JP2005123751A - Electric noise filter and electric noise eliminating method - Google Patents

Electric noise filter and electric noise eliminating method Download PDF

Info

Publication number
JP2005123751A
JP2005123751A JP2003354384A JP2003354384A JP2005123751A JP 2005123751 A JP2005123751 A JP 2005123751A JP 2003354384 A JP2003354384 A JP 2003354384A JP 2003354384 A JP2003354384 A JP 2003354384A JP 2005123751 A JP2005123751 A JP 2005123751A
Authority
JP
Japan
Prior art keywords
conductor
sub
transmission line
main
noise filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003354384A
Other languages
Japanese (ja)
Inventor
Hiroji Kawakami
寛兒 川上
Toshio Fukuda
敏男 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANWA DENKI KK
Original Assignee
SANWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANWA DENKI KK filed Critical SANWA DENKI KK
Priority to JP2003354384A priority Critical patent/JP2005123751A/en
Publication of JP2005123751A publication Critical patent/JP2005123751A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a large power noise filter with a high current capacity and a high withstanding voltage for effectively attenuating electric noises with high frequencies. <P>SOLUTION: The electric noise filter is configured by arranging a circuit element with an impedance different from a characteristic impedance of a transmission line between a main conductor of a sub conductor missing part and a sub conductor or between the main conductor of the sub conductor missing part of the transmission line and a third conductor or by annularly providing a magnetic body to the transmission line, the transmission line being configured with the main conductor and the sub conductor coaxially coated on the main conductor via an insulator, the sub conductor being divided into a plurality of conductors at a prescribed uniform interval or by two kinds or more of lengths, the adjacent sub conductors being interconnected by the third conductor, or part of the removed sub conductors through the division being left and used for the interconnection in place of the third conductor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電子装置や放電を伴う電気機器など電気的雑音を発生する装置から外部へ延展される電線の出口、あるいは前記電線の中間に介在させて、前記装置や機器からの電気的雑音電力、若しくは電気的雑音電波が外部へ伝播するのを防止する電気的雑音フィルタ及び電気的雑音除去方法に関し、特に高電圧、大電流の配電系統に適用される電気的雑音フィルタ及び電気的雑音除去方法に関するものである。   The present invention relates to an electrical noise power from the device or the device, such as an electronic device or an electric device with electrical discharge, and the like. In particular, the present invention relates to an electrical noise filter and an electrical noise removal method for preventing electric noise from propagating to the outside, and in particular, an electrical noise filter and an electrical noise removal method applied to a high voltage, large current distribution system. It is about.

従来の電気的雑音フィルタは、個別のコイルやトランスなどの誘導素子、又は個別のコンデンサといった静電容量素子、あるいはこれら個別の誘導素子と静電容量素子とを組み合わせて、若しくは電線の周囲に環装した磁性体よる誘導素子で構成されてきた。
しかし、コイルやトランスなどといった個別の誘導素子は、空芯、磁芯の別はあってもいずれも電気巻線であり、前記電気巻線間に寄生するキャパシタンスと前記誘導素子のインダクタンスとで共振回路が構成され、またコンデンサといった個別の静電容量素子も、静電容量素子の電極を外部の電気回路に接続するための引き出し線に寄生するインダクタンスと前記静電容量素子のキャパシタンスとで共振回路が構成されため個別の誘導素子、あるいは静電容量素子で構成された電気的雑音フィルタの効果は、前記共振周波数近傍の周波数領域に限られるという難点があった。
特に、高電圧、大電流の電力線に挿入する大電力用雑音フィルタに使用する誘導素子は、大電流を流すために太い導線を使用しなければならないため前記巻線間のキャパシタンスが大きくなり誘導素子の共振周波数が低下する。また、静電容量素子も大きな耐電圧を実現するためには電極間に配置される誘電体の厚みを増さなければならず、また同一キャパシタンスを得るには電極面積を増さなければならない。したがって、静電容量素子は、耐電圧の2乗にほぼ比例して体積が増加する。体積の大きな静電容量素子は、より長い引出し線を必要とし、引出し線のインダクタンスの増加によって静電容量素子の共振周波数は低下する。
上記のように個別の誘導素子、静電容量素子によって高い周波数の電気的雑音を減衰させる大電流容量、高耐電圧の大電力用雑音フィルタの実現は困難であった。
さらに、電線の周囲に磁性材料を設ける形の雑音フィルタも該磁性材料の透磁率が数MHzから低下し始め、数GHzで1近くまで減少する。このため高い周波数の電気的雑音に対しては効果が低下するという欠点を有していた。
A conventional electrical noise filter is an inductive element such as an individual coil or transformer, or an electrostatic capacity element such as an individual capacitor, or a combination of these individual inductive element and electrostatic capacity element, or around an electric wire. It has been composed of inductive elements made of magnetic material.
However, each inductive element such as a coil or a transformer is an electric winding, whether it is an air core or a magnetic core, and resonates with the parasitic capacitance between the electric windings and the inductance of the inducting element. A circuit is configured, and an individual capacitive element such as a capacitor is also a resonance circuit by an inductance parasitic on a lead wire for connecting an electrode of the capacitive element to an external electric circuit and a capacitance of the capacitive element. Therefore, the effect of the electrical noise filter composed of individual inductive elements or capacitive elements is limited to a frequency region near the resonance frequency.
In particular, an inductive element used for a high-power noise filter inserted into a high-voltage, high-current power line must use a thick conductor in order to pass a large current. The resonance frequency of the is reduced. In order to realize a large withstand voltage, the capacitance element must also increase the thickness of the dielectric disposed between the electrodes, and to obtain the same capacitance, the electrode area must be increased. Therefore, the capacitance element increases in volume almost in proportion to the square of the withstand voltage. A capacitive element having a large volume requires a longer lead line, and the resonance frequency of the capacitive element is lowered by an increase in inductance of the lead line.
As described above, it has been difficult to realize a large current capacity, high withstand voltage, high power noise filter that attenuates high frequency electrical noise using individual inductive elements and capacitive elements.
Further, in the noise filter in which a magnetic material is provided around the electric wire, the permeability of the magnetic material starts to decrease from several MHz and decreases to nearly 1 at several GHz. For this reason, it has the disadvantage that the effect is reduced against high frequency electrical noise.

一方、インダクタンスの小さな誘導素子及びキャパシタンスの小さな静電容量素子を用いれば、高い周波数までフィルタを動作させることができる。しかし、電気的雑音の減衰量を確保するためには、このような誘導素子や静電容量素子による回路を多数直列接続しなければならない。例えば1箇所に集中して設けた誘導素子及び静電容量素子を10箇所に分散配置するとして、それぞれの誘電素子のインダクタンスを集中時の1/10に、またそれぞれの静電容量素子のキャパシタンスを集中時の1/10にした電気回路を10個直列接続すると、その電気回路の合計インダクタンスとキャパシタンスは、集中配置したときと同一である。しかし、このような電気回路は、いわゆるLC分布定数回路であって、伝送信号の位相の遅れは生ずるが、電圧・電流の振幅は変化しない無損失遅延回路となる。したがって、インダクタンスが小さな誘導素子とキャパシタンスが小さな静電容量素子をそれぞれ多数の均等に配置した電気回路は、雑音フィルタとしての作用をなさない。   On the other hand, if an inductive element with a small inductance and a capacitive element with a small capacitance are used, the filter can be operated up to a high frequency. However, in order to ensure the attenuation amount of electrical noise, a large number of such inductive and capacitive elements must be connected in series. For example, assuming that the inductive elements and the capacitive elements provided concentrated in one place are dispersedly arranged in 10 places, the inductance of each dielectric element is reduced to 1/10 of the concentrated time and the capacitance of each capacitive element is set. When ten electric circuits that are reduced to 1/10 of the concentration are connected in series, the total inductance and capacitance of the electric circuits are the same as when the electric circuits are concentrated. However, such an electric circuit is a so-called LC distributed constant circuit, and becomes a lossless delay circuit in which the phase of the transmission signal is delayed but the amplitude of the voltage / current does not change. Therefore, an electric circuit in which a large number of inductive elements having small inductances and electrostatic capacitance elements having small capacitances are arranged uniformly does not function as a noise filter.

本発明が解決しようとする課題は、上記従来技術に鑑み、高い周波数の電気的雑音を効果的に減衰させる大電流容量、高耐電圧の大電力用雑音フィルタを提供することにある。   The problem to be solved by the present invention is to provide a high-power noise filter with a large current capacity and a high withstand voltage that effectively attenuates high-frequency electrical noise.

本発明者は、上記課題を下記の手段により解決した。
(1)主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体が所定の均等間隔で複数個に分割され、さらに隣接する各副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部を残置、連結されてなることを特徴とする電気的雑音フィルタ。
(2)主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体が少なくとも2種類の長さで分割され、さらに隣接する各副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部を残置、連結されてなることを特徴とする電気的雑音フィルタ。
The present inventor has solved the above problems by the following means.
(1) In a transmission line composed of a main conductor and a sub-conductor that is coaxially covered with the main conductor via an insulator, the sub-conductor is divided into a plurality at predetermined equal intervals and further adjacent to each other. An electrical noise filter characterized in that each sub-conductor is connected by a third conductor, or a part of the sub-conductor missing by division is left and connected in place of the third conductor.
(2) In a transmission line composed of a main conductor and a sub-conductor that is coaxially covered with the main conductor via an insulator, the sub-conductor is divided into at least two types of lengths, and each adjacent conductor An electrical noise filter characterized in that the sub-conductors are connected by a third conductor, or a part of the sub-conductor missing by division is left and connected in place of the third conductor.

(3)主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体が、所定の均等間隔で複数個に分割され、さらに隣接する各副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部が残置、連結され、さらにまた前記伝送線の副導体欠如部の主導体と前記副導体、若しくは前記伝送線の副導体欠如部の主導体と第3の導体間に前記伝送線の特性インピーダンスと異なるインピーダンスを有する回路素子を配設してなることを特徴とする電気的雑音フィルタ。
(4)主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体が、少なくとも2種類の長さで分割され、さらに隣接する各副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部が残置、連結され、さらにまた前記伝送線の副導体欠如部の主導体と前記副導体、若しくは前記伝送線の副導体欠如部の主導体と第3の導体間に前記伝送線の特性インピーダンスと異なるインピーダンスを有する回路素子を配設してなることを特徴とする電気的雑音フィルタ。
(3) In a transmission line composed of a main conductor and a sub-conductor that is coaxially covered with the main conductor via an insulator, the sub-conductor is divided into a plurality at predetermined equal intervals and further adjacent The sub-conductors connected to each other are connected by a third conductor, or a part of the sub-conductor lacking by division is left and connected in place of the third conductor, and further, the sub-conductor lacking portion of the transmission line is led. A circuit element having an impedance different from the characteristic impedance of the transmission line is disposed between the body and the sub-conductor, or the main conductor and the third conductor of the sub-conductor lacking portion of the transmission line. Noise filter.
(4) In a transmission line composed of a main conductor and a sub-conductor coated coaxially with the main conductor via an insulator, the sub-conductor is divided into at least two types of lengths and further adjacent Each sub-conductor is connected by a third conductor, or a part of the sub-conductor which is lacked by division is left and connected in place of the third conductor, and the main conductor of the sub-conductor lacking portion of the transmission line is also connected. And a circuit element having an impedance different from the characteristic impedance of the transmission line between the main conductor and the third conductor of the sub conductor or the sub conductor lacking portion of the transmission line. Noise filter.

(5)前記回路素子が、少なくとも一個の静電容量素子であることを特徴とする前項(3)又は(4)に記載の電気的雑音フィルタ。
(6)前記回路素子が、少なくとも一個の静電容量素子と1個の抵抗素子とを直列接続したものであることを特徴とする前項(3)又は(4)に記載の電気的雑音フィルタ。
(5) The electrical noise filter as described in (3) or (4) above, wherein the circuit element is at least one capacitance element.
(6) The electrical noise filter as described in (3) or (4) above, wherein the circuit element is obtained by connecting at least one capacitance element and one resistance element in series.

(7)主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体が、所定の均等間隔で複数個に分割され、かつ副導体が欠如した部分の主導体に磁性体が環装され、さらに隣接する各副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部が残置、連結されてなることを特徴とする電気的雑音フィルタ。
(8)主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体が、少なくとも2種類の長さで分割され、かつ副導体が欠如した部分の主導体に磁性体が環装され、さらに隣接する各副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部が残置、連結されてなることを特徴とする電気的雑音フィルタ。
(7) In a transmission line composed of a main conductor and a sub-conductor that is coaxially covered with an insulator through an insulator, the sub-conductor is divided into a plurality at predetermined equal intervals, and A part of the sub-conductor that is missing from the main conductor in the part lacking the conductor is connected with a third conductor between the adjacent sub-conductors, or is divided by replacing the third conductor. Is an electrical noise filter characterized by being connected and left behind.
(8) In a transmission line composed of a main conductor and a sub conductor that is coaxially coated on the main conductor via an insulator, the sub conductor is divided into at least two lengths, and the sub conductor A magnetic material is wrapped around the main conductor of the portion lacking, and the adjacent sub-conductors are connected by the third conductor, or a part of the sub-conductor missing by the division is replaced with the third conductor. An electrical noise filter characterized by being left and connected.

(9)主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体の一部の外周に一定間隔、又は2種類以上の間隔をもって磁性体を環装してなることを特徴とする電気的雑音フィルタ。
(10)主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体が、所定の均等間隔で複数個に分割され、かつ前記副導体の一部の外周、及び副導体が欠如した部分の主導体に磁性体が環装され、さらに隣接する各副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部が残置、連結されてなることを特徴とする電気的雑音フィルタ。
(11)主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体が、少なくとも2種類の長さで分割され、かつ前記副導体の一部の外周、及び副導体が欠如した部分の主導体に磁性体が環装され、さらに隣接する各副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部が残置、連結されてなることを特徴とする電気的雑音フィルタ。
(9) In a transmission line composed of a main conductor and a sub conductor that is coaxially covered with an insulator through the main conductor, a constant interval, or two or more types of intervals, on the outer periphery of a part of the sub conductor An electrical noise filter characterized by comprising a magnetic material.
(10) In a transmission line composed of a main conductor and a sub-conductor that is coaxially coated on the main conductor via an insulator, the sub-conductor is divided into a plurality at predetermined equal intervals, and A magnetic body is wrapped around the outer periphery of a part of the sub-conductor and the main conductor of the part lacking the sub-conductor, and the adjacent sub-conductors are connected by the third conductor, or replaced with the third conductor. An electrical noise filter characterized in that a part of the sub-conductor missing due to the division is left and connected.
(11) In a transmission line composed of a main conductor and a subconductor that is coaxially covered with an insulator through an insulator, the subconductor is divided into at least two types of lengths, and the subconductor Magnetic material is wrapped around the outer periphery of part of the conductor and the main conductor in the part lacking the sub-conductor, and each adjacent sub-conductor is connected by a third conductor, or divided in place of the third conductor An electrical noise filter characterized in that a part of the sub-conductor missing is left and connected.

(12)前記伝送線の終端の主導体と副導体間に低周波阻止用の静電容量素子と前記伝送線の特性インピーダンスに近い値を持つ抵抗素子との直列接続回路を接続したことを特徴とする前項(1)〜(10)のいずれか1項に記載の電気的雑音フィルタ。   (12) A series connection circuit of a low frequency blocking electrostatic capacitance element and a resistance element having a value close to the characteristic impedance of the transmission line is connected between the main conductor and the sub conductor at the end of the transmission line. The electrical noise filter according to any one of (1) to (10) above.

(13)雑音を含む電力源から負荷まで延展する単相又は3相の電力伝送線、若しくは前記電力源に電力を与える単相又は3相の配電線の少なくとも一部を、前項(1)〜(12)のいずれか1項に記載の電気的雑音フィルタで構成したことを特徴とする電気的雑音除去方法。   (13) At least part of a single-phase or three-phase power transmission line extending from a power source including noise to a load, or a single-phase or three-phase distribution line for supplying power to the power source, (12) An electric noise removing method comprising the electric noise filter according to any one of (12).

請求項1〜8の電気的雑音フィルタは、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線の前記副導体を所定の均等間隔、又は2種類以上の長さで複数個に分割され、さらに隣接する各副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部を残置、連結されてなる構造を基本とし、前記伝送線の副導体欠如部の主導体と副導体、若しくは前記伝送線の副導体欠如部の主導体と第3の導体間に、前記伝送線の特性インピーダンスと異なるインピーダンスを有する回路素子を接続したり、あるいは前記伝送線の副導体欠如部の主導体に磁性体を環装するなどにより、比較的簡便な構成で、数MHz以上の高周波領域の電気的雑音を減衰でき、かつ数百アンペア、数千ボルトという大電流容量の電気的雑音フィルタとして使用できる。
請求項9の発明によれば、前記副導体を分割せずに副導体の外部に磁性体を環装すればよいのでより容易に、かつ安価に電気的雑音フィルタが構成できる。
さらに、直線形状に構成した本発明の電気的雑音フィルタは、既設設備の配電線と容易に交換でき、電力配電系そのものを電気的雑音フィルタと成し得る。
The electrical noise filter according to any one of claims 1 to 8, wherein the sub-conductor of the transmission line formed of the main conductor and the sub-conductor coated coaxially with an insulator interposed between them has a predetermined equal interval, or two or more types. It is divided into a plurality of lengths, and adjacent sub-conductors are connected by a third conductor, or a part of the sub-conductors missing by the division is left and connected instead of the third conductor. Based on the structure, an impedance different from the characteristic impedance of the transmission line is provided between the main conductor and the sub conductor of the sub conductor lacking part of the transmission line, or between the main conductor and the third conductor of the sub conductor lacking part of the transmission line. It is possible to attenuate electrical noise in the high frequency range of several MHz or more with a relatively simple structure by connecting circuit elements or by attaching a magnetic material to the main conductor of the sub conductor lacking part of the transmission line. And hundreds of amps and thousands of volts Cormorant can be used as an electrical noise filter of large current capacity.
According to the ninth aspect of the present invention, an electric noise filter can be configured more easily and inexpensively because it is only necessary to wrap the magnetic body outside the sub conductor without dividing the sub conductor.
Furthermore, the electrical noise filter of the present invention configured in a straight line shape can be easily replaced with a distribution line of an existing facility, and the power distribution system itself can be formed as an electrical noise filter.

本発明の実施の形態及び作用について、実施例の構成図、等価回路図、並びに解析結果のグラフによって説明する。なお図1から図17までは主として本発明の基本的な構成とその作用原理を説明、解析するための図であり、図18から図26までは高電圧、大電流の機器に適用できる本発明による電気的雑音フィルタの具体的な実施例、図27は本発明の電気的雑音フィルタによる電気的雑音防止方法に関する図である。
図1は副導体を均等に4分割した伝送線の副導体欠如部の主導体と副導体間に静電容量素子を付加した電気的雑音フィルタの実施例の斜視図、図2は図1に示す電気的雑音フィルタ実施例のA−A’断面図、図3は図1に示す電気的雑音フィルタ実施例の等価回路図、図4は図3の等価回路の電子回路解析プログラムによる計算結果としての伝達特性であり、図5は図3の等価回路に終端整合した容量素子と抵抗素子とを付加した場合の等価回路図、図6は図5の等価回路の電子回路解析プログラムによる計算結果としての伝達特性、図7は図5の等価回路において主導体と副導体間に付加された静電容量素子に直列抵抗を加えた場合の等価回路図、図8は図7の等価回路の電子回路解析プログラムによる計算結果としての伝達特性である。
また図9は副導体を2種の長さで4分割したときの図7に示す等価回路の解析プログラムによる計算結果としての伝達特性、図10は図8と図9の300MHz付近の伝達特性の拡大比較図である。
Embodiments and operations of the present invention will be described with reference to a configuration diagram of an example, an equivalent circuit diagram, and an analysis result graph. FIGS. 1 to 17 are diagrams mainly for explaining and analyzing the basic configuration of the present invention and its operation principle, and FIGS. 18 to 26 are the present invention applicable to high voltage and large current devices. FIG. 27 is a diagram showing a method for preventing electrical noise using the electrical noise filter of the present invention.
FIG. 1 is a perspective view of an embodiment of an electrical noise filter in which a capacitive element is added between a main conductor and a sub conductor of a sub conductor lacking portion of a transmission line in which the sub conductor is equally divided into four parts, and FIG. FIG. 3 is an equivalent circuit diagram of the electrical noise filter embodiment shown in FIG. 1, and FIG. 4 is a calculation result by the electronic circuit analysis program of the equivalent circuit of FIG. FIG. 5 is an equivalent circuit diagram in the case where a capacitance element and a resistance element that are terminated and matched are added to the equivalent circuit of FIG. 3, and FIG. 6 is a calculation result by the electronic circuit analysis program of the equivalent circuit of FIG. 7 is an equivalent circuit diagram when a series resistance is added to the capacitive element added between the main conductor and the sub-conductor in the equivalent circuit of FIG. 5, and FIG. 8 is an electronic circuit of the equivalent circuit of FIG. It is a transfer characteristic as a calculation result by an analysis program.
9 shows the transfer characteristic as a result of calculation by the analysis program of the equivalent circuit shown in FIG. 7 when the sub-conductor is divided into four by two types, and FIG. 10 shows the transfer characteristic around 300 MHz in FIGS. It is an enlarged comparison figure.

図11は副導体を4分割した伝送線の副導体欠如部の主導体に磁性体を環装した電気的雑音フィルタの実施例の斜視図、図12は図11に示す実施例の等価回路図、図13は図12に示す等価回路の電子回路解析プログラムによる計算結果としての伝達特性であり、図14は図12に示す等価回路に終端整合した静電容量素子と抵抗素子とを付加したときの等価回路図、図15は図14に示す等価回路の電子回路解析プログラムによる計算結果としての伝達特性である。
図16は主導体に絶縁体を介して副導体を同軸状に被覆した伝送線の所々に磁性体を環装した電気的雑音フィルタの実施例の斜視図、図17は図16に示す実施例の等価回路図である。
FIG. 11 is a perspective view of an embodiment of an electrical noise filter in which a magnetic material is wrapped around a main conductor of a sub conductor lacking portion of a transmission line in which the sub conductor is divided into four parts, and FIG. 12 is an equivalent circuit diagram of the embodiment shown in FIG. FIG. 13 shows transfer characteristics as a result of calculation by the electronic circuit analysis program of the equivalent circuit shown in FIG. 12, and FIG. 14 shows a case where a capacitance element and a resistance element that are terminal matched to the equivalent circuit shown in FIG. 12 are added. FIG. 15 is a transmission characteristic as a result of calculation by the electronic circuit analysis program of the equivalent circuit shown in FIG.
FIG. 16 is a perspective view of an embodiment of an electrical noise filter in which a magnetic material is provided in places around a transmission line in which a main conductor is coaxially covered with an auxiliary conductor via an insulator, and FIG. 17 is an embodiment shown in FIG. FIG.

図18は図1に示した電気的雑音フィルタ実施例の静電容量素子の展開図でり、図19は図1の電気的雑音フィルタ実施例を3相用の電気的雑音フィルタとして構成した実施例の斜視図、図20は図11の電気的雑音フィルタを3相用の電気的雑音フィルタとして構成した実施例の斜視図である。
また図21は2本の伝送線の2本の主導体間に静電容量素子を接続した電気的雑音フィルタの等価回路図、図22は図11に示す電気的雑音フィルタを単相2線式用に構成するとともに、副導体が欠如した部分の主導体に環装されている磁性体の中の1つを2本の主導体の周りに環装するように変更することによって主導体間に相互誘導を導入した電気的雑音フィルタの実施例の斜視図、図23は図22に示す電気的雑音フィルタの等価回路図である。
また図24は主導体に環装された磁性体にショートリングを施した箇所の断面図である。
さらに25図は、図11に示した電気的雑音フィルタの副導体の外部に磁性体を環装した実施例の斜視図である。
18 is a development view of the capacitive element of the electrical noise filter embodiment shown in FIG. 1, and FIG. 19 is an embodiment in which the electrical noise filter embodiment of FIG. 1 is configured as a three-phase electrical noise filter. FIG. 20 is a perspective view of an example in which the electrical noise filter of FIG. 11 is configured as a three-phase electrical noise filter.
21 is an equivalent circuit diagram of an electrical noise filter in which a capacitive element is connected between two main conductors of two transmission lines, and FIG. 22 is a single-phase two-wire system for the electrical noise filter shown in FIG. And by changing one of the magnetic bodies wrapped around the main conductor of the part lacking the sub-conductor to be wrapped around the two main conductors, between the main conductors. FIG. 23 is an equivalent circuit diagram of the electrical noise filter shown in FIG. 22. FIG. 23 is a perspective view of an embodiment of the electrical noise filter in which mutual induction is introduced.
FIG. 24 is a cross-sectional view of a portion where a short ring is applied to a magnetic body wrapped around the main conductor.
Further, FIG. 25 is a perspective view of an embodiment in which a magnetic material is mounted outside the sub conductor of the electrical noise filter shown in FIG.

図26は図1、図11に示した電気的雑音フィルタを折り返し型に構成した実施例の斜視図(ただし副導体欠如部の主導体と副導体間に接続される静電容量素子と抵抗素子の図示は省略)、図27は図1、図11に示した電気的雑音フィルタを巻き付け型に構成した実施例の斜視図(ただし副導体欠如部の環装される磁性体の図示は省略)である。
さらにまた 図28は本発明の電気的雑音フィルタを使用した雑音除去方法の回路構成例を示す図である。
26 is a perspective view of an embodiment in which the electrical noise filter shown in FIGS. 1 and 11 is configured in a folded shape (however, a capacitance element and a resistance element connected between the main conductor and the sub conductor of the sub conductor lacking portion) 27 is a perspective view of an embodiment in which the electrical noise filter shown in FIG. 1 and FIG. 11 is formed in a winding type (however, the illustration of the magnetic material to be wrapped around the sub-conductor lacking portion is omitted). It is.
FIG. 28 is a diagram showing a circuit configuration example of a noise removal method using the electrical noise filter of the present invention.

実施例の斜視図、断面図において1、1’、1”はそれぞれ異なる形態の電気的雑音フィルタ、2、2’は主導体、3は副導体、3a、3b、3c、3d,3eは分割されたそれぞれの副導体、4は絶縁体、5a、5b、5cは回路素子、6a、6a’、6b、6c、6c’、6d、6e、6f、6gは磁性体、7は副導体間を接続する第3の導線、8は副導体端子、9はショートリング、10は2つ又は3つの電気的雑音フィルタの相対する位置の副導体間を接続する導体であり、回路素子の展開図において51は主導体への接続端子、52は副導体への接続端子、53は抵抗素子、54は静電容量素子の主導体側電極、55は静電容量素子の副導体側電極、56は絶縁体である。   In the perspective view and the sectional view of the embodiment, 1, 1 ', 1 "are different electric noise filters, 2, 2' is a main conductor, 3 is a sub conductor, 3a, 3b, 3c, 3d, 3e are divided. 5a, 5b and 5c are circuit elements, 6a, 6a ', 6b, 6c, 6c', 6d, 6e, 6f and 6g are magnetic bodies, and 7 is between the sub conductors. A third conductor to be connected, 8 is a sub-conductor terminal, 9 is a short ring, 10 is a conductor connecting between the sub-conductors at the opposite positions of two or three electrical noise filters, 51 is a connection terminal to the main conductor, 52 is a connection terminal to the sub conductor, 53 is a resistance element, 54 is a main conductor side electrode of the capacitance element, 55 is a sub conductor side electrode of the capacitance element, and 56 is an insulator It is.

また、等価回路図において21a、21b、21c、21d、21a’、21b’、21c’、21d’は副導体の分割等インピーダンスの不整合導入点で分割されたそれぞれの伝送線、22a、22b、22c、22dは静電容量素子、23a、23b、23cは抵抗素子、24a、24b、24cは誘導素子、25a、25b、25cは誘導素子の内部抵抗、26a、26b、26c、26dは相互誘導素子、27は終端整合用静電容量素子、28は終端整合用抵抗素子、29は入力端子、30は出力端子である。   In the equivalent circuit diagram, 21a, 21b, 21c, 21d, 21a ′, 21b ′, 21c ′, 21d ′ are the transmission lines 22a, 22b, 22a, 22b, 22c and 22d are capacitive elements, 23a, 23b and 23c are resistance elements, 24a, 24b and 24c are induction elements, 25a, 25b and 25c are internal resistances of the induction elements, and 26a, 26b, 26c and 26d are mutual induction elements. , 27 is a terminal matching capacitance element, 28 is a terminal matching resistance element, 29 is an input terminal, and 30 is an output terminal.

さらに本発明実施例を使用した雑音除去方法の回路構成例を示す図において、41は雑音源、42は負荷、43a、43b、43cは電力線、44a、44b、44c、44dは本発明の電気的雑音フィルタである。   Furthermore, in the figure which shows the circuit structural example of the noise removal method using this invention Example, 41 is a noise source, 42 is a load, 43a, 43b, 43c is a power line, 44a, 44b, 44c, 44d is the electrical of this invention It is a noise filter.

本発明になる電気的雑音フィルタの第1の基本的構造は、図2の断面図に見られるように主導体2の周りに絶縁体4を介して副導体3が同軸状に被覆され、かつ前記副導体3が図1の実施例に示すように複数個(図1では4個)に分割されてなる伝送線1と、前記伝送線1において副導体3が欠如した部分の主導体2と分割された副導体3aと3b、3bと3c、3cと3dとの間にそれぞれ配設された前記伝送線の特性インピーダンスと異なるインピーダンスを有する回路素子5a、5b、5cとからなる。
図1に示した実施例の動作を図3〜図8に基づいて説明する。なお、図3、図5、図7などの各等価回路図では、説明の便宜上、図1に示す伝送線1を前記副導体3の分割部分ごとに分割し、それぞれを伝送線21a、21b、21c、21dとし、これら伝送線21a、21b、21c、21dが直列に接続され、かつそれぞれの接続点に容量素子22a、22b、22cや抵抗素子23a、23b、23cが接続されたものとして表示した。
図3に示した等価回路において、前記伝送線21a、21b、21c、21dの各特性インピーダンスZcを50Ω、遅延時間Tを5ns、前記容量素子22a、22b、22cの各キャパシタンスを50nFとしたときの図3の等価回路の100kHzから1GHzまでの周波数領域の伝達特性を、オラクル社製電子回路解析プログラムにより計算した結果を図4に示す。
The first basic structure of the electrical noise filter according to the present invention is such that, as seen in the cross-sectional view of FIG. 2, the subconductor 3 is coaxially coated around the main conductor 2 with an insulator 4 interposed therebetween, and As shown in the embodiment of FIG. 1, the transmission line 1 is divided into a plurality of pieces (four pieces in FIG. 1), and the main conductor 2 in the transmission line 1 where the sub-conductor 3 is missing. It consists of circuit elements 5a, 5b, and 5c having impedances different from the characteristic impedance of the transmission line respectively disposed between the divided sub-conductors 3a and 3b, 3b and 3c, 3c and 3d.
The operation of the embodiment shown in FIG. 1 will be described with reference to FIGS. In addition, in each equivalent circuit diagram of FIG. 3, FIG. 5, FIG. 7, etc., for convenience of explanation, the transmission line 1 shown in FIG. 1 is divided for each divided portion of the sub-conductor 3, and the transmission lines 21a, 21b, The transmission lines 21a, 21b, 21c, and 21d are connected in series, and the capacitance elements 22a, 22b, and 22c and the resistance elements 23a, 23b, and 23c are connected to the respective connection points. .
In the equivalent circuit shown in FIG. 3, when the characteristic impedances Zc of the transmission lines 21a, 21b, 21c, and 21d are 50Ω, the delay time T is 5 ns, and the capacitances of the capacitive elements 22a, 22b, and 22c are 50 nF. FIG. 4 shows the result of calculating the transfer characteristics of the equivalent circuit of FIG. 3 in the frequency region from 100 kHz to 1 GHz by an electronic circuit analysis program manufactured by Oracle.

任意の特性インピーダンスZcを持つ伝送線の両端に前記伝送線の特性インピーダンスZcと異なるインピーダンスZpの回路素子を接続して不整合端末とした場合、入力端に与えられた高周波電流、高周波電圧は、伝送線内を伝播した後、出力端で反射され入力端まで戻る。したがって、図3に示すように不整合終端された伝送線を複数接続すれば、入力端子29に与えられた高周波電流、高周波電圧は、それぞれの接続点でその都度反射するため、出力端子30まで伝達される高周波の電流波、電圧波の量は一般的には減少する。
このことは、図4に見られるように、10MHz以上の周波数で伝達量が負の値となり高周波電流、高周波電圧の伝達量が減少していることから明らかであり、この周波数領域での電気的雑音は減少する。その一方で1.78MHz、4.5MHz、6.8MHz、8.3MHzにおいて伝達量が26、25dBを超える大きな正の値を示しており、この周波数での電気的雑音は増幅されることになる。
When a circuit element having an impedance Zp different from the characteristic impedance Zc of the transmission line is connected to both ends of the transmission line having an arbitrary characteristic impedance Zc to form a mismatched terminal, the high-frequency current and high-frequency voltage applied to the input terminal are After propagating through the transmission line, it is reflected at the output end and returns to the input end. Therefore, when a plurality of mismatched terminated transmission lines are connected as shown in FIG. 3, the high-frequency current and high-frequency voltage applied to the input terminal 29 are reflected at each connection point. The amount of high-frequency current waves and voltage waves transmitted is generally reduced.
As can be seen from FIG. 4, this is clear from the fact that the transmission amount becomes a negative value at a frequency of 10 MHz or more and the transmission amount of the high-frequency current and high-frequency voltage is reduced. Noise is reduced. On the other hand, the transmission amount shows a large positive value exceeding 26, 25 dB at 1.78 MHz, 4.5 MHz, 6.8 MHz, and 8.3 MHz, and electrical noise at this frequency is amplified. .

図5に示す等価回路は、図3の等価回路の出力端子30間に終端整合用静電容量素子27と終端整合用抵抗素子28を接続したときの等価回路である。また図6に、本等価回路の回路定数をそれぞれ、伝送線21a、21b、21c、21dの各特性インピーダンスZcを50Ω、1mあたりの遅延時間Tを5ns、前記静電容量素子22a、22b、22cの各キャパシタンスを50nF、低周波高電圧遮断用静電容量素子27のキャパシタンスを50nF、終端整合抵抗28を50Ωとしたときの図5の等価回路の100kHzから1GHzまでの周波数領域の伝達特性を前記電子回路解析プログラムにより計算した結果を示す。
図6から分かるように、1.78MHzから8.3MHzの間における伝達量のピークが、図4の26、25dBを超える値から少なくとも5dB減少してはいるが、この周波数の電気的雑音が増幅されることに変わりはない。
The equivalent circuit shown in FIG. 5 is an equivalent circuit when the terminal matching capacitance element 27 and the terminal matching resistance element 28 are connected between the output terminals 30 of the equivalent circuit of FIG. FIG. 6 shows the circuit constants of the equivalent circuit, the characteristic impedances Zc of the transmission lines 21a, 21b, 21c and 21d are 50Ω, the delay time T per meter is 5 ns, and the capacitance elements 22a, 22b and 22c. The transfer characteristics in the frequency region from 100 kHz to 1 GHz of the equivalent circuit of FIG. 5 when the capacitance of each capacitance of 50 nF, the capacitance of the low-frequency high-voltage blocking electrostatic capacitance element 27 is 50 nF, and the termination matching resistor 28 is 50Ω are described above. The result calculated by the electronic circuit analysis program is shown.
As can be seen from FIG. 6, the peak of the transmission amount between 1.78 MHz and 8.3 MHz is reduced by at least 5 dB from the value exceeding 26, 25 dB in FIG. 4, but the electrical noise of this frequency is amplified. There is no change in being done.

図4、図6に見られる1.78MHz及び4.5MHzでの正の値を示す伝送量のピークは、図7に示すように前記容量素子22a、22b、22cに抵抗23a、23b、23cを直列に接続することにより緩和できる。図7に示す回路において、前記抵抗23a、23b、23cの値Zpを伝送線21a、21b、21c、21dの特性インピーダンスZc=50Ωの1/10である5Ωとして前記電子回路解析プログラムで計算した結果を図8に示す。
図8に示す計算結果を図4及び図6に示した計算結果と比較してみると、図8には次の2つの特徴が見られる。すなわち、第1点は、1MHz以下の低周波帯の伝達量は3.4dBに上昇してはいるものの、図4、図6に見られた1〜10MHzの周波数範囲内にあった伝送量の正のピークがなくなったばかりでなく、この周波数範囲で伝送量が負の値を示していること、第2点は、−150〜−250dBもあった10MHz以上の周波数における伝達量の極小値が、約−61dBにまで増加し、かつ、約50MHzから約600MHzまで前記極小値がほぼ一定となっていることである。
第1の特徴によって1MHz〜10MHzの周波数範囲内の電気的雑音の伝達量が大幅に減少し、第2の特徴によって10MHz以上の周波数における伝達量の極小値が−61dBと増加してはいるが、この−61dBという値は上記周波数領域の電気的雑音フィルタの性能としては十分良好なものである。
なお、この−61dBという伝達量は、
The peak of the transmission amount showing positive values at 1.78 MHz and 4.5 MHz shown in FIGS. 4 and 6 is caused by adding resistors 23a, 23b, and 23c to the capacitive elements 22a, 22b, and 22c as shown in FIG. It can be mitigated by connecting in series. In the circuit shown in FIG. 7, the value Zp of the resistors 23a, 23b and 23c is calculated by the electronic circuit analysis program as 5Ω which is 1/10 of the characteristic impedance Zc = 50Ω of the transmission lines 21a, 21b, 21c and 21d. Is shown in FIG.
When the calculation results shown in FIG. 8 are compared with the calculation results shown in FIGS. 4 and 6, the following two features can be seen in FIG. In other words, the first point is that the transmission amount in the low frequency band of 1 MHz or less has increased to 3.4 dB, but the transmission amount was within the frequency range of 1 to 10 MHz seen in FIGS. In addition to the disappearance of the positive peak, the transmission amount shows a negative value in this frequency range, and the second point is that the minimum value of the transmission amount at a frequency of 10 MHz or more, which is -150 to -250 dB, The minimum value increases to about -61 dB, and the minimum value is substantially constant from about 50 MHz to about 600 MHz.
Although the transmission amount of electrical noise within the frequency range of 1 MHz to 10 MHz is greatly reduced by the first feature, the minimum value of the transmission amount at a frequency of 10 MHz or more is increased by -61 dB by the second feature. The value of -61 dB is sufficiently good as the performance of the electric noise filter in the frequency domain.
The transmission amount of -61 dB is

で与えられるそれぞれの接続点における伝達量Gに、本電気回路解析プログラムの計算に使用した前記伝送線21a、21b、21c、21dの特性インピーダンスZc=50Ωと直列抵抗値Zp=5Ωを導入したときの値、
G=5/(50+5)
すなわち、−20.8dBが3箇所の接続点で繰り返されたと考えたときの値、
20.8dB×3=−62.5dB
に極めて近い。したがって、伝送線の接続数を増せば前記伝達量の極小値はさらに低減できる。
Is introduced into the transmission amount G at each connection point given by the characteristic impedance Zc = 50Ω and series resistance value Zp = 5Ω of the transmission lines 21a, 21b, 21c, 21d used in the calculation of the electric circuit analysis program. The value of the,
G = 5 / (50 + 5)
That is, a value when -20.8 dB is considered to have been repeated at three connection points,
20.8 dB × 3 = −62.5 dB
Very close to. Therefore, the minimum value of the transmission amount can be further reduced by increasing the number of transmission lines connected.

図4、図6、図8には、100MHz、200MHz、300MHz、400MHz等100MHzごとの離散的な周波数において伝達量が0dBとなるピークが見られる。これら周波数は、図3に示した伝送線21a、21b、21c、21dの遅延時間Tによって決定される反射現象によって生じている。すなわち、弦の振動現象などに見られる定在波に対応するものであり、振動の節が接続点間に1/2波長、1/4波長、1/6波長などの波が安定的に存在するために生じる。したがって、各々の伝送線21a、21b、21c、21dの遅延時間がT秒のとき伝送線接続点を節とする振動周波数(以下共振周波数という)fpは数2に示す式で与えられる。なお、数2の式においてnは任意の正の整数である。   In FIGS. 4, 6, and 8, there are peaks at which the transmission amount is 0 dB at discrete frequencies every 100 MHz such as 100 MHz, 200 MHz, 300 MHz, and 400 MHz. These frequencies are caused by a reflection phenomenon determined by the delay time T of the transmission lines 21a, 21b, 21c, and 21d shown in FIG. In other words, it corresponds to the standing wave observed in the vibration phenomenon of the string, and the waves of 1/2 wavelength, 1/4 wavelength, 1/6 wavelength, etc. exist stably between the connection points of the vibration node. To occur. Therefore, when the delay time of each of the transmission lines 21a, 21b, 21c, and 21d is T seconds, the vibration frequency (hereinafter referred to as resonance frequency) fp with the transmission line connection point as a node is given by the equation shown in Equation 2. Note that n in the formula 2 is an arbitrary positive integer.

ここでは前述のとおり伝送線21a、21b、21c、21dの遅延時間Tを5nsとして計算しているので、式2から求められる共振周波数fpは
fp=n/(2×5×10-9)=100n×106
つまり100MHzを最低とし、その整数倍の周波数となるが、図4、図6、図8に示した計算結果はそれとよく一致している。
図8に見られるような、特定周波数近辺以外の周波数で小さな伝達量を示す伝送線においては、熱雑音のように電力スペクトラムが広い周波数帯域に平坦に広がっている電気的雑音は低減される。しかし、スイッチングノイズのように一定周期を持つ電気的雑音に対しては、その周期の逆数と前記共振周波数fpとが一致する場合には電気的雑音の低減効果は小さくなるので、その対策が必要になる。
Here, since the delay time T of the transmission lines 21a, 21b, 21c, and 21d is calculated as 5 ns as described above, the resonance frequency fp obtained from Equation 2 is fp = n / (2 × 5 × 10 −9 ) = 100n × 10 6
That is, the minimum is 100 MHz, which is a frequency that is an integral multiple thereof, but the calculation results shown in FIGS. 4, 6, and 8 agree well with it.
In a transmission line that shows a small transmission amount at a frequency other than the vicinity of the specific frequency as shown in FIG. 8, electrical noise in which the power spectrum spreads flatly in a wide frequency band, such as thermal noise, is reduced. However, for electrical noise having a fixed period such as switching noise, if the reciprocal of the period and the resonance frequency fp coincide with each other, the effect of reducing the electrical noise is reduced. become.

先に説明したように前記共振周波数fpは伝送線21a、21b、21c、21dの遅延時間Tで定まる。したがって、図1における副導体3を異なる長さで分割すると、各伝送線21a、21b、21c、21dの遅延時間TがそれぞれTa、Tb、Tc、Tdのように異なる値となり、それぞれの共振周波数fpもfpa、fpb、fpc、fpdといったように分散され、各共振周波数fpa、fpb、fpc、fpdにおける伝達量も、副導体3を均等分割した実施例1の場合の共振周波数fpにおける伝達量より低減させることができる。
図7に示す等価回路において伝送線21a、21cの遅延時間Ta、Tcを先の実施例1における遅延時間T=5nsの90%である4.5nsに、伝送線21b、21dの遅延時間Tb、Tdを先実施例1における遅延時間T=5nsの110%である5.5nsとしたときの100kHzから1000MHz近辺の伝達特性を前記電気回路解析プログラムで計算した結果を図9に示す。
図8と図9の比較から明らかなように、図8の計算結果に見られた100MHz、200MHz、300MHz、400MHzなど、100MHzごとに現れていた伝達量が0dBとなるピークは消滅している。また、10MHz以上における最大伝達量も−20dB以下に低下している。
As described above, the resonance frequency fp is determined by the delay time T of the transmission lines 21a, 21b, 21c, and 21d. Therefore, when divided by the sub-conductor 3 different lengths in Figure 1, becomes a different value as the transmission lines 21a, 21b, 21c, 21d delay time of T, respectively T a, T b, T c, T d, each resonant frequency fp be fp a, fp b, fp c, is distributed as such fp d, the resonance frequencies fp a, fp b, fp c, the amount transferred in fp d also carried a sub-conductor 3 was equally divided The amount of transmission at the resonance frequency fp in the case of Example 1 can be reduced.
In the equivalent circuit shown in FIG. 7, the delay times T a and T c of the transmission lines 21a and 21c are set to 4.5 ns, which is 90% of the delay time T = 5 ns in the first embodiment, and the delay times of the transmission lines 21b and 21d. FIG. 9 shows the result of calculating the transfer characteristics in the vicinity of 100 kHz to 1000 MHz by the electric circuit analysis program when T b and T d are set to 5.5 ns which is 110% of the delay time T = 5 ns in the first embodiment. .
As is clear from the comparison between FIG. 8 and FIG. 9, the peak where the amount of transmission that appears every 100 MHz, such as 100 MHz, 200 MHz, 300 MHz, and 400 MHz, seen in the calculation result of FIG. 8 disappears. Further, the maximum transmission amount at 10 MHz or more is also reduced to -20 dB or less.

図10に図8と図9の300MHz近辺の伝達特性を拡大して示す。
副導体3を均等の長さで分割し、各伝送線21a、21b、21c、21dの遅延時間Tを5nsとした場合の計算結果を破線で、副導体3を2種類の長さで分割し、伝送線21a、21cの遅延時間を4.5nsに、伝送線21b、21dの遅延時間を5.5nsとした場合の計算結果を実線で示している。破線が300MHzで伝達量が0dBとなる急峻なピークを示しているのに対して、実線は272MHzと333MHzの2箇所に、いずれも伝達量が21dB以下の緩やかなピークの存在がみられる。この周波数272MHzと333MHzはそれぞれ遅延時間5.5nsと4.5nsの逆数に対応するものである。
この結果図9から明らかなように、数MHz以上の高い周波数帯で伝達量を−20dB以下に低減でき、スイッチングノイズのように一定周期を持つ電気的雑音に対しても効果がある電気的雑音フィルタとして応用できる回路の構成が可能となる。
FIG. 10 shows an enlarged view of the transfer characteristics around 300 MHz in FIGS.
The subconductor 3 is divided into equal lengths, and the calculation results when the delay time T of each transmission line 21a, 21b, 21c, 21d is 5 ns are broken lines, and the subconductor 3 is divided into two types of lengths. The calculation results when the delay times of the transmission lines 21a and 21c are 4.5 ns and the delay times of the transmission lines 21b and 21d are 5.5 ns are indicated by solid lines. The broken line shows a steep peak where the transmission amount becomes 0 dB at 300 MHz, whereas the solid line shows a moderate peak where the transmission amount is 21 dB or less in two places of 272 MHz and 333 MHz. The frequencies 272 MHz and 333 MHz correspond to the reciprocals of the delay times 5.5 ns and 4.5 ns, respectively.
As a result, as can be seen from FIG. 9, the transmission noise can be reduced to -20 dB or less in a high frequency band of several MHz or more, and the electrical noise that is also effective for electrical noise having a fixed period such as switching noise. A circuit configuration applicable as a filter is possible.

これまでは伝送線間の接続点の不整合を静電容量素子により形成する例について説明した。しかし、伝送線間の接続点の不整合を誘導素子によって形成しても同様の効果が得られる。したがって、本発明になる電気的雑音フィルタの第2の基本的構造として、図11に示すように主導体2の周りに絶縁体4を介して副導体3が同軸状に被覆され、かつ前記副導体3が複数個(図11では4個)に分割されてなる伝送線と、前記伝送線において副導体が欠如した部分の主導体2に磁性体6a、6b、6cが環装され、さらに前記分割された副導体3a、3b、3c、3dを第3の導体7で接続した電気的雑音フィルタ1’があげられる。   Until now, the example which forms the mismatch of the connection point between transmission lines with a capacitive element was demonstrated. However, the same effect can be obtained even if the mismatch of the connection points between the transmission lines is formed by the inductive element. Therefore, as a second basic structure of the electrical noise filter according to the present invention, as shown in FIG. 11, the sub conductor 3 is coaxially covered around the main conductor 2 via the insulator 4, and the sub-filter is arranged. Magnetic bodies 6a, 6b, and 6c are mounted on the transmission line in which the conductor 3 is divided into a plurality (four in FIG. 11) and the main conductor 2 in the transmission line where the sub-conductor is absent. An electrical noise filter 1 ′ in which the divided subconductors 3 a, 3 b, 3 c, 3 d are connected by a third conductor 7 can be given.

図11に示した構造の電気的雑音フィルタ1’の等価回路を図12に示す。図12において、前記磁性体6a、6b、6cの誘導素子24a、24b、24cとしてのインダクタンスを3.5μH、各誘導素子24a、24b、24cの内部抵抗25a、25b、25cの抵抗値を前記磁性体6a、6b、6cの透磁率が5MHz以上で周波数に反比例して低下することを模擬した値の200Ωとし、また、伝送線21a、21b、21c、21dの特性インピーダンスを50Ω、伝送線21a、21cの遅延時間を4.1ns、伝送線21b、21dの遅延時間を5.9nsであるとしたときの、前記電子回路解析プログラムによる計算結果を図13に示す。
図13から明らかなように30MHz以上の周波数範囲において伝達量は−20dB以下の良好な値を示すことがわかる。
上記の解析に適用した3.5μHのインダクタンスは、1本の導体の周囲に磁性体を環装することで実現できる値であることは当該分野の技術者が容易に理解できることである。
FIG. 12 shows an equivalent circuit of the electrical noise filter 1 ′ having the structure shown in FIG. In FIG. 12, the inductances of the magnetic bodies 6a, 6b, 6c as inductance elements 24a, 24b, 24c are 3.5 μH, and the internal resistances 25a, 25b, 25c of the induction elements 24a, 24b, 24c are the resistance values of the magnetic elements 6a, 6b, 6c. 200Ω which is a value simulating that the magnetic permeability of the bodies 6a, 6b and 6c decreases in inverse proportion to the frequency at 5 MHz or more, and the characteristic impedance of the transmission lines 21a, 21b, 21c and 21d is 50Ω, the transmission line 21a, FIG. 13 shows the calculation result by the electronic circuit analysis program when the delay time of 21c is 4.1 ns and the delay times of the transmission lines 21b and 21d are 5.9 ns.
As can be seen from FIG. 13, the transmission amount shows a good value of -20 dB or less in the frequency range of 30 MHz or more.
Those skilled in the art can easily understand that the inductance of 3.5 μH applied to the above analysis is a value that can be realized by mounting a magnetic body around one conductor.

このように、複数の伝送線21a、21b、21c、21d、・・・・を直列接続し、それぞれの接続点に該伝送線21a、21b、21c、21d、・・・の特性インピーダンスZcと異なるインピーダンスZpを接続して不整合状態とすると、広い周波数帯域にわたり、特に数MHz以上1GHz近辺までの高い周波数範囲で平均伝達量が−20dBより低くなり、この周波数範囲に効果を有する電気的雑音フィルタが実現できる。   In this way, a plurality of transmission lines 21a, 21b, 21c, 21d,... Are connected in series, and are different from the characteristic impedance Zc of the transmission lines 21a, 21b, 21c, 21d,. When the impedance Zp is connected to form a mismatched state, the average transmission amount is lower than −20 dB over a wide frequency band, particularly in a high frequency range from several MHz to around 1 GHz, and an electrical noise filter having an effect in this frequency range Can be realized.

図14の等価回路は、図12の等価回路の出力端子30間に終端整合用静電容量素子27と終端整合用抵抗素子28を接続したときの等価回路であり、図14に示した等価回路を前記電子回路解析プログラムにより計算した結果を図15に示す。なお計算に使用したそれぞれの素子の回路定数は、前例と同じである。
図15から明らかなように、図13に見られた0dB以上の値となるピーク点が消滅している。
The equivalent circuit of FIG. 14 is an equivalent circuit when the terminal matching capacitance element 27 and the terminal matching resistance element 28 are connected between the output terminals 30 of the equivalent circuit of FIG. 12, and the equivalent circuit shown in FIG. FIG. 15 shows the result of calculation by the electronic circuit analysis program. The circuit constants of the respective elements used for the calculation are the same as in the previous example.
As is clear from FIG. 15, the peak point having a value of 0 dB or more, as seen in FIG. 13, disappears.

さらに、伝送線21a、21b、21c、21dの接続点間に相互誘導素子を用いても上記誘導素子の場合と同様の効果が得られる。したがって、本発明になる電気的雑音フィルタの第3の基本的構造として、図16に示すように主導体2と、主導体2の周りに絶縁体4を介して副導体3が同軸状に被覆されてなる伝送線において、前記副導体2の一部の外周に一定間隔、又は2種類以上の間隔をもって磁性体を環装してなる電気的雑音フィルタ1”があげられる。なお図17に図16に示した電気的雑音フィルタ1”の等価回路を示す。   Further, even if a mutual inductive element is used between the connection points of the transmission lines 21a, 21b, 21c, and 21d, the same effect as in the case of the inductive element can be obtained. Therefore, as a third basic structure of the electrical noise filter according to the present invention, as shown in FIG. 16, the sub conductor 3 is coaxially covered with the main conductor 2 and the insulator 4 around the main conductor 2. In the transmission line thus formed, there is an electrical noise filter 1 ″ in which a magnetic material is provided around the outer periphery of a part of the sub-conductor 2 with a constant interval or two or more types of intervals. 16 shows an equivalent circuit of the electrical noise filter 1 ″ shown in FIG.

上記した本発明になる電気的雑音フィルタの3つの基本的構造を、大電流容量、高耐圧の電気的雑音フィルタに適応した実施例について、以下に説明する。   An embodiment in which the above three basic structures of the electrical noise filter according to the present invention are applied to an electrical noise filter having a large current capacity and a high withstand voltage will be described below.

最初の実施例として、図1に示した本発明の電気的雑音フィルタの第1の基本構造を耐電圧2000V、電流容量600Aの電気雑音フィルタに適用したものについて図1に基づいて説明する。なお、上記の耐電圧2000V、電流容量600Aという値は、電車のモータを4台駆動し得るものである。
本実施例における主導体2は、600Aの主電流に対応するため300mm2の断面積、すなわち幅50mm、厚さ6mmの断面を持つ銅帯で構成されており、この主導体2に厚み50μmのポリイミド樹脂フィルムを2層重ね巻きした絶縁体4を介して、厚さ0.05mmの銅箔からなる副導体3a、3b、3c、3dが巻着され伝送線1が実現されている。この場合、前記主導体2と絶縁体4間、及び絶縁体4と副導体3a、3b、3c、3d間の空隙が静電容量を低下させることになるので、前記空隙が前記絶縁体4の厚みより十分小さくなるよう前記副導体3a、3b、3c、3dを緊密に巻着するのが望ましい。
なお、前記ポリイミド樹脂フィルムは、理想状態では厚さ20μm当たり10000Vの耐圧を持つ材料であり、100μmの厚みである絶縁体4は要求される耐電圧2000Vに対して十分な余裕を持っている。また、副導体3a、3b、3c、3dには高周波電流のみが流れるためその断面積は主導体より小さく選ぶことができる。
As a first embodiment, an example in which the first basic structure of the electrical noise filter of the present invention shown in FIG. 1 is applied to an electrical noise filter having a withstand voltage of 2000 V and a current capacity of 600 A will be described with reference to FIG. The values of withstand voltage of 2000 V and current capacity of 600 A can drive four train motors.
The main conductor 2 in this embodiment is composed of a copper strip having a cross-sectional area of 300 mm 2 , that is, a width of 50 mm and a thickness of 6 mm, in order to correspond to a main current of 600 A, and the main conductor 2 has a thickness of 50 μm. Subconductors 3a, 3b, 3c, and 3d made of copper foil having a thickness of 0.05 mm are wound around an insulator 4 in which two layers of polyimide resin films are wound and a transmission line 1 is realized. In this case, the gap between the main conductor 2 and the insulator 4 and between the insulator 4 and the sub-conductors 3a, 3b, 3c, and 3d reduces the electrostatic capacity. It is desirable that the subconductors 3a, 3b, 3c, and 3d are tightly wound so as to be sufficiently smaller than the thickness.
The polyimide resin film is a material having a withstand voltage of 10,000 V per 20 μm thickness in an ideal state, and the insulator 4 having a thickness of 100 μm has a sufficient margin for a required withstand voltage of 2000 V. Further, since only high-frequency current flows through the sub-conductors 3a, 3b, 3c, and 3d, the cross-sectional area can be selected smaller than that of the main conductor.

上記伝送線1の特性インピーダンスZcと伝播速度vcとは、先に図2に示した断面構造と主導体2の断面寸法(50mm×6mm)、絶縁体4の厚み(100μm)、及び絶縁体の誘電率(ポリイミド樹脂の場合3)から算出される該伝送線1の単位長さ当たりのキャパシタンスCp及び単位長さ当たりのインダクタンスLsとから、それぞれ数3及び数4に示す式で与えられる。   The characteristic impedance Zc and the propagation velocity vc of the transmission line 1 are the cross-sectional structure shown in FIG. 2, the cross-sectional dimension of the main conductor 2 (50 mm × 6 mm), the thickness of the insulator 4 (100 μm), and the insulator From the capacitance Cp per unit length of the transmission line 1 calculated from the dielectric constant (in the case of polyimide resin 3) and the inductance Ls per unit length, they are given by the equations shown in Equations 3 and 4, respectively.

上記実施例における伝送線1のキャパシタンスCpは1m当たり30nF、インダクタンスLsは1m当たり25nHであるから、この上記数値を数3、数4それぞれの式に代入すると、
Zc=(25×10-9/30×10-91/2
=0.913Ω
vc=1/(25×10-9×30×10-91/2
=36.5×106m/秒
になる。
本実施例では、副導体3a、3b、3c、3dで4分割される伝送線21a、21b、21c、21dの長さをプラスマイナス10%の範囲内で違え、定在波による低減衰量ピークの発生を防止しており、その平均長を0.75m、主導体2の全長を3mとしている。したがって、上記vc=36.5×106m/秒の条件では、反射発生の最低周波数は約24.3MHzとなり、図4、図8に示した例より低い周波の雑音を低減できる性能が得られる。
Since the capacitance Cp of the transmission line 1 in the above embodiment is 30 nF per meter and the inductance Ls is 25 nH per meter, substituting the above numerical values into the equations of Equations 3 and 4, respectively,
Zc = (25 × 10 −9 / 30 × 10 −9 ) 1/2
= 0.913Ω
vc = 1 / (25 × 10 −9 × 30 × 10 −9 ) 1/2
= 36.5 × 10 6 m / sec.
In this embodiment, the lengths of the transmission lines 21a, 21b, 21c, 21d divided into four by the subconductors 3a, 3b, 3c, 3d are different within a range of plus or minus 10%, and the low attenuation peak due to standing waves is used. The average length is 0.75 m, and the total length of the main conductor 2 is 3 m. Therefore, under the condition of vc = 36.5 × 10 6 m / sec, the lowest frequency of occurrence of reflection is about 24.3 MHz, and a performance that can reduce noise at a lower frequency than the examples shown in FIGS. 4 and 8 is obtained. It is done.

また、図1に示す本実施例の電気回路素子5a、5b、5cは、図7の等価回路における静電容量素子22a、22b、22cが100nF、前記静電容量素子22a、22b、22cに直列に接続された抵抗素子23a、23b、23cが0.05Ωであるので、前記電気回路素子5a、5b、5cの24.3MHzにおけるインピーダンスは0.05Ω−0.066jΩ、その絶対値は0.083Ωとなり、上記特性インピーダンスZc=0.913Ωの1/10以下となっている。
図18に前記電気回路素子5a、5b、5cの構造展開図を示す。図18において、51は主導体への接続端子、52は副導体への接続端子、53は抵抗素子、54は静電容量素子の主導体側電極、55は静電容量素子の副導体側電極、56は絶縁体である。
Further, in the electric circuit elements 5a, 5b and 5c of this embodiment shown in FIG. 1, the capacitance elements 22a, 22b and 22c in the equivalent circuit of FIG. 7 are 100 nF, and the capacitance elements 22a, 22b and 22c are in series. Since the resistance elements 23a, 23b, and 23c connected to are 0.05Ω, the impedance of the electric circuit elements 5a, 5b, and 5c at 24.3 MHz is 0.05Ω−0.066jΩ, and the absolute value thereof is 0.083Ω. Thus, the characteristic impedance Zc is 1/10 or less of 0.913Ω.
FIG. 18 is a structural development view of the electric circuit elements 5a, 5b, and 5c. In FIG. 18, 51 is a connection terminal to the main conductor, 52 is a connection terminal to the sub conductor, 53 is a resistance element, 54 is a main conductor side electrode of the capacitance element, 55 is a sub conductor side electrode of the capacitance element, Reference numeral 56 denotes an insulator.

上記説明から図1に示す構成は電気的雑音フィルタとして作用することが明らかである。   From the above description, it is clear that the configuration shown in FIG. 1 acts as an electrical noise filter.

本発明の第2の実施例として、図11に示した本発明の電気的雑音フィルタの第2の基本構造を耐電圧2000V、電流容量600Aの電気雑音フィルタに適用したものについて図19に基づいて説明する。
図11は副導体3a、3b、3c、3d間の副導体欠如部の主導体2に磁性体6a、6b、6cを環装してこの部分のみ主導体2のインダクタンスを増加させたものである。また、副導体3a、3b、3c、3dを電気的に接続する第3の導体7を設けている。
As a second embodiment of the present invention, the second basic structure of the electric noise filter of the present invention shown in FIG. 11 is applied to an electric noise filter having a withstand voltage of 2000 V and a current capacity of 600 A, based on FIG. explain.
In FIG. 11, the magnetic bodies 6a, 6b, and 6c are wrapped around the main conductor 2 in the sub conductor lacking portion between the sub conductors 3a, 3b, 3c, and 3d, and the inductance of the main conductor 2 is increased only in this portion. . Moreover, the 3rd conductor 7 which electrically connects subconductor 3a, 3b, 3c, 3d is provided.

本実施例の主導体2、絶縁体4、副導体3の材質、寸法は実施例1に示したのと同じであり、前記磁性体6a、6b、6cは、厚さ0.4mmのTDK株式会社製IVM04型高周波磁性材料を10層巻きつけて構成されたものである。該磁性材料は初透磁率が12と小さいため主導体2の低周波最大電流600Aに対しても磁気的な飽和を来さない。また、100MHzから3GHzまでの広い範囲で8以上の比透磁率虚数項を持つ。このため、広い周波数範囲で該インダクタは大きなインピーダンスを示す。
図11に示す本実施例は、前記磁性体6a、6b、6cを合計厚さ4mm、幅40mmの前記磁性材料で構成しているので42nHのインダクタンスを持つ。したがって、24.3MHzの周波数では6.5Ωのインピーダンスとなり、伝送線21a、21b、21c、21dの接続点で反射を生じ、電気的雑音フィルタとして動作する。
The material and dimensions of the main conductor 2, the insulator 4 and the subconductor 3 in this example are the same as those shown in Example 1, and the magnetic bodies 6a, 6b and 6c are 0.4 mm thick TDK stocks. It is composed of 10 layers of IVM04 type high frequency magnetic material manufactured by company. Since the magnetic material has a small initial permeability of 12, it does not cause magnetic saturation even for the low-frequency maximum current 600A of the main conductor 2. Further, it has an imaginary term having a relative permeability of 8 or more in a wide range from 100 MHz to 3 GHz. For this reason, the inductor exhibits a large impedance in a wide frequency range.
In the present embodiment shown in FIG. 11, the magnetic bodies 6a, 6b, 6c are made of the magnetic material having a total thickness of 4 mm and a width of 40 mm, and therefore have an inductance of 42 nH. Therefore, at a frequency of 24.3 MHz, the impedance is 6.5Ω, reflection occurs at the connection point of the transmission lines 21a, 21b, 21c, and 21d, and the filter operates as an electrical noise filter.

図19に図1に示した実施例1の電気的雑音フィルタ1を3本配列して3相電源用にした実施例の斜視図を示す。各電気的雑音フィルタの相対応する副導体間はそれぞれ副導体短絡導線10a、10b、10c、10dで接続されている。   FIG. 19 is a perspective view of an embodiment in which three electrical noise filters 1 of Embodiment 1 shown in FIG. The corresponding subconductors of each electrical noise filter are connected by subconductor short-circuit conductors 10a, 10b, 10c, and 10d, respectively.

図20に図11に示した実施例2の電気的雑音フィルタ1’を3本配列して3相電源用にした実施例の斜視図を示す。各電気的雑音フィルタの相対応する副導体間は実施例3と同様にそれぞれ副導体短絡導線10a、10b、10c、10dで接続されている。   FIG. 20 shows a perspective view of an embodiment in which three electrical noise filters 1 ′ of the embodiment 2 shown in FIG. 11 are arranged for a three-phase power source. The sub-conductors corresponding to each of the electrical noise filters are connected to each other by sub-conductor short-circuit conductors 10a, 10b, 10c, and 10d as in the third embodiment.

図21は実施例1の電気的雑音フィルタを2本配列して単相電源に適用した実施例の等価回路図で、副導体が欠如した部分の主導体間に静電容量素子22dを接続することで反射を生じさせている。主導体と副導体間に接続された静電容量素子22a、22a’も同じように接地を経由してそれぞれの主導体の間に接続されることとなり、ここでも反射が生じ電気雑音フィルタとして作用している。
同じように3相電源に適用する場合にも同じ作用が生じる。
FIG. 21 is an equivalent circuit diagram of an embodiment in which two electrical noise filters of the first embodiment are arranged and applied to a single-phase power supply, and a capacitance element 22d is connected between the main conductors in a portion lacking the subconductor. This causes reflection. Capacitance elements 22a and 22a 'connected between the main conductor and the sub conductor are also connected between the main conductors via the ground in the same manner, and here again, reflection occurs and acts as an electric noise filter. doing.
Similarly, the same effect occurs when applied to a three-phase power source.

図22は、図11に示した電気的雑音フィルタ1’を2本の電力線の導入する場合の実施例を示したもので、2つの電気的雑音フィルタ1’のそれぞれの副導体3aと3b、3cと3dの間の副導体欠如部の主導体2、2’に磁性体6a、6c、6a’、6c’が環装され、中央部の副導体6bと6cの間の副導体欠如部の2本の主導体2、2’の外周に前記2本の主導体2間に相互誘導を導入する磁性体6dが環装されて構成されている。図23にその等価回路を示す。なお、本実施例では相互誘導の導入を1箇所として説明したが、複数箇所に導入することを拒むものでない。
また、3相3線式の場合にも、単相2線式の場合と同様に3本の主導体2の周囲に1個の磁性体6dを環装させることによって3線間に相互誘導を導入することが可能である。
さらに、図24に示すように、相互誘導を導入した磁性体6dの周りに導体を巻着してショートリング9を構成し、前記ショートリングに雑音電圧を誘導してエネルギーを損失させ、電気的雑音フィルタとしての効果を高めることも好ましい。
FIG. 22 shows an embodiment in which the electric noise filter 1 ′ shown in FIG. 11 is introduced with two power lines. The sub-conductors 3a and 3b of the two electric noise filters 1 ′, Magnetic bodies 6a, 6c, 6a ', 6c' are mounted on the main conductors 2, 2 'in the sub-conductor lacking part between 3c and 3d, and the sub-conductor lacking part between the sub-conductors 6b and 6c in the central part A magnetic body 6d that introduces mutual induction between the two main conductors 2 is provided around the outer periphery of the two main conductors 2 and 2 '. FIG. 23 shows an equivalent circuit thereof. In the present embodiment, the introduction of the mutual induction is described as one place, but the introduction is not rejected at a plurality of places.
Also, in the case of the three-phase three-wire system, mutual induction between the three wires is performed by mounting one magnetic body 6d around the three main conductors 2 as in the case of the single-phase two-wire system. It is possible to introduce.
Further, as shown in FIG. 24, a short ring 9 is formed by winding a conductor around a magnetic body 6d introduced with mutual induction, and a noise voltage is induced in the short ring to cause energy loss, so that electrical It is also preferable to enhance the effect as a noise filter.

図25に図11に示した電気的雑音フィルタ1’の副導体3a、3b、3c、3dの外部に磁性体6d、6e、6f、6gを環装した実施例を示す。   FIG. 25 shows an embodiment in which magnetic bodies 6d, 6e, 6f and 6g are mounted outside the sub conductors 3a, 3b, 3c and 3d of the electrical noise filter 1 'shown in FIG.

これまで本発明の電気的雑音フィルタ1、1’、1”の各実施例を直線型で説明してきたが、設置に必要な長さ(距離)が得られないような場合には、図26に示した折り返し型、また図27に示した渦巻き型で構成しても、前述した伝達特性と同等の伝達特性が得られる。
なお、図26、図27においては、副導体欠如部の環装される回路素子5a、5b、5c、又は磁性体6a、6b、6cの図示は省略した。
Each embodiment of the electrical noise filter 1, 1 ′, 1 ″ according to the present invention has been described in a straight line, but in the case where the length (distance) necessary for installation cannot be obtained, FIG. Even with the folding type shown in FIG. 5 and the spiral type shown in FIG. 27, the transmission characteristics equivalent to the above-described transmission characteristics can be obtained.
In FIG. 26 and FIG. 27, the circuit elements 5a, 5b, and 5c or the magnetic bodies 6a, 6b, and 6c in which the sub-conductor lacking portion is mounted are not shown.

また、これまで実施例として説明してきた本発明の電気的雑音フィルタは、1本の主導体に絶縁体を介して同軸状に被覆された副導体が複数個に分割され、さらに隣接する副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部を残置、連結されてなるものが基本となっているが、このほか主導体を複数本並列配置して相互に静電容量素子を導入し、その複数本の主導体を束ねた外周に絶縁体を介して副導体を被覆した構成の電気的雑音フィルタでもよく、また、短い主導体に絶縁体を介して1個の副導体を被覆した短い伝送線を複数従列接続し、その接続部に特性インピーダンスの異なる回路素子を導入しやすくしてなる電気的雑音フィルタでもよい。
さらに、本願実施例に示した電気的雑音フィルタを複数個縦列接続して電気的雑音の除去効果を高めることも好ましい。
In addition, the electrical noise filter of the present invention described so far in the embodiment is divided into a plurality of sub-conductors that are coaxially covered with one main conductor via an insulator, and further adjacent sub-conductors. Basically, the conductor is connected by a third conductor, or a part of the subconductor that is missing due to the division is left and connected in place of the third conductor. An electric noise filter having a configuration in which a plurality of main conductors are introduced in parallel and a plurality of main conductors are bundled and a sub conductor is covered with an insulator around the outer periphery may be used. Alternatively, an electrical noise filter may be used in which a plurality of short transmission lines covered with one sub-conductor are connected in cascade via an insulator, and circuit elements having different characteristic impedances can be easily introduced into the connection portion.
Furthermore, it is also preferable to increase the electrical noise removal effect by cascading a plurality of electrical noise filters shown in the embodiments of the present application.

図28に、本発明の電気的雑音フィルタを3相電力線に導入する雑音除去方法の具体例を示した。
図28(a)は、雑音源41から負荷42までの間の電力線43aに電気的雑音フィルタ44aを接続した例である。
また、図28(b)は、雑音源41からの電気的雑音が電力線43を介して外部に流出しないように、雑音源41と外部の電力線43cにつながる電力線43bとの間に電気的雑音フィルタ44bを接続した例であり、さらに図28(c)は、外部の電力線43cを介して他の図示しない雑音源からの電気的雑音が負荷42に侵入するのを防止するため、外部の電力線43に電気的雑音フィルタ44c、44dを接続した例である。
これらは電子(情報)装置の筐体の中、電車内部の配電系、ビル内の配電系の雑音除去方法として使用できる。
FIG. 28 shows a specific example of a noise removal method in which the electrical noise filter of the present invention is introduced into a three-phase power line.
FIG. 28A is an example in which an electrical noise filter 44a is connected to the power line 43a from the noise source 41 to the load 42. FIG.
FIG. 28B shows an electrical noise filter between the noise source 41 and the power line 43b connected to the external power line 43c so that the electrical noise from the noise source 41 does not flow outside via the power line 43. In addition, FIG. 28C shows an example in which an external power line 43 is connected to prevent electrical noise from other noise sources (not shown) from entering the load 42 via the external power line 43c. This is an example in which electrical noise filters 44c and 44d are connected.
These can be used as a noise removal method for a distribution system inside a train or a distribution system inside a building in a casing of an electronic (information) device.

副導体を均等に4分割した伝送線の副導体欠如部の主導体と副導体間に静電容量素子を付加した電気的雑音フィルタの実施例の斜視図The perspective view of the Example of the electrical noise filter which added the electrostatic capacitance element between the main conductor and subconductor of the subconductor lack part of the transmission line which divided the subconductor into 4 equally 図1に示す電気的雑音フィルタ実施例のA−A’断面図A-A 'sectional view of the electrical noise filter embodiment shown in FIG. 図1に示す電気的雑音フィルタ実施例の等価回路図1 is an equivalent circuit diagram of the electrical noise filter embodiment shown in FIG. 図3の等価回路の電子回路解析プログラムによる計算結果としての伝達特性Transfer characteristics of the equivalent circuit of Fig. 3 as a result of calculation by an electronic circuit analysis program 図3の等価回路に終端整合した容量素子と抵抗素子とを付加した場合の等価回路図3 is an equivalent circuit diagram in the case where a capacitance element and a resistance element that are terminated and matched are added to the equivalent circuit of FIG. 図5の等価回路の電子回路解析プログラムによる計算結果としての伝達特性Transfer characteristics of the equivalent circuit of FIG. 5 as a result of calculation by an electronic circuit analysis program 図5の等価回路において主導体と副導体間に付加された静電容量素子に直列抵抗を加えた場合の等価回路図5 is an equivalent circuit diagram when a series resistance is added to the capacitive element added between the main conductor and the sub-conductor in the equivalent circuit of FIG. 図7の等価回路の電子回路解析プログラムによる計算結果としての伝達特性Transfer characteristics of the equivalent circuit of FIG. 7 as a result of calculation by an electronic circuit analysis program 副導体を2種の長さで4分割したときの図7に示す等価回路の解析プログラムによる計算結果としての伝達特性Transfer characteristics as a result of calculation by the analysis program of the equivalent circuit shown in Fig. 7 when the sub-conductor is divided into four parts of two lengths 図8と図9の300MHz付近の伝達特性の拡大比較図Fig. 8 and Fig. 9 are enlarged comparison diagrams of transfer characteristics around 300MHz. 副導体を4分割した伝送線の副導体欠如部の主導体に磁性体を環装した電気的雑音フィルタの実施例の斜視図The perspective view of the Example of the electrical noise filter which wrapped the magnetic body in the main conductor of the subconductor lack part of the transmission line which divided the subconductor into 4 parts 図11に示す実施例の等価回路図Equivalent circuit diagram of the embodiment shown in FIG. 図12に示す等価回路の電子回路解析プログラムによる計算結果としての伝達特性Transfer characteristics as a result of calculation by the electronic circuit analysis program of the equivalent circuit shown in FIG. 図12に示す等価回路に終端整合した静電容量素子と抵抗素子とを付加したときの等価回路図12 is an equivalent circuit diagram when a capacitance element and a resistance element that are terminal matched are added to the equivalent circuit shown in FIG. 図14に示す等価回路の電子回路解析プログラムによる計算結果としての伝達特性Transfer characteristics as a result of calculation by the electronic circuit analysis program of the equivalent circuit shown in FIG. 主導体に絶縁体を介して副導体を同軸状に被覆した伝送線の所々に磁性体を環装した電気的雑音フィルタの実施例の斜視図The perspective view of the Example of the electrical noise filter which surrounded the magnetic body in the part of the transmission line which coat | covered the subconductor coaxially through the insulator on the main conductor 図16に示す実施例の等価回路図Equivalent circuit diagram of the embodiment shown in FIG. 図1に示した電気的雑音フィルタ実施例の静電容量素子の展開図FIG. 1 is an exploded view of the capacitive element of the electrical noise filter embodiment shown in FIG. 図1の電気的雑音フィルタ実施例を3相用の電気的雑音フィルタとして構成した実施例の斜視図The perspective view of the Example which comprised the electrical noise filter Example of FIG. 1 as an electrical noise filter for three phases 図11の電気的雑音フィルタを3相用の電気的雑音フィルタとして構成した実施例の斜視図The perspective view of the Example which comprised the electrical noise filter of FIG. 11 as an electrical noise filter for three phases. 2相の伝送線の2本の主導体間に静電容量素子を接続した電気的雑音フィルタの等価回路図Equivalent circuit diagram of an electrical noise filter with a capacitive element connected between two main conductors of a two-phase transmission line 図11に示す電気的雑音フィルターを単相2線式用に構成するとともに、副導体が欠如した部分の主導体に環装されている磁性体の中の1つを2本の主導体の周りに環装するように変更することによって主導体間に相互誘導を導入した電気的雑音フィルタの実施例の斜視図The electrical noise filter shown in FIG. 11 is configured for a single-phase two-wire system, and one of the magnetic bodies wrapped around the main conductor in the portion lacking the sub-conductor is disposed around the two main conductors. The perspective view of the Example of the electrical noise filter which introduced the mutual induction between the main conductors by changing so that it might be wrapped in 図22に示す電気的雑音フィルタの等価回路図22 is an equivalent circuit diagram of the electrical noise filter shown in FIG. 主導体に環装された磁性体にショートリングを施した箇所の断面図Sectional view of the location where the short ring is applied to the magnetic material wrapped around the main conductor 図11に示した電気的雑音フィルタの副導体の外部に磁性体を環装した実施例の斜視図FIG. 11 is a perspective view of an embodiment in which a magnetic material is provided outside the sub conductor of the electrical noise filter shown in FIG. 図1、図11に示した電気的雑音フィルタを折り返し型に構成した実施例の斜視図(ただし副導体欠如部の主導体と副導体間に接続される静電容量素子と抵抗素子の図示は省略)FIG. 1 and FIG. 11 are perspective views of an embodiment in which the electrical noise filter is configured as a folded type (however, the capacitance element and the resistance element connected between the main conductor and the sub conductor in the sub conductor lacking portion are illustrated. (Omitted) 図1、図11に示した電気的雑音フィルタを巻き付け型に構成した実施例の斜視図(ただし副導体欠如部の環装される磁性体の図示は省略)FIG. 1 is a perspective view of an embodiment in which the electrical noise filter shown in FIG. 本発明の電気的雑音フィルタを使用した雑音除去方法の回路構成例Circuit configuration example of noise elimination method using electrical noise filter of the present invention

符号の説明Explanation of symbols

1、1’、1”:電気的雑音フィルタ
2、2’:主導体
3:副導体
3a、3b、3c、3d、3eは分割されたそれぞれの副導体
4:絶縁体
5a、5b、5cは回路素子
6a、6a’、6b、6c、6c’、6d、6e、6f、6g:磁性体
7:副導体間を接続する第3の導線
8:副導体端子
9:ショートリング
10a、10b、10c、10d:副導体短絡導線
21a、21b、21c、21d、21a’、21b’、21c’、21d’:副導体 の分割等インピーダンスの不整合導入点で分割されたそれぞれの伝送線
22a、22a’、22b、22c、22d:静電容量素子
23a、23b、23c:抵抗素子
24a、24b、24c:誘導素子
25a、25b、25c:誘導素子の内部抵抗
26a、26b、26c、26d:相互誘導素子
27:終端整合用静電容量素子
28:終端整合用抵抗素子
29:入力端子
30:出力端子
41:雑音源
42:負荷
43a、43b、43c:電力線
44a、43b、43c、43d:本発明の電気的雑音フィルタ
51:主導体への接続端子
52:副導体への接続端子
53:抵抗素子 54:静電容量素子の主導体側電極、
55:静電容量素子の副導体側電極
56:絶縁体
1, 1 ', 1 ": Electrical noise filter 2, 2': Main conductor 3: Sub conductors 3a, 3b, 3c, 3d, 3e are divided sub conductors 4: Insulators 5a, 5b, 5c are Circuit elements 6a, 6a ', 6b, 6c, 6c', 6d, 6e, 6f, 6g: Magnetic body 7: Third conductor connecting the sub conductors 8: Sub conductor terminal 9: Short ring 10a, 10b, 10c 10d: Subconductor short-circuit conductors 21a, 21b, 21c, 21d, 21a ', 21b', 21c ', 21d': Transmission lines 22a, 22a 'divided at the introduction point of impedance mismatch such as subconductor division , 22b, 22c, 22d: Capacitance elements 23a, 23b, 23c: Resistance elements 24a, 24b, 24c: Inductive elements 25a, 25b, 25c: Inductive element internal resistances 26a, 26b, 26c, 26d: Mutual induction Child 27: Capacitance element for termination matching 28: Resistance element for termination matching 29: Input terminal 30: Output terminal 41: Noise source 42: Load 43a, 43b, 43c: Power lines 44a, 43b, 43c, 43d: Electrical noise filter 51: Connection terminal to main conductor
52: Connection terminal to sub conductor 53: Resistance element 54: Main conductor side electrode of capacitance element,
55: Sub-conductor side electrode of capacitance element
56: Insulator

Claims (13)

主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体が所定の均等間隔で複数個に分割され、さらに隣接する各副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部が残置、連結されてなることを特徴とする電気的雑音フィルタ。   In a transmission line composed of a main conductor and a sub-conductor that is coaxially coated on the main conductor via an insulator, the sub-conductor is divided into a plurality at predetermined equal intervals, and each adjacent sub-conductor is further divided An electrical noise filter characterized in that a part of a sub-conductor which is connected by a third conductor or is replaced by a third conductor is left behind and connected. 主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体が少なくとも2種類の長さで分割され、さらに隣接する各副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部が残置、連結されてなることを特徴とする電気的雑音フィルタ。   In a transmission line composed of a main conductor and a sub-conductor coated coaxially with an insulator through an insulator, the sub-conductor is divided into at least two types of lengths, and further between adjacent sub-conductors Are connected by a third conductor, or a part of a sub-conductor that is missing due to division is left and connected in place of the third conductor. 主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体が、所定の均等間隔で複数個に分割され、さらに隣接する各副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部が残置、連結され、さらにまた前記伝送線の副導体欠如部の主導体と前記副導体、若しくは前記伝送線の副導体欠如部の主導体と第3の導体間に前記伝送線の特性インピーダンスと異なるインピーダンスを有する回路素子を配設してなることを特徴とする電気的雑音フィルタ。   In a transmission line composed of a main conductor and a sub-conductor that is coaxially covered with an insulator through the main conductor, the sub-conductor is divided into a plurality at predetermined equal intervals, and each adjacent sub-conductor is further divided. The conductors are connected by the third conductor, or a part of the sub-conductor that is missing by the division is left and connected in place of the third conductor, and the main conductor of the sub-conductor lacking portion of the transmission line is also connected to the conductor. An electrical noise filter comprising a sub-conductor or a circuit element having an impedance different from the characteristic impedance of the transmission line between the main conductor and the third conductor of the sub-conductor lacking portion of the transmission line . 主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体が、少なくとも2種類の長さで分割され、さらに隣接する各副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部が残置、連結され、さらにまた前記伝送線の副導体欠如部の主導体と前記副導体、若しくは前記伝送線の副導体欠如部の主導体と第3の導体間に前記伝送線の特性インピーダンスと異なるインピーダンスを有する回路素子を配設してなることを特徴とする電気的雑音フィルタ。   In a transmission line composed of a main conductor and a sub-conductor that is coaxially coated with the main conductor via an insulator, the sub-conductor is divided into at least two lengths, and each adjacent sub-conductor is further divided A part of the sub-conductor which is connected by the third conductor or is replaced by the third conductor is left and connected, and the main conductor and the sub-conductor in the sub-conductor lacking part of the transmission line are also left and connected. An electrical noise filter comprising a conductor or a circuit element having an impedance different from the characteristic impedance of the transmission line between a main conductor and a third conductor of a sub conductor lacking portion of the transmission line. 前記回路素子が、少なくとも一個の静電容量素子であることを特徴とする請求項3又は4に記載の電気的雑音フィルタ。   The electrical noise filter according to claim 3 or 4, wherein the circuit element is at least one capacitance element. 前記回路素子が、少なくとも一個の静電容量素子と1個の抵抗素子とを直列接続したものであることを特徴とする請求項3又は4に記載の電気的雑音フィルタ。   5. The electrical noise filter according to claim 3, wherein the circuit element is formed by connecting at least one capacitance element and one resistance element in series. 主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体が、所定の均等間隔で複数個に分割され、かつ副導体が欠如した部分の主導体に磁性体が環装され、さらに隣接する各副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部が残置、連結されてなることを特徴とする電気的雑音フィルタ。   In a transmission line composed of a main conductor and a sub-conductor that is coaxially covered with an insulator through the main conductor, the sub-conductor is divided into a plurality of predetermined equal intervals, and the sub-conductor is absent. A magnetic material is wrapped around the main conductor of the portion, and adjacent subconductors are connected by a third conductor, or a part of the subconductor missing by division is left in place of the third conductor, An electrical noise filter characterized by being connected. 主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体が、少なくとも2種類の長さで分割され、かつ副導体が欠如した部分の主導体に磁性体が環装され、さらに隣接する各副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部が残置、連結されてなることを特徴とする電気的雑音フィルタ。   In a transmission line composed of a main conductor and a sub-conductor that is coaxially coated on the main conductor via an insulator, the sub-conductor is divided into at least two lengths and lacks the sub-conductor. A magnetic material is wrapped around the main conductor of the part, and adjacent sub-conductors are connected by a third conductor, or a part of the sub-conductor that is missing due to division is left and connected instead of the third conductor. An electrical noise filter characterized by being made. 主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体の一部の外周に一定間隔、又は2種類以上の間隔をもって磁性体を環装してなることを特徴とする電気的雑音フィルタ。   In a transmission line composed of a main conductor and a sub conductor that is coaxially coated on the main conductor with an insulator interposed therebetween, a magnetic body having a constant interval or two or more types of intervals on the outer periphery of a part of the sub conductor An electrical noise filter characterized by comprising: 主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体が所定の均等間隔で複数個に分割され、かつ前記副導体の一部の外周、及び副導体が欠如した部分の主導体に磁性体が環装され、さらに隣接する各副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部が残置、連結されてなることを特徴とする電気的雑音フィルタ。   In a transmission line composed of a main conductor and a sub-conductor that is coaxially covered with an insulator through an insulator, the sub-conductor is divided into a plurality at predetermined equal intervals, and one of the sub-conductors Magnetic material is wrapped around the outer periphery of the part and the main conductor in the part lacking the sub-conductor, and the adjacent sub-conductors are connected by a third conductor, or are replaced by the third conductor and missing by division. An electrical noise filter, wherein a part of the sub-conductor is left and connected. 主導体と、主導体に絶縁体を介して同軸状に被覆された副導体とで構成された伝送線において、前記副導体が、少なくとも2種類の長さで分割され、かつ前記副導体の一部の外周、及び副導体が欠如した部分の主導体に磁性体が環装され、さらに隣接する各副導体間が第3の導体で接続され、若しくは第3の導体に替えて分割により欠如される副導体の一部が残置、連結されてなることを特徴とする電気的雑音フィルタ。   In a transmission line composed of a main conductor and a sub-conductor that is coaxially coated with the main conductor through an insulator, the sub-conductor is divided into at least two lengths, and one of the sub-conductors. Magnetic material is wrapped around the outer periphery of the part and the main conductor in the part lacking the sub-conductor, and the adjacent sub-conductors are connected by a third conductor, or are replaced by the third conductor and missing by division. An electrical noise filter, wherein a part of the sub-conductor is left and connected. 前記伝送線の終端の主導体と副導体間に低周波阻止用の静電容量素子と前記伝送線の特性インピーダンスに近い値を持つ抵抗素子との直列接続回路を接続したことを特徴とする請求項1〜10のいずれか1項に記載の電気的雑音フィルタ。   A series connection circuit of a capacitance element for blocking low frequency and a resistance element having a value close to the characteristic impedance of the transmission line is connected between a main conductor and a sub conductor at the end of the transmission line. Item 11. The electrical noise filter according to any one of Items 1 to 10. 雑音を含む電力源から負荷まで延展する単相又は3相の電力伝送線、若しくは前記電力源に電力を与える単相又は3相の配電線の少なくとも一部を、請求項1〜12のいずれか1項に記載の電気的雑音フィルタで構成したことを特徴とする電気的雑音除去方法。
A single-phase or three-phase power transmission line extending from a power source including noise to a load, or at least a part of a single-phase or three-phase distribution line supplying power to the power source, according to any one of claims 1 to 12. An electrical noise removal method comprising the electrical noise filter according to item 1.
JP2003354384A 2003-10-14 2003-10-14 Electric noise filter and electric noise eliminating method Pending JP2005123751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003354384A JP2005123751A (en) 2003-10-14 2003-10-14 Electric noise filter and electric noise eliminating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003354384A JP2005123751A (en) 2003-10-14 2003-10-14 Electric noise filter and electric noise eliminating method

Publications (1)

Publication Number Publication Date
JP2005123751A true JP2005123751A (en) 2005-05-12

Family

ID=34612310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003354384A Pending JP2005123751A (en) 2003-10-14 2003-10-14 Electric noise filter and electric noise eliminating method

Country Status (1)

Country Link
JP (1) JP2005123751A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044682A1 (en) * 2007-10-01 2009-04-09 Hitachi, Ltd. Noise filter and printed board and cable
JP7103500B1 (en) * 2021-11-08 2022-07-20 Ubeマシナリー株式会社 Noise filter and electrical circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044682A1 (en) * 2007-10-01 2009-04-09 Hitachi, Ltd. Noise filter and printed board and cable
JP7103500B1 (en) * 2021-11-08 2022-07-20 Ubeマシナリー株式会社 Noise filter and electrical circuit
WO2023080163A1 (en) * 2021-11-08 2023-05-11 Ubeマシナリー株式会社 Noise filter and electric circuit

Similar Documents

Publication Publication Date Title
JPH01220415A (en) Ac line filter
JP5868490B2 (en) Insulated transmission medium and insulated transmission device
US20030161086A1 (en) Paired multi-layered dielectric independent passive component architecture resulting in differential and common mode filtering with surge protection in one integrated package
WO2011114859A1 (en) Inductor for common-mode filter, and common-mode filter
EP0393644B1 (en) LC noise filter
EP0468509A2 (en) Matching network
US20240106405A1 (en) Inductive-capacitive filters and associated systems and methods
JP2001503201A (en) Inductor
JP2005123751A (en) Electric noise filter and electric noise eliminating method
KR20080086709A (en) Burial electromagnetic interference filter
JP2005278399A (en) Distribution constant structure
US20220158624A1 (en) Acoustic-wave ladder filter having impedance element and diplexer based thereon
JP2006279462A (en) Electric noise filter and electric noise removal method
US4563658A (en) Noise filter
JP2000261271A (en) Lamination type low pass filter
JP6594360B2 (en) Filter device
US11831290B2 (en) Inductive-capacitive filters and associated systems and methods
KR101973468B1 (en) Power terminal wire and air conditioner including the same
JP2001211048A (en) Lc noise filter
EP0147248B1 (en) Cable networks and filters with interfacial losses
JPH0297107A (en) Noise generation preventing circuit for ic element
JP2721227B2 (en) LC noise filter and PC board using the same
JPH08222986A (en) Three-terminal filter
JP2000223986A (en) Common mode filter
WO2003060934A1 (en) Wide-band blocking filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061010

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091007

A02 Decision of refusal

Effective date: 20100217

Free format text: JAPANESE INTERMEDIATE CODE: A02