined depth on a stage as disclosed in JP-A-10-303114. The present invention can also be applied to an immersion type projection exposure apparatus that forms a bath and holds a substrate therein.

また、本発明は、特開平10−163099号公報、特開平10−214783号公報、特表2000−505958号公報等に開示されているように、ウエハ等の被処理基板を別々に載置してXY方向に独立に移動可能な2つのステージを備えたツインステージ形の液浸型投影露光装置にも適用できる。   Further, according to the present invention, as disclosed in JP-A-10-163099, JP-A-10-214783, JP-T 2000-505958, etc., substrates to be processed such as wafers are separately placed. The present invention can also be applied to a twin-stage type immersion projection exposure apparatus having two stages that can move independently in the XY directions.

本発明の実施の形態1に係る光学素子の概念図及び保護膜表面の拡大概念図である。It is the conceptual diagram of the optical element which concerns on Embodiment 1 of this invention, and the expansion conceptual diagram of the surface of a protective film. 同実施の形態1に係る液浸型投影露光装置である。1 is an immersion type projection exposure apparatus according to the first embodiment. 本発明の実施の形態2に係る光学素子の概念図及び保護膜表面の拡大概念図である。It is the conceptual diagram of the optical element which concerns on Embodiment 2 of this invention, and the expansion conceptual diagram of the surface of a protective film. 測定に用いるレーザ照射用サンプルホルダーの概念図である。It is a conceptual diagram of the sample holder for laser irradiation used for a measurement.

符号の説明Explanation of symbols

11 光学基板
12 保護膜
13 光学素子
14 投影光学系
15 ステージ
16 シリコンウエハー
17 液体(純水)
18 粒子状物質
21 サンプルホルダー
22 未コート石英基板
DESCRIPTION OF SYMBOLS 11 Optical substrate 12 Protective film 13 Optical element 14 Projection optical system 15 Stage 16 Silicon wafer 17 Liquid (pure water)
18 Particulate matter 21 Sample holder 22 Uncoated quartz substrate

Claims (6)

光学基板の表面に保護膜を形成した光学素子において、該保護膜の表面に所定の時間一定の圧力を均一に加えて前記表面の凹凸形状の凸部を研磨することにより、前記凹凸形状の凸部と凹部の差を小さくして前記表面を平坦化したことを特徴とする光学素子。 In an optical element in which a protective film is formed on the surface of the optical substrate, the concave and convex portions on the surface are polished by uniformly applying a constant pressure to the surface of the protective film for a predetermined time to polish the concave and convex portions on the surface. An optical element characterized in that the surface is flattened by reducing the difference between the portion and the concave portion. 光学基板の表面に保護膜を形成した光学素子において、該保護膜の表面に粒子状の物質を塗布して前記表面の凹凸形状の凹部に前記粒子状の物質を入り込ませることにより、前記凹凸形状の凸部と凹部の差を小さくして前記表面を平坦化したことを特徴とする光学素子。 In the optical element in which a protective film is formed on the surface of the optical substrate, the concavo-convex shape is obtained by applying a particulate substance on the surface of the protective film and allowing the particulate substance to enter the concave-convex concave portion on the surface. An optical element characterized in that the surface is flattened by reducing the difference between the convex portion and the concave portion. 前記粒子状の物質は、前記保護膜と同一物質であることを特徴とする請求項2に記載の光学素子。 The optical element according to claim 2, wherein the particulate substance is the same substance as the protective film. 前記保護膜はフッ化マグネシウムからなり、前記粒子状の物質は前記保護膜と同一物質であるフッ化マグネシウムからなることを特徴とする請求項2又は3に記載の光学素子。 4. The optical element according to claim 2, wherein the protective film is made of magnesium fluoride, and the particulate substance is made of magnesium fluoride which is the same material as the protective film. 前記保護膜は、該保護膜の表面の凹凸の差が10Å以下であることを特徴とする請求項1又は2に記載の光学素子。 3. The optical element according to claim 1, wherein the protective film has a surface roughness difference of 10 mm or less. 請求項1乃至5のいずれか一つに記載の光学素子を、露光対象物と対面する位置に配置し、前記光学素子と前記露光対象物の間を液体で満たしたことを特徴とする液浸型投影露光装置。 An optical element according to any one of claims 1 to 5, wherein the optical element is disposed at a position facing an exposure object, and a liquid is filled between the optical element and the exposure object. Type projection exposure apparatus.
JP2003365369A 2003-09-30 2003-10-24 Optical element, and immersion type projection aligner Pending JP2005129810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003365369A JP2005129810A (en) 2003-09-30 2003-10-24 Optical element, and immersion type projection aligner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003339626 2003-09-30
JP2003365369A JP2005129810A (en) 2003-09-30 2003-10-24 Optical element, and immersion type projection aligner

Publications (1)

Publication Number Publication Date
JP2005129810A true JP2005129810A (en) 2005-05-19

Family

ID=34655595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365369A Pending JP2005129810A (en) 2003-09-30 2003-10-24 Optical element, and immersion type projection aligner

Country Status (1)

Country Link
JP (1) JP2005129810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7916273B2 (en) 2005-11-16 2011-03-29 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7916273B2 (en) 2005-11-16 2011-03-29 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method

Similar Documents

Publication Publication Date Title
US10527927B2 (en) Conductive film coated substrate, multilayer reflective film coated substrate, reflective mask blank, reflective mask, and semiconductor device manufacturing method
EP1253117B1 (en) Glass substrate for photomasks and preparation method
US10642149B2 (en) Reflective mask blank, reflective mask and method of manufacturing semiconductor device
JP4997815B2 (en) Method for producing a highly flat and highly smooth glass substrate
US8889042B2 (en) Coatings
US20170329215A1 (en) Reflective mask blank, method of manufacturing reflective mask blank, reflective mask and method of manufacturing semiconductor device
TW201529506A (en) Glass ceramic for ultraviolet lithography and method of manufacturing thereof
US20070256703A1 (en) Method for removing contaminant from surface of glass substrate
JP3975321B2 (en) Silica glass substrate for photomask and method for planarizing silica glass substrate for photomask
JP2007326770A (en) Method and device for treating a semiconductor wafer
US11227771B2 (en) Etching method
JP4863409B2 (en) Method and apparatus for processing a semiconductor wafer by etching
JP7167158B2 (en) Lithography support with defined burl top topography
JP6999101B2 (en) Etching method
JP2005129810A (en) Optical element, and immersion type projection aligner
JP6873758B2 (en) A method for manufacturing a substrate, a method for manufacturing a substrate with a multilayer reflective film, a method for manufacturing a mask blank, and a method for manufacturing a transfer mask.
JP6849968B2 (en) Etching method
JP2007264499A (en) Pellicle usable for exposure device having numerical aperture of not less than 1
TWI774840B (en) Mask blank and its manufacturing method, mask and its manufacturing method, exposure method, and device manufacturing method
TWI697033B (en) Manufacturing method of substrate for mask base, manufacturing method of mask base, manufacturing method of mask for transfer, manufacturing method of semiconductor element, substrate for mask base, mask base and transfer mask
JP6744100B2 (en) Method of manufacturing transfer mask
Phillips Nano-engineering the boiling surface for optimal heat transfer rate and critical heat flux
JP2015184523A (en) Method of producing maks blank substrate and method of producing mask for production of mask blank and transfer
JP2011186401A (en) Aluminum reflection mirror and method for manufacturing aluminum reflection mirror
JP6738935B2 (en) Mask blank manufacturing method, transfer mask manufacturing method, and mask blank