JP2005125344A - Friction welded structure and its method - Google Patents

Friction welded structure and its method Download PDF

Info

Publication number
JP2005125344A
JP2005125344A JP2003361730A JP2003361730A JP2005125344A JP 2005125344 A JP2005125344 A JP 2005125344A JP 2003361730 A JP2003361730 A JP 2003361730A JP 2003361730 A JP2003361730 A JP 2003361730A JP 2005125344 A JP2005125344 A JP 2005125344A
Authority
JP
Japan
Prior art keywords
shaft
friction welding
shaped member
hole
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003361730A
Other languages
Japanese (ja)
Inventor
Yoshihiko Sumiya
賀彦 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003361730A priority Critical patent/JP2005125344A/en
Publication of JP2005125344A publication Critical patent/JP2005125344A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a friction welded structure having a high joining strength, and to provide a friction welding method for manufacturing the structure. <P>SOLUTION: The friction welded structure is obtained by relatively rotating a first and a second shaft-like member 1, 2 and friction-welding the first shaft-like member 1 into the hole of the second. A groove 112 having inclination relative to the center axis lines Z1, Z2 of the shaft-like members 1, 2 is provided in either one of the shaft surface of the first shaft-like member 1 or the hole surface of the second 2. Accordingly, in friction welding of both shaft-like members 1, 2, the material melted by the frictional heat is promoted to move, through the presence of the inclined groove 112, in the center axial direction of the shaft-like members, resulting in the acceleration of the plastic flow action of the melted material. As a result, inter-metallic solid-phase welding incidental to uniform diffusion is realized, with the joining strength increased between the shaft-like members. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、2部材を相対的に回転させて摩擦接合させた摩擦圧接構造体およびその摩擦圧接方法に関する。   The present invention relates to a friction welding structure in which two members are relatively rotated and friction bonded, and a friction welding method thereof.

従来技術として、特許文献1に示された摩擦圧接方法がある。これは、貫通しない孔を有する部材の端面に軸を圧接し、この際に発生する接合バリを孔部内及び、軸外周に設けたスプライン内へ導入し、所謂キーの機能を持たせようとするものである。
特開特開2001−1167号公報
As a prior art, there is a friction welding method disclosed in Patent Document 1. This is because the shaft is pressed against the end face of a member having a hole that does not penetrate, and a joining burr generated at this time is introduced into the hole and the spline provided on the outer periphery of the shaft, so as to have a so-called key function. Is.
Japanese Patent Laid-Open No. 2001-1167

しかしながら、この方法では、バリがスプラインを伝わって軸方向に入り込んでも強固な接合は成立しない。   However, with this method, even if the burr travels along the spline and enters the axial direction, strong bonding is not established.

本発明は上記点に鑑みて、接合強度の高い摩擦圧接構造体を提供することを目的とする。また、接合強度の高い摩擦圧接構造体を製造するための摩擦圧接方法を提供することを他の目的とする。   An object of this invention is to provide the friction welding structure with high joint strength in view of the said point. Another object of the present invention is to provide a friction welding method for manufacturing a friction welding structure having high bonding strength.

上記目的を達成するため、請求項1に記載の発明では、第1の軸状部材(1)と、第1の軸状部材(1)が挿入される穴部(21、21a)が中心に形成された第2の軸状部材(2)とを有し、両軸状部材(1、2)を相対的に回転させて第2の軸状部材(2)の穴部(21、21a)に第1の軸状部材(1)を摩擦接合してなる摩擦圧接構造体であり、第1の軸状部材(1)の軸表面および第2の軸状部材(2)の穴部(21、21a)の表面のうちいずれか一方に、軸状部材(1、2)の中心軸線(Z1,Z2)に対して傾きを有した線状部(111)を有することを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, the first shaft member (1) and the hole (21, 21a) into which the first shaft member (1) is inserted are mainly used. The second shaft-shaped member (2) is formed, and the two shaft-shaped members (1, 2) are relatively rotated to rotate the holes (21, 21a) of the second shaft-shaped member (2). Is a friction welding structure formed by friction-joining the first shaft-like member (1) to the shaft surface of the first shaft-like member (1) and the hole (21 of the second shaft-like member (2)). 21a) has a linear portion (111) having an inclination with respect to the central axis (Z1, Z2) of the shaft-like member (1, 2) on any one of the surfaces of 21a).

これによると、両軸状部材を摩擦接合する際にその摩擦熱により溶融した材料は、傾きを有した線状部の存在により、軸状部材の中心軸線方向への移動が促進されて溶融材料の塑性流動作用が促進されるため、均一な固相接合が実現されて両軸状部材の接合強度が高まる。   According to this, when the two shaft-shaped members are friction-joined, the material melted by the frictional heat is accelerated by the movement of the shaft-shaped member in the central axis direction due to the presence of the inclined linear portion. Since the plastic flow action is promoted, uniform solid-phase joining is realized and the joining strength of both shaft-like members is increased.

請求項2に記載の発明のように、線状部(111)を溝または凸状とすることにより、上記の塑性流動作用を一層促進させることができる。   As described in the second aspect of the invention, the plastic flow action can be further promoted by forming the linear portion (111) into a groove or a convex shape.

請求項3に記載の発明では、線状部(111)は、第1の軸状部材(1)および第2の軸状部材(2)のうち相対的に融点の高い側に形成されていることを特徴とする。   In the invention described in claim 3, the linear portion (111) is formed on the side of the first shaft member (1) and the second shaft member (2) having a relatively high melting point. It is characterized by that.

このように、融点の高い側に線状部を形成することにより、線状部による上述の効果を摩擦接合時に効果的に発揮できる。   As described above, by forming the linear portion on the side having a high melting point, the above-described effects due to the linear portion can be effectively exhibited during friction welding.

請求項4に記載の発明のように、第1の軸状部材(1)は鉄系材料とし、第2の軸状部材(2)はアルミニウム材料とすることができる。   As in the invention described in claim 4, the first shaft-like member (1) can be made of an iron-based material, and the second shaft-like member (2) can be made of an aluminum material.

請求項5に記載の発明では、線状部(111)は溝であり、線状部(111)は第1の軸状部材(1)に形成されていることを特徴とする。   The invention according to claim 5 is characterized in that the linear portion (111) is a groove, and the linear portion (111) is formed on the first shaft member (1).

このように、第1の軸状部材に溝よりなる線状部を形成することが加工上最適である。これにより溝内に溶融材料が充填され、アンカー効果を発揮することができる。   Thus, it is optimal in terms of processing to form a linear portion made of a groove in the first shaft member. Thereby, the molten material is filled in the groove, and an anchor effect can be exhibited.

請求項6に記載の発明では、線状部(111)は、第1の軸状部材(1)における第2の軸状部材(2)の穴部(21、21a)に挿入される範囲内に形成されていることを特徴とする。   In the invention according to claim 6, the linear portion (111) is within a range of being inserted into the hole (21, 21a) of the second shaft-shaped member (2) in the first shaft-shaped member (1). It is characterized by being formed.

第1の軸状部材が穴部に挿入される範囲が接合されることが重要であり、請求項6の発明によれば、その範囲に線状部(111)が形成されているので、接合強度が高まる。   It is important that the range in which the first shaft-like member is inserted into the hole is joined. According to the invention of claim 6, since the linear portion (111) is formed in the range, Strength increases.

請求項7に記載の発明では、線状部(111)は、第1の軸状部材(1)における第2の軸状部材(2)の穴部(21、21a)に挿入される範囲の全体に亘って形成されていることを特徴とする。   In the invention according to claim 7, the linear portion (111) is in a range of being inserted into the hole (21, 21a) of the second shaft-shaped member (2) in the first shaft-shaped member (1). It is formed over the whole.

これによると、線状部は挿入範囲の全体に亘って形成されているため、溶融材料の一部は挿入範囲の全体に確実に塑性流動することになり、接合強度が向上する。   According to this, since the linear portion is formed over the entire insertion range, a part of the molten material surely plastically flows over the entire insertion range, and the joint strength is improved.

請求項8に記載の発明では、第1の軸状部材(1)における第2の軸状部材(2)の穴部(21、21a)に挿入される領域、および、第2の軸状部材(2)の穴部(21、21a)は、一方がテーパ状で他方がストレート形状であることを特徴とする。   In invention of Claim 8, the area | region inserted in the hole (21, 21a) of the 2nd shaft-shaped member (2) in the 1st shaft-shaped member (1), and the 2nd shaft-shaped member One of the holes (21, 21a) of (2) is characterized in that one is tapered and the other is straight.

軸状部材をともにテーパ状にした場合ベタ当たりとなるため、摩擦接合させる際のワーク駆動トルクの増大と激しいビビリ音を招きやすい。これに対し、請求項8の発明によれば、ベタ当たりとならないため、摩擦接合させる際のワーク駆動トルクを低減し振動音も無くすことができる。   When the shaft-like members are both tapered, they are solid, so that it is easy to cause an increase in work driving torque and intense chatter noise during friction joining. On the other hand, according to the eighth aspect of the present invention, since there is no solid contact, it is possible to reduce the workpiece driving torque and eliminate the vibration noise when the friction bonding is performed.

請求項9に記載の発明では、第1の軸状部材(1)と、第1の軸状部材(1)が挿入される穴部(21、21a)が中心に形成された第2の軸状部材(2)とを有し、両軸状部材(1、2)を相対的に回転させて第2の軸状部材(2)の穴部(21、21a)に第1の軸状部材(1)を摩擦接合させる摩擦圧接構造体の摩擦圧接方法であって、第1の軸状部材(1)の軸表面および第2の軸状部材(2)の穴部(21、21a)の表面のうちいずれか一方に軸状部材の中心軸線(Z1,Z2)に対して傾きを有した線状部(111)を形成する線状部形成工程と、線状部形成工程の後に両軸状部材(1、2)を相対的に回転させて両軸状部材(1、2)を摩擦接合させる摩擦接合工程とを有することを特徴とする。   In the invention according to claim 9, the first shaft member (1) and the second shaft formed around the hole (21, 21a) into which the first shaft member (1) is inserted. The first shaft-shaped member (2) and the shaft-shaped members (1, 2) are relatively rotated so that the holes (21, 21a) of the second shaft-shaped member (2) are rotated. A friction welding method of a friction welding structure for friction welding (1), wherein the shaft surface of the first shaft member (1) and the holes (21, 21a) of the second shaft member (2) are provided. A linear portion forming step of forming a linear portion (111) having an inclination with respect to the central axis (Z1, Z2) of the shaft-like member on either one of the surfaces, and both axes after the linear portion forming step And a friction joining step of friction-joining both shaft-like members (1, 2) by relatively rotating the shaped members (1, 2).

これによると、請求項1の発明と同様の効果を得ることができる。   According to this, the same effect as that of the invention of claim 1 can be obtained.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
本発明の第1実施形態について説明する。図1は第1実施形態に係る摩擦圧接構造体の摩擦接合後の斜視図、図2は図1の摩擦圧接構造体の断面図、図3(a)は摩擦接合前のシャフトの外観図、図3(b)は図3(a)のA−A線に沿う断面図、図4は摩擦接合前のスクリュウの断面図である。
(First embodiment)
A first embodiment of the present invention will be described. 1 is a perspective view after friction welding of the friction welding structure according to the first embodiment, FIG. 2 is a cross-sectional view of the friction welding structure of FIG. 1, and FIG. 3A is an external view of the shaft before friction welding, FIG. 3B is a cross-sectional view taken along line AA in FIG. 3A, and FIG. 4 is a cross-sectional view of the screw before friction welding.

図1および図2に示すように、鋼製のシャフト1とアルミニウム製のスクリュウ2が摩擦接合されて、摩擦圧接構造体としてのスクリュウロータが形成される。なお、シャフト1は本発明の第1の軸状部材に相当し、スクリュウ2は本発明の第2の軸状部材に相当する。   As shown in FIGS. 1 and 2, a steel shaft 1 and an aluminum screw 2 are friction-joined to form a screw rotor as a friction welding structure. The shaft 1 corresponds to the first shaft member of the present invention, and the screw 2 corresponds to the second shaft member of the present invention.

図3に示すように、シャフト1は、外径が一定のストレート形状の接合軸部11と、この接合軸部11の両端側に形成された第1および第2の軸部12、13とを有している。第1および第2の軸部13は、外径が一定のストレート形状で、且つ接合軸部11よりも小径である。   As shown in FIG. 3, the shaft 1 includes a straight-shaped joining shaft portion 11 having a constant outer diameter, and first and second shaft portions 12 and 13 formed on both ends of the joining shaft portion 11. Have. The first and second shaft portions 13 have a straight shape with a constant outer diameter and a smaller diameter than the joint shaft portion 11.

また、接合軸部11の外周面には複数の溝111が形成され、接合軸部11の両端角部112はR形状になっている。より詳細には、溝111は、シャフト1の中心軸線Z1に対して例えば3°程度の傾きθを有しており、シャフト1の周方向に沿って例えば120°間隔で3つ形成されている。さらに、溝111における、中心軸線Z1方向の長さは、後述するスクリュウ2の穴部21の長さと略同じであり、図2に示すように、シャフト1とスクリュウ2が接合された状態では、溝111はスクリュウ2の穴部21の軸方向の全範囲に位置するようになっている。なお、溝111は本発明の線状部に相当し、また溝111を形成する工程は本発明の線状部形成工程に相当する。   In addition, a plurality of grooves 111 are formed on the outer peripheral surface of the joining shaft portion 11, and both end corner portions 112 of the joining shaft portion 11 have an R shape. More specifically, the groove 111 has an inclination θ of, for example, about 3 ° with respect to the central axis Z1 of the shaft 1, and three grooves 111 are formed, for example, at 120 ° intervals along the circumferential direction of the shaft 1. . Further, the length of the groove 111 in the direction of the central axis Z1 is substantially the same as the length of the hole 21 of the screw 2 to be described later, and as shown in FIG. 2, in the state where the shaft 1 and the screw 2 are joined, The groove 111 is positioned in the entire axial range of the hole 21 of the screw 2. The groove 111 corresponds to the linear portion of the present invention, and the step of forming the groove 111 corresponds to the linear portion forming step of the present invention.

図4に示すように、スクリュウ2の中心部には、スクリュウ2の中心軸線Z2方向に延びるテーパ状の穴部21が形成されている。穴部21の最大内径部の寸法は、シャフト1の接合軸部11の外径よりも大きく設定され、一方、穴部21の最小内径部の寸法は、シャフト1の接合軸部11の外径よりも小さく設定されている。   As shown in FIG. 4, a tapered hole 21 extending in the direction of the central axis Z <b> 2 of the screw 2 is formed at the center of the screw 2. The dimension of the maximum inner diameter portion of the hole portion 21 is set larger than the outer diameter of the joining shaft portion 11 of the shaft 1, while the dimension of the minimum inner diameter portion of the hole portion 21 is the outer diameter of the joining shaft portion 11 of the shaft 1. Is set smaller than.

図3、図4のように形成されたシャフト1とスクリュウ2は、以下述べる摩擦接合によって一体化される。   The shaft 1 and the screw 2 formed as shown in FIGS. 3 and 4 are integrated by friction joining described below.

すなわち、シャフト1をスクリュウ2の穴部21に挿入して、シャフト1の接合軸部11の一方の角部112をスクリュウ2の穴部21に接触させるとともに、シャフト1を回転させる(摩擦接合工程)。このシャフト1とスクリュウ2の相対回転により、シャフト1とスクリュウ2の接触部位で摩擦熱が発生する。スクリュウ2はシャフト1よりも融点が低いため、その摩擦熱によりスクリュウ2の穴部21内面が溶融する。シャフト1はスクリュウ2の穴部21内面を溶融させつつ、穴部21内に侵入していく。   That is, the shaft 1 is inserted into the hole 21 of the screw 2 so that one corner 112 of the joining shaft 11 of the shaft 1 is brought into contact with the hole 21 of the screw 2 and the shaft 1 is rotated (friction joining step). ). Due to the relative rotation of the shaft 1 and the screw 2, frictional heat is generated at the contact portion between the shaft 1 and the screw 2. Since the melting point of the screw 2 is lower than that of the shaft 1, the inner surface of the hole 21 of the screw 2 is melted by the frictional heat. The shaft 1 penetrates into the hole 21 while melting the inner surface of the hole 21 of the screw 2.

溶融した材料の一部はシャフト1の溝111の一端側近傍に入り込む。そして、溝111はシャフト1の中心軸線Z1に対して傾きθを有しているため、溝111に入り込んだ溶融材料はシャフト1の回転に伴って推力を付与され、溝111の一端側近傍に入り込んだ溶融材料は溝111の他端側まで掻き揚げられる。   A part of the melted material enters the vicinity of one end of the groove 111 of the shaft 1. And since the groove | channel 111 has inclination (theta) with respect to the central axis Z1 of the shaft 1, the molten material which entered the groove | channel 111 is given a thrust with rotation of the shaft 1, and the one end side vicinity of the groove | channel 111 is provided. The molten material that has entered is scraped up to the other end of the groove 111.

このように、傾きθを有する溝111により中心軸線Z1、Z2方向への溶融材料の塑性流動作用が促進され、掻き揚げ過程でシャフト1の接合軸部11とスクリュウ2の穴部21との間に溶融材料が十分に流動して充填され、シャフト1とスクリュウ2が均一な拡散に伴う金属間固相接合によって強固に接合される。   Thus, the plastic flow action of the molten material in the direction of the central axes Z1 and Z2 is promoted by the groove 111 having the inclination θ, and between the joint shaft portion 11 of the shaft 1 and the hole portion 21 of the screw 2 in the lifting process. The molten material is sufficiently fluidized and filled, and the shaft 1 and the screw 2 are firmly joined by intermetallic solid-phase joining accompanying uniform diffusion.

また、溝111は穴部21の軸方向の全範囲に位置するようにしているため、溶融材料の一部はシャフト1が挿入された範囲の全体に確実に塑性流動することになり、接合強度が向上する。   Further, since the groove 111 is positioned in the entire range of the hole portion 21 in the axial direction, a part of the molten material surely plastically flows over the entire range in which the shaft 1 is inserted, and the bonding strength Will improve.

また、溝111内に溶融材料が充填される結果、冷却後にはその溝111内の材料がアンカー効果を発揮し、シャフト1とスクリュウ2の接合が一層強固になる。   In addition, as a result of filling the groove 111 with the molten material, the material in the groove 111 exhibits an anchor effect after cooling, and the joint between the shaft 1 and the screw 2 is further strengthened.

また、摩擦接合の際、ストレート形状の接合軸部11とテーパ状の穴部21との接触部はベタ当たりとならないため、摩擦接合させる際のワーク駆動トルクやビビリ音を少なくすることができる。   Moreover, since the contact part of the straight-shaped joining shaft part 11 and the taper-shaped hole part 21 does not become solid at the time of friction joining, the workpiece drive torque and chatter noise at the time of friction joining can be reduced.

また、接合軸部11の両端角部112はR形状になっているため、シャフト1とスクリュウ2を接触させて相対回転させる際の抵抗を小さく且つ、塑性流動を容易にさせる。   In addition, since both end corners 112 of the joint shaft 11 have an R shape, the resistance when the shaft 1 and the screw 2 are brought into contact with each other for relative rotation is reduced, and plastic flow is facilitated.

(第2実施形態)
本発明の第2実施形態について説明する。図5(a)は第2実施形態に係る摩擦圧接構造体の摩擦接合前のシャフトの外観図、図5(b)は図5(a)のB−B線に沿う断面図、図6は摩擦接合前のスクリュウの断面図である。なお、第1実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
(Second Embodiment)
A second embodiment of the present invention will be described. 5A is an external view of a shaft before friction welding of the friction welding structure according to the second embodiment, FIG. 5B is a cross-sectional view taken along line BB in FIG. 5A, and FIG. It is sectional drawing of the screw before friction joining. In addition, the same code | symbol is attached | subjected to the same or equivalent part as 1st Embodiment, and the description is abbreviate | omitted.

本実施形態では、図5に示すように、シャフト1の接合軸部11aをテーパ状にし、一方、図6に示すように、スクリュウ2の穴部21aを、内径が一定のストレート形状にしている。そして、接合軸部11aの最大外径部の寸法は、穴部21aの内径よりも大きく設定され、一方、接合軸部11aの最小外径部の寸法は、穴部21aの内径よりも小さく設定されている。   In this embodiment, as shown in FIG. 5, the joining shaft portion 11a of the shaft 1 is tapered, while the hole portion 21a of the screw 2 is formed in a straight shape with a constant inner diameter as shown in FIG. . The dimension of the maximum outer diameter portion of the joint shaft portion 11a is set larger than the inner diameter of the hole portion 21a, while the dimension of the minimum outer diameter portion of the joint shaft portion 11a is set smaller than the inner diameter of the hole portion 21a. Has been.

図5、図6のように形成されたシャフト1とスクリュウ2は、以下述べる摩擦接合によって一体化される。   The shaft 1 and the screw 2 formed as shown in FIGS. 5 and 6 are integrated by friction welding described below.

すなわち、シャフト1をスクリュウ2の穴部21aに挿入して、シャフト1の接合軸部11aの外周面をスクリュウ2の穴部21aの一端側角部に接触させるとともに、シャフト1を回転させる。このシャフト1とスクリュウ2の相対回転により、シャフト1とスクリュウ2の接触部位で摩擦熱が発生する。その摩擦熱によりスクリュウ2の穴部21aを溶融させつつ、シャフト1が穴部21内に侵入していく。   That is, the shaft 1 is inserted into the hole portion 21 a of the screw 2, the outer peripheral surface of the joint shaft portion 11 a of the shaft 1 is brought into contact with the one end side corner portion of the hole portion 21 a of the screw 2, and the shaft 1 is rotated. Due to the relative rotation of the shaft 1 and the screw 2, frictional heat is generated at the contact portion between the shaft 1 and the screw 2. The shaft 1 enters the hole 21 while melting the hole 21a of the screw 2 by the frictional heat.

以下、第1実施形態と同様に、溶融した材料の一部はシャフト1の溝111の一端側近傍に入り込み、傾きθを有する溝111により中心軸線Z1、Z2方向への溶融材料の塑性流動作用が促進され、掻き揚げ過程でシャフト1の接合軸部11aとスクリュウ2の穴部21aとの間に溶融材料が十分に流動して充填され、シャフト1とスクリュウ2が均一な拡散を伴う金属間固相接合によって強固に接合される。   Hereinafter, as in the first embodiment, a part of the melted material enters the vicinity of one end of the groove 111 of the shaft 1, and the plastic flow action of the molten material in the central axis Z1 and Z2 directions by the groove 111 having the inclination θ. The molten material is sufficiently flowed and filled between the joint shaft portion 11a of the shaft 1 and the hole portion 21a of the screw 2 in the lifting process, so that the shaft 1 and the screw 2 have a uniform diffusion between the metals. Solidly bonded by solid phase bonding.

また、摩擦接合の際、テーパ状の接合軸部11aとストレート形状の穴部21aとの接触部はベタ当たりとならないため、摩擦接合させる際のワーク駆動トルクやビビリ音を少なくすることができる。   Moreover, since the contact part of the taper-shaped joining shaft part 11a and the straight-shaped hole part 21a does not become solid at the time of friction joining, the workpiece drive torque and chatter noise at the time of friction joining can be reduced.

次に、この第2実施形態に基づいて実験を行った結果を説明する。   Next, the results of experiments based on this second embodiment will be described.

図5(a)、(b)において、シャフト1の各寸法は以下の如くである。なお、各寸法の単位は(mm)である。   5A and 5B, the dimensions of the shaft 1 are as follows. The unit of each dimension is (mm).

シャフト1の全長:100
接合軸部の長さ:40
第1の軸部の長さ×直径:35×10
第2の軸部の長さ×直径:25×10
第2の軸部の先端:R2の円弧
接合軸部のテーパ勾配:1/20
接合軸部の左側の角部の直径:10
溝の傾斜角度:3°
溝の深さ:R0.5
図6において、スクリュウ2の各寸法は以下の如くである。
Total length of the shaft 1: 100
Joint shaft length: 40
First shaft length × diameter: 35 × 10
Second shaft length × diameter: 25 × 10
Tip of second shaft: Arc of R2 Taper gradient of joint shaft: 1/20
Diameter of the left corner of the joint shaft: 10
Groove inclination angle: 3 °
Groove depth: R0.5
In FIG. 6, the dimensions of the screw 2 are as follows.

スクリュウの全長×直径:36×36
穴部の直径:9.5
以上の構成よりなるシャフト1を回転数3200rpmにて高速回転し、シャフト1を60mm/minの移動速度(摩擦速度)にてその第2の軸部13の先端をスクリュウ2の穴部21aの先端に60kNの押し圧力(摩擦圧力)にて接触させる。
シャフト1の第2の軸部13の直径は10mmであり、スクリュウ2の穴部21aの直径9.5mmより大きいが、第2の軸部13の先端はR2mmのR形状を有しているため、該先端はシャフト1の穴部21aの内側に接触し、上記の摩擦速度、摩擦圧力に基づいて摩擦熱を発生する。
Screw total length x diameter: 36 x 36
Hole diameter: 9.5
The shaft 1 having the above configuration is rotated at a high speed of 3200 rpm, and the shaft 1 is moved at a moving speed (friction speed) of 60 mm / min with the tip of the second shaft portion 13 being the tip of the hole 21 a of the screw 2. With a pressing pressure (friction pressure) of 60 kN.
The diameter of the second shaft portion 13 of the shaft 1 is 10 mm and is larger than the diameter 9.5 mm of the hole portion 21a of the screw 2, but the tip of the second shaft portion 13 has an R shape of R2 mm. The tip contacts the inside of the hole 21a of the shaft 1 and generates frictional heat based on the friction speed and friction pressure.

この摩擦熱によりスクリュウ2の穴部21aが溶融し、該スクリュウ2の材料であるアルミニウムの塑性流動が始まった時点でシャフト1に対する押し圧力(接合圧力)を5kNに落とし、またシャフト1の移動速度(接合強度)を900mm/minと速める。
そして、スクリュウ2の穴部21aの先端からシャフト1の第2の軸部13が露出した時点でシャフト1の回転を止める。
When the hole 21a of the screw 2 is melted by this frictional heat and the plastic flow of aluminum as the material of the screw 2 starts, the pressing pressure (joining pressure) on the shaft 1 is lowered to 5 kN, and the moving speed of the shaft 1 (Joint strength) is increased to 900 mm / min.
Then, when the second shaft portion 13 of the shaft 1 is exposed from the tip of the hole portion 21a of the screw 2, the rotation of the shaft 1 is stopped.

以上により、スクリュウ2の穴部1aにシャフト1の接合軸部が強固に接合したことが認められた。   From the above, it was recognized that the joining shaft portion of the shaft 1 was firmly joined to the hole portion 1a of the screw 2.

(他の実施形態)
上記各実施形態では、シャフト1の接合軸部11、11aに溝111を設けたが、スクリュウ2の穴部21、21aに溝111を設けてもよい。
(Other embodiments)
In each of the above embodiments, the groove 111 is provided in the joint shaft portions 11 and 11a of the shaft 1, but the groove 111 may be provided in the hole portions 21 and 21a of the screw 2.

また、上記各実施形態では、シャフト1の接合軸部およびスクリュウ2の穴部のうち一方をテーパ状とし他方をストレート形状にしたが、両方をテーパ状にしてもよい。ただし、この場合には両者のテーパ角度を変える必要がある。すなわち、テーパ角度を同じにすると、摩擦接合の際に接合軸部と穴部との接触部がベタ当たりとなり、摩擦熱で塑性流動が始まるまでの間にシャフト1がねじられて折損する恐れがあるが、両者のテーパ角度を変えることにより、その問題を回避することができる。   In each of the above embodiments, one of the joining shaft portion of the shaft 1 and the hole portion of the screw 2 is tapered and the other is straight, but both may be tapered. However, in this case, it is necessary to change both taper angles. That is, if the taper angle is the same, the contact portion between the joint shaft portion and the hole portion becomes a solid contact during friction welding, and the shaft 1 may be twisted and broken before the plastic flow is started by frictional heat. However, the problem can be avoided by changing the taper angle between the two.

また、上記各実施形態では、線状部として溝111を設けたが、溝111の代わりに、複数の凸状(線状部に相当)を設けてもよい。この場合には、隣り合う凸状の間に溶融材料が入り込む。そして、その凸状は、溝111と同様の機能、すなわち溶融材料に推力を付与して中心軸線Z1、Z2方向への溶融材料の塑性流動作用を促進させる機能を発揮する。   In each of the above embodiments, the grooves 111 are provided as the linear portions. However, a plurality of convex shapes (corresponding to the linear portions) may be provided instead of the grooves 111. In this case, the molten material enters between adjacent convex shapes. And the convex shape exhibits the same function as the groove 111, that is, the function of imparting thrust to the molten material to promote the plastic flow action of the molten material in the central axis Z1 and Z2 directions.

また、上記各実施形態における溝111の断面形状は、四角形、V形、U形、半月形など、シャフト1やスクリュウ2の材質や形状に合わせて選択することができる。同様に、溝111の数量や配置に関しても、シャフト1やスクリュウ2の材質や形状に合わせて選択することができる。また、その溝111はスクリュウ2の接合軸部11、11aの前兆に亘って連続して形成したが、間欠的に不連続な態様で形成しても勿論よい。これは、上述の凸状についても同様に適用できることは勿論である。   Moreover, the cross-sectional shape of the groove | channel 111 in each said embodiment can be selected according to the material and shape of the shaft 1 or the screw 2, such as a quadrangle, V shape, U shape, and a half moon shape. Similarly, the number and arrangement of the grooves 111 can be selected according to the material and shape of the shaft 1 and the screw 2. Moreover, although the groove | channel 111 was formed continuously over the precursor of the joining shaft parts 11 and 11a of the screw 2, of course, you may form in an intermittently discontinuous aspect. Of course, this can also be applied to the above-described convex shape.

また、上記各実施形態では、接合軸部11、11aの両端角部112をR形状にしたが、両端角部112は面取りでもよい。   In each of the above embodiments, the corners 112 of the joint shafts 11 and 11a are rounded, but the corners 112 may be chamfered.

また、本発明は、スクリュウロータ以外の摩擦圧接構造体にも適用することができる。   The present invention can also be applied to a friction welding structure other than a screw rotor.

なお、上記各実施形態のスクリュウ2は、例えば転造によって加工することができる。その場合に用いる転造ダイスとしては、図7に示すような、複数(本例では4枚)のダイス3を積層した転造ダイスを用いれば、アンダーカットやリードの大きな歯型の加工も容易である。因みに、複数のダイス3はボルト4によって一体化されている。   In addition, the screw 2 of each said embodiment can be processed by rolling, for example. As the rolling die used in that case, if a rolling die in which a plurality of (four in this example) dies 3 are stacked as shown in FIG. 7 is used, it is easy to process a tooth mold with a large undercut or lead. It is. Incidentally, the plurality of dies 3 are integrated by bolts 4.

また、上記各実施形態では、第2の軸状部材であるスクリュゥ2における穴部として両端が開放した貫通穴を用いたが、一端が開放し他端が閉塞した穴部でもよいことは勿論である。   Moreover, in each said embodiment, although the through-hole which both ends opened was used as a hole part in the screw 2 which is a 2nd shaft-shaped member, of course, the hole part which one end opened and the other end closed may be used. is there.

さらに、上記各実施形態では、塑性流動材を第1の軸状部材であるシャフト1の回転により掻き揚げる溝111は所定の傾きを有した複数の溝であったが、スパイラル形状でもあっても勿論よい。   Further, in each of the above embodiments, the groove 111 for scraping the plastic fluid material by the rotation of the shaft 1 as the first shaft member is a plurality of grooves having a predetermined inclination. Of course.

さらに、上記各実施形態では、第1の軸状部材であるシャフト1を鉄系材料とし、第2の軸状部材であるスクリュゥ2をアルミニウム材料としたが、これら材料に限定されることなく、基本的には摩擦圧接可能な材料の組合わせであれば各種の材料の組合せを本発明に適用することができる。   Furthermore, in each said embodiment, although the shaft 1 which is a 1st axial member was made into an iron-type material, and the screw 2 which was the 2nd axial member was made into an aluminum material, it is not limited to these materials, Basically, various combinations of materials can be applied to the present invention as long as they are a combination of materials capable of friction welding.

本発明の第1実施形態に係る摩擦圧接構造体の摩擦接合後の斜視図である。It is a perspective view after the friction welding of the friction welding structure which concerns on 1st Embodiment of this invention. 図1の摩擦圧接構造体の断面図である。It is sectional drawing of the friction welding structure of FIG. (a)は摩擦接合前のシャフトの外観図、(b)は(a)のA−A線に沿う断面図である。(A) is an external view of the shaft before friction joining, (b) is sectional drawing which follows the AA line of (a). 摩擦接合前のスクリュウの断面図である。It is sectional drawing of the screw before friction joining. (a)は第2実施形態に係る摩擦圧接構造体の摩擦接合前のシャフトの外観図、(b)は(a)のB−B線に沿う断面図である。(A) is an external view of the shaft before the friction welding of the friction welding structure according to the second embodiment, and (b) is a sectional view taken along line BB in (a). 摩擦接合前のスクリュウの断面図である。It is sectional drawing of the screw before friction joining. スクリュウの加工に用いる転造ダイスの模式的な図である。It is a typical figure of the rolling die used for processing of a screw.

符号の説明Explanation of symbols

1…シャフト(第1の軸状部材)、2…スクリュウ(第2の軸状部材)、21、21a…穴部、111…溝(線状部)、Z1,Z2…中心軸線。   DESCRIPTION OF SYMBOLS 1 ... Shaft (1st axial member), 2 ... Screw (2nd axial member), 21 and 21a ... Hole part, 111 ... Groove (linear part), Z1, Z2 ... Central axis.

Claims (9)

第1の軸状部材(1)と、該第1の軸状部材(1)が挿入される穴部(21、21a)が中心に形成された第2の軸状部材(2)とを有し、該両軸状部材(1、2)を相対的に回転させて前記第2の軸状部材(2)の前記穴部(21、21a)に前記第1の軸状部材(1)を摩擦接合してなる摩擦圧接構造体であり、
前記第1の軸状部材(1)の軸表面および前記第2の軸状部材(2)の穴部(21、21a)の表面のうちいずれか一方に、該軸状部材(1、2)の中心軸線(Z1,Z2)に対して傾きを有した線状部(111)を有することを特徴とする摩擦圧接構造体。
The first shaft-shaped member (1) and the second shaft-shaped member (2) formed around the holes (21, 21a) into which the first shaft-shaped member (1) is inserted are provided. Then, the first shaft-shaped member (1) is inserted into the holes (21, 21a) of the second shaft-shaped member (2) by relatively rotating the shaft-shaped members (1, 2). It is a friction welding structure formed by friction welding,
Either the shaft surface of the first shaft-shaped member (1) or the surface of the hole (21, 21a) of the second shaft-shaped member (2) has the shaft-shaped member (1, 2). A friction welding structure characterized by having a linear portion (111) having an inclination with respect to the central axis (Z1, Z2).
前記線状部(111)は溝または凸状であることを特徴とする請求項1に記載の摩擦圧接構造体。 The friction welding structure according to claim 1, wherein the linear portion (111) is a groove or a convex shape. 前記線状部(111)は、前記第1の軸状部材(1)および前記第2の軸状部材(2)のうち相対的に融点の高い側に形成されていることを特徴とする請求項2に記載の摩擦圧接構造体。 The said linear part (111) is formed in the side with comparatively high melting | fusing point among said 1st shaft-shaped member (1) and said 2nd shaft-shaped member (2), It is characterized by the above-mentioned. Item 3. The friction welding structure according to Item 2. 前記第1の軸状部材(1)は鉄系材料よりなり、前記第2の軸状部材(2)はアルミニウム材料よりなることを特徴とする請求項3に記載の摩擦圧接構造体。 The friction welding structure according to claim 3, wherein the first shaft-like member (1) is made of an iron-based material, and the second shaft-like member (2) is made of an aluminum material. 前記線状部(111)は溝であり、該線状部(111)は前記第1の軸状部材(1)に形成されていることを特徴とする請求項1ないし4のいずれか1つに記載の摩擦圧接構造体。 The linear part (111) is a groove, and the linear part (111) is formed on the first shaft-like member (1). 2. The friction welding structure according to 1. 前記線状部(111)は、前記第1の軸状部材(1)における前記第2の軸状部材(2)の前記穴部(21、21a)に挿入される範囲内に形成されていることを特徴とする請求項5に記載の摩擦圧接構造体。 The said linear part (111) is formed in the range inserted in the said hole part (21, 21a) of the said 2nd axial member (2) in the said 1st axial member (1). The friction welding structure according to claim 5. 前記線状部(111)は、前記第1の軸状部材(1)における第2の軸状部材(2)の前記穴部(21、21a)に挿入される範囲の全体に亘って形成されていることを特徴とする請求項6に記載の摩擦圧接構造体。 The said linear part (111) is formed over the whole range inserted in the said hole part (21, 21a) of the 2nd axial member (2) in the said 1st axial member (1). The friction welding structure according to claim 6, wherein the friction welding structure is provided. 前記第1の軸状部材(1)における前記第2の軸状部材(2)の前記穴部(21、21a)に挿入される領域、および、前記第2の軸状部材(2)の前記穴部(21、21a)は、一方がテーパ状で他方がストレート形状であることを特徴とする請求項1ないし7のいずれか1つに記載の摩擦圧接構造体。 The region inserted into the hole (21, 21a) of the second shaft-shaped member (2) in the first shaft-shaped member (1), and the region of the second shaft-shaped member (2) The friction welding structure according to any one of claims 1 to 7, wherein one of the holes (21, 21a) is tapered and the other is straight. 第1の軸状部材(1)と、該第1の軸状部材(1)が挿入される穴部(21、21a)が中心に形成された第2の軸状部材(2)とを有し、該両軸状部材(1、2)を相対的に回転させて前記第2の軸状部材(2)の前記穴部(21、21a)に前記第1の軸状部材(1)を摩擦接合させる摩擦圧接構造体の摩擦圧接方法であって、
前記第1の軸状部材(1)の軸表面および前記第2の軸状部材(2)の穴部(21、21a)の表面のうちいずれか一方に該軸状部材の中心軸線(Z1,Z2)に対して傾きを有した線状部(111)を形成する線状部形成工程と、
該線状部形成工程の後に前記両軸状部材(1、2)を相対的に回転させて前記両軸状部材(1、2)を摩擦接合させる摩擦接合工程とを有することを特徴とする摩擦圧接構造体の摩擦圧接方法。
The first shaft-shaped member (1) and the second shaft-shaped member (2) formed around the holes (21, 21a) into which the first shaft-shaped member (1) is inserted are provided. Then, the first shaft-shaped member (1) is inserted into the holes (21, 21a) of the second shaft-shaped member (2) by relatively rotating the shaft-shaped members (1, 2). A friction welding method of a friction welding structure for friction welding,
One of the axial surface of the first shaft member (1) and the surface of the hole (21, 21a) of the second shaft member (2) has a central axis (Z1, A linear portion forming step of forming a linear portion (111) having an inclination with respect to Z2);
And a friction joining step of frictionally joining the two shaft-shaped members (1, 2) by relatively rotating the shaft-shaped members (1, 2) after the linear portion forming step. Friction welding method for friction welding structure.
JP2003361730A 2003-10-22 2003-10-22 Friction welded structure and its method Pending JP2005125344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003361730A JP2005125344A (en) 2003-10-22 2003-10-22 Friction welded structure and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003361730A JP2005125344A (en) 2003-10-22 2003-10-22 Friction welded structure and its method

Publications (1)

Publication Number Publication Date
JP2005125344A true JP2005125344A (en) 2005-05-19

Family

ID=34641587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003361730A Pending JP2005125344A (en) 2003-10-22 2003-10-22 Friction welded structure and its method

Country Status (1)

Country Link
JP (1) JP2005125344A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031074A1 (en) * 2014-08-29 2016-03-03 株式会社小松製作所 Metal-member manufacturing apparatus
CN112025073A (en) * 2019-06-03 2020-12-04 南京理工大学 Method for improving mechanical property of laminated armor aluminum alloy friction stir welding joint

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031074A1 (en) * 2014-08-29 2016-03-03 株式会社小松製作所 Metal-member manufacturing apparatus
JPWO2016031074A1 (en) * 2014-08-29 2017-06-15 株式会社小松製作所 Metal member manufacturing equipment
US10071440B2 (en) 2014-08-29 2018-09-11 Komatsu Ltd. Device for producing metal member
DE112014006913B4 (en) 2014-08-29 2024-02-01 Komatsu Ltd. Device for producing a metal part
CN112025073A (en) * 2019-06-03 2020-12-04 南京理工大学 Method for improving mechanical property of laminated armor aluminum alloy friction stir welding joint

Similar Documents

Publication Publication Date Title
TWI613024B (en) Bonding method and method of manufacturing composite rolled material
KR20040000456A (en) Fsw tool
JP6928011B2 (en) Friction stir welding method and manufacturing method of joint structure
JP2002514512A (en) Friction rotary welding tool
JP2007301579A (en) Friction stirring and working tool, and manufacturing method of friction stirred and worked product using the same
JP7070389B2 (en) Joining method
JPH1128581A (en) Formation of joint by friction stirring joining
US11806801B2 (en) Joining method
WO2019239623A1 (en) Joining method and method for manufacturing composite rolled material
KR102543018B1 (en) bonding method
KR20140087406A (en) Friction stir welding tool
JP6964840B2 (en) Friction stir welding rotary tool and friction stir welding method
JP2005125344A (en) Friction welded structure and its method
JP7082356B2 (en) Friction stir welding tool and friction stir welding method
JP6740960B2 (en) Joining method
JP6192040B2 (en) Fitting manufacturing method and composite material manufacturing method
JP6756105B2 (en) Joining method
WO2021149272A1 (en) Liquid-cooled jacket manufacturing method and friction stir welding method
JP7041875B2 (en) Friction stir welding method of metal member and resin member and its joining structure
JP2007245175A (en) Tool for friction stir welding
KR20080057965A (en) Welding tool and method for friction stir spot welding using the same
JP3652833B2 (en) Truss material manufacturing method
JP7272153B2 (en) Joining method and manufacturing method of composite rolled material
JP6645372B2 (en) Joining method
JP2005271016A (en) Friction welding method of steel tube and aluminum alloy hollow member

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060308

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081008

A131 Notification of reasons for refusal

Effective date: 20081021

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090310

Free format text: JAPANESE INTERMEDIATE CODE: A02