JP2005129449A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2005129449A
JP2005129449A JP2003365991A JP2003365991A JP2005129449A JP 2005129449 A JP2005129449 A JP 2005129449A JP 2003365991 A JP2003365991 A JP 2003365991A JP 2003365991 A JP2003365991 A JP 2003365991A JP 2005129449 A JP2005129449 A JP 2005129449A
Authority
JP
Japan
Prior art keywords
fuel cell
refrigerant
temperature
flow rate
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003365991A
Other languages
Japanese (ja)
Other versions
JP4852819B2 (en
Inventor
Masatoshi Iio
雅俊 飯尾
Hiromasa Sakai
弘正 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003365991A priority Critical patent/JP4852819B2/en
Publication of JP2005129449A publication Critical patent/JP2005129449A/en
Application granted granted Critical
Publication of JP4852819B2 publication Critical patent/JP4852819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system which can start immediately when starting below a freezing point. <P>SOLUTION: This fuel cell system comprises cooling piping 5 which circulates in a fuel cell 1 and can perform heat exchange with the fuel cell 1 by a coolant, a radiator 4, a hydrogen burning device 8, a heat exchanger 9, a coolant pump 7 for controlling the flow rate of the coolant, and a temperature sensor 10 for detecting a coolant temperature of the fuel cell 1. Further, in this system, a coolant temperature at an entry of the fuel cell 1 is calculated and the flow rate of the coolant and the calorific value of the coolant are adjusted by a coolant temperature detected by the temperature sensor 10, and thus the temperature at the entry of the fuel cell 1 is controlled. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池システムの燃料電池暖機に関するものであり、特に氷点下起動時に関するものである。   The present invention relates to a fuel cell warm-up of a fuel cell system, and particularly relates to a time of starting below freezing point.

従来、ヒータによって冷媒を加熱し、その加熱した冷媒を燃料電池へ供給し、燃料電池と燃熱交換を行い、暖機するものが、特許文献1に開示されている。
特開2000−315512号公報
Conventionally, Patent Document 1 discloses a technique in which a refrigerant is heated by a heater, the heated refrigerant is supplied to a fuel cell, fuel heat is exchanged with the fuel cell, and the fuel cell is warmed up.
JP 2000-315512 A

しかし、上記の発明では、冷媒の温度に関わらず燃料電池へ冷媒を流しているので、氷点下起動時には氷点下の冷媒が燃料電池へ流れ、燃料電池の発電によって生じた熱を冷媒によって奪ってしまい、燃料電池の暖機を妨げるといった問題点がある。また、燃料電池の発電により生成された水を凍結してしまい、その氷によってカソードを閉塞し、燃料電池の起動を阻害してしまうといった問題がある。   However, in the above invention, the refrigerant is flowing to the fuel cell regardless of the temperature of the refrigerant. There is a problem of preventing the fuel cell from warming up. In addition, there is a problem that water generated by power generation of the fuel cell is frozen, the cathode is blocked by the ice, and activation of the fuel cell is hindered.

本発明ではこのような問題点を解決するために発明されたもので、冷媒の温度を検出し、その温度に応じて冷媒の流量を制御し、燃料電池の発電を阻害せずに速やかに燃料電池を起動させることを目的とする。   The present invention has been invented to solve such problems. The temperature of the refrigerant is detected, the flow rate of the refrigerant is controlled according to the temperature, and the fuel can be quickly generated without inhibiting the power generation of the fuel cell. The purpose is to start the battery.

本発明では、燃料電池と熱交換可能な冷媒が流れる循環回路と、冷媒を冷却する冷却手段と、冷媒を加熱する加熱手段と、を備えた燃料電池システムにおいて、冷媒の循環流量を制御する流量制御手段と、冷媒温度を検出する温度検出手段を備える。また、燃料電池の下流の冷媒温度に基づいて、冷媒の循環流量と冷媒の加熱量の少なくともどちらか一方を制御し、燃料電池の上流の冷媒温度が目標値となるように制御する冷媒温度制御手段を備える。   According to the present invention, in a fuel cell system including a circulation circuit through which a refrigerant that can exchange heat with the fuel cell flows, a cooling unit that cools the refrigerant, and a heating unit that heats the refrigerant, a flow rate for controlling the circulation flow rate of the refrigerant Control means and temperature detection means for detecting the refrigerant temperature are provided. Further, based on the refrigerant temperature downstream of the fuel cell, the refrigerant temperature control that controls at least one of the refrigerant circulation flow rate and the refrigerant heating amount so that the refrigerant temperature upstream of the fuel cell becomes a target value. Means.

本発明によると、例えば氷点下起動時に冷媒の循環流量を少なくし、加熱手段によって冷媒を素早く加熱することができ、燃料電池の上流の冷媒温度を素早く温めることができる。これにより、一度発電を開始した燃料電池を再び氷点下以下にすることがなく、低温状態でも燃料電池の発電を継続することができる。   According to the present invention, for example, at the time of starting below freezing point, the circulation flow rate of the refrigerant can be reduced, the refrigerant can be quickly heated by the heating means, and the refrigerant temperature upstream of the fuel cell can be quickly warmed. As a result, the power generation of the fuel cell can be continued even in a low temperature state without causing the fuel cell that has once started power generation to fall below the freezing point again.

本発明の第1実施形態の構成を図1のブロック図を用いて説明する。   The configuration of the first embodiment of the present invention will be described with reference to the block diagram of FIG.

第1実施形態では、燃料電池1と、燃料電池1に水素を供給する水素タンク3と、酸素を含んだ空気を供給するコンプレッサ2を備える。水素タンク2は水素配管20によって図示しない燃料電池1のアノードと接続しており、アノードに水素を供給する。コンプレッサ3は空気配管21によって図示しない燃料電池1のカソードと接続しており、カソードに酸素を含んだ空気を供給する。燃料電池1は水素と空気中の酸素によって発電を行う。水素配管20と空気配管21の途中にそれぞれ三方弁20aと20bを備え、三方弁20aと20bによって燃料電池1へ供給する水素と空気の流量を制御する。また、三方弁20a、20bは後述する水素燃焼器8と接続する配管22、23と接続してる。   In the first embodiment, a fuel cell 1, a hydrogen tank 3 for supplying hydrogen to the fuel cell 1, and a compressor 2 for supplying air containing oxygen are provided. The hydrogen tank 2 is connected to the anode of the fuel cell 1 (not shown) through a hydrogen pipe 20 and supplies hydrogen to the anode. The compressor 3 is connected to a cathode of the fuel cell 1 (not shown) by an air pipe 21 and supplies air containing oxygen to the cathode. The fuel cell 1 generates power using hydrogen and oxygen in the air. Three-way valves 20a and 20b are provided in the middle of the hydrogen pipe 20 and the air pipe 21, respectively, and the flow rates of hydrogen and air supplied to the fuel cell 1 are controlled by the three-way valves 20a and 20b. The three-way valves 20a and 20b are connected to pipes 22 and 23 connected to the hydrogen combustor 8 described later.

また、燃料電池1の温度調整を調整するために燃料電池1と冷却手段としてのラジエータ4と、加熱手段としての熱交換器9との間で冷媒が循環する循環回路である冷媒配管5と、冷媒配管5を循環する冷媒を送り出し、かつその流量を制御する冷媒ポンプ7を備える。   Further, in order to adjust the temperature adjustment of the fuel cell 1, a refrigerant pipe 5 which is a circulation circuit in which a refrigerant circulates between the fuel cell 1, a radiator 4 as a cooling means, and a heat exchanger 9 as a heating means, The refrigerant | coolant pump 7 which sends out the refrigerant | coolant which circulates through the refrigerant | coolant piping 5, and controls the flow volume is provided.

冷媒配管5は分岐部50で、ラジエータ4を途中に介装する冷却配管5aと、熱交換器9を途中に介装する加熱配管5bとに分岐する。分岐した冷却配管5aと加熱配管5bは三方弁6を介して合流し、再び一つの冷媒配管5となり燃料電池1へ接続する。また、冷媒配管5には冷媒を蓄える冷媒タンク13が接続し、冷媒ポンプ7を冷媒タンク13と分岐部50の間に設ける。燃料電池1の下流の冷媒配管5には温度検出手段である温度センサ10を備える。三方弁6を切り換えることより冷媒は、冷却配管5aと加熱配管5bへ流れる流量を調整することができる。   The refrigerant pipe 5 is a branching section 50 and branches into a cooling pipe 5a that interposes the radiator 4 and a heating pipe 5b that interposes the heat exchanger 9. The branched cooling pipe 5 a and heating pipe 5 b merge through the three-way valve 6, become one refrigerant pipe 5 again, and are connected to the fuel cell 1. A refrigerant tank 13 for storing refrigerant is connected to the refrigerant pipe 5, and a refrigerant pump 7 is provided between the refrigerant tank 13 and the branch portion 50. The refrigerant pipe 5 downstream of the fuel cell 1 is provided with a temperature sensor 10 as temperature detecting means. By switching the three-way valve 6, the refrigerant can adjust the flow rate flowing to the cooling pipe 5a and the heating pipe 5b.

ラジエータ4で外気との熱交換で冷媒を冷却する。   The refrigerant is cooled by heat exchange with the outside air by the radiator 4.

熱交換器9は水素燃焼器8からの熱を受け、冷媒を加熱する。水素燃焼器8には、水素タンク3から三方弁20aを介して配管22を通り、水素が供給され、また、コンプレッサ2から三方弁20bを介して配管23を通り、空気が供給される。そして、水素を空気中の酸素によって燃焼させて燃焼ガスを発生させる。水素と空気はそれぞれ三方弁20a、20bによって流量を調整される。なお、水素燃焼器8は燃焼触媒を用いた燃焼器である。水素燃焼器8で発生した燃焼ガスは熱交換器9に送られ、熱交換器9で加熱配管5b中の冷媒と熱交換を行い、冷媒を加熱する。熱交換を行い冷却された燃焼ガスが外部へ放出される。   The heat exchanger 9 receives heat from the hydrogen combustor 8 and heats the refrigerant. The hydrogen combustor 8 is supplied with hydrogen from the hydrogen tank 3 through the three-way valve 20a through the pipe 22, and supplied with air from the compressor 2 through the three-way valve 20b through the pipe 23. Then, hydrogen is burned by oxygen in the air to generate combustion gas. The flow rates of hydrogen and air are adjusted by the three-way valves 20a and 20b, respectively. The hydrogen combustor 8 is a combustor using a combustion catalyst. The combustion gas generated in the hydrogen combustor 8 is sent to the heat exchanger 9, where the heat exchanger 9 exchanges heat with the refrigerant in the heating pipe 5b to heat the refrigerant. The combustion gas cooled by heat exchange is released to the outside.

また、三方弁6などの流量制御弁、水素燃焼器8などを制御し、燃料電池1の温度を制御するコントローラ30を備える。   Further, a controller 30 that controls the flow rate control valve such as the three-way valve 6, the hydrogen combustor 8, and the like and controls the temperature of the fuel cell 1 is provided.

次に燃料電池システムの起動時におけるコントローラ30の制御について図2のフローチャートを用いて説明する。   Next, the control of the controller 30 at the start of the fuel cell system will be described with reference to the flowchart of FIG.

まず、燃料電池システムを起動する際には、ステップS20において、冷媒ポンプ7を起動する。冷媒ポンプ7によって冷媒配管5を流れる冷媒の流量は、冷媒ポンプ7が流すことのできる最小流量とする。このとき全冷媒が加熱配管5bへ流れるように三方弁6は制御されている。   First, when starting the fuel cell system, the refrigerant pump 7 is started in step S20. The flow rate of the refrigerant flowing through the refrigerant pipe 5 by the refrigerant pump 7 is the minimum flow rate that the refrigerant pump 7 can flow. At this time, the three-way valve 6 is controlled so that all the refrigerant flows into the heating pipe 5b.

ステップS21において、燃料電池1の下流に設けた温度センサ10によって燃料電池1の出口での冷媒温度T2を検出し、検出した温度T2が氷点よりも高いかどうか判断する。冷媒は燃料電池1と非常に効率良く熱交換を行うので、燃料電池1の下流の冷媒温度は、燃料電池1の温度とみなすことができる。冷媒の温度が氷点下ではないときには、燃料電池1内の温度も氷点下ではないと判断し、燃料電池1の暖機を行わない。氷点下のときには、ステップS22へ進む。ステップS22以降では、氷点下起動時における燃料電池1の暖機について説明する。   In step S21, the temperature sensor 10 provided downstream of the fuel cell 1 detects the refrigerant temperature T2 at the outlet of the fuel cell 1, and determines whether the detected temperature T2 is higher than the freezing point. Since the refrigerant exchanges heat with the fuel cell 1 very efficiently, the refrigerant temperature downstream of the fuel cell 1 can be regarded as the temperature of the fuel cell 1. When the temperature of the refrigerant is not below freezing, it is determined that the temperature inside the fuel cell 1 is not below freezing, and the fuel cell 1 is not warmed up. When the temperature is below freezing, the process proceeds to step S22. After step S22, the warm-up of the fuel cell 1 at the time of starting below freezing will be described.

ステップS22では、図示しないヒータなどによって燃焼触媒を用いた燃焼器8を水素が着火可能な温度になるまで温める。   In step S22, the combustor 8 using the combustion catalyst is warmed to a temperature at which hydrogen can be ignited by a heater (not shown).

水素を着火可能な温度まで暖機すると、ステップS23において、三方弁20a、20bを調整し、水素タンク3とコンプレッサ2から配管22、23を通して燃焼器8への水素と空気の供給を開始する。ここで、水素と空気の流量は、燃焼器8で水素の燃焼による発熱量が単位時間に当たりに最大となる流量であり、燃焼器8で用いる触媒担体のサイズと触媒の反応温度と、熱交換器9の耐熱温度や昇温速度制限などにより予め決定されており、その流量はコントローラ30に記憶されている。   When warming up to a temperature at which hydrogen can be ignited, the three-way valves 20a and 20b are adjusted in step S23, and supply of hydrogen and air from the hydrogen tank 3 and the compressor 2 to the combustor 8 through the pipes 22 and 23 is started. Here, the flow rate of hydrogen and air is a flow rate at which the amount of heat generated by the combustion of hydrogen in the combustor 8 is maximum per unit time. The size of the catalyst carrier used in the combustor 8, the reaction temperature of the catalyst, and heat exchange The flow rate is determined in advance by the heat-resistant temperature of the vessel 9 or the rate of temperature increase, and the flow rate is stored in the controller 30.

ステップS24では、ステップS23において決定された水素流量と空気流量で燃焼器8において燃焼を開始し、発生した燃焼ガスを熱交換器9へ送り、熱交換器9において、燃焼ガスと冷媒との間で熱交換を開始する。これにより、燃料電池1へ流れる冷媒を温める。熱交換器9において冷却された燃焼ガスは熱交換器9から外部へ排出される。   In step S24, combustion is started in the combustor 8 at the hydrogen flow rate and air flow rate determined in step S23, and the generated combustion gas is sent to the heat exchanger 9, where the heat exchanger 9 has an interval between the combustion gas and the refrigerant. To start heat exchange. Thereby, the refrigerant flowing to the fuel cell 1 is warmed. The combustion gas cooled in the heat exchanger 9 is discharged from the heat exchanger 9 to the outside.

ステップS25では、温度センサ10により燃料電池1の出口での冷媒温度T2を検出する。熱交換器9出口における冷媒温度T1を下記式(1)によって算出し、この温度T1を燃料電池入口温度とみなし、T1が目標値である氷点よりも高いかどうか判断する。氷点以上となるまで、この加熱状態を維持し、T1が氷点以上になるとステップS26へ進む。   In step S25, the temperature sensor 10 detects the refrigerant temperature T2 at the outlet of the fuel cell 1. The refrigerant temperature T1 at the outlet of the heat exchanger 9 is calculated by the following formula (1), this temperature T1 is regarded as the fuel cell inlet temperature, and it is determined whether T1 is higher than the target freezing point. This heating state is maintained until the temperature reaches the freezing point or more, and when T1 becomes the freezing point or more, the process proceeds to step S26.

T1=Wt÷(V×γ)+T2 (1)
Wt:単位時間当たりに熱交換器9で冷媒に与えられる最大加熱量、V:冷媒流量、γ:冷媒比熱
なお、ここでのVはステップS20で設定した冷媒ポンプ7によって流すことのできる最小流量とする。
T1 = Wt ÷ (V × γ) + T2 (1)
Wt: Maximum heating amount given to the refrigerant in the heat exchanger 9 per unit time, V: Refrigerant flow rate, γ: Refrigerant specific heat, where V is the minimum flow rate that can be flowed by the refrigerant pump 7 set in step S20 And

ステップS26では、三方弁20a、20bを調整して燃料電池1に水素と空気を供給し、燃料電池1で発電を開始する。燃料電池1には氷点以上の冷媒が流れ、少なくとも冷媒の入口付近では常に氷点以上となるので、冷媒の入口付近では燃料電池1の発電を持続することができる。また、この時の発電量は、氷点以上になっていない箇所において発電により生成された水が凍結しても、カソードを氷によって閉塞しない発電量である。冷媒を流すことによって入口付近から順次氷点以上になるので、凍結した場合でも冷媒の入口付近から順次解凍することができる。   In step S <b> 26, the three-way valves 20 a and 20 b are adjusted to supply hydrogen and air to the fuel cell 1, and power generation is started in the fuel cell 1. Since the refrigerant having a freezing point or more flows through the fuel cell 1 and is always above the freezing point at least near the refrigerant inlet, the power generation of the fuel cell 1 can be continued near the refrigerant inlet. Further, the power generation amount at this time is a power generation amount that does not block the cathode with ice even if water generated by power generation freezes at a location that is not above the freezing point. By flowing the refrigerant, the freezing point is gradually increased from the vicinity of the entrance to the freezing point, so that it can be thawed sequentially from the vicinity of the entrance of the refrigerant even when frozen.

ステップS27では、温度センサ10によって燃料電池1の出口での冷媒温度T2を検出し、T2が氷点よりも高いかどうか判断する。すなわち、燃料電池1が氷点よりも高いかどうか判断する。氷点下の場合はステップS28へ進む。氷点下ではない場合は、燃料電池1の暖機が終了したと判断し、暖機制御を終了する。   In step S27, the temperature sensor 10 detects the refrigerant temperature T2 at the outlet of the fuel cell 1, and determines whether T2 is higher than the freezing point. That is, it is determined whether the fuel cell 1 is higher than the freezing point. If it is below freezing, the process proceeds to step S28. If it is not below freezing, it is determined that the warm-up of the fuel cell 1 has been completed, and the warm-up control is terminated.

ステップS28では、ステップS27で検出した燃料電池1の出口での冷媒温度T2と上記した式(1)とから、水素燃焼器8による加熱量をステップS24で設定した加熱量として、式(1)を満たす冷媒の流量Vを算出し、冷媒ポンプ7によって冷媒の流量を増加する。その後ステップS27へ戻り、燃料電池1の暖機が終了するまでこの制御を繰り返す。なお、冷媒の流量Vは冷媒ポンプ7が流すことのできる最大流量まで増加させる。(ステップS25からステップS28までが冷媒温度制御手段を構成する)。   In step S28, from the refrigerant temperature T2 at the outlet of the fuel cell 1 detected in step S27 and the above equation (1), the heating amount by the hydrogen combustor 8 is set as the heating amount set in step S24. The flow rate V of the refrigerant that satisfies the condition is calculated, and the refrigerant flow rate is increased by the refrigerant pump 7. Thereafter, the process returns to step S27, and this control is repeated until the warm-up of the fuel cell 1 is completed. The refrigerant flow rate V is increased to the maximum flow rate that the refrigerant pump 7 can flow. (Steps S25 to S28 constitute the refrigerant temperature control means).

以上のように、燃料電池1へ流入する冷媒の温度が氷点以上となった後に、燃料電池1の発電を開始し、燃料電池1の出口の冷媒温度によって冷媒流量を調整することで燃料電池1の発電を妨げずに冷媒を流し、燃料電池1を暖機することができる。   As described above, after the temperature of the refrigerant flowing into the fuel cell 1 becomes equal to or higher than the freezing point, the fuel cell 1 is started to generate power, and the flow rate of the refrigerant is adjusted by the refrigerant temperature at the outlet of the fuel cell 1. The fuel cell 1 can be warmed up by flowing the refrigerant without disturbing the power generation.

この制御による燃料電池1の温度変化を図3のタイムチャートを用いて説明する。ここでは第1実施形態を用いない場合の燃料電池の入口における冷媒温度を細線で示し、第1実施形態を用いた場合の燃料電池1の入口における冷媒温度を破線で示す。また、燃料電池の出口における冷媒温度を太線で示す。なお、冷媒の加熱量は同じ加熱量とする。   The temperature change of the fuel cell 1 by this control will be described with reference to the time chart of FIG. Here, the refrigerant temperature at the inlet of the fuel cell when the first embodiment is not used is indicated by a thin line, and the refrigerant temperature at the inlet of the fuel cell 1 when the first embodiment is used is indicated by a broken line. Further, the refrigerant temperature at the outlet of the fuel cell is indicated by a bold line. The heating amount of the refrigerant is the same heating amount.

氷点下起動時に第1実施形態を用いずに、流量Q(最大流量)の冷媒を燃料電池1へ流すと、燃料電池1の入口における冷媒の温度が氷点以上となるのはA点である。これに対して、第1実施形態を用い、燃料電池1へ流れる冷媒の流量を最小流量とすると、燃料電池1の入口における冷媒の温度(破線)が氷点以上となるのはB点となる。そして、燃料電池1の入口温度を氷点となるように流量を制御すると、A点において冷媒流量はQとなる。その後、第1実施形態を用いない場合と、用いる場合では同じ温度変化となる。また、燃料電池1の出口温度は第1実施形態を用いない場合と、用いる場合ではさほど変わらない。これは、加熱量を同じ加熱量とするので、燃料電池1を加熱する加熱量もほぼ同じとなるためである。これにより、燃料電池1の出口での冷却温度が氷点を超える時間は、さほど変わらないが、流量を調整することにより、第1実施形態を用いた方が、早く氷点を超える場合もある。なお、燃料電池1の出口における冷媒温度が氷点となると、通常起動に移行する。燃料電池1を素早く起動することで、燃料電池1の発電によって、ヒータなどの暖機装置を起動することができ、システム全体を素早く暖機することができる。   When a refrigerant having a flow rate Q (maximum flow rate) is allowed to flow to the fuel cell 1 without starting the first embodiment at the time of starting below the freezing point, the temperature of the refrigerant at the inlet of the fuel cell 1 becomes the freezing point or higher at the point A. In contrast, when the first embodiment is used and the flow rate of the refrigerant flowing to the fuel cell 1 is the minimum flow rate, the refrigerant temperature (broken line) at the inlet of the fuel cell 1 is at or above the freezing point. When the flow rate is controlled so that the inlet temperature of the fuel cell 1 becomes a freezing point, the refrigerant flow rate becomes Q at point A. Thereafter, the same temperature change occurs when the first embodiment is not used and when it is used. Further, the outlet temperature of the fuel cell 1 is not so different between when the first embodiment is not used and when it is used. This is because the heating amount is the same, so the heating amount for heating the fuel cell 1 is substantially the same. As a result, the time when the cooling temperature at the outlet of the fuel cell 1 exceeds the freezing point does not change so much, but by adjusting the flow rate, the first embodiment may be faster than the freezing point. Note that, when the refrigerant temperature at the outlet of the fuel cell 1 reaches a freezing point, the normal operation is started. By quickly starting the fuel cell 1, a warm-up device such as a heater can be started by power generation of the fuel cell 1, and the entire system can be quickly warmed up.

本発明の第1実施形態の効果について説明する。   The effect of 1st Embodiment of this invention is demonstrated.

氷点下起動時に燃焼器8によって発生した熱で冷媒を加熱し、加熱された冷媒で燃料電池1を暖機する場合に、最初に冷媒の流量を冷媒ポンプ7の流すことのできる最小流量とするので、冷媒の温度を素早く上昇させることができ、燃料電池1へ十分に温められた冷媒を素早く供給することができ、燃料電池1を素早く起動することができる。   When the refrigerant is heated by the heat generated by the combustor 8 at the time of starting below the freezing point and the fuel cell 1 is warmed up by the heated refrigerant, the flow rate of the refrigerant is first set to the minimum flow rate that the refrigerant pump 7 can flow. The temperature of the refrigerant can be quickly raised, and the sufficiently warmed refrigerant can be quickly supplied to the fuel cell 1, so that the fuel cell 1 can be started quickly.

燃料電池1の氷点下起動時に燃料電池1へ流入する冷媒の温度が氷点以上となった後に燃料電池1を起動するので、燃料電池1には氷点以上の冷媒が常に流れ、一度反応を開始した燃料電池1は、再び氷点以下になることがなく、発電を継続することができる。   Since the fuel cell 1 is started after the temperature of the refrigerant flowing into the fuel cell 1 reaches or exceeds the freezing point when the fuel cell 1 starts below the freezing point, the fuel above the freezing point always flows through the fuel cell 1 and the fuel once started to react. The battery 1 can continue power generation without being below the freezing point again.

燃焼器8によって発生する発熱量を一定としたときに、冷媒の温度が上昇した場合には燃料電池1に流入する冷媒の流量を増やすことで、燃料電池1には氷点以上の冷媒を多く流すことができ、燃料電池1を素早く氷点以上にすることができる。   When the amount of heat generated by the combustor 8 is constant, if the temperature of the refrigerant rises, the flow rate of the refrigerant flowing into the fuel cell 1 is increased, so that a large amount of refrigerant above the freezing point flows through the fuel cell 1. The fuel cell 1 can be quickly brought to the freezing point or higher.

燃料電池1を素早く発電開始することができるので、燃料電池1によって発電された電力でヒータなどを起動することができ、燃料電池システム全体を素早く暖機することができる。   Since power generation of the fuel cell 1 can be started quickly, a heater or the like can be started with the electric power generated by the fuel cell 1, and the entire fuel cell system can be quickly warmed up.

次に本発明の第2実施形態の構成を図4のブロック図を用いて説明する。第2実施形態については図1と異なる部分を中心に説明する。   Next, the structure of 2nd Embodiment of this invention is demonstrated using the block diagram of FIG. The second embodiment will be described with a focus on differences from FIG.

この実施形態は、冷媒を加熱する手段として水素燃焼器8と熱交換器9の換わりに電気ヒータ11を備えたもので、電気ヒータ11は加熱配管5bの途中に介装する。これにより、電気ヒータ11で温めた冷媒によって燃料電池1を暖機する。他の構成については第1実施形態と同じである。   In this embodiment, an electric heater 11 is provided as a means for heating the refrigerant instead of the hydrogen combustor 8 and the heat exchanger 9, and the electric heater 11 is interposed in the middle of the heating pipe 5b. Thereby, the fuel cell 1 is warmed up by the refrigerant warmed by the electric heater 11. Other configurations are the same as those in the first embodiment.

次にコントローラ30の制御について図5のフローチャートを用いて説明する。   Next, the control of the controller 30 will be described using the flowchart of FIG.

ステップS50とステップS51は第1実施形態のステップS30とS31と同じ制御なので、ここでの説明は省略する。   Steps S50 and S51 are the same control as steps S30 and S31 of the first embodiment, and thus description thereof is omitted here.

ステップS52では、冷媒流量を冷媒ポンプ7が流すことのできる最小流量とする。また、電気ヒータ11を起動して、冷媒の加熱を開始する。ここで、冷媒が氷点を超えるまでは、電気ヒータ11の出力は最大出力とする。   In step S52, the refrigerant flow rate is set to the minimum flow rate that the refrigerant pump 7 can flow. Moreover, the electric heater 11 is started and the heating of the refrigerant is started. Here, the output of the electric heater 11 is set to the maximum output until the refrigerant exceeds the freezing point.

ステップS53では温度センサ10によって燃料電池出口での冷媒温度T2を検出し、上記式(1)から燃料電池入口での冷媒温度T1を算出する。そしてT1が氷点を超えるとステップS54へ進む。ここで、Wtは単位時間当たりに電気ヒータ11で発生する加熱量とする。なお、電気ヒータ11によって発生する熱は冷媒に全て与えられるものとする。   In step S53, the refrigerant temperature T2 at the fuel cell outlet is detected by the temperature sensor 10, and the refrigerant temperature T1 at the fuel cell inlet is calculated from the above equation (1). When T1 exceeds the freezing point, the process proceeds to step S54. Here, Wt is a heating amount generated by the electric heater 11 per unit time. It is assumed that all the heat generated by the electric heater 11 is given to the refrigerant.

ステップS54では、燃料電池1に水素と空気を供給し、燃料電池1で発電を開始する。燃料電池1には氷点以上の冷媒が流れ、少なくとも冷媒の入口付近では常に氷点以上となるので、冷媒の入口付近では燃料電池1の発電を持続することができる。なお、この時の発電量は、氷点以上になっていない箇所において発電により生成された水が凍結しても、カソードを氷によって閉塞しない発電量である。冷媒を流すことによって入口付近から順次氷点以上になるので、凍結した場合でも冷媒の入口付近から順次解凍することができる。   In step S <b> 54, hydrogen and air are supplied to the fuel cell 1 and power generation is started in the fuel cell 1. Since the refrigerant having a freezing point or more flows through the fuel cell 1 and is always above the freezing point at least near the refrigerant inlet, the power generation of the fuel cell 1 can be continued near the refrigerant inlet. It should be noted that the power generation amount at this time is a power generation amount that does not block the cathode with ice even if water generated by power generation freezes at a location that is not above the freezing point. By flowing the refrigerant, the freezing point is gradually increased from the vicinity of the entrance to the freezing point, so that it can be thawed sequentially from the vicinity of the entrance of the refrigerant even when frozen.

ステップS55では、温度センサ10によって燃料電池1の出口での冷媒温度T2を検出し、T2が氷点よりも高いかどうか判断する。すなわち、燃料電池1が氷点よりも高いかどうか判断する。氷点下の場合はステップS56へ進む。氷点下ではない場合は、燃料電池1の暖機が終了したと判断し、暖機制御を終了する。   In step S55, the temperature sensor 10 detects the refrigerant temperature T2 at the outlet of the fuel cell 1, and determines whether T2 is higher than the freezing point. That is, it is determined whether the fuel cell 1 is higher than the freezing point. If it is below freezing, the process proceeds to step S56. If it is not below freezing, it is determined that the warm-up of the fuel cell 1 has been completed, and the warm-up control is terminated.

ステップS56では、ステップS55で検出した燃料電池1の出口での冷媒温度T2と上記した式(1)とから、電気ヒータ11の出力を燃料電池1の入口の冷媒温度T1が氷点を超えるような最小加熱量となるように制御する。これによって、電気ヒータ11を起動するバッテリの消費電力を少なくすることができる。その後ステップS55へ戻り、燃料電池1の暖機が終了するまでこの制御を繰り返す(ステップS53からステップS56までが冷媒温度制御手段を構成する)。   In step S56, the refrigerant temperature T2 at the outlet of the fuel cell 1 detected in step S55 and the above equation (1) indicate that the output of the electric heater 11 is such that the refrigerant temperature T1 at the inlet of the fuel cell 1 exceeds the freezing point. Control to achieve minimum heating. Thereby, the power consumption of the battery which starts the electric heater 11 can be reduced. Thereafter, the process returns to step S55, and this control is repeated until the warm-up of the fuel cell 1 is completed (steps S53 to S56 constitute the refrigerant temperature control means).

燃料電池1の入口での冷媒温度T1を式(1)によって算出したが、この代わりに温度センサを設け、温度センサによって冷媒温度を検出してもよい。   Although the refrigerant temperature T1 at the inlet of the fuel cell 1 is calculated by the equation (1), a temperature sensor may be provided instead, and the refrigerant temperature may be detected by the temperature sensor.

本発明の第2実施形態の効果について説明する。   The effect of 2nd Embodiment of this invention is demonstrated.

氷点下起動時に、電気ヒータ11によって燃料電池1を暖機する冷媒を加熱する場合に、燃料電池システムを車両のような移動体に搭載すると、搭載できるバッテリの容量が制限される。特に、温度が低いとバッテリの実質的な電力供給量は低下してしまう。第2実施形態では、冷媒流量を最小流量とし、冷媒温度が氷点を超えるまでは、電気ヒータ11の出力を最大出力とすることで、素早く冷媒を温めることができ、氷点を超えた後は冷媒の温度を維持するように電気ヒータ11の出力を下げるので、電気ヒータ11を起動するバッテリの消費電力を抑えることができる。   When the refrigerant that warms up the fuel cell 1 is heated by the electric heater 11 at the time of starting below the freezing point, if the fuel cell system is mounted on a moving body such as a vehicle, the capacity of the battery that can be mounted is limited. In particular, when the temperature is low, the substantial power supply amount of the battery is lowered. In the second embodiment, the refrigerant flow rate is set to the minimum flow rate, and until the refrigerant temperature exceeds the freezing point, the output of the electric heater 11 is set to the maximum output, so that the refrigerant can be quickly warmed. Since the output of the electric heater 11 is lowered so as to maintain the temperature, the power consumption of the battery that starts the electric heater 11 can be suppressed.

本発明は上記した実施形態に限定されるものではなく、その技術的思想の範囲内でなしうるさまざまな変更、改良が含まれることは言うまでもない。   It goes without saying that the present invention is not limited to the above-described embodiments, and includes various modifications and improvements that can be made within the scope of the technical idea.

本発明は、燃料電池を氷点下で使用する場合に利用でき、特に素早い始動性を要求する燃料電池自動車に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used when the fuel cell is used below freezing, and can be used particularly for a fuel cell vehicle that requires quick startability.

本発明の第1実施形態の構成図である。It is a block diagram of 1st Embodiment of this invention. 本発明の第1実施形態のコントローラ30が行うフローチャートである。It is a flowchart which the controller 30 of 1st Embodiment of this invention performs. 本発明の第1実施形態の温度変化を示すタイムチャートである。It is a time chart which shows the temperature change of 1st Embodiment of this invention. 本発明の第2実施形態の構成図である。It is a block diagram of 2nd Embodiment of this invention. 本発明の第2実施形態のコントローラ30が行うフローチャートである。It is a flowchart which the controller 30 of 2nd Embodiment of this invention performs.

符号の説明Explanation of symbols

1 燃料電池
2 水素タンク
3 コンプレッサ
4 ラジエータ(冷却手段)
5 冷媒配管(循環回路)
7 冷媒ポンプ(流量調整手段)
8 水素燃焼器
9 熱交換器(加熱手段)
10 温度センサ(温度検出手段)
1 Fuel Cell 2 Hydrogen Tank 3 Compressor 4 Radiator (Cooling Means)
5 Refrigerant piping (circulation circuit)
7 Refrigerant pump (flow rate adjusting means)
8 Hydrogen combustor 9 Heat exchanger (heating means)
10 Temperature sensor (temperature detection means)

Claims (6)

燃料電池を循環し、冷媒によって前記燃料電池と熱交換可能な循環回路と、
前記冷媒を冷却する冷却手段と、
前記冷媒を加熱する加熱手段と、を備えた燃料電池システムにおいて、
前記冷媒の循環流量を調整する流量調整手段と、
前記冷媒の温度を検出する温度検出手段と、
前記燃料電池暖機時に前記温度検出手段によって検出された温度に基づいて、少なくとも前記冷媒の循環流量と前記冷媒の加熱量のどちらか一方を制御し、前記燃料電池の上流における前記冷媒の温度が目標値となるように制御する冷媒温度制御手段と、を備えた燃料電池システム。
A circulation circuit that circulates through the fuel cell and can exchange heat with the fuel cell by a refrigerant;
Cooling means for cooling the refrigerant;
A fuel cell system comprising: heating means for heating the refrigerant;
Flow rate adjusting means for adjusting the circulation flow rate of the refrigerant;
Temperature detecting means for detecting the temperature of the refrigerant;
Based on the temperature detected by the temperature detection means when the fuel cell is warmed up, at least one of the circulation flow rate of the refrigerant and the heating amount of the refrigerant is controlled, and the temperature of the refrigerant upstream of the fuel cell is A fuel cell system comprising: a refrigerant temperature control means for controlling the target value to be a target value.
前記燃料電池の上流における前記冷媒の温度が目標値を超えた後に前記燃料電池の発電を開始することを特徴とする請求項1に記載の燃料電池システム。   The fuel cell system according to claim 1, wherein power generation of the fuel cell is started after the temperature of the refrigerant upstream of the fuel cell exceeds a target value. 前記燃料電池システムの氷点下起動時に、前記冷媒温度制御手段は、前記加熱手段の最大加熱量で前記冷媒を加熱することを特徴とする請求項1または2に記載の燃料電池システム。   3. The fuel cell system according to claim 1, wherein the refrigerant temperature control unit heats the refrigerant by a maximum heating amount of the heating unit when the fuel cell system is started below freezing point. 4. 前記燃料電池システムの氷点下起動時に、前記冷媒温度制御手段は、少なくとも前記燃料電池の上流における前記冷媒の温度が前記目標値以上となるまでは、前記冷媒の循環流量を最小流量とすることを特徴とする請求項1から3のいずれか一つに記載の燃料電池システム。   At the time of starting below the freezing point of the fuel cell system, the refrigerant temperature control means sets the circulating flow rate of the refrigerant to a minimum flow rate at least until the temperature of the refrigerant upstream of the fuel cell becomes equal to or higher than the target value. The fuel cell system according to any one of claims 1 to 3. 前記燃料電池システムの氷点下起動時に、前記冷媒温度制御手段は、前記加熱手段の最大加熱量で前記冷媒を加熱し、前記燃料電池の上流における前記冷媒の温度が前記目標値以上となるように前記冷媒の循環流量を調整することを特徴とした請求項4に記載の燃料電池システム。   When the fuel cell system is started below freezing point, the refrigerant temperature control means heats the refrigerant with the maximum heating amount of the heating means, and the temperature of the refrigerant upstream of the fuel cell is equal to or higher than the target value. The fuel cell system according to claim 4, wherein the circulation flow rate of the refrigerant is adjusted. 前記燃料電池システムの氷点下起動時に、前記冷媒温度制御手段は、前記冷媒の流量を最小流量とし、前記燃料電池の上流における前記冷媒の温度が前記目標値以上となるように前記加熱手段による加熱量を制御することを特徴とした請求項1または2に記載の燃料電池システム。   At the time of starting below the freezing point of the fuel cell system, the refrigerant temperature control means sets the flow rate of the refrigerant to a minimum flow rate, and the amount of heating by the heating means so that the temperature of the refrigerant upstream of the fuel cell becomes equal to or higher than the target value. The fuel cell system according to claim 1, wherein the fuel cell system is controlled.
JP2003365991A 2003-10-27 2003-10-27 Fuel cell system Expired - Fee Related JP4852819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003365991A JP4852819B2 (en) 2003-10-27 2003-10-27 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003365991A JP4852819B2 (en) 2003-10-27 2003-10-27 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2005129449A true JP2005129449A (en) 2005-05-19
JP4852819B2 JP4852819B2 (en) 2012-01-11

Family

ID=34644478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365991A Expired - Fee Related JP4852819B2 (en) 2003-10-27 2003-10-27 Fuel cell system

Country Status (1)

Country Link
JP (1) JP4852819B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157468A (en) * 2005-12-05 2007-06-21 Honda Motor Co Ltd Fuel cell system
JP2007234560A (en) * 2006-03-03 2007-09-13 Honda Motor Co Ltd Fuel cell system
JP2008186713A (en) * 2007-01-30 2008-08-14 Toyota Motor Corp Fuel cell system
JP2018170148A (en) * 2017-03-29 2018-11-01 京セラ株式会社 Controller, fuel cell system and control method
DE102019134071A1 (en) * 2019-12-12 2021-06-17 Audi Ag Method for a freeze start of a fuel cell device, fuel cell device and motor vehicle with a fuel cell device
CN113130936A (en) * 2021-03-31 2021-07-16 大连擎研科技有限公司 Vehicle fuel cell thermal management system and control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10249890B2 (en) 2015-06-19 2019-04-02 Daimler Ag Method for cold-start of fuel cell stack

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236978A (en) * 2000-02-21 2001-08-31 Denso Corp Fuel cell system
JP2003303607A (en) * 2002-04-09 2003-10-24 Nissan Motor Co Ltd Fuel cell system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236978A (en) * 2000-02-21 2001-08-31 Denso Corp Fuel cell system
JP2003303607A (en) * 2002-04-09 2003-10-24 Nissan Motor Co Ltd Fuel cell system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157468A (en) * 2005-12-05 2007-06-21 Honda Motor Co Ltd Fuel cell system
US7998633B2 (en) 2005-12-05 2011-08-16 Honda Motor Co., Ltd. Fuel cell system
JP2007234560A (en) * 2006-03-03 2007-09-13 Honda Motor Co Ltd Fuel cell system
JP2008186713A (en) * 2007-01-30 2008-08-14 Toyota Motor Corp Fuel cell system
US8182953B2 (en) 2007-01-30 2012-05-22 Toyota Jidosha Kabushiki Kaisha Fuel cell system
DE112008000310B4 (en) * 2007-01-30 2020-10-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system that can execute countermeasure control at low temperatures
JP2018170148A (en) * 2017-03-29 2018-11-01 京セラ株式会社 Controller, fuel cell system and control method
DE102019134071A1 (en) * 2019-12-12 2021-06-17 Audi Ag Method for a freeze start of a fuel cell device, fuel cell device and motor vehicle with a fuel cell device
CN113130936A (en) * 2021-03-31 2021-07-16 大连擎研科技有限公司 Vehicle fuel cell thermal management system and control method thereof
CN113130936B (en) * 2021-03-31 2022-06-14 大连擎研科技有限公司 Vehicle fuel cell thermal management system and control method thereof

Also Published As

Publication number Publication date
JP4852819B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
KR100505473B1 (en) Fuel cell startup method
JP5175138B2 (en) Water heater
JP6977332B2 (en) Hot water storage and hot water supply device
JP2004199920A (en) Fuel cell cogeneration system
JP4852819B2 (en) Fuel cell system
JP4327170B2 (en) Hot water storage hot water supply system
JP6376390B2 (en) Hot water storage hot water system
JP2006294499A (en) Fuel cell system
JP2003240345A (en) Waste heat recovery hot water supply system
JP2008135356A (en) Fuel cell device
US20120021320A1 (en) Fuel cell system and method for operating fuel cell system
JP2008226810A (en) Fuel cell power generation system
JP4064940B2 (en) Hot water system
JP5203652B2 (en) Catalytic combustion device
JP5261987B2 (en) Fuel cell system
JP2003243009A (en) Warming up device for fuel cell
JP4680870B2 (en) Cogeneration system
JP4095046B2 (en) Hot water system
JP2004036980A (en) Hot-water supply system
JP2006302678A (en) Fuel cell system
JP4323290B2 (en) Fuel cell power generation system
JP2005274056A (en) Cogeneration system
JP6876944B2 (en) Fuel cell system
JP2005302627A (en) Fuel cell co-generation system
JP2006114336A (en) Starting method of fuel cell and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4852819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees