JP2005123552A - Photovoltaic generation unit - Google Patents

Photovoltaic generation unit Download PDF

Info

Publication number
JP2005123552A
JP2005123552A JP2003391433A JP2003391433A JP2005123552A JP 2005123552 A JP2005123552 A JP 2005123552A JP 2003391433 A JP2003391433 A JP 2003391433A JP 2003391433 A JP2003391433 A JP 2003391433A JP 2005123552 A JP2005123552 A JP 2005123552A
Authority
JP
Japan
Prior art keywords
power
double layer
electric double
output
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003391433A
Other languages
Japanese (ja)
Inventor
Isato Miyagi
勇人 宮城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOOJIN KK
Original Assignee
KYOOJIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOOJIN KK filed Critical KYOOJIN KK
Priority to JP2003391433A priority Critical patent/JP2005123552A/en
Publication of JP2005123552A publication Critical patent/JP2005123552A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photovoltaic generation unit which is lightweight, safely carried and handled, and can easily generate and charge necessary electric power in any place in a short time and supply output electric power matching the purpose of use. <P>SOLUTION: The photovoltaic generation unit is constituted by locking and coordinating a solar battery module constituted by connecting the necessary number of solar cells in series or in parallel sandwiching them between two transparent plate materials; bonding them in one body with a transparent adhesive in a casing comprising a frame body which is rectangular having a necessary area and a depth and also has a lock edge extended inside an upper-end opening and a bottom-lid fixation edge extended inside a lower-end opening; locking and coordinating a heat insulating plate material or a heat radiating plate material below it; and further connecting a constant-current charging circuit and many flat electric double-layered capacitors in series connecting and coordinating parallel monitors to the respective electric double-layered capacitors in parallel on one side in a lower casing 1, and coordinating an electric converting circuit on the other side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は太陽電池モジュールにより発電した電力を短時間に大電力量に充電し、必要な時や場所で且使用目的に合せた出力がなしえる太陽光発電ユニットに関する。  The present invention relates to a photovoltaic power generation unit capable of charging electric power generated by a solar cell module to a large amount of electric power in a short time and producing an output that is suitable for the purpose of use at a required time and place.

太陽光エネルギーを利用した発電は省資源、省エネルギー並びに環境保全のうえから極めて有効なエネルギーの獲得手段とされ、我が国においても古くから太陽電池の研究がなされてきており、且近年に至って発電効率に優れた太陽電池セルが開発されたこと、並びに太陽光発電の積極利用に係る施策がなされたこととも相俟って、家庭用電力や産業用電力への採用が図られつつある状況にある。  Power generation using solar energy is considered to be an extremely effective means of acquiring energy in terms of resource saving, energy saving, and environmental conservation, and solar cells have been studied in Japan for a long time. Combined with the development of excellent solar cells and the measures for the positive use of solar power generation, it is being adopted for household power and industrial power.

ところで現状の太陽電池モジュールによる太陽光発電においては、太陽光の受光エネルギー量に対応して発電量が決定されるものであるから、設置場所における日照時間はもとより日々の晴天や曇天或いは降雨降雪等により著しく発電量が異なること、及び太陽光発電は専ら日照時間内でなされるものの、その電力の利用が産業用動力用として若しくは産業や家庭用照明用として使用される場合には十分な電力量が確保される必要があるため、該太陽光発電においては蓄電手段の付帯が不可欠となる。  By the way, in the current solar power generation using a solar cell module, the amount of power generation is determined according to the amount of received light energy of the sunlight. Although the amount of power generation differs significantly depending on the solar power generation, and solar power generation is performed exclusively during sunshine hours, sufficient power is required when the power is used for industrial power or for industrial or home lighting. Therefore, it is essential to attach power storage means in the solar power generation.

而して現在の太陽光発電に使用されてなる蓄電手段は専ら鉛蓄電池を用いたもので、該鉛蓄電池は電気化学反応による充電をなすものであるから極めて長時間の充電時間を要するばかりか、電力使用のための十分な充電をなすうえからは大容量の鉛蓄電池が必要となり、極めて大型且多重なものとなり、而も充放電の繰返しによる劣化も激しく長期使用が不能となる問題を抱えている。
加えて太陽光発電では日照時間により発電がなされるものであるから実質的発電量も少なく、従って太陽電池モジュールを広大面積を以って設置し且多量の発電量を以って発電させぬと、実用使用に供しえる電力の充電がなされぬ等の本質的問題も内在している。
Thus, the current storage means used for solar power generation is exclusively a lead storage battery, and the lead storage battery is charged by an electrochemical reaction, so it requires a very long charging time. In order to fully charge for power use, a large-capacity lead-acid battery is required, which is extremely large and multiple, and has a problem that deterioration due to repeated charge and discharge is severe and long-term use becomes impossible. ing.
In addition, since solar power generation is generated by sunshine hours, there is little substantial power generation. Therefore, if solar cell modules are installed over a large area and a large amount of power is not generated, Further, there are inherent problems such as not being charged with electric power that can be used for practical use.

かかる蓄電手段が抱える問題を解決する手段として電解液に導電体(電極)を浸けると電解液の界面に電解液分子による略一分子の薄い膜が電気絶縁層として生成されること所謂電気ニ重層が生成され、この電気ニ重層に電荷が貯えられる現象を原理として多孔質材料と電解液とにより電気ニ重層キャパシタが形成されるに至り、該電気ニ重層キャパシタを太陽光発電における蓄電手段として利用することにより、極めて小型軽量で長期使用ができ特には急速な充放電と且充放電効率も高く、而も低温度においても充放電が可能となることから太陽光発電に該電気ニ重層キャパシタを利用することが試みられている。
特開平5−292683 特開平7−177683 特開2001−218387
As a means for solving such problems of the electric storage means, when a conductor (electrode) is immersed in an electrolytic solution, a thin film of approximately one molecule is formed as an electrically insulating layer at the interface of the electrolytic solution as a so-called electric double layer. Based on the phenomenon that electric charges are stored in the electric double layer, an electric double layer capacitor is formed by the porous material and the electrolytic solution, and the electric double layer capacitor is used as a power storage means in solar power generation. This makes it possible to use the electric double-layer capacitor for photovoltaic power generation because it is extremely small and light, can be used for a long time, has high charge / discharge efficiency and high charge / discharge efficiency, and can be charged / discharged even at low temperatures. There are attempts to use it.
JP 5-292683 JP-A-7-177683 JP2001-218387

而してかかる電気ニ重層キャパシタを蓄電手段として採用することにより、従来の鉛蓄電池の抱える問題の改善は可能となるものの、太陽光発電においては太陽電池セルとして珪素等からなる薄肉脆弱な半導体結晶板若しくはアモルファス板を受光方向に大多数配列させて太陽電池モジュールとして使用するものであるから、該太陽電池モジュールが風圧や飛来物による衝撃で破損したり、或いは雨水や降雪による浸水漏電等が発生せぬよう、その外表面に強度のガラス板を配し堅固で耐水性や耐候性に優れた十分な配列スペースを有する受光収納棚を固定設置させて収納させる必要があるため、依然として設置に際しての多額の初期投資が強いられ、更には電気ニ重層キャパシタの使用に際してはその周辺温度の高温化を回避せぬと、電解液の特性上充電機能が損われるためこれの対策も要請される。  Thus, by adopting such an electric double layer capacitor as a power storage means, it is possible to improve the problems of conventional lead storage batteries, but in photovoltaic power generation, thin and fragile semiconductor crystals made of silicon or the like as solar cells. Since a large number of plates or amorphous plates are arranged in the light receiving direction and used as a solar cell module, the solar cell module may be damaged by wind pressure or impact from flying objects, or water leakage due to rain water or snow may occur. It is necessary to fix and store a light receiving storage shelf that has a strong glass plate on its outer surface and has a sufficient arrangement space with excellent water resistance and weather resistance so that it can still be installed. A large amount of initial investment is required, and in addition, when electric double layer capacitors are used, the surrounding temperature must be avoided. This measures for properties on the charging function of the impaired are also requested.

かかる如く電気ニ重層キャパシタを採用することにより、太陽光発電においてはその充放電機能が著しく改善されることが期待できるものの、従来の固定設置における太陽光発電への利用のみでは受光収納棚等の設置費用の削減が図られぬばかりか、折角の優れた充放電特性と且小型軽量化の利点を有効に活用できない。  As described above, by adopting the electric double layer capacitor, it is expected that the charging / discharging function is remarkably improved in the photovoltaic power generation, but the light receiving storage shelf or the like is only used for the photovoltaic power generation in the conventional fixed installation. Not only can the installation cost be reduced, but the advantages of excellent charge / discharge characteristics and small size and light weight cannot be effectively utilized.

他方近年においては地震や台風による災害が著しく増大化し、かかる災害の発生に伴う電力供給の寸断により通信手段や照明手段が不能となり災害防止や救助活動に重大な支障が度々発生しており、更に山間僻地等電力供給の無い場所での測量調査や小工事等に際しての電力使用に際しては、多重な内燃発電機を搬入せねばならず極めて多大な労力が強いられており、而も今日の如きアウトドアライフの増加やモバイル通信の拡大等により、いかなる場所においてもこれら照明や通信手段のための電源確保も重要となりつつある。  On the other hand, disasters due to earthquakes and typhoons have increased remarkably in recent years, and communication and lighting methods have become impossible due to the disruption of power supply due to such disasters, causing serious obstacles to disaster prevention and rescue activities. When using electricity for surveying surveys and small constructions in places where there is no power supply, such as in mountainous areas, it is necessary to carry in multiple internal combustion generators, and so much effort is required. Due to the increase in life and expansion of mobile communication, it is becoming important to secure a power source for these lighting and communication means in any place.

本発明は軽量で安全に携行取扱いができ、いかなる場所でも短時に必要電力が充電でき、使用目的に合せた出力電力の供給ができる太陽電池ユニットを提供することにある。  An object of the present invention is to provide a solar cell unit that is lightweight, can be safely carried, can be charged at any place in a short time, and can supply output power according to the purpose of use.

上述の課題を解決するために本発明が用いた技術的手段は、上端開口部内側に係止縁及び下端開口部内側に底蓋固定縁が延出形成された枠体と、該枠体に固定される底蓋とからなるケーシング内に、二枚の透光板材に挟持されて太陽電池セルが所要数配列され且直列若しくは並列に接続されたうえ、透光性接着剤により一体的に接着されてなる太陽電池モジュールを係止縁に係止配位させて、太陽電池モジュールを外的衝撃から保護し且雨水や湿気の浸入による漏電をも防止し、而もこの太陽電池モジュールの下側には断熱板材若しくは放熱板材を配位させることにより太陽電池モジュールの受光に伴う温度上昇を遮断し若しくは放熱させて、該断熱板材若しくは放熱板材の下側に配位される電気二重層キャパシタの昇温に伴う充電機能破壊の防止を図るとともに、太陽電池モジュールで発電された電力を該断熱板材若しくは放熱板材下側のケーシング内一側に配位させた定電流充電回路を介して所定電流を以って、断熱板材若しくは放熱板材下側の中央に多数直列に接続配位される扁平状の電気二重層キャパシタに入力されて充電をなし、且この多数直列に接続される電気二重層キャパシタそれぞれに等しく充電を図るうえから、該電気二重層キャパシタそれぞれには並列モニタが並列接続されている。そしてこの電気二重層キャパシタに充電された充電電力を所要の安定した直流定電圧を以って出力させるため、ケーシング内他側に配位させた電力変換回路を介して出力させる構成を特徴とする。  The technical means used by the present invention in order to solve the above-described problems include a frame body in which a locking edge and an bottom cover fixing edge are formed on the inner side of the upper end opening, and a bottom cover fixing edge on the inner side of the lower end opening. A required number of solar cells are arranged in a casing consisting of two light-transmitting plates in a casing consisting of a fixed bottom lid, and are connected in series or in parallel, and then bonded together with a light-transmitting adhesive. The solar cell module is locked and coordinated to the locking edge to protect the solar cell module from external impacts and prevent leakage due to the ingress of rainwater and moisture. In this case, by arranging a heat insulating plate or heat radiating plate, the temperature rise associated with the light reception of the solar cell module is cut off or dissipated, and the electric double layer capacitor arranged below the heat insulating plate or heat radiating plate is raised. Destruction of charging function due to temperature Insulation plate or heat dissipation with a predetermined current through a constant current charging circuit in which the electric power generated by the solar cell module is arranged on one side of the casing below the heat insulation plate or heat dissipation plate In order to charge equally to each of the electric double layer capacitors connected in series, this is inputted to a flat electric double layer capacitor connected and arranged in series at the center of the lower side of the plate material. A parallel monitor is connected in parallel to each of the electric double layer capacitors. And in order to output the charging power charged in this electric double layer capacitor with a required stable DC constant voltage, it is characterized in that it is output through a power conversion circuit arranged on the other side in the casing. .

更には充電された電力を広範な出力負荷に合せて出力をなすうえから、ケーシング内に太陽電池モジュールと、その下側に断熱板材若しくは放熱板材が配位され且この断熱板材若しくは放熱板材の下側には定電流充電回路及び電気二重層キャパシタを収納させて発電充電器となし、且この発電充電器から出力される充電電力を適宜収納体内に少なくとも二つ以上の異なる出力負荷に適合する直流定電圧でそれぞれ変換出力する電力変換回路が複数配位されてなる変換出力器とにより構成されることを特徴とする。  Furthermore, in order to output the charged power in accordance with a wide range of output loads, a solar cell module is arranged in the casing, and a heat insulating plate or heat radiating plate is arranged below the casing. A constant current charging circuit and an electric double layer capacitor are housed on the side to form a power generator charger, and the charging power output from this power generator charger is appropriately accommodated in at least two different output loads. It is characterized by comprising a conversion output device in which a plurality of power conversion circuits each converting and outputting at a constant voltage are arranged.

本発明は上述の如く肉薄脆弱な多数の太陽電池セルが二枚の透光板材により挟持され且直列若しくは接続されたうえ透光性接着剤により一体的に接着されて太陽電池モジュールが形成されたうえケーシング上端開口部係止縁に係止配位されてなるから、頻繁な携行移動や運搬等に伴う外部衝撃が付加されても、太陽電池セルの損傷が防止できるばかりか雨水や湿気の浸入も防止されて長期に亘って安定した発電がなしえるとともに、該太陽電池モジュールの下側には断熱板材若しくは放熱板材が配位されたうえ、その下側に電気二重層キャパシタが配位されるため、長時に若しくは強度の太陽光受光により太陽電池モジュールが高温化しても、かかる高温化した熱が遮断若しくは放熱により電気二重層キャパシタの昇温が阻止されるため、電気二重層キャパシタの充放電機能が安定して発揮されることとなる。  In the present invention, as described above, a large number of thin and brittle solar cells are sandwiched between two light-transmitting plate materials and connected in series or connected together with a light-transmitting adhesive to form a solar cell module. In addition, since it is locked and coordinated at the upper edge of the opening at the upper end of the casing, it can prevent damage to solar cells even when external impacts due to frequent carrying and transportation are applied, as well as intrusion of rainwater and moisture Is prevented, and stable power generation can be achieved over a long period of time, and a heat insulating plate or heat radiating plate is arranged below the solar cell module, and an electric double layer capacitor is arranged below the plate. Therefore, even if the solar cell module is heated for a long time or due to intense sunlight reception, the increased temperature of the electric double layer capacitor is prevented by blocking or dissipating the increased heat. Double layer charging and discharging capabilities of capacitor is to be stably exhibited.

更に太陽電池モジュールで発電された電力が定電流充電回路で所定電流に制御され電気二重層キャパシタに入力されるため、過剰電流の付加による電気二重層キャパシタの破損が防止されるとともに多数の電気二重層キャパシタが直列に接続され、且それぞれの電気二重層キャパシタには並列モニタが並列接続されてなるため、それぞれの電気二重層キャパシタには等しく電流が流入されることから、全体として極めて大容量の充電電力が短時間に充電される。而もこの充電電力は電力変換回路により所定の直流定電圧で出力されるため、使用負荷に合せて安定した電力が供給されるものである。  Furthermore, since the electric power generated by the solar cell module is controlled to a predetermined current by the constant current charging circuit and input to the electric double layer capacitor, the electric double layer capacitor is prevented from being damaged due to the addition of excess current, and a large number of electric Since multi-layer capacitors are connected in series, and parallel monitors are connected in parallel to each electric double layer capacitor, current flows equally into each electric double layer capacitor. Charging power is charged in a short time. This charging power is output at a predetermined DC constant voltage by the power conversion circuit, so that stable power is supplied in accordance with the load used.

ケーシング上端開口部に係止される太陽電池モジュールが、所要面積の太陽電池セルの所要数が二枚の透光板材に挟持され且直列若しくは並列に接続されたうえ、透光性接着剤で一体的に形成され、この太陽電池モジュールの下側に断熱板材若しくは放熱板材を配位し、且この下側に太陽電池モジュールで発電された電力を定電流充電回路と、該定電流充電回路で制御された所定電流を多数の扁平状の電気二重層キャパシタが直列に接続され且それぞれの電気二重層キャパシタに並列モニタが並列接続された電気二重層キャパシタと、この電気二重層キャパシタにより充電された充電電力を所定の直流定電圧を以って出力させる電力電力変換回路がケーシング内に配位された構成。  The solar cell module that is locked to the opening at the upper end of the casing is sandwiched between two translucent plates with the required number of solar cells of the required area and connected in series or in parallel, and integrated with translucent adhesive The heat insulating plate or heat radiating plate is arranged under the solar cell module, and the electric power generated by the solar cell module is controlled under the constant current charging circuit and the constant current charging circuit. An electric double layer capacitor in which a number of flat electric double layer capacitors are connected in series with each other and a parallel monitor is connected in parallel to each electric double layer capacitor, and a charge charged by the electric double layer capacitor A configuration in which a power / power conversion circuit for outputting power with a predetermined DC constant voltage is arranged in a casing.

以下に本発明実施例を図とともに詳細に説明すれば、図1は本発明の断面内部説明図であって、ケーシング1は所要の面積及び深さを有する長方形状を有し且その上端開口部10Aにはその内側に向って所要の幅で係止縁11Aが延出形成され、且下端開口部12Aには内側に向って底蓋1Bを係合固定させる底蓋固定縁13Aが延出形成された枠体1Aと、該枠体1Aの底蓋固定縁13Aに係合して適宜の係止ビス14A等により係合固定される面積及び形状の底蓋1Bとにより形成されるものである。  The embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional internal view of the present invention, and the casing 1 has a rectangular shape having a required area and depth, and its upper end opening. 10A has a locking edge 11A extending toward the inside with a required width, and a bottom lid fixing edge 13A extending and engaging the bottom lid 1B toward the inside at the lower end opening 12A. The frame body 1A is formed, and the bottom cover 1B having an area and shape that is engaged with and fixed to the bottom cover fixing edge 13A of the frame body 1A by an appropriate locking screw 14A or the like. .

かかる場合のケーシング1の素材としては軽量で強靭なうえ耐候性や耐水性に優れることは無論、加工性にも優れる素材が望まれることからアルミ板材が好適であるが、ポリカーボネートやポリエステル等の合成樹脂素材を成形加工したものでも使用できる。更にケーシング1は携行を自在になすものであるうえから小型でコンパクトのものが望まれるため、その幅では略30乃至60cm程度、長さで略50乃至100cm程度及び厚さとしては略3乃至9cm程度に形成されるもので、且全体形状が長方形状であることには特段制約はなく、太陽電池モジュール2が通常長方形に形成されることによる。  As a material of the casing 1 in such a case, an aluminum plate material is preferable because a material that is lightweight and strong, and excellent in weather resistance and water resistance is desirable. It can also be used after molding a resin material. Further, since the casing 1 can be carried freely, a small and compact one is desired. Therefore, the width is about 30 to 60 cm, the length is about 50 to 100 cm, and the thickness is about 3 to 9 cm. There are no particular restrictions on the overall shape being rectangular, and the solar cell module 2 is usually formed in a rectangular shape.

かくしてなるケーシング1内には、その上端開口部10Aに形成された係止縁11Aには、太陽電池モジュール2が係止配位されている。この太陽電池モジュール2は、図2に示すように所要面積の太陽電池セル2Aを所要数直列若しくは並列に結線2Bで配列接続させ、且この結線2Bで配列接続された太陽電池セル2Aを二枚の透光板材2C、2Cに挟持させたうえ透光性接着剤2Dにより一体的に接着形成されたものであって、太陽電池セル2Aは珪素所謂シリコン結晶やガリウム砒素を使用したもの或いはアモルファス(非結晶)の半導体板材からなるもの等が使用される。  In the casing 1 thus formed, the solar cell module 2 is latched and arranged on the latching edge 11A formed in the upper end opening 10A. As shown in FIG. 2, this solar cell module 2 has a required number of solar cells 2A arranged and connected in series or in parallel in a connection 2B, and two solar cells 2A arranged and connected in this connection 2B. The solar cells 2A are sandwiched between the light-transmitting plates 2C and 2C and integrally formed with the light-transmitting adhesive 2D. The solar battery cell 2A is made of silicon so-called silicon crystal or gallium arsenide, or amorphous ( A material made of a non-crystalline semiconductor plate is used.

そして透光板材2C、2Cは透光性に優れるとともに耐候性や耐水性及び強靭なものが望まれることから一般的にはガラス板材が使用されるが、軽量化のうえからは透明アクリル樹脂板材やポリカーボネート樹脂板材の使用が好適である。
加えて二枚の透光板材2C、2Cに太陽電池セル2Aが挟持されたうえ一体的に接着させる透光性接着剤2Dとしては嫌気条件下において透光板材2C、2Cと太陽電池セル2Aとを強固且密封状に接着させる必要上から嫌気性アクリル樹脂接着剤の使用が好都合である。
And since the light-transmitting plates 2C and 2C are excellent in light-transmitting properties and weather resistance, water resistance and toughness are desired, glass plates are generally used, but from the standpoint of weight reduction, transparent acrylic resin plates It is preferable to use a polycarbonate resin plate.
In addition, as the translucent adhesive 2D for sandwiching the solar cells 2A between the two translucent plates 2C and 2C and bonding them together, the translucent plates 2C and 2C and the solar cells 2A under anaerobic conditions It is convenient to use an anaerobic acrylic resin adhesive because it is necessary to bond the substrate firmly and in a sealed state.

かくしてケーシング1内に係止配位された太陽電池モジュール2の下側には、該太陽電池モジュール2が太陽光の受光による発電をなす場合において、長時間に亘り強度の受光をなした場合に、該太陽電池モジュール2の昇温に伴う温度が充電のために多数配位される電気二重層キャパシタ5に付加されぬよう断熱板材3若しくは放熱板材(図示せず)が配位されている。
この断熱板材3若しくは放熱板材は、太陽電池モジュール2の昇温に伴う温度を断熱遮断し若しくは熱放散させるものであるから、断熱板材3においてはその素材としてポリウレタンやポリエステル、ポリカーボネート、ABS樹脂等の合成樹脂素材が望ましく、且該素材により十分強靭で高い断熱効果を発揮させるうえからは、独立低発泡による硬質板材が好適であって、その厚さについては特段の制約は無いが、通常においては略2乃至5mm程度のものが使用される。反面放熱板材の使用においては熱伝導性に優れ且強靭で軽量のものが望まれるためアルミ板材が好適であり、その厚さとしては略1乃至3mm程度のもので十分で、且更に熱放散を高めるうえからは波形加工若しくはエンボス加工を施すことが提案される。
Thus, below the solar cell module 2 locked and arranged in the casing 1, when the solar cell module 2 generates power by receiving sunlight, the light is received for a long time. The heat insulating plate 3 or the heat radiating plate (not shown) is arranged so that the temperature associated with the temperature rise of the solar cell module 2 is not added to the electric double layer capacitor 5 arranged for charging.
Since the heat insulating plate 3 or the heat radiating plate is for insulating or blocking heat dissipation due to the temperature rise of the solar cell module 2, the heat insulating plate 3 is made of polyurethane, polyester, polycarbonate, ABS resin, or the like. A synthetic resin material is desirable, and from the standpoint of sufficient toughness and high heat insulation effect due to the material, a hard plate material by independent low foaming is suitable, and there is no particular restriction on the thickness, but in normal cases About 2 to 5 mm is used. On the other hand, when using a heat radiating plate material, an aluminum plate material is suitable because it is excellent in thermal conductivity, strong and lightweight, and a thickness of about 1 to 3 mm is sufficient, and further heat dissipation is achieved. From the viewpoint of enhancement, it is proposed to perform corrugation or embossing.

かかる断熱板材若しくは放熱板材の下側のケーシング1内の一側には、定電流充電回路4が配位されている。
この定電流充電回路4は、本発明の如く電気二重層キャパシタ5を多数直列に接続して大容量の充電電力を充電させるものでは、電気二重層キャパシタ5の特性として充電量の増加とともに充電電圧が指数的に上昇して耐電圧を容易に超えて電気二重層キャパシタ5が損壊する危険を伴う。即ち電気二重層キャパシタ5の充電されるエネルギーと電圧とには、電気二重層キャパシタ電圧EV、電気二重層容量CF、充電されたエネルギーWJとすると、WJ=0.5CF・EVの関係が成り立つ。
A constant current charging circuit 4 is arranged on one side of the casing 1 below the heat insulating plate or heat radiating plate.
In the constant current charging circuit 4, when a large number of electric double layer capacitors 5 are connected in series to charge a large amount of charging power as in the present invention, the charge voltage increases as the charge amount increases as a characteristic of the electric double layer capacitor 5. Rises exponentially and easily exceeds the withstand voltage, causing a risk of the electric double layer capacitor 5 being damaged. That is, when the electric double layer capacitor voltage EV, the electric double layer capacitance CF, and the charged energy WJ are established, the relationship of WJ = 0.5 CF · EV 2 is established between the charged energy and voltage of the electric double layer capacitor 5. .

そこで多数の接続される電気二重層キャパシタ5の端子電圧を検出して、最大充電電流以下の定電流を以って、電気二重層キャパシタ5に入力させることが効率的充電となすうえから望まれる。
これがため定電流充電回路4としては多くの電気回路が提案されるが、具体的には図3に示すようにコンバーター4Aの如き電圧変換手段を備え、且電圧検出回路4Bを付帯させてあらかじめ設定した基準電圧V、Vに比べて電気二重層キャパシタ5の端子電圧を検知し該端子電圧が適正充電レベルの電圧か否かを検出し、適正レベルの場合はスイッチSを遮断しスイッチSを通電状態となるよう制御させ、基準電圧V、Vを満充電レベルに設定することにより電気二重層キャパシタ5が満充電となるまで充電がなされる。
Therefore, it is desirable to detect the terminal voltage of a large number of connected electric double layer capacitors 5 and input the electric double layer capacitor 5 to the electric double layer capacitor 5 with a constant current equal to or less than the maximum charging current. .
For this reason, many electric circuits are proposed as the constant current charging circuit 4. Specifically, as shown in FIG. 3, a voltage converting means such as a converter 4A is provided, and a voltage detecting circuit 4B is additionally provided. switch the reference voltage V 1, as compared with the V 2 detects the terminal voltage of the electric double layer capacitor 5 the terminal voltage is detected whether the voltage or not proper charge level, in the case of an appropriate level to cut off the switches S 1 Charging is performed until the electric double layer capacitor 5 is fully charged by controlling S 2 to be in an energized state and setting the reference voltages V 1 and V 2 to a full charge level.

かくして定電流充電回路4により所定電流に制御された発電電力は、断熱板材3若しくは放熱板材下側のケーシング1内中央に多数直列に接続されてなる電気二重層キャパシタ5に充電される。この電気二重層キャパシタ5自体は特別なものは要請されないが、本発明は必要な場所に携行し発電をなすものであるから軽量で薄型のものが望ましく、従って使用される電気二重層キャパシタ5は扁平状のものが使用される。  Thus, the generated electric power controlled to a predetermined current by the constant current charging circuit 4 is charged to the electric double layer capacitor 5 which is connected in series at the center of the casing 1 below the heat insulating plate 3 or the heat radiating plate. The electric double layer capacitor 5 itself is not required to be special. However, since the present invention carries power to a necessary place to generate electric power, a lightweight and thin capacitor is desirable, and therefore the electric double layer capacitor 5 to be used is A flat one is used.

そして肝要なことは、多数の電気二重層キャパシタ5が直列に接続使用される場合、それぞれの電気二重層キャパシタ5内に流れ込む充電電流は等しいことから、キャパシタ容量のバラツキにより充電電圧にも大きなバラツキが発生する結果となる。
これがため電気二重層キャパシタ5に並列に並列モニタ5Aが接続されるもので、該並列モニタ5Aは電気二重層キャパシタ5が定格電圧にまで達すると、充電電流のバイパス回路を閉じてその電気二重層キャパシタ5にそれ以上の充電が行われぬよう制御するもので、これにより直列に接続された多数の電気二重層キャパシタ5の全てが定格電圧まで充電されることとなる。
並列モニタ5Aも多様な電子回路のものが提案されるが、具体的なものとしては逆充電防止ダイオードを内臓したモノリシック回路が挙げられる。
The important thing is that when a large number of electric double layer capacitors 5 are connected in series, the charging currents flowing into the respective electric double layer capacitors 5 are equal, so that the charging voltage also varies greatly due to variations in capacitor capacity. Will result.
For this reason, a parallel monitor 5A is connected in parallel with the electric double layer capacitor 5. When the electric double layer capacitor 5 reaches the rated voltage, the parallel monitor 5A closes the bypass circuit of the charging current and the electric double layer Control is performed so that the capacitor 5 is not charged any more, so that all the electric double layer capacitors 5 connected in series are charged to the rated voltage.
Various electronic circuits are also proposed as the parallel monitor 5A, and specific examples include a monolithic circuit incorporating a reverse charge prevention diode.

かくしてなる電気二重層キャパシタ5に充電された充電電力は、出力負荷に合せて所定電圧を以って出力させるため、図4に示すごとく該電気二重層キャパシタ5が配位されてなるケーシング1内の他側に電力変換回路6が配位されている。
即ち電気二重層キャパシタ5により充電された充電電力を出力させること所謂放電させることにより、電気二重層キャパシタ5からの出力電圧は著しく変動し低電圧化する特性を有する。これがためには出力負荷に適合した電圧及び電流の安定した出力を図るうえで電力変換回路6が要請されることになる。
The electric power charged in the electric double layer capacitor 5 thus formed is output with a predetermined voltage in accordance with the output load. Therefore, the electric double layer capacitor 5 is arranged in the casing 1 as shown in FIG. The power conversion circuit 6 is arranged on the other side.
That is, the output voltage from the electric double layer capacitor 5 is remarkably varied and the voltage is lowered by outputting the charging power charged by the electric double layer capacitor 5 so as to discharge. For this purpose, the power conversion circuit 6 is required in order to achieve a stable output of voltage and current suitable for the output load.

この電力変換回路6は多様な回路が提案されるが、簡便な回路としては出力負荷の電圧で出力されるよう設定されたDC−DCコンバーター6Aの採用が極めて有利である。
そしてかかる電力変換回路6で出力負荷に適合する電圧と電流に変換された出力電力は、ケーシング1の適宜位置に設けた出力端子7に接続されるもので、これらがケーシング1内に密閉収納され図5の如き本発明が形成される。
Various circuits are proposed as the power conversion circuit 6. However, as a simple circuit, it is extremely advantageous to employ a DC-DC converter 6A that is set to output at the voltage of the output load.
The output power converted into voltage and current suitable for the output load by the power conversion circuit 6 is connected to an output terminal 7 provided at an appropriate position of the casing 1, and these are sealed and accommodated in the casing 1. The present invention as shown in FIG. 5 is formed.

本発明はかかる構成よりなるため軽量で安全に携行でき、いかなる場所においても短時に大容量の充電がなしえ且出力負荷に合せて使用できるものであるが、反面使用に際しての出力負荷は地震や台風等非常時における照明や通信用電力を初め、各種の測量調査機器の電力や電動工具等の電力或いはアウトドアライフに伴う照明や車輌用の電力若しくはモバイル通信用電力等多様な出力負荷に係る電力供給の可能なものがより好都合であって、具体的には照明や電動工具等においては直流12Vの出力が、ラジオや通信機器等では直流9Vが、更に携帯電話用充電には直流5Vの出力のものが要請される。  Since the present invention has such a configuration, it is lightweight and can be safely carried, and can be charged in a large capacity at any place in a short time and can be used according to the output load. Electricity for various output loads such as lighting for typhoons and power for communications, power for various surveying survey equipment, power for power tools, etc., power for outdoor life, power for vehicles or power for mobile communications What can be supplied is more convenient. Specifically, the output is 12V DC for lighting and power tools, 9V DC for radio and communication devices, and 5V output for charging for mobile phones. Is required.

そこで本発明においてかかる多様な出力負荷への対処手段として、図6に示す如く太陽光の受光により大容量の発電電力を充電しえる発電充電器8と、該発電充電器8で大容量に充電された充電電力を、少なくとも二つ以上の異なる出力負荷に適合した直流定電圧で出力がなしえる電力変換回路が内臓された変換出力器9とからなる構成のものが提案される。  Therefore, as a means for dealing with various output loads in the present invention, as shown in FIG. 6, a generator charger 8 that can charge a large amount of generated power by receiving sunlight, and a generator charger 8 that charges a large capacity. There is proposed a configuration comprising a conversion output unit 9 having a built-in power conversion circuit capable of outputting the charged power with a DC constant voltage suitable for at least two different output loads.

即ちかかる場合における発電充電器8は、前述のケーシング1の開口部10Aに太陽電池モジュール2が係止配位されたうえ、その下側に断熱板材3若しくは放熱板材が配位され、且この断熱板材3若しくは放熱板材の下側ケーシング1内の一側には定電流充電回路4が配位されたうえ、該定電流充電回路4で所定電流に制御された発電電力を充電させるために、多数直列に接続された扁平状の電気二重層キャパシタ5が配位され、且この充電電力を出力させるための出力端子とにより構成されるものである。  In other words, the generator charger 8 in this case has the solar cell module 2 locked and arranged in the opening 10A of the casing 1, and the heat insulating plate 3 or the heat radiating plate is arranged below the solar cell module 2. A constant current charging circuit 4 is arranged on one side of the lower casing 1 of the plate member 3 or the heat radiating plate member, and in order to charge the generated power controlled to a predetermined current by the constant current charging circuit 4, a large number A flat electric double layer capacitor 5 connected in series is arranged, and is constituted by an output terminal for outputting this charging power.

他方変換出力器9は該発電充電器8により発電され充電された電力を、図7に示すように適宜の収納体9Aの適宜位置に設けられた充電電力入力端子9Bより入力されたうえ、該充電電力入力端子9Bには少なくとも二つ以上の複数で、且それぞれが出力負荷に適合する直流定電圧を以って出力できる分岐電力変換回路9C、9C、9C‥に接続されて配位されてなり、且この出力負荷に適合するよう変換された直流定電圧が出力使用できるよう、収納体9Aの適宜側面に変換出力端子9D、9D、9D‥が設けられた構成からなる。  On the other hand, the conversion output unit 9 receives the electric power generated and charged by the power generation charger 8 from a charging power input terminal 9B provided at an appropriate position of an appropriate storage body 9A as shown in FIG. The charging power input terminal 9B is arranged by being connected to branch power conversion circuits 9C, 9C, 9C... That can output at least two or more DC constant voltages suitable for output loads. And a conversion output terminal 9D, 9D, 9D... Is provided on an appropriate side surface of the housing 9A so that a DC constant voltage converted so as to be suitable for the output load can be used.

太陽電池モジュール2の発電電力量の増大と且電気二重層キャパシタ5の多数直列接続による充電電力量を増大させることにより、照明や通信機器の電力ばかりか産業用動力の長時に亘る供給も容易になすことができる。  By increasing the amount of power generated by the solar cell module 2 and increasing the amount of charging power by connecting multiple electric double layer capacitors 5 in series, it is easy to supply not only lighting and communication equipment power but also industrial power over time. Can be made.

本発明の断面内部構造説明図である。  It is sectional internal structure explanatory drawing of this invention. 太陽電池モジュールの説明図である。  It is explanatory drawing of a solar cell module. 定電流充電回路の回路図である。  It is a circuit diagram of a constant current charging circuit. 電力変換回路の配位図である。  It is a coordination diagram of a power converter circuit. 本発明の見取図である。  It is a sketch of this invention. 発電充電器と変換出力器の見取図である。  It is a sketch of a generator charger and a conversion output device. 変換出力器の内部説明図である。  It is internal explanatory drawing of a conversion output device.

符号の説明Explanation of symbols

1 ケーシング
1A 枠体
1B 底蓋
10A 上端開口部
11A 係止縁
12A 下端開口部
13A 底蓋固体縁
14A 係止ビス
2 太陽電池モジュール
2A 太陽電池セル
2B 結線
2C 透光板材
2D 透光性接着剤
3 断熱板材
4 定電流充電回路
4A コンバーター
4B 電圧検出回路
5 電気二重層キャパシタ
5A 並列モニタ
6 電力変換回路
6A DC−DCコンバーター
7 出力端子
8 発電充電器
9 変換出力器
9A 収納体
9B 充電電力入力端子
9C 分岐電力変換回路
9D 変換出力端子
DESCRIPTION OF SYMBOLS 1 Casing 1A Frame 1B Bottom cover 10A Upper end opening part 11A Locking edge 12A Bottom end opening part 13A Bottom cover solid edge 14A Locking screw 2 Solar cell module 2A Solar cell 2B Connection 2C Translucent plate material 2D Translucent adhesive 3 Thermal insulation plate material 4 Constant current charging circuit 4A Converter 4B Voltage detection circuit 5 Electric double layer capacitor 5A Parallel monitor 6 Power conversion circuit 6A DC-DC converter 7 Output terminal 8 Generator charger 9 Conversion output device 9A Storage body 9B Charging power input terminal 9C Branch power conversion circuit 9D conversion output terminal

Claims (3)

所要の面積及び深さの長方形状で、その上端開口部内側に適宜幅の係止縁、及び下端開口部内側には適宜幅で底蓋固定縁が延出された枠体、並びに底蓋固定縁に係合固定される底蓋とからなるケーシングの内部に、係止縁に係止しえる面積で二枚の透光板材に挟持されて所要面積の太陽電池セルが所要数配列され、且それぞれの太陽電池セルが直列若しくは並列に接続されたうえ、透光性接着剤により透光板材と一体的に接着されてなる太陽電池モジュールが係止配位され、更に該太陽電池モジュールの下側には断熱板材が配位されたうえ、而もこの断熱板材の下側には太陽電池モジュールで発電された電力を所定電流を以って電気ニ重層キャパシタに充電させる定電流充電回路、並びに直列に接続された複数個の扁平状電気ニ重層キャパシタ及びこの直列に接続された複数個の扁平状電気ニ重層キャパシタそれぞれに並列に並列モニタが接続された電気二重層キャパシタ、及び該電気ニ重層キャパシタに充電された電力を所定の直流定電圧を以って出力させるための電力変換回路とが配位されてなり、且この電力変換回路からの出力がケーシングの適宜位置に設けた出力端子と接続された構成からなる太陽光発電ユニット。  A rectangular shape with a required area and depth, with a locking edge having an appropriate width inside the upper end opening, and a frame with a bottom cover fixing edge extending with an appropriate width inside the lower end opening, and fixing the bottom cover A required number of solar cells of a required area are arranged inside a casing composed of a bottom lid engaged and fixed to the edge, sandwiched between two light-transmitting plate materials in an area that can be locked to the locking edge, and Each solar cell is connected in series or in parallel, and a solar cell module that is integrally bonded to the translucent plate material by a translucent adhesive is engaged and coordinated, and the lower side of the solar cell module In addition, a heat insulating plate material is arranged, and a constant current charging circuit for charging the electric double layer capacitor with electric power generated by the solar cell module with a predetermined current and a series under the heat insulating plate material. A plurality of flat electrical double layer capacities connected to And an electric double layer capacitor in which a parallel monitor is connected in parallel to each of the plurality of flat electric double layer capacitors connected in series, and the electric power charged in the electric double layer capacitor is converted to a predetermined DC constant voltage. A photovoltaic power generation unit comprising a configuration in which a power conversion circuit for output is arranged, and an output from the power conversion circuit is connected to an output terminal provided at an appropriate position of the casing. ケーシング内に配位される太陽電池モジュールの下側に、アルミ板材からなる放熱板材が配位されてなる請求項1記載の太陽光発電ユニット。  The solar power generation unit according to claim 1, wherein a heat radiating plate made of an aluminum plate is arranged below the solar cell module arranged in the casing. ケーシング内に太陽電池モジュール、断熱板材若しくは放熱板材、及び定電流充電回路並びに電気ニ重層キャパシタがそれぞれ配位され、且その充電電力をケーシングの適宜位置に設けた充電電力出力端子より出力されるよう構成された発電充電器と、適宜の形状及び容積で密閉可能な収納体の一側面には、発電充電器からの充電電力を入力させる充電電力入力端子が設けられ、且該収納体内には入力される充電電力を少なくとも二つ以上の異なる出力負荷にそれぞれ適合する直流定電圧の電力として変換出力する電力変換回路が配位されてなり而も該変換出力される直流定電圧の電力が、それぞれ収納体の他側面に設けられた複数個の直流定電圧出力端子と接続された構成の変換出力器とからなる請求項1若しくは請求項2記載の太陽光発電ユニット。  A solar cell module, a heat insulating plate material or a heat radiating plate material, a constant current charging circuit, and an electric double layer capacitor are respectively arranged in the casing, and the charging power is output from a charging power output terminal provided at an appropriate position of the casing. A charging power input terminal for inputting charging power from the power generation charger is provided on one side of the configured power generation charger and a container that can be sealed with an appropriate shape and volume. The power conversion circuit for converting and outputting the charging power to be converted into DC constant voltage power suitable for at least two or more different output loads is arranged, and the DC constant voltage power to be converted and output is The solar power generator according to claim 1 or 2, comprising a conversion output device configured to be connected to a plurality of DC constant voltage output terminals provided on the other side surface of the storage body. Unit.
JP2003391433A 2003-10-17 2003-10-17 Photovoltaic generation unit Pending JP2005123552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003391433A JP2005123552A (en) 2003-10-17 2003-10-17 Photovoltaic generation unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003391433A JP2005123552A (en) 2003-10-17 2003-10-17 Photovoltaic generation unit

Publications (1)

Publication Number Publication Date
JP2005123552A true JP2005123552A (en) 2005-05-12

Family

ID=34616408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003391433A Pending JP2005123552A (en) 2003-10-17 2003-10-17 Photovoltaic generation unit

Country Status (1)

Country Link
JP (1) JP2005123552A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7960642B2 (en) 2005-10-31 2011-06-14 Showa Shell Sekiyu K.K. CIS based thin-film photovoltaic module and process for producing the same
CN110621125A (en) * 2018-06-19 2019-12-27 台山市金奥特新能源有限公司 Anti-theft cabinet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7960642B2 (en) 2005-10-31 2011-06-14 Showa Shell Sekiyu K.K. CIS based thin-film photovoltaic module and process for producing the same
CN110621125A (en) * 2018-06-19 2019-12-27 台山市金奥特新能源有限公司 Anti-theft cabinet

Similar Documents

Publication Publication Date Title
US8659880B2 (en) AC photovoltaic module and inverter assembly
US7566828B2 (en) Power source device and charge controlling method to be used in same
US3982963A (en) Solar battery maintainer
US20080088272A1 (en) Extendable and angle-adjustable solar charger
WO2011006129A1 (en) Personal solar appliance
US20200411891A1 (en) Tanks embodiment for a flow battery
US8466650B2 (en) Method for powering a surveillance camera using solar generated wireless energy
KR20120029837A (en) Secondary battery package having peltier effect and electricity generation streetlamp by sun having of that
US10630233B2 (en) Solar cell module
KR20080112622A (en) A portable source of electricity using solar cells
JP2005123552A (en) Photovoltaic generation unit
US20090095338A1 (en) Solar power source
US20050126623A1 (en) Thin layer energy system
US20180219511A1 (en) Solar power system
JP2000278883A (en) Electric double layer capacitor devicf with solar battery
KR100962338B1 (en) Power value control module and solar-board apparatus and power value control method of solar-board
RU2256976C2 (en) Portable photoelectric solar station
TW201931761A (en) Power wiring device
CN219394791U (en) Solar cell panel
CN218150055U (en) A sled dress room for photovoltaic energy storage system
CN207704393U (en) A kind of intelligent terminal with solar cell module
JP2023158279A (en) Window for power generation and power storage system
JP2000277783A (en) Solar battery device
OA19558A (en) Tanks embodiment for a flow battery.
Majaess An approach to improving battery life time in a PV application using high energy density double layer capacitors