JP2005126348A - Metal-based inorganic antibacterial and antifungal agent, method for producing the same and use - Google Patents

Metal-based inorganic antibacterial and antifungal agent, method for producing the same and use Download PDF

Info

Publication number
JP2005126348A
JP2005126348A JP2003362620A JP2003362620A JP2005126348A JP 2005126348 A JP2005126348 A JP 2005126348A JP 2003362620 A JP2003362620 A JP 2003362620A JP 2003362620 A JP2003362620 A JP 2003362620A JP 2005126348 A JP2005126348 A JP 2005126348A
Authority
JP
Japan
Prior art keywords
antibacterial
metal
aerosol
antifungal
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003362620A
Other languages
Japanese (ja)
Inventor
Akihiro Goto
昭博 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003362620A priority Critical patent/JP2005126348A/en
Publication of JP2005126348A publication Critical patent/JP2005126348A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • A01N25/06Aerosols
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antibacterial and antifungal agent which can efficiently and strongly be adhered and coated to a material to be treated, such as fibers, plastic, ceramic, or metal, in a small amount at a low cost by an environmental load-lowering treating method not needing the treatment of a waste liquid and the like, to provide a method for adhering or coating the same to a material to be treated, and to provide an antibacterial and antifungal material obtained by the method. <P>SOLUTION: This antibacterial and antifungal agent is characterized by comprising as an active ingredient a nanometer order aerosol prepared by dispersing a metal, such as silver, or its compound having an antibacterial and antifungal action by a heating treatment or a chemical reaction under the atmospheric pressure in the gas phase. The method for adhering or coating the antibacterial and antifungal metal to the material to be treated comprises strongly and efficiently adhering and coating the metal to the material to be treated in a small amount by an environmental load-lowering treating method not needing the treatment of a waste liquid and the like and utilizing the nano-particle specificity, thermal adhesion force or electrostatic adhesion force of the antibacterial and antifungal agent. The antibacterial and antifungal material is characterized by strongly adhering or coating the metal to the material to be treated. And an application product thereof is provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ナノ技術を応用して作製した、抗菌・防カビ作用を有する、銀等の金属を有効成分とする新規金属系無機抗菌・防カビ剤、該抗菌・防カビ剤を繊維、プラスチック、及び金属などの被処理材に接触させて、前記金属を被処理材に付着・被覆させる方法、該方法によりに製造された抗菌・防カビ材、及び該抗菌・防カビ材を使用して作製された抗菌・防カビ機能を有する物品に関するものである。   The present invention relates to a novel metal-based inorganic antibacterial / antifungal agent having an antibacterial / antifungal action and containing a metal such as silver as an active ingredient, which is produced by applying nanotechnology, the antibacterial / antifungal agent as a fiber, plastic And a method of bringing the metal into contact with and covering the material to be treated, an antibacterial / antifungal material produced by the method, and using the antibacterial / antifungal material The present invention relates to an article having an antibacterial / antifungal function.

近年、抗生物質の多用に起因するMRSA等の耐性菌による被害が問題となり、有機系でない無機系殺菌剤・抗菌剤が見直されつつある。その主な理由は、銀等の金属系、酸化チタン等の金属酸化物は、必ずしも強力な殺菌作用は示さないが、耐性菌を発生させることもなく、人体に無害であり、広範囲な細菌・カビ等への持続的抗菌・防カビ作用を有することにあり、このことは、有史以来、よく知られている。   In recent years, damage caused by resistant bacteria such as MRSA resulting from heavy use of antibiotics has become a problem, and inorganic germicides and antibacterial agents that are not organic are being reviewed. The main reason is that metal oxides such as silver and metal oxides such as titanium oxide do not necessarily show a strong bactericidal action, but do not generate resistant bacteria and are harmless to the human body. It has a long-lasting antibacterial and antifungal action on fungi and the like, and this has been well known since history.

抗菌性金属を使用した抗菌剤は、既に商品として広く使用されている。例えば、銀を添加した商品名として、バクテキラー(鐘紡、ゼオライト系)、イオピュア(石塚硝子、ガラス系)、ノバロン(東亞合成、主成分:銀燐酸ジルコニウム系)、ゼオミック(品川燃料、主成分:銀ゼオライト系)、ゼオプラス(松本油脂、銀ゼオライト系)、セラミックス用AM15(住友大阪セメント、銀)、及びギンテック(川角技研、銀コーティング酸化チタン)等がある。これらの製品における銀の添加方法は、ゼオライト等の吸着剤に銀イオンを吸着する方法、銀の粉末を釉薬等溶媒に分散させる方法、銀化合物を電気あるいは薬剤還元する(メッキを含む)方法、に大別されるが、いずれも液相法に基づくものである。   Antibacterial agents using antibacterial metals are already widely used as commercial products. For example, trade names with silver added include Bactekiller (Kanebo, Zeolite), Iopure (Ishizuka Glass, Glass), Novalon (Toagosei, main component: silver zirconium phosphate), Zeomic (Shinagawa Fuel, main component: silver) Zeolite), Zeoplus (Matsumoto Yushi, Silver Zeolite), AM15 for ceramics (Sumitomo Osaka Cement, Silver), and Gintech (Kawakaku Giken, silver-coated titanium oxide). The method of adding silver in these products includes a method of adsorbing silver ions to an adsorbent such as zeolite, a method of dispersing silver powder in a solvent such as glaze, a method of electrically or chemically reducing silver compounds (including plating), Are all based on the liquid phase method.

また、抗菌剤が添加される抗菌用材としては、例えば、天然繊維、化学繊維、セラミックス、プラスチックス、金属などがある。なかでも、最近の傾向として、プラスチックス等の高分子材料を用いた製品の普及が著しく、その成形の容易さ、低コストにより、プラスチックはセラミックス、及び金属製品の領域を凌駕する勢いである。このことから、化学繊維を含めたプラスチックス高分子材料へ利用可能な抗菌剤と、その低コスト添加方法が、特に検討される必要がある。   Examples of the antibacterial material to which the antibacterial agent is added include natural fibers, chemical fibers, ceramics, plastics, and metals. Among these, as a recent trend, products using polymer materials such as plastics are widely used, and plastics are surpassing ceramics and metal products due to their ease of molding and low cost. For this reason, antibacterial agents that can be used for plastics polymer materials including chemical fibers and the low-cost addition method thereof need to be particularly studied.

抗菌剤の抗菌用材への添加方法として、セラミックスの場合は釉薬との混合、金属の場合は、表面への焼き付け付着が、効率及び付着強度の観点から好ましい。
いずれも、表面添加に近い形態であり、その実施は、比較的容易である。一方、プラスチックス等の高分子の場合は、耐熱性がないことから、原材料に予め混合した後、成形などのプロセスを行う方法(混練り法)と、製品成形後、表面に銀含有物を付着・被覆する方法がある。
抗菌作用を示すのは、表面の抗菌剤のみと考えられるから、混合・混練りする方法では、製品素材の内部の抗菌剤は、抗菌効果に寄与せず、抗菌効果を高めるために、その含有量を増加させた場合、製品素材の変質など、負の効果の恐れもある。また、銀の場合は、高価でもあるので、コスト高も軽視できない。
As a method for adding the antibacterial agent to the antibacterial material, in the case of ceramics, mixing with a glaze, and in the case of metal, baking adhesion to the surface is preferable from the viewpoint of efficiency and adhesion strength.
Both are forms close to surface addition, and their implementation is relatively easy. On the other hand, in the case of polymers such as plastics, since there is no heat resistance, after mixing with raw materials in advance, a process such as molding (kneading method), and after molding a product containing silver-containing material There are methods to adhere and coat.
The antibacterial action is considered to be only the antibacterial agent on the surface, so in the method of mixing and kneading, the antibacterial agent inside the product material does not contribute to the antibacterial effect, but it contains it If the amount is increased, there is a risk of negative effects such as alteration of product materials. Moreover, since silver is expensive, the high cost cannot be neglected.

一方、抗菌剤を抗菌用材の表面に付着・被覆する方法は、コスト的には効率的であるが、現在までの技術は、付着・被覆強度が弱く、例えば、洗濯時に成分の脱離(はがれ)を生じ、抗菌作用の持続性に課題がある。しかし、脱離のないような付着強度の向上が可能になりさえすれば、表面付着・被覆方式が好ましい。特に、銀の場合は、コストの点から効果的である。
抗菌剤の抗菌用材表面への付着・被覆方法としては、銀粉末を直接抗菌用材に付着させるなどの乾式法と、メッキ等の湿式法がある。具体的には、乾式法では、抗菌用材に直接銀粉末を付着させる方法、真空蒸着、スパッター方法がある。しかし、減圧下を必要とする方法は、コスト面から実際的ではない。
抗菌用材の表面に直接銀粉末を吹き付ける方法は、市販銀粉末の製造下限粒径がミクロンサイズであるため、その表面付着強度が弱く、成分の脱離の恐れがある。このため、その付着強度を高めるため、高分子等の抗菌用材の軟化点温度近くでの付着操作の提案も見られる(例えば、特許文献1参照)。
On the other hand, the method of attaching / coating the antibacterial agent to the surface of the antibacterial material is efficient in terms of cost, but the technology up to now has low adhesion / coating strength, for example, detachment (peeling of components) during washing. ) And there is a problem in the durability of antibacterial action. However, the surface adhesion / coating method is preferable as long as it is possible to improve the adhesion strength without causing desorption. In particular, silver is effective from the viewpoint of cost.
As a method for attaching and coating the antibacterial agent on the surface of the antibacterial material, there are a dry method in which silver powder is directly attached to the antibacterial material and a wet method such as plating. Specifically, dry methods include a method in which silver powder is directly adhered to an antibacterial material, a vacuum deposition method, and a sputtering method. However, a method that requires reduced pressure is not practical from the viewpoint of cost.
In the method of spraying silver powder directly on the surface of the antibacterial material, the production lower limit particle size of the commercially available silver powder is micron, so that the surface adhesion strength is weak and there is a risk of desorption of components. For this reason, in order to raise the adhesion strength, the proposal of adhesion operation near the softening point temperature of antibacterial materials, such as a polymer, is also seen (for example, refer to patent documents 1).

一方、湿式法としては、例えば、メッキに代表される銀化合物の還元法(例えば、特許文献2参照)がある。しかし、メッキは、金属等には効果的であるが、プラスチックス等の高分子材料には効果的でない。プラスチックス用として、無電解メッキ法等があるが、工程が煩雑となり、付着強度も、金属へのメッキに比較して弱い。付着強度を強めるために、バインダーを含む微粉抗菌金属コロイド溶液に浸漬させる方法(例えば、特許文献3参照)も提案されている。しかし、何よりも、湿式法では、廃液処理や乾燥工程が不可欠となるので、環境負荷やコスト高を考慮しなければならない。
特開平11−269277号公報 特開平8−99812号公報 特開2000−178870号公報
On the other hand, as a wet method, for example, there is a silver compound reduction method represented by plating (for example, see Patent Document 2). However, plating is effective for metals and the like, but is not effective for polymer materials such as plastics. For plastics, there is an electroless plating method or the like, but the process becomes complicated and the adhesion strength is also weaker than plating on metal. In order to increase the adhesion strength, a method of immersing in a fine powder antibacterial metal colloid solution containing a binder (see, for example, Patent Document 3) has also been proposed. However, most of all, in the wet method, waste liquid treatment and drying process are indispensable, so environmental load and high cost must be considered.
JP-A-11-269277 JP-A-8-99812 JP 2000-178870 A

このような状況の中で、本発明者は、上記従来技術に鑑みて、抗菌・防カビ作用を有する銀等の金属の粒子を被処理材に効率よく、かつ強固に付着・被覆させる方法を開発することを目標として鋭意研究を積み重ねた結果、金属を気相・分散させエアロゾル化させて利用する方法を採用することにより、所期の目的を達成し得ることを見出し、更に研究を重ねて本発明を完成するに至った。
本発明は、抗菌性金属を、気相微小エアロゾル化することにより得られるエアロゾルを有効成分とする抗菌・防カビ剤、その製造方法、該抗菌・防カビ剤を被処理材に付着・被覆させた抗菌、防カビ材、及びその応用製品を提供することを目的とするものである。
Under such circumstances, the present inventor, in view of the above-mentioned prior art, has developed a method for efficiently and firmly attaching and coating metal particles such as silver having antibacterial and antifungal effects on a material to be treated. As a result of intensive research with the goal of developing, it was found that the intended purpose can be achieved by adopting a method of using metal in the gas phase, dispersing and aerosolizing, and conducting further research The present invention has been completed.
The present invention relates to an antibacterial / antifungal agent comprising as an active ingredient an aerosol obtained by converting an antibacterial metal into a gas phase microaerosol, a method for producing the same, and attaching / covering the antibacterial / antifungal agent on a material to be treated. It is intended to provide antibacterial and antifungal materials and their applied products.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)抗菌性金属を、気相微小エアロゾル化することにより得られる、エアロゾルを有効成分とすることを特徴とする金属系無機抗菌・防カビ剤。
(2)大気圧下において、金属あるいは金属化合物を、加熱あるいは化学反応により、気相・分散させエアロゾル化する、前記(1)に記載の金属系無機抗菌・防カビ剤。
(3)金属が、銀、銅及び亜鉛のうちの一種以上からなる、前記(1)又は(2)に記載の金属系無機抗菌・防カビ剤。
(4)エアロゾルの平均粒径が0.001〜0.5μmである、前記(1)又は(2)に記載の金属系無機抗菌・防カビ剤。
(5)大気圧下において、金属あるいは金属化合物を、加熱あるいは化学反応により、金属が気相・分散したエアロゾルとなし、前記エアロゾルと被処理材とを接触させることにより前記金属を前記被処理材に付着・被覆させたことを特徴とする抗菌・防カビ材。
(6)被処理材が変質しない程度の温度に加熱したエアロゾルと被処理材とを接触させたことを特徴とする、前記(5)に記載の抗菌・防カビ材。
(7)エアロゾルを荷電させ、被処理材との静電気力により、前記被処理材に付着・被覆させたことを特徴とする、前記(5)に記載の抗菌・防カビ材。
(8)エアロゾルの平均粒径が0.001〜0.5μmであることを特徴とする、記前(5)から(7)のいずれかに記載の金属系無機抗菌・防カビ材。
(9)大気圧下において、金属あるいは金属化合物を、加熱あるいは化学反応により、金属が気相・分散したエアロゾルとなし、前記エアロゾルと被処理材とを接触させることにより、抗菌・防カビ性金属を被処理材に付着・被覆させることを特徴とする、抗菌・防カビ性金属の付着・被覆方法。
(10)被処理材が変質しない程度の温度に加熱したエアロゾルと被処理材とを接触させることを特徴とする、前記(9)に記載の方法。
(11)エアロゾルを荷電させ、被処理材との静電気力により、前記被処理材に付着・被覆させることを特徴とする、前記(9)に記載の方法。
(12)エアロゾルの平均粒径が0.001〜0.5μmであることを特徴とする、前記(9)から(11)のいずれかに記載の方法。
(13)前記(5)から(8)のいずれかに記載の抗菌・防カビ材を構成要素として含むことを特徴とする、抗菌・防カビ機能が付与された物品。
The present invention for solving the above-described problems comprises the following technical means.
(1) A metal-based inorganic antibacterial / antifungal agent characterized by using an aerosol as an active ingredient, which is obtained by converting an antibacterial metal into a gas phase micro aerosol.
(2) The metal-based inorganic antibacterial / antifungal agent according to (1), wherein a metal or a metal compound is vaporized and dispersed to form an aerosol under atmospheric pressure by heating or chemical reaction.
(3) The metal-based inorganic antibacterial / antifungal agent according to (1) or (2), wherein the metal is one or more of silver, copper, and zinc.
(4) The metal-based inorganic antibacterial / antifungal agent according to (1) or (2), wherein the average particle size of the aerosol is 0.001 to 0.5 μm.
(5) A metal or a metal compound is formed into an aerosol in which a metal is vapor-phase / dispersed by heating or a chemical reaction under atmospheric pressure, and the metal is brought into contact with the material to be treated by bringing the aerosol into contact with the material to be treated. Antibacterial and antifungal material characterized by being attached to and coated on
(6) The antibacterial / antifungal material according to (5) above, wherein an aerosol heated to a temperature at which the material to be treated is not deteriorated is brought into contact with the material to be treated.
(7) The antibacterial / antifungal material according to (5) above, wherein the aerosol is charged and adhered to and coated on the material to be treated by electrostatic force with the material to be treated.
(8) The metal-based inorganic antibacterial / antifungal material according to any one of (5) to (7) above, wherein the average particle size of the aerosol is 0.001 to 0.5 μm.
(9) An antibacterial / antifungal metal is produced by forming a metal or a metal compound into an aerosol in which the metal is in a gas phase / dispersion by heating or chemical reaction under atmospheric pressure, and bringing the aerosol into contact with the material to be treated. An antibacterial / antifungal metal adhesion / coating method characterized by adhering / coating a material to a treated material.
(10) The method according to (9), wherein the treated material is contacted with an aerosol heated to a temperature at which the treated material does not change in quality.
(11) The method according to (9), wherein the aerosol is charged and adhered to and coated on the material to be treated by electrostatic force with the material to be treated.
(12) The method according to any one of (9) to (11) above, wherein the average particle size of the aerosol is 0.001 to 0.5 μm.
(13) An article provided with an antibacterial / antifungal function, comprising the antibacterial / antifungal material according to any one of (5) to (8) as a constituent element.

次に、本発明について、更に詳細に説明する。
本発明は、抗菌・防カビ作用を有する銀等の金属あるいはその化合物を、大気圧下において、加熱あるいは化学反応により、該金属の気相・分散状微小エアロゾルとして、例えば、セラミックス、プラスチックス、天然繊維、化学繊維、金属などの被処理材に接触させ、該被処理材に付着・被覆させて、銀等の抗菌性金属による抗菌・防カビ剤としての作用を十二分に発揮させることを特徴とするものである。
Next, the present invention will be described in more detail.
In the present invention, a metal such as silver having an antibacterial / antifungal action or a compound thereof is heated or subjected to a chemical reaction at atmospheric pressure to form a gas phase / dispersed fine aerosol of the metal, for example, ceramics, plastics, Contact with a material to be treated such as natural fiber, chemical fiber, metal, etc., and adhere to and coat the material to be treated, so that the antibacterial / antifungal agent of silver or other antibacterial metal is fully exerted. It is characterized by.

本発明における、抗菌性金属の被処理材への付着・被覆方法は、乾式法であり、生成エアロゾルを完全に使用する限り、廃液処理等の環境負荷はない。また、万一、生成エアロゾルが完全使用されなかった場合でも、簡易な濾過装置でこれを除去することが可能である。
本発明で使用される被処理材は、本発明の抗菌・防カビ剤により処理される対象品であって、担体である場合もあり得る。具体的には、前記のセラミックス、プラスチックス、天然繊維、化学繊維、金属などの材料、及びそれらの2種以上を組み合わせた材料であって、特定の形状を有する物品又は該物品の一部が例示される。また、前記の特定の形状を有する物品としては、例えば、織布、不織布、粒状体、フィルム、板状体などの加工品、靴下、肌着、スラックス等の衣料品、タオル、容器等の日用品、壁材等の建材、病院、家庭等で使われている医療・衛生用具などの、従来抗菌・防カビを必要としていた物品が例示される。
In the present invention, the method for attaching and coating the antibacterial metal to the material to be treated is a dry method, and there is no environmental load such as waste liquid treatment as long as the generated aerosol is completely used. Even if the generated aerosol is not completely used, it can be removed with a simple filtration device.
The material to be treated used in the present invention is an object to be treated with the antibacterial / antifungal agent of the present invention, and may be a carrier. Specifically, the above-mentioned materials such as ceramics, plastics, natural fibers, chemical fibers, metals, and the like, and a combination of two or more of them, an article having a specific shape or a part of the article Illustrated. Examples of the article having the specific shape include, for example, processed products such as woven fabrics, non-woven fabrics, granular materials, films, and plate-like products, clothing items such as socks, underwear, and slacks, and daily items such as towels and containers, Examples of such materials have conventionally required antibacterial and antifungal properties, such as building materials such as wall materials, medical and sanitary tools used in hospitals, homes, and the like.

本発明で使用される金属としては、銀、銅、亜鉛などが挙げられる。これらのうち、抗菌性、コスト、人体への安全性及び取り扱い易さなどを考慮すると、銀が好ましい。
本発明において、微小エアロゾルの製造方法としては、銀、銅、亜鉛などの金属の直接加熱、あるいはこれらの有機金属化合物の気相分解により製造される。例えば、金属微粒子の加熱時に、電力供給量の簡単な調節でその生成粒子径は、例えば、ミクロンサイズの任意の粒径の金属微粒子を簡便に製造できる。
Examples of the metal used in the present invention include silver, copper, and zinc. Among these, silver is preferable in consideration of antibacterial properties, cost, safety to the human body and ease of handling.
In the present invention, the micro aerosol is produced by directly heating a metal such as silver, copper, or zinc, or by vapor phase decomposition of these organometallic compounds. For example, when the fine metal particles are heated, the fine metal particles having an arbitrary particle size of, for example, a micron size can be easily produced by simply adjusting the power supply amount.

ところで、金属系抗菌剤の抗菌作用は、その表面積に依存しており、表面積の増加に比例して、その効果も増す。したがって、エアロゾルの微小化は、抗菌効果の向上に有効であるばかりでなく、低コスト化のためにも非常に有効である。例えば、平均径1ミクロンの銀粒子を10ナノメートル(nm)にすると、同じ銀使用量で、その表面積は100倍となる、即ち、100倍の効果を生ずることになり、このことは、同じ効果を生むためには、100分の1の量で十分であることを示している。特に銀の場合の微小化は、コスト低減に有効である。
このように、金属微粒子の粒径が小さい程、比表面積は大きくなることになるが、金属微粒子の粒径の下限は、数ナノメーターであり、また、金属微粒子の粒径の上限については、低温液化現象を考慮すると、約100ナノメーター以下に、好ましくは50〜60ナノメータ以下である。
By the way, the antibacterial action of the metal antibacterial agent depends on the surface area thereof, and the effect increases in proportion to the increase in the surface area. Therefore, the miniaturization of the aerosol is not only effective for improving the antibacterial effect, but also very effective for reducing the cost. For example, if a silver particle having an average diameter of 1 micron is 10 nanometers (nm), the surface area becomes 100 times, that is, 100 times as much as the same amount of silver used. It shows that an amount of 1/100 is sufficient to produce an effect. In particular, miniaturization in the case of silver is effective in reducing the cost.
As described above, the smaller the particle size of the metal fine particles, the larger the specific surface area. However, the lower limit of the particle size of the metal fine particles is several nanometers. Considering the low temperature liquefaction phenomenon, it is about 100 nanometers or less, preferably 50-60 nanometers or less.

抗菌剤粒子は、粒径が可視光線波長(約500ナノメートル程度)以下になると、可視光線に対して透過性となり、抗菌剤粒子を施した製品の審美性にも影響する。例えば、抗菌剤が抗菌効果の優れている銀である場合、抗菌剤添加により褐色化するという審美上の問題があるが、銀を可視光線波長以下の粒径に微小粒子化すると、可視光線に対して透過性になり、褐色化問題が生じなくなり、また、レンズ、ガラス等の透明性が重要な材料を用いた製品の製造に適するようになる。可視光線の透過率を低くし過ぎないようにするには、金属微粒子の粒径を、可視光線波長以下、好ましくは、0.3μm以下、とする。
金属等無機系抗菌剤の微小粒子化については、金属化合物の還元による湿式液相法が提案されており(例えば、特開平8−99812号公報)、その効果についても詳述されている。しかし、湿式法では、既述のように、付着強度の問題のみならず、廃液処理、乾燥プロセスの追加工程によるコスト高は否めない。
When the particle size of the antibacterial agent particle becomes a visible light wavelength (about 500 nanometers) or less, the antibacterial agent particle becomes transparent to visible light and affects the aesthetics of the product to which the antibacterial agent particle is applied. For example, when the antibacterial agent is silver having an excellent antibacterial effect, there is an aesthetic problem of browning with the addition of the antibacterial agent. On the other hand, it becomes transparent, and the problem of browning does not occur, and it becomes suitable for the manufacture of products using materials such as lenses and glass where transparency is important. In order not to make the visible light transmittance too low, the particle size of the metal fine particles is set to a wavelength of visible light or less, preferably 0.3 μm or less.
Regarding the formation of fine particles of inorganic antibacterial agents such as metals, a wet liquid phase method by reduction of metal compounds has been proposed (for example, JP-A-8-99812), and the effects thereof are also described in detail. However, in the wet method, as described above, not only the problem of adhesion strength but also the high cost due to the additional steps of the waste liquid treatment and the drying process cannot be denied.

本発明の乾式方法による抗菌剤の微小粒子化では、これらの追加処理が不要になるだけでなく、次のような優れた効果をもたらす。
金属は、一般的に高融点物質という認識があるが、その大きさがナノメートルサイズに微小化すると、表面活性などの理由で融点が低下するという現象が見られる。例えば、銀の場合は10乃至20ナノメートルへと微小化すると、その融点は100乃至200℃程度に低下すると考えられている(因みに、塊状の銀の融点は950℃である)。即ち、気相における金属粒子のナノメートルスケールへの微小化は、その融点降下により、低温で液状化し易くなることを示している。
The microparticulation of the antibacterial agent by the dry method of the present invention not only makes these additional treatments unnecessary, but also brings about the following excellent effects.
Metals are generally recognized as high melting point substances, but when the size is reduced to a nanometer size, the phenomenon that the melting point decreases due to surface activity or the like is observed. For example, in the case of silver, when it is miniaturized to 10 to 20 nanometers, it is considered that its melting point decreases to about 100 to 200 ° C. (By the way, the melting point of massive silver is 950 ° C.). In other words, the metal particles in the gas phase are reduced in size to the nanometer scale, which indicates that the metal particles are easily liquefied at a low temperature due to the melting point drop.

ところで、抗菌微粒子の基材(被処理材)への付着形態は、固体の場合と液体の場合とでは全く異なる。固体では点接触に近い状態となるが、液体状になると、面状に付着すると考えられる。即ち、付着強度がはるかに強くなることを示しており、このことは、本発明の根幹をなす、主要な要素の一つでもある。
実際の実施態様では、例えば、被処理材の、耐熱限界に対応したエアロゾル含有ガス温度において液状化する粒径を下回る粒径の抗菌剤微粒子(金属微粒子)を製造し、被処理材に液状で付着・被覆させることになる。
ここで、被処理材の耐熱限界が200〜300℃であるとすると、金属粒子径は、粒子構造が、結晶であるか、アモルファスであるかにも依存するが、およそ100ナノメーター以下、好ましくは、50〜60ナノメーター以下、であることが適切である。
By the way, the adhesion form of the antibacterial fine particles to the base material (the material to be treated) is completely different between a solid case and a liquid case. In a solid, it is in a state close to point contact, but when it is in a liquid state, it is considered to adhere to a surface. That is, it shows that the adhesion strength is much stronger, and this is one of the main elements forming the basis of the present invention.
In an actual embodiment, for example, antibacterial fine particles (metal fine particles) having a particle size smaller than the particle size liquefied at the aerosol-containing gas temperature corresponding to the heat resistance limit of the material to be processed are manufactured, and the material to be processed is liquid. It will be attached and covered.
Here, when the heat-resistant limit of the material to be treated is 200 to 300 ° C., the metal particle diameter depends on whether the particle structure is crystalline or amorphous, but is preferably about 100 nanometers or less, preferably Is suitably 50 to 60 nanometers or less.

参考として、図1は、後記実施例4の方法で製造された抗菌・防カビ材における銀のエアロゾル微粒子の電子顕微鏡写真である。この写真から、孤立分散状となっていることが分かる。この場合の平均粒径は、約3ナノメートルである。また、写真を詳細に観察すると、サンプル基板(高分子薄膜)の微小起伏模様が、付着したエアロゾル粒子像を介して観察される。このことは、液状で付着したことを物語っている。
なお、本サンプルの採取条件は、サンプル基板の高分子薄膜の軟化点を考慮して、それ以下の温度でも十分に液状の銀粒子となるように、平均粒径3nm程度の銀粒子となっている。
以上のことは、液相法による金属化合物還元法などの湿式法では行い得ないことであり、微小エアロゾルを使用する乾式法でのみ実施できる、特長的なことである。
ところで、付着後の液状の微小エアロゾルの付着力がいかに優れていても、ガス中に浮遊するエアロゾル微小粒子が抗菌用材に効率よく付着しなければ、その意味はない。
For reference, FIG. 1 is an electron micrograph of silver aerosol fine particles in an antibacterial / antifungal material produced by the method of Example 4 described later. From this photograph, it can be seen that it is isolated and dispersed. The average particle size in this case is about 3 nanometers. Further, when the photograph is observed in detail, a fine undulation pattern of the sample substrate (polymer thin film) is observed through the attached aerosol particle image. This tells us that it was in liquid form.
The sampling conditions for this sample are silver particles having an average particle diameter of about 3 nm so that the liquid silver particles are sufficiently liquid even at a temperature lower than that in consideration of the softening point of the polymer thin film on the sample substrate. Yes.
The above is a feature that cannot be performed by a wet method such as a metal compound reduction method by a liquid phase method, and can be performed only by a dry method using a fine aerosol.
By the way, no matter how excellent the adhesion of the liquid fine aerosol after adhering is, if the aerosol fine particles floating in the gas do not adhere to the antibacterial material efficiently, there is no meaning.

次に、ナノメータースケールのエアロゾル微粒子の、抗菌用材への付着機構を説明する。
粒子の大きさがナノメーター程度に微小化すると、その挙動も水蒸気、ガス分子に近くなると考えられる。例えば、浴室ガラスの曇り、あるいは冬期、梅雨期での暖かい部屋での、外気に接している壁への水蒸気分子の凝縮と同じように、外気と部屋との温度差に基づく部屋内水蒸気の壁面への移動・付着が支配的となると考えられる。即ち、その駆動力及び付着速度は、被付着材とエアロゾル粒子との温度差が大きい程大きくなる。
Next, the adhesion mechanism of the nanometer-scale aerosol fine particles to the antibacterial material will be described.
If the size of the particles is reduced to the nanometer level, the behavior is considered to be close to water vapor and gas molecules. For example, in the warm room of the bathroom glass or in the winter or rainy season, the water vapor wall in the room is based on the temperature difference between the outside air and the room, similar to the condensation of water vapor on the wall in contact with the outside air. It is thought that movement and adhesion to the dominate. That is, the driving force and adhesion speed increase as the temperature difference between the adherend and the aerosol particles increases.

本発明の骨子の一つである気相微小エアロゾルを使用する方法は、湿式法とは異なり、エアロゾル製造時の加熱、金属化合物の反応の段階で、既に比較的高い温度になっている。
したがって、その高温状態を有効に生かし、この温度差を利用し、抗菌用材を加熱することなく、効率よく微小エアロゾルを抗菌用材に付着させることができる。このことも湿式法では実現できない大きな特長である。
Unlike the wet method, the method using the gas phase micro aerosol which is one of the gist of the present invention is already at a relatively high temperature in the stage of heating and reaction of the metal compound during the production of the aerosol.
Therefore, the fine aerosol can be efficiently attached to the antibacterial material by effectively utilizing the high temperature state and utilizing this temperature difference without heating the antibacterial material. This is also a great feature that cannot be realized by the wet method.

他の付着機構の駆動力として、静電気力が考えられる。具体的には、エアロゾル微粒子と基材とを互いに逆の極性に荷電させ、その静電気力を利用して付着させる方法である。
一般に、プラスチックス等の高分子は、非常に表面荷電しやすい物質である。したがって、この特性を生かすことは、低コストで、優れた抗菌用材を製造するために、非常に重要な要素である。
プラスチックスの成形工程、化学繊維の紡糸工程のような、流動と摩擦を伴う工程では、高分子は、表面荷電しやすく、その荷電の極性傾向も明らかとなっている。
一方、微小エアロゾルは、マイナス又はプラスイオンのシャワー中を通過させることにより、荷電させることができる。したがって、微小エアロゾルを、抗菌用材に対して逆極性に荷電させることにより、微小エアロゾルの抗菌用材への付着を、大いに促進させることができる。
このことも、湿式法では困難であり、微小エアロゾルを使用した乾式法に特徴的な利点である。
ここで、静電気力に基づく付着作用を利用する場合に、微小エアロゾルを荷電させる必要があるわけであるが、その粒子径が、数ナノメーター以下になると、電子あるいはイオンの大きさとの関連から、微小エアロゾルに荷電させることが急激に困難となる。この理由から、微小エアロゾル粒子径の下限は、好適には、約3乃至4ナノメーターである。熱(温度差)作用に基づく付着・沈着には、斯かる制約は無いが、その作用効果は、静電気力に基づく作用効果に比較して小さい。
An electrostatic force can be considered as a driving force for other adhesion mechanisms. Specifically, it is a method in which the aerosol fine particles and the base material are charged with opposite polarities and adhered using their electrostatic force.
In general, a polymer such as plastic is a substance that is very easily surface-charged. Therefore, taking advantage of this property is a very important factor for producing an excellent antibacterial material at low cost.
In processes involving flow and friction, such as plastics molding process and chemical fiber spinning process, the polymer is easily surface charged, and the polarity tendency of the charge has been clarified.
On the other hand, micro aerosol can be charged by passing it through a shower of negative or positive ions. Therefore, the adhesion of the micro aerosol to the antibacterial material can be greatly promoted by charging the micro aerosol with the opposite polarity to the antibacterial material.
This is also difficult in the wet method, and is a characteristic advantage of the dry method using a fine aerosol.
Here, when using the adhesion action based on electrostatic force, it is necessary to charge the fine aerosol, but when the particle diameter is several nanometers or less, from the relationship with the size of electrons or ions, It becomes difficult to charge the fine aerosol rapidly. For this reason, the lower limit of the fine aerosol particle size is preferably about 3 to 4 nanometers. Adhesion / deposition based on thermal (temperature difference) action is not limited to this, but its effect is smaller than that based on electrostatic force.

以上のように、抗菌・防カビ効果を有する銀等の金属を、大気圧下において、ナノメーターオーダーに及ぶ気相・分散状微小エアロゾルとし、その微小化に基づく低温液状化というナノ粒子特異性、及び熱的付着力又は静電気的付着力を利用して、高効率、低コスト、かつ強固に付着・被覆させる方法は、気相微小エアロゾルの特長を生かした、従来にない方法であり、産業への貢献は大きい。   As described above, silver and other metals with antibacterial and antifungal effects are converted into nanometer-order gas-phase / dispersed micro aerosols under atmospheric pressure, and the nanoparticle specificity of low-temperature liquefaction based on the miniaturization , And the method of applying and coating with high efficiency, low cost, and strong adhesion using thermal adhesion or electrostatic adhesion is an unprecedented method that takes advantage of the characteristics of gas phase microaerosol. The contribution to is great.

本発明により、従来の方法では得られない、次のような効果が得られる。   According to the present invention, the following effects that cannot be obtained by the conventional method can be obtained.

(1)抗菌性金属を微小エアロゾルとすることにより、表面積が著しく増加し、その結果、少量の抗菌剤で抗菌効果が現れ、コストの低減ができ、特に高価な銀等に有効である。
(2)抗菌性金属を気相微小エアロゾルとすることにより、大幅な融点降下であるナノ粒子特異性を発現させることができ、液状付着が可能となる。液状付着は、面状付着であるため、固体粒子付着で問題となっていた点付着による低い付着強度を克服でき、付着強度が増大する。その結果、摩耗等による抗菌剤の抗菌材からの剥離、脱落が防止でき、抗菌効果の長期持続が可能となる。
(1) By making the antibacterial metal into a fine aerosol, the surface area is remarkably increased. As a result, the antibacterial effect is exhibited with a small amount of the antibacterial agent, the cost can be reduced, and it is particularly effective for expensive silver.
(2) By using an antibacterial metal as a gas phase micro aerosol, it is possible to develop nanoparticle specificity that is a significant melting point drop, and liquid adhesion is possible. Since the liquid adhesion is a planar adhesion, the low adhesion strength due to point adhesion, which has been a problem with solid particle adhesion, can be overcome, and the adhesion strength increases. As a result, it is possible to prevent the antibacterial agent from peeling off or dropping off from the antibacterial material due to wear or the like, and the antibacterial effect can be maintained for a long time.

(3)気相エアロゾルとすることにより、付着効率の大きい静電気力による付着機構を採用することができ、表面荷電を有しやすいプラスチックスには特に有効である。これによって、生成したエアロゾルは、ほぼ完全に利用することができ、コストの低減化のみでなく、排ガス中に含まれるエアロゾルによる環境負荷を防止できる。
(4)ナノメートルサイズであるため、可視光線に対し透過性となる。このことから、視覚的に透明性を必要とするレンズ、眼鏡等の抗菌・防カビ、あるいは審美性を必要とする白色の繊維や服地の抗菌に有効である。
(5)本発明によって、銀等金属系抗菌・防カビ剤を、少量で効率的、かつ廃液処理等のない低環境負荷的処理方法により、繊維、プラスチックス、セラミックス、金属等に、低コスト、かつ強固に付着・被覆させる方法を提供することができる。
(3) By using a vapor phase aerosol, an adhesion mechanism using electrostatic force with high adhesion efficiency can be employed, which is particularly effective for plastics that are likely to have surface charge. As a result, the generated aerosol can be used almost completely, and not only the cost can be reduced, but also the environmental load caused by the aerosol contained in the exhaust gas can be prevented.
(4) Since it is nanometer size, it becomes transparent to visible light. Therefore, it is effective for antibacterial / antifungal properties such as lenses and glasses that require visual transparency, or white fibers and clothing that require aesthetics.
(5) According to the present invention, silver, metal and other antibacterial / antifungal agents can be applied to fibers, plastics, ceramics, metals, etc. at low cost by a low environmental load treatment method that is efficient in a small amount without waste liquid treatment. In addition, it is possible to provide a method for firmly attaching and coating.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

<ナノメートル銀エアロゾルの製造>
銀バルク材100gを、大気圧・窒素流雰囲気下(毎分200cc)の電気炉中で、約1000度に加熱後、冷却用窒素ガス(毎分300cc)と混合・冷却することにより、約100ナノメートルの銀エアロゾルを得た。
<Manufacture of nanometer silver aerosol>
100 g of silver bulk material is heated to about 1000 degrees in an electric furnace under atmospheric pressure and nitrogen flow atmosphere (200 cc / min), and then mixed and cooled with cooling nitrogen gas (300 cc / min) to obtain about 100 Nanometer silver aerosol was obtained.

<ナノメートル銀エアロゾルの製造>
大気圧・窒素ガス流中(毎分300cc)において、抵抗ボート(電気発熱材料で作られた)に50gの銀バルク材を載せ、電気を通電し加熱した。約200ワットの電気を供給することにより、50ナノメートル前後の銀エアロゾルを得た。
<Manufacture of nanometer silver aerosol>
In an atmospheric pressure / nitrogen gas flow (300 cc / min), 50 g of silver bulk material was placed on a resistance boat (made of an electric heating material), and electricity was applied to heat. By supplying about 200 watts of electricity, a silver aerosol of around 50 nanometers was obtained.

<ナノメートル銀エアロゾルの製造>
大気圧・窒素ガス流中(毎分200cc)において、直径0.5mmのカンタル抵抗線に、直径0.3mmの銀線を部分的に巻き付け、電気を通電することにより銀エアロゾルを得た。供給電気量60ワットで、10ナノメートル以下の微小粒子銀エアロゾルを得た。粒子濃度は1cc当たり10個オーダーであった。
この方法は、もっとも効率良く、銀の微小エアロゾルを得る方法であった。供給電気量を変えることにより、得られる粒子径を容易に変えられる利点もある。
<Manufacture of nanometer silver aerosol>
In an atmospheric pressure / nitrogen gas flow (200 cc / min), a silver aerosol having a diameter of 0.3 mm was partially wound around a cantal resistance wire having a diameter of 0.5 mm, and a silver aerosol was obtained by energizing electricity. A fine particle silver aerosol of 10 nanometers or less was obtained with a power supply of 60 watts. Particle concentration was 10 7 order per 1cc.
This method was the most efficient method for obtaining a fine silver aerosol. There is also an advantage that the particle diameter obtained can be easily changed by changing the amount of electricity supplied.

ここでは、ナノメートル銀エアロゾルの製造方法について記載したが、銅の場合も、銀の場合と同様な方法で、ナノメートル銅エアロゾルを製造することができた。但し、供給電気量は、銅の場合に、銀の場合よりも多くを必要とした(約100ワット)。
銅の場合は、エネルギー消費の観点から、実施例3のような方法よりも、銅の有機化合物の熱分解が有利である。例えば、アセチル化銅(銅アセチルアセトネート)を、窒素ガス流中(毎分200cc)350℃の電気炉内で熱分解して、銀の場合と同程度の大きさのエアロゾルを製造することができた。ここで、銅は、銀よりも酸化され易いので、注意を要する。
ナノメートル亜鉛エアロゾルも、亜鉛の融点が低い(420℃)ので、20ワット以下の少量供給電力で、ナノメートル銀エアロゾルの製造方法と同様の方法により、同程度の粒径の亜鉛エアロゾルを容易に製造できた。ここで、亜鉛の場合も、非常に酸化され易く、亜鉛華(酸化亜鉛)となってしまうので、注意を要する。
このように、銅及び亜鉛は、銀に比較して酸化され易く、酸化物として被処理材に付着することになる場合もあるが、これらの酸化物にも抗菌作用がある。このことは、例えば、表面が酸化している十円銅貨に抗菌作用があることや、台所流し、排水溝のヌメリ防止に銅製ストレイナーが用いられていたり、皮膚などへ適用される軟膏剤に亜鉛華が添加されていることからも理解される。
Here, although the manufacturing method of the nanometer silver aerosol was described, also in the case of copper, the nanometer copper aerosol was able to be manufactured by the method similar to the case of silver. However, the amount of electricity supplied required more in the case of copper than in the case of silver (about 100 watts).
In the case of copper, thermal decomposition of an organic compound of copper is more advantageous than the method of Example 3 from the viewpoint of energy consumption. For example, acetylated copper (copper acetylacetonate) is thermally decomposed in an electric furnace at 350 ° C. in a nitrogen gas flow (200 cc / min) to produce an aerosol having the same size as that of silver. did it. Here, since copper is more easily oxidized than silver, attention is required.
Since nanometer zinc aerosol has a low melting point of zinc (420 ° C), zinc aerosol of the same particle size can be easily obtained by a method similar to the method for producing nanometer silver aerosol with a small supply power of 20 watts or less. I was able to manufacture it. Here, attention is also required in the case of zinc because it is very easily oxidized and becomes zinc white (zinc oxide).
Thus, copper and zinc are more easily oxidized than silver and may adhere to the material to be treated as oxides, but these oxides also have antibacterial action. This is because, for example, a 10-yen copper coin whose surface is oxidized has an antibacterial action, a copper strainer is used to prevent slimming of kitchen sinks and drains, and ointments applied to the skin etc. It is understood from the fact that zinc white is added.

<ナノメーター銀エアロゾルを有機高分子フィルムに付着・被覆させる方法>
実施例3の方法で製造したナノメートル銀エアロゾルを、ポリビニールホルマール・フィルム(軟化点約100℃)に、単位表面積(1平方センチメートル)当たり毎分50CCで約10分間接触させ、該フィルムに付着・被覆させた。
このようにして得られた銀付着・被覆フィルムの電子顕微鏡写真が、図1である。図1の付着エアロゾル粒子を詳細に観察すると、該粒子を介して下地フィルムの微小起伏が観察され、このことから、エアロゾル粒子が液状で付着したことを物語っている。
<Method of attaching and coating nanometer silver aerosol on organic polymer film>
The nanometer silver aerosol produced by the method of Example 3 is brought into contact with a polyvinyl formal film (softening point of about 100 ° C.) at a rate of 50 CC / min per unit surface area (1 cm 2) for about 10 minutes. Covered.
An electron micrograph of the silver adhesion / coating film thus obtained is shown in FIG. When the adhered aerosol particles in FIG. 1 are observed in detail, micro undulations of the underlying film are observed through the particles, which indicates that the aerosol particles are adhered in a liquid state.

<抗菌効果の検査1>
試験菌液は、雑菌を培養し、その500分の一希釈液を使用した。
試験試料は、ポリビニールホルマール・フィルム(軟化点約100℃)を、ポリプロピレン・フィルム(軟化点約120℃)に替えた以外は、実施例4と同様の方法で沈着・付着させて得たフィルムである。試験菌液を全体に付着させた培地シャーレに、この1cm角の切片を入れ、24時間培養後の状態を観察した。その結果フィルムの周辺に無菌域と思われるハローが現れた。このことから、銀の微小エアロゾルが付着した試験片に抗菌効果があることが分かる。
<Test of antibacterial effect 1>
As the test bacterial solution, various bacteria were cultured, and a 1/500 dilution thereof was used.
The test sample was a film obtained by depositing and adhering in the same manner as in Example 4 except that the polyvinyl formal film (softening point of about 100 ° C.) was replaced with a polypropylene film (softening point of about 120 ° C.). It is. The 1 cm square section was placed in a medium petri dish to which the test bacterial solution was adhered, and the state after 24 hours of culture was observed. As a result, a halo that appeared to be a sterile area appeared around the film. From this, it can be seen that the test piece to which the fine silver aerosol adhered has an antibacterial effect.

<抗菌効果の検査2>
抗菌検査1により、その抗菌効果が予測できたので、フィルム密着法を使用して詳しく検査した。その結果、大腸菌(ATCC25922)を使用した場合、初期菌数5x10の試験片が、24時間後、処理なしでは4x10へ増加し、一方、実施例5と同じ処理の試験片では、「検知せず」に減少していた。この結果、本発明の方法で処理された抗菌材には、有意な抗菌作用があることが分かった。
<Inspection of antibacterial effect 2>
Since the antibacterial effect could be predicted by the antibacterial test 1, it was inspected in detail using the film adhesion method. As a result, when Escherichia coli (ATCC25922) was used, the test piece having an initial bacterial count of 5 × 10 5 increased to 4 × 10 7 without treatment after 24 hours, whereas in the test piece with the same treatment as in Example 5, “detection” It was decreasing to "No". As a result, it was found that the antibacterial material treated by the method of the present invention has a significant antibacterial action.

<抗菌処理による処理材の透明度への影響>
本抗菌処理方法の特長の一つに、抗菌処理による処理材の透明度への影響が少ないことが挙げられる。この特長を検査するために、処理時間による処理材の透過度の変化(波長500nmの光透過率を分光光度計(日立製作所製U―2000)で測定)と、電子顕微鏡による表面状態の変化とを調べた。処理用材の試験片としては、透明度が大切となりやすいガラスとアクリル樹脂板を使用した。実施例5に対応する付着時間では、その透過度の減少は全く検出されなかった。更に、その3倍付着時間処理後の試験片の電子顕微鏡観察では、ほぼ全面にエアロゾルが付着していたが、透過度の減少は見られなかった。全面に付着していたにもかかわらず、透過度の減少が見られなかったのは、粒子付着層厚さが数ナノメートルの単一粒子層であり、可視光線波長(約500nm、0.5μm)に比較して十分薄く、透明と見なされることによると考えられる。更に付着時間を増加させた場合、約20倍時間後に透過度が減少し始め、その後、急速に減少した。付着粒子層の厚さを測定すると、約300ナノメートルであった。この値は、ほぼ可視光線波長に対応していることが分かった。
以上の結果から、透明度を必要とする眼鏡等あるいは審美性が必要とされる材料の抗菌処理には、本発明の方法は効果的であることが分かった。
<Influence of antibacterial treatment on transparency of treated material>
One of the features of this antibacterial treatment method is that the antibacterial treatment has little effect on the transparency of the treatment material. In order to inspect this feature, the change in the transmittance of the treatment material with the treatment time (measurement of the light transmittance at a wavelength of 500 nm with a spectrophotometer (U-2000 manufactured by Hitachi, Ltd.)) I investigated. As a test piece for the processing material, glass and an acrylic resin plate in which transparency is important are used. At the deposition time corresponding to Example 5, no decrease in the permeability was detected. Furthermore, in the electron microscope observation of the test piece after the 3 times adhesion time treatment, the aerosol was adhered to almost the entire surface, but no decrease in the transmittance was observed. It was a single particle layer with a particle adhesion layer thickness of several nanometers that did not show a decrease in transmittance despite being adhered to the entire surface, and a visible light wavelength (about 500 nm, 0.5 μm). ) Is considered to be sufficiently thin and transparent. When the deposition time was further increased, the permeability started to decrease after about 20 times and then decreased rapidly. The thickness of the adhered particle layer was measured and found to be about 300 nanometers. This value was found to correspond approximately to the visible light wavelength.
From the above results, it has been found that the method of the present invention is effective for antibacterial treatment of eyeglasses or the like that require transparency or materials that require aesthetics.

<洗浄・洗濯の耐久性>
金属抗菌剤の付着強度が大きいことも、本発明の特長である。即ち、金属抗菌剤をナノメータースケールの微小エアロゾルとすることにより、融点の降下現象を誘起させ、液体金属状態で付着させることにより、その付着強度を増加させることができる。
付着強度の検査方法として、間接的であるが、実際的である、洗濯回数と実施例4に基づく抗菌効果の変化を調べた。試料としては、実施例4と同一条件で銀エアロゾルを付着させたポリエチレン・フィルムを使用した。洗濯方法としては、一回当たり40分間通常と同一方法で、洗濯機により撹拌後、実施例5と同じ方法で抗菌効果の変化を調べた。
<Durability of washing and washing>
The adhesion strength of the metal antibacterial agent is also a feature of the present invention. That is, when the metal antibacterial agent is a nanometer-scale fine aerosol, the phenomenon of melting point lowering is induced, and the adhesion strength can be increased by adhering in a liquid metal state.
As an inspection method for adhesion strength, indirect but practical, changes in the number of washings and antibacterial effects based on Example 4 were examined. As a sample, a polyethylene film to which silver aerosol was adhered under the same conditions as in Example 4 was used. As the washing method, the change in antibacterial effect was examined by the same method as in Example 5 after stirring by a washing machine in the same manner as usual for 40 minutes per time.

その結果、洗濯回数10回まではその抗菌効果に変化はなかったが、その後、徐々に抗菌効果を示すハロー(無菌領域)が縮小し、洗濯回数20回ではハローは見られなくなり、 抗菌効果がほぼなくなったと思われた。
エアロゾルの沈着・付着強度は、プラスチックス等の高分子の場合、その熱特性とエアロゾル雰囲気温度との微妙な関係に依存するところが大きい。例えば、エアロゾル温度をプラスチックス融点よりもわずかに高く設定することにより、付着時にプラスチックスが一部溶け付着強度が増加することも予測される。このような工夫をすることにより、更に、付着強度を高めることも可能である。
As a result, the antibacterial effect did not change until the number of times of washing 10 times, but after that, the halo (sterile area) showing the antibacterial effect gradually decreased, and after 20 times of washing, the halo was not seen, and the antibacterial effect was I thought it was almost gone.
In the case of polymers such as plastics, the deposition / adhesion strength of the aerosol largely depends on the delicate relationship between the thermal characteristics and the aerosol atmosphere temperature. For example, by setting the aerosol temperature to be slightly higher than the melting point of the plastics, it is also predicted that the plastics partially melt at the time of adhesion and the adhesion strength increases. It is possible to further increase the adhesion strength by making such a device.

<静電気力による微小エアロゾルの付着効果の向上>
実施例7までの例では、エアロゾル粒子の、ガス中から抗菌被処理材への付着・沈着作用として、生成時の熱を利用したエアロゾルと基材との温度差に基づく作用を利用している。しかし、この作用力に基づく付着・沈着はそれほど効果的でない。特にプラスチックスでは、耐熱性のため、その温度は100℃程度が限界である。一方、プラスチックス等の高分子の場合、摩擦等により静電気を帯びやすく、静電気力を利用することはその付着・沈着に非常に効果的であることが予測される。しかし、ここで注意すべきは、静電気力は付着強度の増加には必ずしも効果的であるとは言えないことである。あくまで、生成した微小エアロゾルの付着・沈着割合への効果である。
静電気力による付着効果の検査は、次のような方法で実施した。
一般にプラスチックス類は負電荷を帯びやすい。したがって、エアロゾルには正電荷を帯びさせる必要がある。本実施例では、プラスチックスとしてポリエチレン・フィルムを使用した。一方、銀エアロゾルには、コロナ放電(雰囲気ガス中で高電圧(約5KV)を印加)により正電荷を帯びさせた。
静電気力による付着効果は、ポエチレン・フィルム上に、正荷電した銀エアロゾル含有ガスを通過させ、通過前後の粒子濃度を測定する方法で評価した。
粒子濃度は、微分型電気移動度測定器(通称DMA(Differential Mobility Analyzer)と呼ばれている、米国TSI社製品を使用して測定した。
なお、エアロゾル生成時に発生する熱に伴う熱泳動力の効果を除くため、冷却ガスを混合し、室温ガスとした。
<Improvement of adhesion effect of micro aerosol by electrostatic force>
In the examples up to Example 7, the action based on the temperature difference between the aerosol and the base material using the heat at the time of generation is used as the adhesion / deposition action of the aerosol particles from the gas to the antibacterial material. . However, adhesion / deposition based on this acting force is not so effective. Especially in plastics, the temperature is limited to about 100 ° C. because of heat resistance. On the other hand, in the case of polymers such as plastics, static electricity tends to be generated due to friction and the like, and it is predicted that the use of electrostatic force is very effective for adhesion and deposition. However, it should be noted here that electrostatic force is not necessarily effective in increasing adhesion strength. It is only an effect on the adhesion / deposition rate of the generated fine aerosol.
The adhesion effect due to electrostatic force was inspected by the following method.
In general, plastics are easily negatively charged. Therefore, the aerosol must be positively charged. In this example, a polyethylene film was used as the plastic. On the other hand, the silver aerosol was positively charged by corona discharge (a high voltage (approx. 5 KV) was applied in an atmospheric gas).
The adhesion effect due to electrostatic force was evaluated by passing a positively charged silver aerosol-containing gas over a polyethylene film and measuring the particle concentration before and after passage.
The particle concentration was measured using a product of TSI, Inc., which is called a differential mobility analyzer (commonly called DMA (Differential Mobility Analyzer)).
In addition, in order to remove the effect of the thermophoretic force accompanying the heat generated during aerosol generation, a cooling gas was mixed to obtain a room temperature gas.

検査の結果、生成した銀エアロゾルの粒子濃度は1cc当たり10個オーダーであった。荷電装置により荷電された粒子がポリエチレン・フィルムに付着・沈着した後の、通過後の粒子濃度は1cc当たり10個オーダーであった。一方、荷電させない場合の通過後の濃度は1cc当たり105個オーダーとなった。
このことから、エアロゾルを荷電させなくても付着・沈着は生じているが、荷電操作を施すことにより、付着・沈着効果は大きく増加することが明らかとなった。
すなわち、荷電操作による静電気力を利用することにより、生成した微小エアロゾルは無駄なく、有効に抗菌剤として利用されるだけでなく、排ガス中に含まれる、付着しなかったエアロゾルも大幅に減少することができ、環境負荷の低減にも効果的であることが明らかとなった。
また、エアロゾルを荷電させて付着・沈着させたポリエチレン・フィルムに、加熱処理をすることにより、銀粒子のポリエチレン・フィルムに対する付着強度を増大させることができた。
更に、静電気力の利用は、次のような利点もある。
実施例7までの加熱方法のみでは、温度のみが制御因子であり、その作用に基づいて、液状化及び付着・沈着するのであるが、液状化に最適な温度と付着作用に最適な温度とは、必ずしも一致しない。一方、静電気力は沈着作用としてのみの作用であり、液状化に必要な熱的作用とは独立した因子であるから、温度と静電気荷電とを独立して制御することにより、被処理材へのエアロゾルの沈着作用・付着強度を精密に制御することが可能である。
As a result of the inspection, the particle concentration of the generated silver aerosol was on the order of 10 7 particles per cc. After particles charged by charging device is attached, deposited on polyethylene film, particle concentration after passage was 10 two orders per 1 cc. On the other hand, the concentration after passing without charging was on the order of 105 per cc.
From this, it has been clarified that the adhesion / deposition effect is greatly increased by performing the charging operation, although the adhesion / deposition occurs even when the aerosol is not charged.
That is, by using the electrostatic force generated by the charging operation, the generated fine aerosol is not wasted and effectively used as an antibacterial agent, and the non-adhered aerosol contained in the exhaust gas is greatly reduced. It has become clear that it is effective in reducing environmental impact.
Moreover, the adhesion strength of the silver particles to the polyethylene film could be increased by heat-treating the polyethylene film deposited and deposited by charging the aerosol.
Furthermore, the use of electrostatic force has the following advantages.
In only the heating method up to Example 7, only temperature is a control factor, and liquefaction and adhesion / deposition are based on its action. What is the optimum temperature for liquefaction and optimum temperature for adhesion action? , Not necessarily match. On the other hand, the electrostatic force is an action only as a deposition action, and is a factor independent of the thermal action required for liquefaction. Therefore, by controlling the temperature and electrostatic charge independently, It is possible to precisely control aerosol deposition and adhesion strength.

以上詳述したように、本発明は、抗菌・防カビ効果を有する銀等の金属を、大気圧下において、ナノメートルオーダーサイズに及ぶ気相・分散状微小エアロゾルとし、セラミックス、プラスチックス、金属などに付着させる方法及びその製品に係るものであり、本発明により、抗菌性金属を、微小エアロゾルとすることにより、表面積が著しく増加し、その結果、少量の抗菌剤で抗菌効果が現れ、コストの低減ができる。特に高価な銀等に有効である。また、それにより、大幅な融点降下であるナノ粒子特異性を発現させることができ、液状付着が可能となる。液状付着は面状付着であるため、固体粒子付着で問題となっていた点付着による低い付着強度を克服でき、付着強度が増大する。その結果、摩耗等による抗菌剤の抗菌材からの剥離、脱落が防止でき、抗菌効果の長期持続が可能となる。   As described in detail above, the present invention provides a metal, such as silver, having antibacterial and antifungal effects, as a gas phase / dispersed fine aerosol having a nanometer order size under atmospheric pressure, and is made of ceramics, plastics, metal According to the present invention, the surface area is significantly increased by making the antibacterial metal into a fine aerosol according to the present invention, and as a result, the antibacterial effect appears with a small amount of the antibacterial agent and the cost. Can be reduced. This is particularly effective for expensive silver. In addition, this makes it possible to develop nanoparticle specificity that is a significant melting point drop and enables liquid adhesion. Since the liquid adhesion is a planar adhesion, the low adhesion strength due to point adhesion, which has been a problem with solid particle adhesion, can be overcome, and the adhesion strength increases. As a result, it is possible to prevent the antibacterial agent from peeling off or dropping off from the antibacterial material due to wear or the like, and the antibacterial effect can be maintained for a long time.

また、それにより、付着効率の大きい静電気力による付着機構を採用することができ、表面荷電を有しやすいプラスチックスには特に有効である。これによって、生成したエアロゾルはほぼ完全に利用することができ、コストの低減化のみでなく、排ガス中に含まれるエアロゾルによる環境負荷の防止ができる。また、ナノメートルサイズであるため、可視光学的には透明となる。このことから、可視光学的な透明性を必要とするレンズ、眼鏡等の抗菌・防カビ、あるいは審美性を必要とする白色の服地・繊維の抗菌に有効である。

このように、本発明によって、銀等金属系抗菌・防カビ剤を、少量で効率的、かつ廃液処理等のない低環境負荷的処理方法により、繊維、プラスチックス、セラミックス、金属等に、低コストかつ強固に付着・被覆させる方法及びその製品を提供することができる。
Further, it is possible to employ an adhesion mechanism using electrostatic force having a large adhesion efficiency, which is particularly effective for plastics that are likely to have surface charge. As a result, the generated aerosol can be used almost completely, and not only the cost can be reduced, but also the environmental load caused by the aerosol contained in the exhaust gas can be prevented. Moreover, since it is nanometer size, it becomes transparent in visible optics. Therefore, it is effective for antibacterial and antifungal properties such as lenses and glasses that require visible optical transparency, or for white fabrics and fibers that require aesthetics.

As described above, according to the present invention, a metal-based antibacterial / antifungal agent such as silver can be applied to fibers, plastics, ceramics, metals, etc. by a low environmental load treatment method that is efficient in a small amount and does not have waste liquid treatment. It is possible to provide a method and a product for firmly attaching and coating at low cost.

更に、本発明によって、摩耗等による抗菌剤の抗菌材からの剥離、脱落が防止でき、抗菌効果の長期持続が可能な銀等金属系抗菌・防カビ剤、それを付着・被覆させた抗菌・防カビ材及び抗菌・防カビ機能を有する物品並びに前記銀等金属系抗菌・防カビ剤を、少量で効率的、かつ廃液処理等のない低環境負荷的処理方法により、繊維、プラスチックス、セラミックス、金属等に、低コストかつ強固に付着・被覆させる方法及びその製品が提供される。   Further, according to the present invention, antibacterial / antifungal agents such as silver, which can prevent the antibacterial agent from peeling and dropping off from the antibacterial material due to wear and the like, and can maintain the antibacterial effect for a long period of time, and the antibacterial / antibacterial coated with it Antibacterial materials, articles having antibacterial / antifungal functions, and metallic, antibacterial / antifungal agents such as silver, with a low environmental impact treatment method that is efficient in a small amount without waste liquid treatment, fibers, plastics, ceramics Further, a method for firmly attaching and coating a metal or the like at low cost and a product thereof are provided.

プラスチックス表面に付着したナノメータースケールの分散状銀エアロゾル粒子の電子顕微鏡写真である。It is an electron micrograph of nanometer scale dispersed silver aerosol particles adhering to the plastic surface.

Claims (13)

抗菌性金属を、気相微小エアロゾル化することにより得られる、エアロゾルを有効成分とすることを特徴とする金属系無機抗菌・防カビ剤。   A metal-based inorganic antibacterial and antifungal agent characterized by comprising an aerosol as an active ingredient, obtained by converting an antibacterial metal into a gas phase microaerosol. 大気圧下において、金属あるいは金属化合物を、加熱あるいは化学反応により、気相・分散させエアロゾル化する、請求項1に記載の金属系無機抗菌・防カビ剤。   The metal-based inorganic antibacterial and antifungal agent according to claim 1, wherein the metal or metal compound is vaporized and dispersed to form an aerosol under atmospheric pressure by heating or chemical reaction. 金属が、銀、銅及び亜鉛のうちの一種以上からなる、請求項1又は2に記載の金属系無機抗菌・防カビ剤。   The metal inorganic antibacterial / antifungal agent according to claim 1 or 2, wherein the metal comprises one or more of silver, copper and zinc. エアロゾルの平均粒径が0.001〜0.5μmである、請求項1又は2に記載の金属系無機抗菌・防カビ剤。   The metal-based inorganic antibacterial / antifungal agent according to claim 1 or 2, wherein the aerosol has an average particle size of 0.001 to 0.5 µm. 大気圧下において、金属あるいは金属化合物を、加熱あるいは化学反応により、金属が気相・分散したエアロゾルとなし、前記エアロゾルと被処理材とを接触させることにより前記金属を前記被処理材に付着・被覆させたことを特徴とする抗菌・防カビ材。   Under atmospheric pressure, a metal or a metal compound is made into an aerosol in which a metal is vapor-phase / dispersed by heating or chemical reaction, and the metal is attached to the material to be treated by contacting the aerosol with the material to be treated. Antibacterial and antifungal material characterized by being coated. 被処理材が変質しない程度の温度に加熱したエアロゾルと被処理材とを接触させたことを特徴とする、請求項5に記載の抗菌・防カビ材。   6. The antibacterial / antifungal material according to claim 5, wherein an aerosol heated to a temperature at which the material to be treated is not denatured and the material to be treated are brought into contact with each other. エアロゾルを荷電させ、被処理材との静電気力により、前記被処理材に付着・被覆させたことを特徴とする、請求項5に記載の抗菌・防カビ材。   6. The antibacterial / antifungal material according to claim 5, wherein the aerosol is charged and adhered to and coated on the material to be treated by electrostatic force with the material to be treated. エアロゾルの平均粒径が0.001〜0.5μmであることを特徴とする、請求項5から7のいずれかに記載の金属系無機抗菌・防カビ材。   The metal-based inorganic antibacterial / antifungal material according to claim 5, wherein the aerosol has an average particle size of 0.001 to 0.5 μm. 大気圧下において、金属あるいは金属化合物を、加熱あるいは化学反応により、金属が気相・分散したエアロゾルとなし、前記エアロゾルと被処理材とを接触させることにより、抗菌・防カビ性金属を被処理材に付着・被覆させることを特徴とする、抗菌・防カビ性金属の付着・被覆方法。   Under atmospheric pressure, the metal or metal compound is heated or chemically reacted to form an aerosol in which the metal is in a gas phase / dispersion, and the antibacterial / antifungal metal is treated by bringing the aerosol into contact with the material to be treated. An antibacterial / antifungal metal adhesion / coating method characterized by adhering / coating to a material. 被処理材が変質しない程度の温度に加熱したエアロゾルと被処理材とを接触させることを特徴とする、請求項9に記載の方法。   The method according to claim 9, wherein the material to be treated is brought into contact with the aerosol heated to a temperature at which the material to be treated does not change in quality. エアロゾルを荷電させ、被処理材との静電気力により、前記被処理材に付着・被覆させることを特徴とする、請求項9に記載の方法。   The method according to claim 9, wherein the aerosol is charged and attached to and coated on the material to be processed by electrostatic force with the material to be processed. エアロゾルの平均粒径が0.001〜0.5μmであることを特徴とする、請求項9から11のいずれかに記載の方法。   The method according to claim 9, wherein the aerosol has an average particle size of 0.001 to 0.5 μm. 請求項5から8のいずれかに記載の抗菌・防カビ材を構成要素として含むことを特徴とする、抗菌・防カビ機能が付与された物品。
An article provided with an antibacterial / antifungal function, comprising the antibacterial / antifungal material according to claim 5 as a constituent element.
JP2003362620A 2003-10-22 2003-10-22 Metal-based inorganic antibacterial and antifungal agent, method for producing the same and use Pending JP2005126348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003362620A JP2005126348A (en) 2003-10-22 2003-10-22 Metal-based inorganic antibacterial and antifungal agent, method for producing the same and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003362620A JP2005126348A (en) 2003-10-22 2003-10-22 Metal-based inorganic antibacterial and antifungal agent, method for producing the same and use

Publications (1)

Publication Number Publication Date
JP2005126348A true JP2005126348A (en) 2005-05-19

Family

ID=34642188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003362620A Pending JP2005126348A (en) 2003-10-22 2003-10-22 Metal-based inorganic antibacterial and antifungal agent, method for producing the same and use

Country Status (1)

Country Link
JP (1) JP2005126348A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078442A1 (en) 2007-12-19 2009-06-25 Osaka University Method for antimicrobial treatment of fiber, process for production of antimicrobial fiber, and antimicrobial fiber
JP2013067566A (en) * 2011-09-20 2013-04-18 Nbc Meshtec Inc Member having antiviral activity
WO2016067898A1 (en) * 2014-10-31 2016-05-06 住友大阪セメント株式会社 Antibacterial composition, antibacterial glaze composition, and antibacterial article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132223A (en) * 1993-11-09 1995-05-23 Agency Of Ind Science & Technol Production of fine particle composite body
JP2001130910A (en) * 1999-09-09 2001-05-15 Degussa Huels Ag Silicon dioxide doped with silver and having germicidal action

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132223A (en) * 1993-11-09 1995-05-23 Agency Of Ind Science & Technol Production of fine particle composite body
JP2001130910A (en) * 1999-09-09 2001-05-15 Degussa Huels Ag Silicon dioxide doped with silver and having germicidal action

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 140, no. 2, JPN6009011198, 1990, pages 535 - 7, ISSN: 0001269813 *
JOURNAL OF MATERIALS SCIENCE LETTERS, vol. 19, no. 3, JPN6009011196, 2000, pages 217 - 9, ISSN: 0001269812 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078442A1 (en) 2007-12-19 2009-06-25 Osaka University Method for antimicrobial treatment of fiber, process for production of antimicrobial fiber, and antimicrobial fiber
JP4854097B2 (en) * 2007-12-19 2012-01-11 国立大学法人大阪大学 Antibacterial fiber treatment method, antibacterial fiber production method, and antibacterial fiber
KR101234972B1 (en) 2007-12-19 2013-02-20 오사카 유니버시티 Method for antimicrobial treatment of fiber, process for production of antimicrobial fiber, and antimicrobial fiber
JP2013067566A (en) * 2011-09-20 2013-04-18 Nbc Meshtec Inc Member having antiviral activity
WO2016067898A1 (en) * 2014-10-31 2016-05-06 住友大阪セメント株式会社 Antibacterial composition, antibacterial glaze composition, and antibacterial article

Similar Documents

Publication Publication Date Title
Sagadevan et al. Synthesis and evaluation of the structural, optical, and antibacterial properties of copper oxide nanoparticles
Palgrave et al. Aerosol assisted chemical vapor deposition using nanoparticle precursors: a route to nanocomposite thin films
Masuda et al. Deposition mechanism of anatase TiO2 on self-assembled monolayers from an aqueous solution
Coffinier et al. Preparation of superhydrophobic silicon oxide nanowire surfaces
Agrawal et al. Green synthesis of robust superhydrophobic antibacterial and UV‐blocking cotton fabrics by a dual‐stage silanization approach
Daoud et al. Low temperature sol-gel processed photocatalytic titania coating
Tricoli et al. Anti-fogging nanofibrous SiO2 and nanostructured SiO2− TiO2 films made by rapid flame deposition and in situ annealing
Gao et al. Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution
Page et al. Titania and silver–titania composite films on glass—potent antimicrobial coatings
Sun et al. Photocatalytic TiO2 films prepared by chemical vapor deposition at atmosphere pressure
WO2008047810A1 (en) Antibacterial substratum and process for producing the same
US11203523B2 (en) Bionic SERS substrate with metal-based compound eye bowl structure and its construction method and application
Maharjan et al. Self-cleaning hydrophobic nanocoating on glass: A scalable manufacturing process
Dhanapandian et al. Effect of deposition parameters on the properties of TiO 2 thin films prepared by spray pyrolysis
Hwang et al. Superhydrophobic and white light-activated bactericidal surface through a simple coating
Panda et al. Study of bactericidal efficiency of magnetron sputtered TiO2 films deposited at varying oxygen partial pressure
TW201000320A (en) Hydrophilic member and hydrophilic articles made by using the same
Kuo et al. From the fluorescent lamp-induced bactericidal performance of sputtered Ag/TiO2 films to re-explore the photocatalytic mechanism
Liu et al. Efficient fabrication of transparent antimicrobial poly (vinyl alcohol) thin films
Sutar et al. Superhydrophobic Coating Using TiO2 NPs/PMHS Composite for Self‐Cleaning Application
Somasundaram et al. Application of nanoparticles for self-cleaning surfaces
JP2005126348A (en) Metal-based inorganic antibacterial and antifungal agent, method for producing the same and use
Zhang et al. Preparation and antibacterial activity of Ag/TiO2-functionalized ceramic tiles
Suzuki et al. Fabrication of thermochromic composite using monodispersed VO2 coated SiO2 nanoparticles prepared by modified chemical solution deposition
Alpdoğan et al. Effects of bacteria on CdS thin films used in technological devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090603