JP2005129412A - MgB2 SUPERCONDUCTIVE WIRE ROD AND ITS MANUFACTURING METHOD - Google Patents

MgB2 SUPERCONDUCTIVE WIRE ROD AND ITS MANUFACTURING METHOD Download PDF

Info

Publication number
JP2005129412A
JP2005129412A JP2003365108A JP2003365108A JP2005129412A JP 2005129412 A JP2005129412 A JP 2005129412A JP 2003365108 A JP2003365108 A JP 2003365108A JP 2003365108 A JP2003365108 A JP 2003365108A JP 2005129412 A JP2005129412 A JP 2005129412A
Authority
JP
Japan
Prior art keywords
powder
mgb
superconductive
wire
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003365108A
Other languages
Japanese (ja)
Other versions
JP4136896B2 (en
Inventor
Hiroaki Kumakura
浩明 熊倉
Akiyoshi Matsumoto
明善 松本
Hitoshi Kitaguchi
仁 北口
Masazumi Hirakawa
正澄 平川
Hideyuki Yamada
秀之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Central Japan Railway Co
Original Assignee
National Institute for Materials Science
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Central Japan Railway Co filed Critical National Institute for Materials Science
Priority to JP2003365108A priority Critical patent/JP4136896B2/en
Publication of JP2005129412A publication Critical patent/JP2005129412A/en
Application granted granted Critical
Publication of JP4136896B2 publication Critical patent/JP4136896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an MgB<SB>2</SB>superconductive wire rod with improved critical current density (Jc) useful for a superconductive linear motor car, MRI medical diagnostic device, semiconductor single crystal pulling-up device, superconductive energy storage, superconductive rotating machine, superconductive transformer, superconductive cable or the like. <P>SOLUTION: Wire rods micro-fabricated into high-purity nanosize ones of an average particle size of 500 nm or less by a thermal plasma method are used as Mg materials of the MgB<SB>2</SB>superconductive wire rods subjected to wire rolling processing and heating treatment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この出願の発明は、超電導リニアモーターカー、MRI医療診断装置、超電導エネルギー貯蔵、超電導回転機、超電導変圧器、超電導ケーブルなどの多様な用途に有用なMgB2超電導線材とその製造方法に関するものである。 The invention of this application relates to a MgB 2 superconducting wire useful for various applications such as a superconducting linear motor car, MRI medical diagnostic apparatus, superconducting energy storage, superconducting rotating machine, superconducting transformer, and superconducting cable, and a manufacturing method thereof. .

MgB2超電導体は他の金属系超電導線材と比べて臨界電流密度(Jc)が高いだけでなく、現時点では金属系超電導体の中では最高の超電導臨界温度(39K)を有するとされている。しかもMgB2超電導体は線材加工が比較的容易なため低コスト化が期待できることから、MgB2超電導体の線材化の研究開発が盛んに行なわれている(特許文献1)。 The MgB 2 superconductor not only has a higher critical current density (Jc) than other metal-based superconducting wires, but is currently considered to have the highest superconducting critical temperature (39K) among metal-based superconductors. In addition, since the MgB 2 superconductor is relatively easy to process the wire, and thus cost reduction can be expected, research and development of making the MgB 2 superconductor into a wire has been actively conducted (Patent Document 1).

このMgB2を線材化する主要な方法としては、MgB2粉末またはマグネシウム粉末とB粉末を金属シース(金属管)に充填して伸線する、いわゆるパウダー・イン・チューブ(P.I.T)と称される方法がよく知られている(特許文献2)。
特開2002−352649号公報 特開2003−217370号公報
The primary method of wire of the MgB 2, which drawing is filled with MgB 2 powder or magnesium powder and B powder in the metal sheath (metal tube), so called powder-in-tube (PIT) The method is well known (Patent Document 2).
JP 2002-352649 A JP 2003-217370 A

MgB2超電導体を線材化するための主要な方法とされているパウダー・イン・チューブ(P.I.T)法においては、さらに臨界電流密度(Jc)を向上させるために、金属粉末を添加したり、MgB2原料を熱処理やボール・ミルによって粉末微細化するなどの種々の方法が試みられている。 In the powder-in-tube (PIT) method, which is the main method for forming a MgB 2 superconductor into a wire, in order to further improve the critical current density (Jc), metal powder is added, or MgB 2. Various methods such as heat treatment or ball milling of raw materials have been tried.

しかしながら、これまでのところ、超電導線材の性能としての臨界電流密度(Jc)の向上は難しく、実用化への大きな障害になっている。そこで、以上のとおりの事情に鑑み、この出願の発明は、比較的簡便な線材加工法により、充分に実用化レベルに達する臨界電流密度(Jc)を有するMgB2超電導線材を低コストで製造することのできる新しい方法を提供することを課題としている。 However, so far, it has been difficult to improve the critical current density (Jc) as the performance of the superconducting wire, which has been a major obstacle to practical use. Accordingly, in view of the circumstances as described above, the invention of this application manufactures a MgB 2 superconducting wire having a critical current density (Jc) sufficiently reaching a practical level at a low cost by a relatively simple wire processing method. The challenge is to provide a new way to do this.

この出願の発明は、上記の課題を解決するものとして、第1には、平均粒径500nm以下のナノサイズのMg粉末とともにB粉末を金属シースに入れて線材加工し、次いで500℃〜800℃の温度範囲で加熱処理するMgB2超電導線材の製造方法を提供する。 The invention of this application is to solve the above problems. First, B powder is put into a metal sheath together with nano-sized Mg powder having an average particle size of 500 nm or less, followed by wire processing, and then 500 ° C to 800 ° C. to provide a method of manufacturing a MgB 2 superconducting wire to heat treatment at a temperature range.

第2には、平均粒径500nm以下のナノサイズのMg粉末とともにB粉末、さらに添加剤としてSiC粉末を加えたものを金属シースに入れて線材加工し、次いで500℃〜800℃の温度範囲で加熱処理するMgB2超電導線材の製造方法を提供する。 Second, the nano-sized Mg powder having an average particle size of 500 nm or less and B powder and further SiC powder as an additive are added to a metal sheath and processed into a wire, and then in a temperature range of 500 ° C. to 800 ° C. A method for producing a heat-treated MgB 2 superconducting wire is provided.

第3には、Mg粉末は熱プラズマプロセスによりナノサイズに微細化されたものとする上記いずれかのMgB2超電導線材の製造方法を提供し、第4には、Mg粉末は、酸素濃度10ppm以下の希ガスに3〜10vol%の水素を混合したガス雰囲気下に、炉内反応部温度200℃〜2000℃の分布での熱プラズマプロセスにより微細化されたものとするMgB2超電導線材の製造方法を提供する。 Third, there is provided a method for producing any of the MgB 2 superconducting wires described above, wherein the Mg powder is refined to a nano size by a thermal plasma process, and fourth, the Mg powder has an oxygen concentration of 10 ppm or less. Of MgB 2 superconducting wire that has been refined by a thermal plasma process with a distribution in the reactor reaction temperature of 200 ° C. to 2000 ° C. in a gas atmosphere in which 3 to 10 vol% of hydrogen is mixed with a rare gas of I will provide a.

また、第5には、線材加工した複数の線材を金属シースに入れて、さらに線材加工する上記のMgB2超電導線材の製造方法を提供する。 Fifth, the present invention provides a method for producing the above MgB 2 superconducting wire material, in which a plurality of wire materials processed into a wire material are placed in a metal sheath and further processed into a wire material.

そして第6には、上記のいずれかの方法で製造されたMgB2超電導線材を提供する。 Sixth, the MgB 2 superconducting wire manufactured by any of the above methods is provided.

上記のとおりのこの出願の第1の発明の製造方法によれば、高い臨界電流密度(Jc)を有する超電導線材が実現できる。   According to the manufacturing method of the first invention of this application as described above, a superconducting wire having a high critical current density (Jc) can be realized.

また、上記第2ないし第5までの発明の製造方法によれば、さらに高い臨界電流密度(Jc)を有する超電導線材が実現できる。   Moreover, according to the manufacturing methods of the second to fifth inventions, a superconducting wire having a higher critical current density (Jc) can be realized.

そして上記第6のMgB2超電導線材によれば、高い臨界電流密度(Jc)が得られる。 According to the sixth MgB 2 superconducting wire, a high critical current density (Jc) can be obtained.

MgB2超電導線材の臨界電流密度(Jc)を大きくするためには、MgB2粉末の充填密度の向上や、MgB2粒子同士の接合性の向上および磁束線を固定するためのピンニングセンターの超電導体への導入が効果的であるとされている。この出願の発明では、これらの観点も考慮して、MgB2超電導線材の原料であるマグネシウム(Mg)粉末として、これまで想定されてこなかった、ナノメートル(nm)サイズの粒径を有するものを使用することを必須とし、特徴としている。すなわち、平均粒径が500nm以下のMg粉末を用いることである。このことは、ミクロンメートル(μm)サイズ、一般的には数ミクロンから数百ミクロンのものを用いた従来法との大きな差異である。 In order to increase the critical current density (Jc) of the MgB 2 superconducting wire, it is possible to improve the packing density of the MgB 2 powder, improve the bonding property between the MgB 2 particles and fix the magnetic flux lines. It is said that the introduction is effective. In the invention of this application, taking these viewpoints into consideration, a magnesium (Mg) powder that is a raw material of the MgB 2 superconducting wire has a nanometer (nm) size particle size that has not been assumed so far. It is essential to use and features. In other words, Mg powder having an average particle size of 500 nm or less is used. This is a significant difference from conventional methods using micron (μm) sizes, typically a few microns to a few hundred microns.

また、この出願の発明では、B粉末は、通常の市販品として粒径10〜300μm程度のものを用いればよく、Mg粉末と同程度のナノサイズの粒径のものを用いる必要はない。そして、MgとBの混合粉末としてナノサイズのものを用いる必要もない。また、このような混合粉末そのものは作製が困難であって、不純物の混入等の不都合が避けられない。   In the invention of this application, the B powder may be a commercially available product having a particle size of about 10 to 300 μm, and it is not necessary to use a nano-size particle size comparable to that of the Mg powder. Further, it is not necessary to use a nano-sized powder as a mixed powder of Mg and B. In addition, such a mixed powder itself is difficult to produce, and inconveniences such as contamination of impurities cannot be avoided.

この出願の発明においては、Mg粉末が、平均粒径が500nmを超える場合には、MgB2超電導線材のJcの向上はあまり期待できない。一般的には、Mg粉末の平均粒径は、50nm以上500nm以下とすることが考慮される。 In the invention of this application, when the Mg powder has an average particle size exceeding 500 nm, improvement in Jc of the MgB 2 superconducting wire cannot be expected. In general, it is considered that the average particle diameter of the Mg powder is 50 nm or more and 500 nm or less.

そして、この出願の発明の平均粒径500nm以下のMg粉末は、酸素やその他不純物の混入が極力抑えられていることが望ましい。このため、この出願の発明のナノサイズのMg粉末は、熱プラズマプロセスによって作製されたものが好適に使用される。熱プラズマプロセスは、酸化反応や異物の混入を抑制して高純度のナノサイズに微細加工することを可能とする。また、この出願の発明では、熱プラズマプロセスにより微細化したMg粉末とB粉末に、さらには添加金属としてのシリコン・カーバイド(SiC)粉末を使用することも有効である。   The Mg powder having an average particle diameter of 500 nm or less according to the invention of this application is desirably suppressed from mixing oxygen and other impurities as much as possible. For this reason, the nano-sized Mg powder of the invention of this application is preferably used that produced by a thermal plasma process. The thermal plasma process makes it possible to finely process the nano-sized material with high purity by suppressing the oxidation reaction and mixing of foreign substances. In the invention of this application, it is also effective to use silicon carbide (SiC) powder as an additive metal for Mg powder and B powder refined by a thermal plasma process.

市販されているMg粉末を熱プラズマプロセスにより微細化すると、クリーンな気相プロセスのため酸化反応や異物混入が極めて低く、高純度で分散性がよく比較的粒子径の揃ったナノサイズに微細化したMg粒子を製造することができる。熱プラズマプロセスはボール・ミル法に比べて高純度の微細化粒子の製造が可能であるのに加え粒径を1桁から2桁小さくでき、また製造速度も速く大量製造に適している。   When a commercially available Mg powder is refined by a thermal plasma process, the oxidation reaction and foreign matter contamination are extremely low because of a clean gas phase process, and it is refined to a nano size with high purity, good dispersibility, and relatively uniform particle size. Mg particles can be produced. Compared with the ball mill method, the thermal plasma process can produce fine particles with high purity, and also can reduce the particle size by one to two orders of magnitude, and has a high production speed and is suitable for mass production.

熱プラズマプロセスにおいては、マグネシウム粉末の粒子は微細化すればするほど表面積が増大し、酸素に触れると発火の危険性があるため、微細化加工する場合はアルゴンガスなどの不活性ガス雰囲気で行う等の慎重な取り扱いを必要とする。より具体的には、この出願の発明においては、酸素濃度100ppm以下、好ましくは10ppm以下のアルゴン等の希ガスに20vol%以下、好ましくは3〜10vol%の水素を混合したガス雰囲気下に、炉内反応部の温度が200℃〜2000℃の分布において熱プラズマプロセスによるMg粉末の微細化を行うことが望ましい。   In the thermal plasma process, the surface area of the magnesium powder increases as it is refined, and there is a danger of ignition when exposed to oxygen. Therefore, the refinement process is performed in an inert gas atmosphere such as argon gas. It requires careful handling. More specifically, in the invention of this application, a furnace is used in a gas atmosphere in which a rare gas such as argon having an oxygen concentration of 100 ppm or less, preferably 10 ppm or less is mixed with 20 vol% or less, preferably 3 to 10 vol% of hydrogen. It is desirable to refine the Mg powder by a thermal plasma process in a distribution in which the temperature of the inner reaction part is 200 ° C. to 2000 ° C.

以上のようにして微細化したMg粉末は、この出願の発明においては、B粉末とともに、さらにはSiC粉末も、金属シースに充填し、これを線材加工した後不活性雰囲気中で500〜800℃の温度温度範囲で加熱処理してMgB2超電導線材とする。 In the invention of this application, the Mg powder refined as described above is filled with a metal sheath together with the B powder, and after processing the wire, the powder is processed at 500 to 800 ° C. in an inert atmosphere. To a MgB 2 superconducting wire.

添付した図1にしたがって説明すると、この出願の発明の製造工程では、市販されているMg粉末(1)を不活性雰囲気中で熱プラズマプロセスにより平均粒径500nm以下のMg粉末(2)に微細化する。周知のとおり、熱プラズマプロセスとは10,000℃を超える超高温の炎で気体を電磁気的に励起して電離させ、この中に原料粉末を噴射して瞬時に溶融して表面張力により球状化する方法である。   Referring to FIG. 1 attached, in the manufacturing process of the invention of this application, commercially available Mg powder (1) is finely divided into Mg powder (2) having an average particle size of 500 nm or less by a thermal plasma process in an inert atmosphere. Turn into. As is well known, the thermal plasma process is an extremely high-temperature flame exceeding 10,000 ° C that excites the gas electromagnetically and ionizes it, injects the raw material powder into it, instantly melts it, and spheroidizes by surface tension. It is a method to do.

微細化したMg粉末(2)とB粉末(3)を管(5)に充填して線状に加工する。所望によって、SiC粉末(4)が添加されてもよい。伸線加工された線状体は、次いで、前記のとおり、500〜800℃の温度範囲で熱処理される。   The refined Mg powder (2) and B powder (3) are filled into the tube (5) and processed into a linear shape. If desired, SiC powder (4) may be added. The drawn wire is then heat-treated in the temperature range of 500 to 800 ° C. as described above.

なお、伸線加工された線状体の複数本のものがさらに管に充填されて伸線加工されたものを加熱処理するようにしてもよい。   In addition, you may make it heat-process what the several thing of the linear body by which the wire drawing was carried out was filled with the pipe | tube, and was drawn.

そこで以下に実施例を説明する。もちろん、以下の例によって発明が限定されることはない。   Accordingly, examples will be described below. Of course, the invention is not limited by the following examples.

<実施例1>
粒径が10〜100μmの市販のMg粉末を熱プラズマ法により微細化した。炉内雰囲気は、純度99.999%、酸素濃度10ppm以下のアルゴンガスに、5%の水素を混合したものとし、炉内反応部温度200℃〜2000℃の分布において、平均粒径285nmのMg粉末を作製した。図2は、このMg粉末のSEM写真である。微細球状化されたMg粉末が確認できる。この微細化されたMg粉末と、粒径10〜150μmの市販のB粉末を外径6mm、内径4mmの鉄管に充填し、溝ロール加工と平ロール圧延により幅5mm、厚さ0.5mmのテープ状に加工した。図3は、テープ状に加工された超電導線材の断面を示した写真である。管(5)に囲まれているのが、MgB2超電導層(6)である。この線材に対しアルゴンガス雰囲気中で、650℃、1時間の加熱処理を行い、臨界電流密度(Jc)を測定した。その結果、図5に示したように、4.2Kの温度、12Tの磁界中で25A/mm2、また4.2Kの温度、7Tの磁界中で480A/mm2という高い臨界電流密度(Jc)値が得られた。7T以下の磁界においては、さらに電流値が大きくなることが確認された。
<実施例2>
実施例1における微細化Mg粉末とB粉末に、添加剤として10at%のSiC粉末を加えて、実施例1と同じ条件で、MgB2超電導線材を作製した。図4は、そのSEM写真である。
<Example 1>
Commercially available Mg powder having a particle size of 10 to 100 μm was refined by a thermal plasma method. The atmosphere in the furnace is a mixture of argon gas having a purity of 99.999% and oxygen concentration of 10 ppm or less and 5% hydrogen. A powder was prepared. FIG. 2 is an SEM photograph of this Mg powder. Fine spheroidized Mg powder can be confirmed. This refined Mg powder and a commercially available B powder having a particle size of 10 to 150 μm are filled into an iron tube having an outer diameter of 6 mm and an inner diameter of 4 mm, and a tape having a width of 5 mm and a thickness of 0.5 mm by groove roll processing and flat roll rolling. Processed into a shape. FIG. 3 is a photograph showing a cross section of a superconducting wire processed into a tape shape. Surrounded by the tube (5) is the MgB 2 superconducting layer (6). The wire was heat-treated at 650 ° C. for 1 hour in an argon gas atmosphere, and the critical current density (Jc) was measured. As a result, as shown in FIG. 5, 4.2K temperature, 25A / mm 2 in a magnetic field of 12T, also 4.2K temperature, high critical current density of 480A / mm 2 in a magnetic field of 7T (Jc ) Value was obtained. It was confirmed that the current value further increased in a magnetic field of 7T or less.
<Example 2>
An MgB 2 superconducting wire was produced under the same conditions as in Example 1 by adding 10 at% SiC powder as an additive to the refined Mg powder and B powder in Example 1. FIG. 4 is an SEM photograph thereof.

この超電導線材については、図5に示したように、4.2Kの温度、12Tの磁界中で110A/mm2、また4.2Kの温度、9Tの磁界中で390A/mm2という高い臨界電流密度(Jc)値が得られた。 As shown in FIG. 5, this superconducting wire has a high critical current of 110 A / mm 2 at a temperature of 4.2 K and a magnetic field of 12 T, and 390 A / mm 2 at a temperature of 4.2 K and a magnetic field of 9 T. Density (Jc) values were obtained.

この出願の発明は以上の実施形態および実施例に限定されるものではなく、詳細については様々な態様が可能であることは言うまでもない。   The invention of this application is not limited to the above embodiments and examples, and it goes without saying that various aspects are possible in detail.

以上詳しく説明した通り、この出願の発明によって得られるMgB2超電導線材は、高い臨界電流密度(Jc)を有し、超電導リニアモーターカー、MRI医療診断装置、半導体単結晶引き上げ装置、超電導エネルギー貯蔵、超電導回転機、超電導変圧器、超電導ケーブルなどに有用な材料となる。 As described above in detail, the MgB 2 superconducting wire obtained by the invention of this application has a high critical current density (Jc), and includes a superconducting linear motor car, an MRI medical diagnostic device, a semiconductor single crystal pulling device, a superconducting energy storage, It is a useful material for superconducting rotating machines, superconducting transformers, superconducting cables, etc.

MgB2超電導線材の製造工程を例示した図である。It is illustrated FIG manufacturing process of MgB 2 superconducting wire. 実施例1において、熱プラズマ法により高純度に微細化されたMg粉末の電子顕微鏡SEM写真である。In Example 1, it is an electron microscope SEM photograph of Mg powder refined | miniaturized with high purity by the thermal plasma method. 実施例1において製造したMgB2超電導線材の断面図を例示したものである。FIG. 3 illustrates a cross-sectional view of the MgB 2 superconducting wire manufactured in Example 1. FIG. 実施例2において、微細加工したMg粉末とB粉末、および添加剤10at%−SiCにより作製したMgB2超電導線材の電子顕微鏡SEM写真である。In Example 2, an electron microscope SEM photograph of microfabricated Mg powder and B powder, and MgB 2 superconducting wire fabricated by additive 10at% -SiC. この出願の発明によって得られたMgB2超電導線材のJc−印加磁界曲線を示した図である。Is a diagram showing a Jc- applied magnetic field curve of MgB 2 superconducting wire obtained by the invention of this application.

符号の説明Explanation of symbols

1 Mg粉末
2 微細加工したMg粉末
3 B粉末
4 SiC粉末
5 管
6 MgB2超電導層

1 Mg powder 2 Finely processed Mg powder 3 B powder 4 SiC powder 5 Tube 6 MgB 2 superconducting layer

Claims (6)

平均粒径500nm以下のナノサイズのMg粉末とともにB粉末を金属シースに入れて線材加工し、次いで500℃〜800℃の温度範囲で加熱処理することを特徴とするMgB2超電導線材の製造方法。 A method for producing a MgB 2 superconducting wire, characterized in that B powder is put into a metal sheath together with nano-sized Mg powder having an average particle size of 500 nm or less and wire processing is performed, followed by heat treatment in a temperature range of 500 ° C to 800 ° C. 平均粒径500nm以下のナノサイズのMg粉末とともにB粉末、さらに添加剤としてSiC粉末を加えたものを金属シースに入れて線材加工し、次いで500℃〜800℃の温度範囲で加熱処理することを特徴とするMgB2超電導線材の製造方法。 What is obtained by adding a B powder together with a nano-sized Mg powder having an average particle size of 500 nm or less and further adding SiC powder as an additive to a metal sheath and processing the wire, followed by heat treatment in a temperature range of 500 ° C. to 800 ° C. method of manufacturing a MgB 2 superconducting wire characterized. Mg粉末は熱プラズマプロセスによりナノサイズに微細化されたものであることを特徴とする請求項1または2記載のMgB2超電導線材の製造方法。 The method for producing a MgB 2 superconducting wire according to claim 1 or 2, wherein the Mg powder is refined to a nano size by a thermal plasma process. Mg粉末は、酸素濃度10ppm以下の希ガスに3〜10vol%の水素を混合したガス雰囲気下に、炉内反応部温度200℃〜2000℃の分布での熱プラズマプロセスにより微細化されたものであることを特徴とする請求項3記載のMgB2超電導線材の製造方法。 Mg powder is refined by a thermal plasma process in a gas atmosphere in which 3 to 10% by volume of hydrogen is mixed with a rare gas having an oxygen concentration of 10 ppm or less and the reaction temperature in the furnace is 200 ° C. to 2000 ° C. The method for producing a MgB 2 superconducting wire according to claim 3, wherein 線材加工した複数の線材を金属シースに入れて、さらに線材加工することを特徴とする請求項1ないし4のいずれかに記載のMgB2超電導線材の製造方法。 The method for producing a MgB 2 superconducting wire according to any one of claims 1 to 4, wherein a plurality of wires processed into wires are put into a metal sheath and further processed into wires. 請求項1ないし5のいずれかの方法で製造されたものであることを特徴とするMgB2超電導線材。

An MgB 2 superconducting wire produced by the method according to any one of claims 1 to 5.

JP2003365108A 2003-10-24 2003-10-24 MgB2 superconducting wire and its manufacturing method. Expired - Fee Related JP4136896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003365108A JP4136896B2 (en) 2003-10-24 2003-10-24 MgB2 superconducting wire and its manufacturing method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003365108A JP4136896B2 (en) 2003-10-24 2003-10-24 MgB2 superconducting wire and its manufacturing method.

Publications (2)

Publication Number Publication Date
JP2005129412A true JP2005129412A (en) 2005-05-19
JP4136896B2 JP4136896B2 (en) 2008-08-20

Family

ID=34643892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365108A Expired - Fee Related JP4136896B2 (en) 2003-10-24 2003-10-24 MgB2 superconducting wire and its manufacturing method.

Country Status (1)

Country Link
JP (1) JP4136896B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049623A1 (en) * 2005-10-24 2007-05-03 National Institute For Materials Science PROCESS FOR PRODUCING MgB2 SUPERCONDUCTING WIRE ROD
JP2008091325A (en) * 2006-08-28 2008-04-17 Bruker Biospin Ag SUPERCONDUCTING ELEMENT CONTAINING MgB2
JP2009517808A (en) * 2005-11-25 2009-04-30 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチ Process for continuous production of magnesium diboride-based superconductors
JP2009134969A (en) * 2007-11-30 2009-06-18 Hitachi Ltd Manufacturing method of mgb2 superconductive wire rod
CN110844917A (en) * 2019-12-04 2020-02-28 成都理工大学 Preparation method of magnesium boride nanoparticles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049623A1 (en) * 2005-10-24 2007-05-03 National Institute For Materials Science PROCESS FOR PRODUCING MgB2 SUPERCONDUCTING WIRE ROD
US8173579B2 (en) 2005-10-24 2012-05-08 National Institute For Materials Science Fabrication method of a MgB2 superconducting tape and wire
JP5229868B2 (en) * 2005-10-24 2013-07-03 独立行政法人物質・材料研究機構 Method for manufacturing MgB2 superconducting wire
JP2009517808A (en) * 2005-11-25 2009-04-30 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチ Process for continuous production of magnesium diboride-based superconductors
JP2008091325A (en) * 2006-08-28 2008-04-17 Bruker Biospin Ag SUPERCONDUCTING ELEMENT CONTAINING MgB2
JP2009134969A (en) * 2007-11-30 2009-06-18 Hitachi Ltd Manufacturing method of mgb2 superconductive wire rod
CN110844917A (en) * 2019-12-04 2020-02-28 成都理工大学 Preparation method of magnesium boride nanoparticles

Also Published As

Publication number Publication date
JP4136896B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
Hur et al. Fabrication of high-performance MgB2 wires by an internal Mg diffusion process
JP4954511B2 (en) MgB2 superconductor and method for manufacturing the same
US7018954B2 (en) Processing of magnesium-boride superconductors
US20050163644A1 (en) Processing of magnesium-boride superconductor wires
JP5046990B2 (en) Manufacturing method of MgB2 superconductor and MgB2 superconductor
JP2006252949A (en) Nb3Sn SUPERCONDUCTING WIRE MATERIAL AND MANUFACTURING METHOD THEREOF
Muralidhar et al. Review on high-performance bulk MgB2 superconductors
JP5889116B2 (en) MgB2 superconducting wire and method for producing the same
WO2015093475A1 (en) METHOD FOR MANUFACTURING MgB2 SUPERCONDUCTOR, AND MgB2 SUPERCONDUCTOR
JP4136896B2 (en) MgB2 superconducting wire and its manufacturing method.
Shadab et al. Tuning of superconductivity of bulk MgB2 by ball milling and sieving the boron precursor
JP5292518B2 (en) Manufacturing method of MgB2 superconducting wire and MgB2 superconducting wire
Tsapleva et al. The materials science of modern technical superconducting materials
JP4500901B2 (en) Composite sheathed magnesium diboride superconducting wire and its manufacturing method
TW200834608A (en) An oxide super conducting material and its production method, and superconducting wire using this oxide superconducting material and superconducting apparatus
JP4925639B2 (en) RE123 oxide superconductor and manufacturing method thereof
Hishinuma et al. Superconducting properties and microstructure of MgB2 wires synthesized with a low-temperature diffusion process
Liu et al. Ultra-violet emission from one dimensional and micro-sized SiC obtained via microwave heating
Inoue et al. Effects of Fullerene Addition on Pinning Properties and Microstructures in Melt-Textured Y-Ba-Cu-O Superconductors
JP2008166173A (en) Nb3Sn SUPERCONDUCTIVE WIRE, PRECURSOR THEREFOR, AND Nb COMPOUND SINGLE CORE FOR PRECURSOR
Shen et al. Microstructure Evolution in Plastic Deformed Bismuth Telluride for the Enhancement of Thermoelectric Properties. Materials 2022, 15, 4204
Fang et al. In-Field ${\rm J} _ {\rm C} $ Enhancement on Ti-Sheathed ${\rm MgB} _ {2} $ Wires Doped With TiC Nanoparticles
JP2024002505A (en) Method for producing nanoboron
KR101726732B1 (en) Manufacturing method of mgb2 with superconductivity through dry milling process
JP2006143500A (en) NANO-FINE PARTICLE-CONTAINING MgB2-BASED HIGH TEMPERATURE SUPERCONDUCTOR AND ITS MANUFACTURING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees