JP2005123156A - All-solid secondary battery - Google Patents

All-solid secondary battery Download PDF

Info

Publication number
JP2005123156A
JP2005123156A JP2004132767A JP2004132767A JP2005123156A JP 2005123156 A JP2005123156 A JP 2005123156A JP 2004132767 A JP2004132767 A JP 2004132767A JP 2004132767 A JP2004132767 A JP 2004132767A JP 2005123156 A JP2005123156 A JP 2005123156A
Authority
JP
Japan
Prior art keywords
solid
secondary battery
hydrate
electrolyte
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004132767A
Other languages
Japanese (ja)
Inventor
Yukio Ezaka
享男 江坂
Hiroki Sakaguchi
裕樹 坂口
Chiaki Iwakura
千秋 岩倉
Hiroshi Inoue
博史 井上
Shinya Kagei
慎也 蔭井
Koichi Numata
幸一 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2004132767A priority Critical patent/JP2005123156A/en
Publication of JP2005123156A publication Critical patent/JP2005123156A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an all-solid secondary battery in which heteropolyacid hydrate to exhibit a high proton conductivity is employed as the electrolyte, current density is high, and stable charging and discharging can be conducted. <P>SOLUTION: The all-solid secondary battery 4 comprises a positive electrode 1 for which manganese dioxide or hydroxylation nickel is used as the positive electrode active material; a negative electrode 2 for which hydrogen-absorbing alloys are used as a negative electrode active material; and the solid electrolyte 3 with the use of heteropolyacid hydrate. In this case, as the heteropolyacid hydrate, 12-molybdophosphoric acid n hydrate (chemical formula: H<SB>3</SB>PMo<SB>12</SB>O<SB>40</SB>nH<SB>2</SB>O) or 12-tungstophosphoric acid n hydrate (chemical formula: H<SB>3</SB>PW<SB>12</SB>O<SB>40</SB>nH<SB>2</SB>O) is preferably used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体電解質を用いてなる全固体二次電池に関する。   The present invention relates to an all-solid secondary battery using a solid electrolyte.

近年、ノートパソコンなどのポータブル機器の電源として、二次電池であるニッケル−金属水素化物電池が使用されている。
しかし、ニッケル−金属水素化物電池の電解質は液体であるため、液漏れや凍結などの問題が生じており、この問題を解決するため電池の全固体化が望まれている。また、近年のポータブル機器の小型化、薄型化にともない、電池の小型化、薄型化が望まれるようになり、この要望に応えるものとしても全固体化電池が有望である。
上記要望に対して、負極に水素吸蔵合金、正極に二酸化マンガン、電解質に5酸化アンチモン(Sb25・nH2O)又は2酸化スズ(SnO2・3H2O)を用いた全固体二次電池が開示されている。(例えば、特許文献1参照)
In recent years, nickel-metal hydride batteries, which are secondary batteries, have been used as power sources for portable devices such as notebook computers.
However, since the electrolyte of the nickel-metal hydride battery is liquid, problems such as liquid leakage and freezing have occurred. To solve this problem, it is desired to make the battery completely solid. Further, along with recent downsizing and thinning of portable devices, downsizing and thinning of batteries have been demanded, and all-solid-state batteries are promising to meet this demand.
In response to the above-mentioned demands, the all-solid-state alloy using a hydrogen storage alloy for the negative electrode, manganese dioxide for the positive electrode, and antimony pentoxide (Sb 2 O 5 .nH 2 O) or tin dioxide (SnO 2 .3H 2 O) for the electrolyte. A secondary battery is disclosed. (For example, see Patent Document 1)

特公平4−61468号公報Japanese Examined Patent Publication No. 4-61468

電解質に5酸化アンチモンを用いた全固体二次電池は、充放電を繰り返すサイクルテストでは、100サイクルおこなっても劣化はみられないが、電流密度が100μA/cm2(約1.3mA/g)と低く、顕著な分極を生じるという課題を抱えていた。これは、電解質のプロトン伝導率が低いためと思われる。 In an all-solid-state secondary battery using antimony pentoxide as an electrolyte, in a cycle test in which charging and discharging are repeated, no deterioration is observed even after 100 cycles, but the current density is 100 μA / cm 2 (about 1.3 mA / g). However, it had the problem of producing significant polarization. This seems to be due to the low proton conductivity of the electrolyte.

本発明者らは、常温で高いプロトン伝導率を示すヘテロポリ酸水和物に着目し、これを電解質材料とし、高い電流密度を得られる全個体二次電池の開発を進めてきた。しかし、ヘテロポリ酸水和物は強い酸性であるため電極を腐食し安定した充放電を得ることが困難であるという課題があった。
そこで、本発明の目的は、高いプロトン伝導率を示すヘテロポリ酸水和物を電解質として用いた場合に、酸腐食に強い電極材料を見出し、電流密度が高く、安定した充放電が可能な全固体二次電池を提供することにある。
The present inventors have focused on a heteropolyacid hydrate exhibiting high proton conductivity at room temperature, and have been developing an all-solid-state secondary battery using this as an electrolyte material and capable of obtaining a high current density. However, since the heteropolyacid hydrate is strongly acidic, there is a problem that it is difficult to obtain stable charge and discharge by corroding the electrode.
Therefore, the object of the present invention is to find an electrode material that is resistant to acid corrosion when a heteropolyacid hydrate exhibiting high proton conductivity is used as an electrolyte, and is an all-solid material that has a high current density and can be stably charged and discharged. It is to provide a secondary battery.

本発明は、正極活物質として二酸化マンガン又は水酸化ニッケルを用いた正極と、負極活物質として水素吸蔵合金を用いた負極と、固体電解質とを備えた全固体二次電池であって、固体電解質をヘテロポリ酸水和物とした全固体二次電池を提案する。   The present invention is an all-solid secondary battery comprising a positive electrode using manganese dioxide or nickel hydroxide as a positive electrode active material, a negative electrode using a hydrogen storage alloy as a negative electrode active material, and a solid electrolyte. We propose an all-solid-state secondary battery in which is a heteropolyacid hydrate.

本発明の全固体二次電池は、常温で高いプロトン伝導率を示すヘテロポリ酸水和物を電解質材料として用いると共に、酸腐食に強い電極材料を用いることによって、高い電流密度で放電が可能で、かつ安定した充放電が可能である。中でも、正極活物質として二酸化マンガン、負極活物質としてジルコニウム系水素吸蔵合金の組合わせからなるもの、そのなかでも特に電解質として12−モリブドリン酸n水和物を用いたものは、より一層高い電流密度で放電が可能で、かつ充放電サイクル特性もより一層優れたものとなる。   The all-solid-state secondary battery of the present invention can be discharged at a high current density by using a heteropolyacid hydrate that exhibits high proton conductivity at room temperature as an electrolyte material, and using an electrode material that is resistant to acid corrosion. In addition, stable charge / discharge is possible. Among them, a material composed of a combination of manganese dioxide as a positive electrode active material and a zirconium-based hydrogen storage alloy as a negative electrode active material, and in particular, a material using 12-molybdophosphoric acid n-hydrate as an electrolyte has a higher current density. The discharge is possible and the charge / discharge cycle characteristics are further improved.

以下、本発明の実施形態について述べるが、本発明の範囲がこれに限定されるものではない。   Hereinafter, although embodiment of this invention is described, the scope of the present invention is not limited to this.

本発明の全固体二次電池は、正極と、負極と、固体電解質から構成される電池であり、正極活物質として二酸化マンガン又は水酸化ニッケルを用い、負極活物質として水素吸蔵合金を用い、固体電解質としてヘテロポリ酸水和物用いて構成される全固体二次電池である。
なお、本発明において固体電解質とは、イオンが移動することで電荷を運び、電気を流す物質であって、水や溶媒を含まない物質を意味する。
The all-solid-state secondary battery of the present invention is a battery composed of a positive electrode, a negative electrode, and a solid electrolyte, using manganese dioxide or nickel hydroxide as a positive electrode active material, using a hydrogen storage alloy as a negative electrode active material, It is an all-solid-state secondary battery configured using a heteropolyacid hydrate as an electrolyte.
In the present invention, the solid electrolyte refers to a substance that carries electric charges by flowing ions and flows electricity, and does not contain water or a solvent.

(固体電解質)
固体電解質としては、ヘテロポリ酸水和物を用いる。
ここで、ヘテロポリ酸とは、遷移金属イオン(モリブデン(Mo6+)、タングステン(W6+)、バナジウム(V5+))などを中心として周りに酸素イオン(O2+)が4〜6配位した四面体、四角錐、八面体などを基本構造とし、この稜や頂点を共有し、多数縮合してできた多核錯体のポリ酸であり、このうち、二種以上の金属イオン又は元素イオンを中心とした基本構造を縮合させたポリ酸をヘテロポリ酸という。ヘテロポリ酸は大きな格子定数を持ち、この格子間に水分子が配位される。この水分子によりプロトンが伝導するため、高いプロトン伝導率を示すものと考えられる。
本発明で用いるヘテロポリ酸水和物としては、モリブデンイオンを基本構造の中心としたモリブデン酸のヘテロポリ酸、タングステンイオンを基本構造の中心としたタングステン酸のヘテロポリ酸、バナジウムイオンを基本構造の中心としたバナジウム酸のヘテロポリ酸などがあり、より具体的にはH7PMo1139・nH2O、H5PV2Mo1040・nH2O、H3VW1240・nH2O、H62Mo1862・nH2O、などである。なかでも、12−モリブドリン酸n水和物(化学式:H3PMo1240・nH2O)又は12−タングストリン酸n水和物(化学式:H3PW1240・nH2O)が本発明には好ましい。
ヘテロポリ酸水和物の合成は、従来公知の水熱合成法や焼成による固相合成法などにより合成すればよく、市販品を使用することもできる。
本発明の二次固体電池を形成する際には、ヘテロポリ酸水和物をめのう乳鉢などで細かく砕き粉状に形成して使用するのが好ましい。
(Solid electrolyte)
Heteropolyacid hydrate is used as the solid electrolyte.
Here, the heteropolyacid is a transition metal ion (molybdenum (Mo 6+ ), tungsten (W 6+ ), vanadium (V 5+ )) or the like and oxygen ions (O 2+ ) around 4 to 6 around it. It is a polyacid of polynuclear complex with a coordinated tetrahedron, quadrangular pyramid, octahedron, etc. as the basic structure, sharing these ridges and vertices, and condensing many, of which two or more metal ions or elements A polyacid obtained by condensing a basic structure centered on ions is called a heteropolyacid. A heteropolyacid has a large lattice constant, and water molecules are coordinated between the lattices. Since protons are conducted by these water molecules, it is considered that high proton conductivity is exhibited.
The heteropolyacid hydrate used in the present invention includes a molybdate heteropolyacid having molybdenum ions as the center of the basic structure, a tungstic heteropolyacid having tungsten ions as the center of the basic structure, and a vanadium ion having the center of the basic structure. And more specifically, H 7 PMo 11 O 39 .nH 2 O, H 5 PV 2 Mo 10 O 40 .nH 2 O, H 3 VW 12 O 40 .nH 2 O, H 6 P 2 Mo 18 O 62 · nH 2 O, and the like. Among them, 12-molybdophosphoric acid n-hydrate (chemical formula: H 3 PMo 12 O 40 · nH 2 O) or 12-tungstophosphoric acid n-hydrate (chemical formula: H 3 PW 12 O 40 · nH 2 O) Preferred for the present invention.
The heteropolyacid hydrate may be synthesized by a conventionally known hydrothermal synthesis method or a solid phase synthesis method by baking, or a commercially available product may be used.
When forming the secondary solid battery of the present invention, it is preferable to use the heteropolyacid hydrate by finely pulverizing it in an agate mortar or the like.

(正極)
正極活物質としては、二酸化マンガン又は水酸化ニッケルを用いる。
例えば、従来のリチウム電池やニッケル−金属水素化物電池などの正極活物質として使用されてきた二酸化マンガン又は水酸化ニッケル、或いはこれらの組合わせからなる混合物を使用することができる。このうち二酸化マンガンは耐酸性に優れているため、強い酸性を示すヘテロポリ酸水和物に対して腐食しにくく、本発明の全固体二次電池には特に好ましい。なかでもマンガン価数3.8〜4、特に3.9〜4の二酸化マンガンが好ましい。また、二酸化マンガンには、天然二酸化マンガン、化学合成二酸化マンガン、電解二酸化マンガン、その他の二酸化マンガンがあるが、硫酸マンガン溶液を電気分解することによって生成(析出)して得られる電解二酸化マンガンが特に好ましい。
上記正極活物質に、アセチレンブラック(以下ABと略す)などの導電剤、ポリテトラフルオロエチレン(以下PTFEと略す。)などの結着剤及び前記電解質、必要に応じてその他の添加物を加えて、めのう乳鉢などで混合及び粉砕したものを正極材料とする。
(Positive electrode)
As the positive electrode active material, manganese dioxide or nickel hydroxide is used.
For example, manganese dioxide or nickel hydroxide, which has been used as a positive electrode active material for a conventional lithium battery or nickel-metal hydride battery, or a mixture of these combinations can be used. Among these, manganese dioxide is excellent in acid resistance, so that it is difficult to corrode against the heteropolyacid hydrate exhibiting strong acidity and is particularly preferable for the all solid state secondary battery of the present invention. Of these, manganese dioxide having a manganese valence of 3.8 to 4, particularly 3.9 to 4, is preferable. In addition, manganese dioxide includes natural manganese dioxide, chemically synthesized manganese dioxide, electrolytic manganese dioxide, and other manganese dioxides, and electrolytic manganese dioxide obtained by electrolyzing a manganese sulfate solution (precipitation) is particularly electrolytic manganese dioxide. preferable.
To the positive electrode active material, a conductive agent such as acetylene black (hereinafter abbreviated as AB), a binder such as polytetrafluoroethylene (hereinafter abbreviated as PTFE), the electrolyte, and other additives as necessary. What is mixed and pulverized in an agate mortar or the like is used as a positive electrode material.

(負極)
負極を構成する負極活物質として用いる水素吸蔵合金は、水素を吸蔵及び放出できる合金であり、マグネシウム(Mg)を含有したマグネシウム系水素吸蔵合金、バナジウム(V)を含有したバナジウム系合金など、現在公知の水素吸蔵合金を使用することができる。なかでも本発明には、ジルコニウム(Zr)を含有したジルコニウム系水素吸蔵合金又は希土類(La、Ceなど)を含有する希土類系水素吸蔵合金、或いはこれらの組合わせからなる混合物が好適に用いられる。そのなかでも特に、ZrMn1.5Cr0.7Ni0.3やMmNi3.6Al0.4Mn0.3Co0.7(式中Mmは希土類元素の混合物であるミッシュメタル、本発明に置いて同じ。)などが特に好適である。ジルコニウム系水素吸蔵合金は耐酸性に優れているため、強い酸性を示すヘテロポリ酸水和物に対して腐食しにくく、本発明の全固体二次電池には好ましい。
上記負極活物質に、導電剤(ABなど)、結着剤(PTFEなど)及び前記電解質、必要に応じてその他の添加物を加えて、めのう乳鉢などで混合及び粉砕したものを負極材料とする。
(Negative electrode)
The hydrogen storage alloy used as the negative electrode active material constituting the negative electrode is an alloy capable of storing and releasing hydrogen, such as a magnesium-based hydrogen storage alloy containing magnesium (Mg) and a vanadium-based alloy containing vanadium (V). A known hydrogen storage alloy can be used. In particular, in the present invention, a zirconium-based hydrogen storage alloy containing zirconium (Zr), a rare-earth hydrogen storage alloy containing rare earths (La, Ce, etc.), or a mixture of these combinations is preferably used. Among these, ZrMn 1.5 Cr 0.7 Ni 0.3 and MmNi 3.6 Al 0.4 Mn 0.3 Co 0.7 (wherein Mm is a misch metal which is a mixture of rare earth elements, the same in the present invention) are particularly suitable. Since the zirconium-based hydrogen storage alloy is excellent in acid resistance, it is difficult to corrode with respect to the heteropolyacid hydrate exhibiting strong acidity, which is preferable for the all solid state secondary battery of the present invention.
A negative electrode material obtained by adding a conductive agent (AB, etc.), a binder (PTFE, etc.), the electrolyte, and other additives as necessary to the negative electrode active material, and mixing and pulverizing them in an agate mortar or the like. .

(電池)
本発明の全固体二次電池は、例えば以下のように形成することができる。
図1に示すように、正極活物質、導電剤(AB)、結着剤(PTFE)、電解質を85:5:5:5の質量比でめのう乳鉢を用いて混合した粉末をペレット成形器に入れプレスして正極1を形成する。次に正極1の上に電解質粉末を重ねてプレスして電解質層2を形成する。電解質層2の上に負極活物質、導電剤(AB)、結着剤(PTFE)、電解質を85:5:5:5の質量比でめのう乳鉢を用いて混合し、得られた粉末を前記電解質層2の上に重ねてプレスして負極3を形成することにより三層の全固体二次電池4とすることができる。
(battery)
The all solid state secondary battery of the present invention can be formed as follows, for example.
As shown in FIG. 1, a powder obtained by mixing a positive electrode active material, a conductive agent (AB), a binder (PTFE), and an electrolyte in a mass ratio of 85: 5: 5: 5 using an agate mortar is placed in a pellet molding machine. The positive electrode 1 is formed by inserting and pressing. Next, the electrolyte powder 2 is formed by stacking and pressing the electrolyte powder on the positive electrode 1. A negative electrode active material, a conductive agent (AB), a binder (PTFE), and an electrolyte are mixed on the electrolyte layer 2 at a mass ratio of 85: 5: 5: 5 using an agate mortar, and the obtained powder is mixed with the above powder. A three-layer all-solid-state secondary battery 4 can be obtained by forming the negative electrode 3 by pressing it over the electrolyte layer 2.

固体電池は、電解質が固体であるため、液体電解質を用いる従来の電池と比較して電極/電解質界面量が少なく、電極反応を円滑に進行させることが困難である。そこで、電極活物質と電解質の接触面積を増加させることを目的として、必要に応じて電極にも電解質を添加するのが好ましい。   Since the solid battery has a solid electrolyte, the amount of the electrode / electrolyte interface is small as compared with a conventional battery using a liquid electrolyte, and it is difficult to smoothly advance the electrode reaction. Therefore, for the purpose of increasing the contact area between the electrode active material and the electrolyte, it is preferable to add an electrolyte to the electrode as necessary.

以下、本発明の一実施例を具体的に説明する。
<電解質>
電解質のヘテロポリ酸水和物としては、12−モリブドリン酸n水和物(化学式:H3PMo1240・nH2O、(株)和光純薬工業製)又は12−タングストリン酸n水和物(化学式:H3PW1240・nH2O、(株)和光純薬工業製)の試薬を用いた。
上記試薬の水和数を熱重量分析により測定した。本分析は、示差熱熱重量同時測定装置(DTG-50H、(株)島津製作所製)を用い、温度設定として2℃/minで500℃まで昇温させた。
その結果、12−モリブドリン酸n水和物の水和数は29、12−タングストリン酸n水和物の水和数は21であった。
また、上記試薬の導電率を交流インピーダンス測定により計測した。本測定は、上記試料0.5gをペレット成型器を用い、1×103kgf/cm2で静水圧プレスし、直径13mm、厚さ約1mmのペレット状に成型し、これを図2に示すステンレス製二極式セル(HS-type cell、宝泉(株)製)に入れて、インピーダンスアナライザー(4192A、(株)横河・ヒューレッド・パッカード製)を用い、測定温度30℃、周波数5Hz〜5MHzの設定で行った。
その結果、12−モリブドリン酸n水和物の導電率は3.3×10-2S/cm、12−タングストリン酸n水和物の導電率は1×10-2S/cmであった。
Hereinafter, an embodiment of the present invention will be described in detail.
<Electrolyte>
The electrolyte heteropolyacid hydrate includes 12-molybdophosphoric acid n hydrate (chemical formula: H 3 PMo 12 O 40 · nH 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) or 12-tungstophosphoric acid n hydrate. (Chemical formula: H 3 PW 12 O 40 · nH 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) was used.
The hydration number of the reagent was measured by thermogravimetric analysis. In this analysis, a differential thermothermal gravimetric simultaneous measurement apparatus (DTG-50H, manufactured by Shimadzu Corporation) was used, and the temperature was raised to 500 ° C. at 2 ° C./min.
As a result, the hydration number of 12-molybdophosphoric acid n-hydrate was 29, and the hydration number of 12-tungstophosphoric acid n-hydrate was 21.
The conductivity of the reagent was measured by AC impedance measurement. In this measurement, 0.5 g of the above sample was hydrostatically pressed at 1 × 10 3 kgf / cm 2 using a pellet molding machine and molded into a pellet shape having a diameter of 13 mm and a thickness of about 1 mm, which is shown in FIG. Place in a stainless steel bipolar cell (HS-type cell, manufactured by Hosen Co., Ltd.) and use an impedance analyzer (4192A, manufactured by Yokogawa / Hurred Packard), measuring temperature 30 ° C, frequency 5Hz The setting was performed at ˜5 MHz.
As a result, the conductivity of 12-molybdophosphoric acid n-hydrate was 3.3 × 10 −2 S / cm, and the conductivity of 12-tungstophosphoric acid n-hydrate was 1 × 10 −2 S / cm. .

<正極活物質>
正極活物質としては、二酸化マンガン(MnO2)((株)和光純薬工業製)又は水酸化ニッケル(Ni(OH)2コバルトコート)(宝泉(株)製)の試薬を用いた。
<Positive electrode active material>
As the positive electrode active material, a reagent of manganese dioxide (MnO 2 ) (manufactured by Wako Pure Chemical Industries, Ltd.) or nickel hydroxide (Ni (OH) 2 cobalt coat) (manufactured by Hosen Co., Ltd.) was used.

<負極活物質>
負極活物質の水素吸蔵合金としては、MmNi3.6Al0.4Mn0.3Co0.7((株)三徳製)又はZrMn1.5Cr0.7Ni0.3の試薬を用いた。なお、ZrMn1.5Cr0.7Ni0.3は、ZrMn1.5Cr0.7粉((株)ニラコ製)にNi粉を混合して作製した。
上記試薬を、ジーベルツ装置を用いて水素化したものを負極活物質として用いた。
<Negative electrode active material>
As the hydrogen storage alloy of the negative electrode active material, a reagent of MmNi 3.6 Al 0.4 Mn 0.3 Co 0.7 (manufactured by Santoku Co., Ltd.) or ZrMn 1.5 Cr 0.7 Ni 0.3 was used. ZrMn 1.5 Cr 0.7 Ni 0.3 was prepared by mixing Ni powder into ZrMn 1.5 Cr 0.7 powder (manufactured by Nilaco Corporation).
A material obtained by hydrogenating the reagent using a Siebels apparatus was used as a negative electrode active material.

<全固体二次電池の作製>
全固体二次電池は以下のとおり作製した。
正極活物質、導電剤(AB)、結着剤(PTFE)、電解質を重量比85:5:5:5の割合で全重量0.1gとし、メノウ乳鉢を用いて混合した。これを、ペレット成型器に入れ、1×103kgf/cm2の荷重でプレスした。その上に電解質粉末0.2gを重ね1×103kgf/cm2の荷重でプレスし、さらに、その上に負極活物質、導電剤(AB)、結着剤(PTFE)、電解質を重量比85:5:5:5の割合で全重量0.1gとし、メノウ乳鉢を用いて混合したものを重ね、1×103kgf/cm2の荷重でプレスした。
これにより、直径13mmのペレット状の全固体二次電池とし、全固体二次電池を図2に示すステンレス製二極式セル(HS-type cell、宝泉(株)製)に入れ、充放電測定を行った。
<Preparation of all-solid secondary battery>
The all solid state secondary battery was produced as follows.
The positive electrode active material, the conductive agent (AB), the binder (PTFE), and the electrolyte were mixed at a weight ratio of 85: 5: 5: 5 to a total weight of 0.1 g using an agate mortar. This was put into a pellet molding machine and pressed with a load of 1 × 10 3 kgf / cm 2 . On top of that, 0.2 g of electrolyte powder is stacked and pressed with a load of 1 × 10 3 kgf / cm 2 , and further, a negative electrode active material, a conductive agent (AB), a binder (PTFE), and an electrolyte are added on the weight ratio. The total weight was set to 0.1 g at a ratio of 85: 5: 5: 5, and those mixed using an agate mortar were stacked and pressed with a load of 1 × 10 3 kgf / cm 2 .
As a result, a pellet-shaped all-solid secondary battery having a diameter of 13 mm was formed, and the all-solid-state secondary battery was placed in a stainless steel bipolar cell (HS-type cell, manufactured by Hosen Co., Ltd.) shown in FIG. Measurements were made.

<充放電測定>
充放電測定は、充放電試験装置(BS2506、(株)計測器センター製)を用い、温度30℃の条件で行った。
上記の如く、電解質に12−タングストリン酸n水和物、正極に水酸化ニッケル、負極に上記一方の水素吸蔵合金を用いて形成した全固体二次電池を、50又は100mA/gで10mAh/gの容量まで充電し、10分間放置した後、電池電圧が0.8Vとなるまで10〜100mA/g範囲内の一定電流密度で放電した。
電解質に12−モリブドリン酸n水和物、正極に二酸化マンガン、負極に上記一方の水素吸蔵合金を用いて形成した全固体二次電池は、1、5、10、20又は50mA/gで1時間の充電をし、10分間放置した後、各電流密度で1時間の放電をした。電池電圧範囲は0.4〜2Vとした。
具体的には以下に示す。
<Charge / discharge measurement>
The charge / discharge measurement was performed under the condition of a temperature of 30 ° C. using a charge / discharge test apparatus (BS2506, manufactured by Instrument Center).
As described above, an all solid state secondary battery formed using 12-tungstophosphoric acid n-hydrate as an electrolyte, nickel hydroxide as a positive electrode, and one of the hydrogen storage alloys as a negative electrode is 10 mAh / g at 50 or 100 mA / g. The battery was charged to a capacity of g, allowed to stand for 10 minutes, and then discharged at a constant current density in the range of 10 to 100 mA / g until the battery voltage reached 0.8V.
An all-solid secondary battery formed using 12-molybdophosphoric acid n-hydrate as an electrolyte, manganese dioxide as a positive electrode, and one of the hydrogen storage alloys as a negative electrode is 1, 5, 10, 20 or 50 mA / g for 1 hour. Was charged for 10 minutes, and then discharged at each current density for 1 hour. The battery voltage range was 0.4-2V.
Specifically, it is shown below.

<結果>
i)電解質に12−タングストリン酸n水和物、正極に水酸化ニッケル、負極にMmNi3.6Al0.4Mn0.3Co0.7を用いた全固体二次電池について説明する。
図3は、電流密度50mA/gで充電を行い、20mA/gで放電を行った場合の充放電曲線を示す。これより、電流密度50mA/gで充電し、20mA/gで放電可能であることが確認された。これは、無機系の固体電解質を用いた従来の全固体二次電池と比較して著しく高い電流密度の値である。
図4は、電流密度50又は100mA/gで充電を行い、電流密度10、20、50又は100mA/gのいずれかで放電を行った場合の放電効率を示す。放電効率とは、充電で要した電気量と放電で要した電気量との比をいう。電流密度50mA/gと電流密度100mA/gとでは、ほとんど差異はみられず、電流密度100mA/gでも充放電は可能である。
これらより、従来の全固体二次電池よりも高い電流密度の値を示しており、このような高い電流密度でも充放電が可能な全固体二次電池であることが確認された。
<Result>
i) An all-solid secondary battery using 12-tungstophosphoric acid n-hydrate as an electrolyte, nickel hydroxide as a positive electrode, and MmNi 3.6 Al 0.4 Mn 0.3 Co 0.7 as a negative electrode will be described.
FIG. 3 shows a charge / discharge curve when charging is performed at a current density of 50 mA / g and discharging is performed at 20 mA / g. From this, it was confirmed that charging was possible at a current density of 50 mA / g and discharging was possible at 20 mA / g. This is a value of a significantly higher current density as compared with a conventional all-solid secondary battery using an inorganic solid electrolyte.
FIG. 4 shows the discharge efficiency when charging was performed at a current density of 50 or 100 mA / g and discharging was performed at a current density of 10, 20, 50 or 100 mA / g. The discharge efficiency is the ratio of the amount of electricity required for charging and the amount of electricity required for discharging. There is almost no difference between the current density of 50 mA / g and the current density of 100 mA / g, and charging / discharging is possible even at a current density of 100 mA / g.
From these, the value of the current density higher than the conventional all solid state secondary battery was shown, and it was confirmed that it is an all solid state secondary battery that can be charged and discharged even at such a high current density.

ii)電解質に12−タングストリン酸n水和物、正極に水酸化ニッケル、負極にZrMn1.5Cr0.7Ni0.3を用いた全固体二次電池について説明する。
図5は、充電の電流密度は50mA/g、放電の電流密度は20mA/gとした場合の充放電のサイクル数に対する放電効率を示す。この図で黒丸(●)は本全固体二次電池の場合を、白丸(○)は前記i)で示した全固体二次電池の場合を示している。その結果、わずかではあるが本全固体二次電池の方が、数サイクル多く充放電可能なことが確認できた。
ii) An all-solid secondary battery using 12-tungstophosphoric acid n-hydrate as an electrolyte, nickel hydroxide as a positive electrode, and ZrMn 1.5 Cr 0.7 Ni 0.3 as a negative electrode will be described.
FIG. 5 shows the discharge efficiency with respect to the number of charge / discharge cycles when the charge current density is 50 mA / g and the discharge current density is 20 mA / g. In this figure, the black circle (●) indicates the case of the all solid state secondary battery, and the white circle (◯) indicates the case of the all solid state secondary battery indicated by i). As a result, it was confirmed that the all-solid-state secondary battery could be charged and discharged several times more, although it was a little.

iii)電解質に12−タングストリン酸n水和物、正極に二酸化マンガン、負極にZrMn1.5Cr0.7Ni0.3を用いた全固体二次電池について説明する。
図6は、充放電の電流密度は5mA/gとした場合の充放電のサイクル数に対する放電効率を示す。これより、放電効率は10%前後と低いが、200サイクル以上(図示せず)の充放電が可能であることが確認できた。
図7は、充放電の電流密度は1mA/gとした場合の充放電のサイクル数に対する放電効率を示す。これより、放電効率は10%若干超える程度であり、従来の全固体二次電池の電流密度より値は低いが、200サイクル以上の充放電が可能であることが確認できた 。
しかし、本全固体二次電池では50mA/gでの充電はできなかった。
iii) An all-solid secondary battery using 12-tungstophosphoric acid n-hydrate as the electrolyte, manganese dioxide as the positive electrode, and ZrMn 1.5 Cr 0.7 Ni 0.3 as the negative electrode will be described.
FIG. 6 shows the discharge efficiency relative to the number of charge / discharge cycles when the charge / discharge current density is 5 mA / g. From this, although the discharge efficiency was as low as about 10%, it was confirmed that charging / discharging of 200 cycles or more (not shown) was possible.
FIG. 7 shows the discharge efficiency with respect to the number of charge / discharge cycles when the charge / discharge current density is 1 mA / g. From this, it was confirmed that the discharge efficiency is slightly over 10%, which is lower than the current density of the conventional all-solid secondary battery, but can be charged and discharged for 200 cycles or more.
However, the all solid state secondary battery could not be charged at 50 mA / g.

iv)電解質に12−モリブドリン酸n水和物、正極に水酸化ニッケル、負極にMmNi3.6Al0.4Mn0.3Co0.7を用いた全固体二次電池について説明する。
電流密度50又は100mA/gで充放電測定をおこなった。しかし、ほとんど充放電をおこなうことができなかった。そこで、電流密度を10mA/gに下げ、充放電試験をおこなったところ10%を下回る放電効率ではあるが、80サイクル以上の充放電が可能であることが確認できた。
iv) An all-solid secondary battery using 12-molybdophosphoric acid n-hydrate as an electrolyte, nickel hydroxide as a positive electrode, and MmNi 3.6 Al 0.4 Mn 0.3 Co 0.7 as a negative electrode will be described.
Charge / discharge measurement was performed at a current density of 50 or 100 mA / g. However, it was almost impossible to charge and discharge. Therefore, when the current density was lowered to 10 mA / g and a charge / discharge test was conducted, it was confirmed that charge / discharge of 80 cycles or more was possible although the discharge efficiency was less than 10%.

v)電解質に12−モリブドリン酸n水和物、正極に二酸化マンガン、負極にZrMn1.5Cr0.7Ni0.3を用いた全固体二次電池について説明する。
図8は、充放電の電流密度1mA/gでの充放電曲線を示す。これより、230サイクル程まで充電休止時の電圧降下が小さく、かつ放電時の電圧変化の小さい安定した充放電が可能であることを確認した。300サイクル以上となると充電時の電圧が上昇し、放電時の電圧変化が大きくなることが確認される。これは電極が腐食され電極−電解質界面の電気的コンタクトが阻害されているためであると考えられる。
図9は、充放電のサイクル数に対する放電効率を示し、充放電の電流密度は1mA/gとした。この結果、230サイクル付近まで略100%の放電効率を示し、それ以降でも80%以上の放電効率であることが確認された。230サイクル以降は放電効率にばらつきが見られるが、これは電極の腐食が原因であると考えられる。
図10は、充放電の電流密度5mA/gでの充放電曲線を示す。電流密度を5mA/gとしても100サイクル程までは電圧降下が小さく安定した充放電がおこなわれることが確認できた。また、図11は、充放電のサイクル数に対する放電効率を示し、充放電の電流密度は5mA/gとした。この結果、120サイクル程まで略80%の放電効率を示した。5mA/gの電流密度は、従来例で示した5酸化アンチモンを使用した全固体二次電池よりも高い値であり、100サイクル以上充放電が可能であることを確認できた。
図12は、電流密度を1、5、10、20又は50mA/gとしたときの10サイクル目(ただし、50mA/gのみ1サイクル目である。)の放電曲線を示す。この結果、10、20又は50mA/gという高い電流密度でも充放電が可能であることが確認できた。このような高い電流密度を示す全固体二次電池は従来にはないものであり、12−モリブドリン酸n水和物を用いた全固体二次電池の優れた点である。
図13は、電流密度を5、10又は20mA/gとしたときの充放電のサイクル数に対する放電効率を示す。この結果、電流密度10mA/gでは、略40%の効率で15サイクル程、電流密度20mA/gでは、略20%の効率で10サイクル程の充放電が可能なことが確認できた。
v) An all-solid secondary battery using 12-molybdophosphoric acid n-hydrate as an electrolyte, manganese dioxide as a positive electrode, and ZrMn 1.5 Cr 0.7 Ni 0.3 as a negative electrode will be described.
FIG. 8 shows a charge / discharge curve at a charge / discharge current density of 1 mA / g. From this, it was confirmed that a stable charge / discharge with a small voltage drop at the time of charging suspension and a small voltage change at the time of discharging was possible up to about 230 cycles. It is confirmed that the voltage at the time of charging increases and the voltage change at the time of discharging increases when the number of cycles is 300 cycles or more. This is presumably because the electrode is corroded and the electrical contact at the electrode-electrolyte interface is obstructed.
FIG. 9 shows the discharge efficiency with respect to the number of charge / discharge cycles, and the charge / discharge current density was 1 mA / g. As a result, it was confirmed that the discharge efficiency was approximately 100% up to around 230 cycles, and the discharge efficiency was 80% or more after that. The discharge efficiency varies after 230 cycles, which is considered to be caused by corrosion of the electrode.
FIG. 10 shows a charge / discharge curve at a charge / discharge current density of 5 mA / g. It was confirmed that even when the current density was 5 mA / g, stable charge and discharge were performed with a small voltage drop up to about 100 cycles. FIG. 11 shows the discharge efficiency with respect to the number of charge / discharge cycles, and the charge / discharge current density was 5 mA / g. As a result, the discharge efficiency was approximately 80% up to about 120 cycles. The current density of 5 mA / g was higher than that of the all-solid-state secondary battery using antimony pentoxide shown in the conventional example, and it was confirmed that charging and discharging could be performed for 100 cycles or more.
FIG. 12 shows a discharge curve at the 10th cycle (however, only 50 mA / g is the first cycle) when the current density is 1, 5, 10, 20 or 50 mA / g. As a result, it was confirmed that charging / discharging was possible even at a high current density of 10, 20 or 50 mA / g. An all-solid-state secondary battery exhibiting such a high current density is unprecedented and is an excellent point of an all-solid-state secondary battery using 12-molybdophosphoric acid n-hydrate.
FIG. 13 shows the discharge efficiency with respect to the number of charge / discharge cycles when the current density is 5, 10 or 20 mA / g. As a result, it was confirmed that charging / discharging could be performed for about 15 cycles with an efficiency of about 40% at a current density of 10 mA / g, and about 10 cycles with an efficiency of about 20% for a current density of 20 mA / g.

電解質として12−モリブドリン酸n水和物や12−タングストリン酸n水和物などのテロポリ酸水和物を用いた全固体二次電池は、50mA/gという電流密度でも充放電可能であることが確認できた。特に、電解質に12−モリブドリン酸n水和物、正極に二酸化マンガン、負極にジルコニウム系水素吸蔵合金を用いた全固体二次電池は、電流密度5mA/gで100サイクル以上充放電が可能で、従来例の全固体二次電池よりも電流密度が高く、充放電サイクル特性も優れたものである。   An all-solid-state secondary battery using telopoly acid hydrate such as 12-molybdophosphoric acid n-hydrate or 12-tungstophosphoric acid n-hydrate as an electrolyte can be charged and discharged even at a current density of 50 mA / g. Was confirmed. In particular, an all-solid secondary battery using 12-molybdophosphoric acid n-hydrate as an electrolyte, manganese dioxide as a positive electrode, and a zirconium-based hydrogen storage alloy as a negative electrode can be charged and discharged for 100 cycles or more at a current density of 5 mA / g. The current density is higher than that of the all-solid secondary battery of the conventional example, and the charge / discharge cycle characteristics are also excellent.

(追加試験1)
電池材料の充填方法の違いによる電池特性への影響を比較検討した。
(Additional test 1)
The effect of battery material filling method on battery characteristics was compared.

正極活物質としての電解二酸化マンガン(三井金属製)と導電剤(AB)と結着剤(PTFE)と電解質とを、重量比85:5:5:5の割合でメノウ乳鉢を用いて混合した。
また、負極活物質としてジルコニウム系水素吸蔵合金(ZrMn1.5Cr0.7Ni0.3)を用い、固体電解質として12−モリブドリン酸n水和物(化学式:H3PMo1240・20H2O)を用いた。
なお、水素吸蔵合金はあらかじめ水素ガスにより水素化させた。
Electrolytic manganese dioxide (made by Mitsui Metals) as a positive electrode active material, a conductive agent (AB), a binder (PTFE), and an electrolyte were mixed using an agate mortar at a weight ratio of 85: 5: 5: 5. .
Further, zirconium-based hydrogen storage alloy (ZrMn 1.5 Cr 0.7 Ni 0.3 ) was used as the negative electrode active material, and 12-molybdophosphoric acid n hydrate (chemical formula: H 3 PMo 12 O 40 · 20H 2 O) was used as the solid electrolyte. .
The hydrogen storage alloy was previously hydrogenated with hydrogen gas.

充填方法1:先ず正極活物質をペレット成型器に入れて1×103kgf/cm2の荷重でプレスし、その上に固体電解質を入れて1×103kgf/cm2の荷重でプレスし、さらに負極活物質を入れて1×103kgf/cm2の荷重でプレスする三段階プレス方式(従来法)によって電池を作製した。 Filling method 1: First, the positive electrode active material is put in a pellet molding machine and pressed with a load of 1 × 10 3 kgf / cm 2 , and a solid electrolyte is put thereon and pressed with a load of 1 × 10 3 kgf / cm 2. Further, a battery was prepared by a three-stage press method (conventional method) in which a negative electrode active material was further added and pressed with a load of 1 × 10 3 kgf / cm 2 .

充填方法2:正極活物質、固体電解質及び負極活物質を順次ペレット成型器に入れて三層に重ね、一度に1×103kgf/cm2の荷重でプレスする一段プレス方式によって電池を作製した。 Filling method 2: A battery was fabricated by a one-stage press method in which a positive electrode active material, a solid electrolyte, and a negative electrode active material were sequentially placed in a pellet molding machine, stacked in three layers, and pressed at a load of 1 × 10 3 kgf / cm 2 at a time. .

上記の如く作製した電池を、それぞれステンレス製の密閉型二極式セル(宝泉製、HS-type cell)に入れ、電池充放電測定を行い、結果を図14に示した。
この際、充放電条件は以下のとおりとした。
充電:5、10mAg-1,1h
休止:10min
放電:5、10mAg-1,cutoff 0.4V
休止:10min
温度:30℃
The batteries prepared as described above were placed in stainless steel sealed bipolar cells (manufactured by Hosen, HS-type cell), and battery charge / discharge measurements were performed. The results are shown in FIG.
At this time, the charge / discharge conditions were as follows.
Charging: 5, 10 mAg −1 , 1h
Rest: 10 min
Discharge: 5, 10 mAg −1 , cutoff 0.4 V
Rest: 10 min
Temperature: 30 ° C

一段プレス方式で作製した電池は、三段階プレス方式で作製した電池に比べ、10%程度放電効率が向上し、かつサイクル寿命も延びた。これは、三段階プレス方式で作製した電池は、電極と電解質との界面が平面と平面からなる積層状態となるのに対し、一段プレス方式で作製した電池は、電極と電解質との界面が乱れた非平面状となるため、界面の面積が増大し、電極活物質の利用率が高まった結果であると考えることができる。   The battery produced by the single-stage press method improved the discharge efficiency by about 10% and extended the cycle life as compared with the battery produced by the three-stage press method. This is because a battery manufactured by the three-stage press method has a laminated state in which the interface between the electrode and the electrolyte is a flat surface, whereas a battery manufactured by the single-step press method has a disordered interface between the electrode and the electrolyte. Therefore, it can be considered that the area of the interface is increased and the utilization factor of the electrode active material is increased.

(追加試験2)
正極活物質としての二酸化マンガンの種類による電池特性への影響を比較検討した。
(Additional test 2)
The effect of the type of manganese dioxide as the positive electrode active material on battery characteristics was compared.

電解質のヘテロポリ酸水和物として、12−モリブドリン酸n水和物(化学式:H3PMo1240・20H2O、(株)和光純薬工業製)を用い、負極活物質の水素吸蔵合金として、ZrMn1.5Cr0.7Ni0.3を用い、正極活物質として、電解二酸化マンガン((MnO2)(三井金属製)又は二酸化マンガン試薬((株)和光純薬工業製)を用いて、上記の追加試験1と同様に全固体二次電池を作製した。
それぞれの全固体二次電池について、上記の追加試験1と同じ条件で充放電測定を行い、サイクル特性(充放電のサイクル数と放電効率との関係)につき図15において比較検討した。
12-molybdophosphoric acid n-hydrate (chemical formula: H 3 PMo 12 O 40 · 20H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) is used as the heteropolyacid hydrate of the electrolyte, and the hydrogen storage alloy of the negative electrode active material As above, using ZrMn 1.5 Cr 0.7 Ni 0.3, and using the electrolytic manganese dioxide ((MnO 2 ) (Mitsui Metals) or manganese dioxide reagent (manufactured by Wako Pure Chemical Industries, Ltd.) as the positive electrode active material, An all-solid secondary battery was produced in the same manner as in Test 1.
For each all-solid-state secondary battery, charge / discharge measurement was performed under the same conditions as in the additional test 1, and the cycle characteristics (relationship between the number of charge / discharge cycles and the discharge efficiency) were compared in FIG.

上記で使用した二酸化マンガン試薬((株)和光純薬工業製)及び電解二酸化マンガン(三井金属製)のそれぞれについて、マンガン価数を測定したところ前者は3.75、後者は3.92であった。
なお、MnO2のマンガン価数の測定は、JIS K−1467に従って求めた。
For each of the manganese dioxide reagent used above (manufactured by Wako Pure Chemical Industries, Ltd.) and electrolytic manganese dioxide (manufactured by Mitsui Kinzoku), the manganese valence was measured to be 3.75 for the former and 3.92 for the latter. It was.
The measurement of the manganese valence of MnO 2 was determined according to JIS K-1467.

マンガン価数3.92の二酸化マンガンを正極活物質として用いた電池は、マンガン価数3.75の二酸化マンガンを用いた場合に比べ、450サイクル以上の充放電が可能となり、格段に電池寿命が長くなった。また、充放電曲線を見ると、放電開始直後の分極がほとんど見られない上、450サイクル行った時点での過電圧は50サイクル経過時よりわずかに増大している程度に抑えられていることが分かった。
これより、少なくとも、マンガン価数が3.75よりも高い二酸化マンガン、すなわちマンガン価数が3.8以上好ましくは3.9以上の二酸化マンガンを用いるのが特に好ましいと言える。
Batteries using manganese dioxide with a manganese number of 3.92 as the positive electrode active material can be charged and discharged for 450 cycles or more compared with the case where manganese dioxide with a manganese number of 3.75 is used, and the battery life is remarkably improved. It became long. Also, looking at the charge / discharge curve, it can be seen that there is almost no polarization immediately after the start of discharge, and the overvoltage at the time of 450 cycles is suppressed to a level that is slightly increased after the 50 cycles. It was.
From this, it can be said that it is particularly preferable to use at least manganese dioxide having a manganese valence higher than 3.75, that is, manganese dioxide having a manganese valence of 3.8 or more, preferably 3.9 or more.

本発明の全固体二次電池の一実施例を示した概略斜視図である。It is the schematic perspective view which showed one Example of the all-solid-state secondary battery of this invention. 本発明の全固体二次電池の充放電測定で使用したステンレス製二極式セルの一例を示した概略斜視図である。It is the schematic perspective view which showed an example of the stainless steel bipolar cell used by the charging / discharging measurement of the all-solid-state secondary battery of this invention. 電解質に12−タングストリン酸n水和物、正極に水酸化ニッケル、負極にMmNi3.6Al0.4Mn0.3Co0.7を用いた全固体二次電池において、充電の電流密度50mA/g、放電の電流密度20mA/gとした場合の充放電時間と電池電圧との関係を示す図である。In an all-solid-state secondary battery using 12-tungstophosphoric acid n-hydrate as the electrolyte, nickel hydroxide as the positive electrode, and MmNi 3.6 Al 0.4 Mn 0.3 Co 0.7 as the negative electrode, the charge current density is 50 mA / g and the discharge current density. It is a figure which shows the relationship between charging / discharging time at the time of setting it to 20 mA / g, and battery voltage. 電解質に12−タングストリン酸n水和物、正極に水酸化ニッケル、負極にMmNi3.6Al0.4Mn0.3Co0.7を用いた全固体二次電池において、充電の電流密度50又は100mA/g、放電の電流密度10、20、50又は100mA/gのいずれかとした場合の電流密度と放電効率との関係を示す図である。In an all-solid-state secondary battery using 12-tungstophosphoric acid n hydrate as an electrolyte, nickel hydroxide as a positive electrode, and MmNi 3.6 Al 0.4 Mn 0.3 Co 0.7 as a negative electrode, the current density of charge is 50 or 100 mA / g, It is a figure which shows the relationship between the current density at the time of setting either current density 10, 20, 50, or 100 mA / g and discharge efficiency. 電解質に12−タングストリン酸n水和物、正極に水酸化ニッケル、負極にZrMn1.5Cr0.7Ni0.3を用いた全固体二次電池において、充電の電流密度は50mA/g、放電の電流密度は20mA/gとした場合の充放電のサイクル数と放電効率との関係を示す図である。In an all-solid secondary battery using 12-tungstophosphoric acid n-hydrate as an electrolyte, nickel hydroxide as a positive electrode, and ZrMn 1.5 Cr 0.7 Ni 0.3 as a negative electrode, the charge current density is 50 mA / g, and the discharge current density is It is a figure which shows the relationship between the cycle number of charging / discharging at the time of 20 mA / g, and discharge efficiency. 電解質に12−タングストリン酸n水和物、正極に二酸化マンガン、負極にZrMn1.5Cr0.7Ni0.3を用いた全固体二次電池において、充放電の電流密度は5mA/gとした場合の充放電のサイクル数と放電効率との関係を示した図である。Charge / discharge when the charge / discharge current density is 5 mA / g in an all-solid secondary battery using 12-tungstophosphoric acid n-hydrate as the electrolyte, manganese dioxide as the positive electrode, and ZrMn 1.5 Cr 0.7 Ni 0.3 as the negative electrode. It is the figure which showed the relationship between the number of cycles of this, and discharge efficiency. 電解質に12−タングストリン酸n水和物、正極に二酸化マンガン、負極にZrMn1.5Cr0.7Ni0.3を用いた全固体二次電池において、充放電の電流密度は1mA/gとした場合の充放電のサイクル数と放電効率との関係を示した図である。Charge / discharge when the charge / discharge current density is 1 mA / g in an all-solid-state secondary battery using 12-tungstophosphoric acid n-hydrate as the electrolyte, manganese dioxide as the positive electrode, and ZrMn 1.5 Cr 0.7 Ni 0.3 as the negative electrode. It is the figure which showed the relationship between the number of cycles of this, and discharge efficiency. 電解質に12−モリブドリン酸n水和物、正極に二酸化マンガン、負極にZrMn1.5Cr0.7Ni0.3を用いた全固体二次電池において、充放電の電流密度1mA/gとした場合の充放電時間と電池電圧との関係を示す図である。Charge / discharge time when charge / discharge current density is 1 mA / g in an all-solid-state secondary battery using 12-molybdophosphoric acid n-hydrate as an electrolyte, manganese dioxide as a positive electrode, and ZrMn 1.5 Cr 0.7 Ni 0.3 as a negative electrode It is a figure which shows the relationship with a battery voltage. 電解質に12−モリブドリン酸n水和物、正極に二酸化マンガン、負極にZrMn1.5Cr0.7Ni0.3を用いた全固体二次電池において、充放電の電流密度は1mA/gとした場合の充放電のサイクル数と放電効率との関係を示し図である。In an all-solid-state secondary battery using 12-molybdophosphoric acid n-hydrate as the electrolyte, manganese dioxide as the positive electrode, and ZrMn 1.5 Cr 0.7 Ni 0.3 as the negative electrode, the charge / discharge current density is 1 mA / g. It is a figure which shows the relationship between the cycle number and discharge efficiency. 電解質に12−モリブドリン酸n水和物、正極に二酸化マンガン、負極にZrMn1.5Cr0.7Ni0.3を用いた全固体二次電池において、充放電の電流密度5mA/gとした場合の充放電時間と電池電圧との関係を示す図である。Charge / discharge time when charging / discharge current density is 5 mA / g in an all-solid-state secondary battery using 12-molybdophosphoric acid n-hydrate as an electrolyte, manganese dioxide as a positive electrode, and ZrMn 1.5 Cr 0.7 Ni 0.3 as a negative electrode It is a figure which shows the relationship with a battery voltage. 電解質に12−モリブドリン酸n水和物、正極に二酸化マンガン、負極にZrMn1.5Cr0.7Ni0.3を用いた全固体二次電池において、充放電の電流密度は5mA/gとした場合の充放電のサイクル数と放電効率との関係を示した図である。In an all-solid-state secondary battery using 12-molybdophosphoric acid n-hydrate as the electrolyte, manganese dioxide as the positive electrode, and ZrMn 1.5 Cr 0.7 Ni 0.3 as the negative electrode, the charge / discharge current density is 5 mA / g. It is the figure which showed the relationship between cycle number and discharge efficiency. 電解質に12−モリブドリン酸n水和物、正極に二酸化マンガン、負極にZrMn1.5Cr0.7Ni0.3を用いた全固体二次電池において、電流密度を1、5、10、20又は50mA/gとした場合の10サイクル目(ただし、50mA/gのみ1サイクル目である。)の放電時間と電池電圧との関係を示す図である。In an all-solid-state secondary battery using 12-molybdophosphoric acid n-hydrate as an electrolyte, manganese dioxide as a positive electrode, and ZrMn 1.5 Cr 0.7 Ni 0.3 as a negative electrode, the current density was set to 1, 5, 10, 20, or 50 mA / g. It is a figure which shows the relationship between the discharge time and battery voltage of the 10th cycle (however, only 50 mA / g is the 1st cycle). 電解質に12−モリブドリン酸n水和物、正極に二酸化マンガン、負極にZrMn1.5Cr0.7Ni0.3を用いた全固体二次電池において、電流密度を5、10又は20mA/gとした場合の充放電のサイクル数と放電効率との関係を示す図である。Charge and discharge when current density is 5, 10 or 20 mA / g in an all-solid-state secondary battery using 12-molybdophosphoric acid n-hydrate as an electrolyte, manganese dioxide as a positive electrode, and ZrMn 1.5 Cr 0.7 Ni 0.3 as a negative electrode It is a figure which shows the relationship between the number of cycles and discharge efficiency. 電解質に12−モリブドリン酸n水和物、負極にZrMn1.5Cr0.7Ni0.3を用い、正極活物質として電解二酸化マンガンを用いて、一段プレス方式又は三段階プレス方式で作製した全固体二次電池において、充放電の電流密度を5mA/gとした場合の充放電のサイクル数と放電効率との関係を示した図である。In an all-solid-state secondary battery manufactured by a one-step press method or a three-step press method using 12-molybdophosphoric acid n-hydrate as an electrolyte, ZrMn 1.5 Cr 0.7 Ni 0.3 as a negative electrode, and electrolytic manganese dioxide as a positive electrode active material It is the figure which showed the relationship between the cycle number of charging / discharging when the current density of charging / discharging was 5 mA / g, and discharge efficiency. 電解質に12−モリブドリン酸n水和物、負極にZrMn1.5Cr0.7Ni0.3を用い、正極活物質として二種類の二酸化マンガンを用いて構成したそれぞれの全固体二次電池において、充放電の電流密度を5mA/gとした場合の充放電のサイクル数と放電効率との関係を示した図である。In each all-solid-state secondary battery composed of 12-molybdophosphoric acid n-hydrate as the electrolyte, ZrMn 1.5 Cr 0.7 Ni 0.3 as the negative electrode, and two types of manganese dioxide as the positive electrode active material, the charge / discharge current density It is the figure which showed the relationship between the cycle number of charging / discharging at the time of setting 5 mA / g and discharge efficiency.

符号の説明Explanation of symbols

1 正極
2 電解質層
3 負極
4 全固体二次電池


1 Positive electrode 2 Electrolyte layer 3 Negative electrode 4 All-solid-state secondary battery


Claims (8)

正極活物質として二酸化マンガン又は水酸化ニッケルを用いた正極と、負極活物質として水素吸蔵合金を用いた負極と、固体電解質とを備えた全固体二次電池であって、固体電解質としてヘテロポリ酸水和物を用いることを特徴とする全固体二次電池。   An all-solid-state secondary battery comprising a positive electrode using manganese dioxide or nickel hydroxide as a positive electrode active material, a negative electrode using a hydrogen storage alloy as a negative electrode active material, and a solid electrolyte, and a heteropolyacid water as a solid electrolyte An all-solid-state secondary battery using a Japanese product. 正極活物質として二酸化マンガンを用い、負極活物質としてジルコニウム系水素吸蔵合金を用いることを特徴とする請求項1記載の全固体二次電池。   2. The all-solid-state secondary battery according to claim 1, wherein manganese dioxide is used as the positive electrode active material, and zirconium-based hydrogen storage alloy is used as the negative electrode active material. ヘテロポリ酸水和物として、12−モリブドリン酸n水和物を用いることを特徴とする請求項1又は2に記載の全固体二次電池。   The all-solid-state secondary battery according to claim 1, wherein 12-molybdophosphoric acid n-hydrate is used as the heteropolyacid hydrate. ヘテロポリ酸水和物として、12−タングストリン酸n水和物を用いることを特徴とする請求項1又は2に記載の全固体二次電池。   The all-solid-state secondary battery according to claim 1, wherein 12-tungstophosphoric acid n-hydrate is used as the heteropolyacid hydrate. 水素吸蔵合金として、ZrMn1.5Cr0.7Ni0.3の組成からなる合金を用いることを特徴とする請求項1〜4のいずれかに記載の全固体二次電池。 As the hydrogen storage alloy, all-solid secondary battery according to any one of claims 1 to 4, characterized in that an alloy having the composition ZrMn 1.5 Cr 0.7 Ni 0.3. 水素吸蔵合金として、希土類系水素吸蔵合金を用いることを特徴とする請求項1、3、4のいずれかに記載の全固体二次電池。   The all-solid-state secondary battery according to claim 1, wherein a rare earth-based hydrogen storage alloy is used as the hydrogen storage alloy. 希土類系水素吸蔵合金として、MmNi3.6Al0.4Mn0.3Co0.7(式中Mmはミッシュメタル)の組成からなる合金を用いることを特徴とする請求項6に記載の全固体二次電池。 The all-solid-state secondary battery according to claim 6, wherein an alloy having a composition of MmNi 3.6 Al 0.4 Mn 0.3 Co 0.7 (wherein Mm is a misch metal) is used as the rare earth-based hydrogen storage alloy. 正極活物質として、マンガン価数3.8〜4の二酸化マンガンを用いることを特徴とする請求項1〜7のいずれかに記載の全固体二次電池。

The all-solid-state secondary battery according to any one of claims 1 to 7, wherein manganese dioxide having a manganese valence of 3.8 to 4 is used as the positive electrode active material.

JP2004132767A 2003-09-24 2004-04-28 All-solid secondary battery Withdrawn JP2005123156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004132767A JP2005123156A (en) 2003-09-24 2004-04-28 All-solid secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003331256 2003-09-24
JP2004132767A JP2005123156A (en) 2003-09-24 2004-04-28 All-solid secondary battery

Publications (1)

Publication Number Publication Date
JP2005123156A true JP2005123156A (en) 2005-05-12

Family

ID=34621915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004132767A Withdrawn JP2005123156A (en) 2003-09-24 2004-04-28 All-solid secondary battery

Country Status (1)

Country Link
JP (1) JP2005123156A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110099637A (en) * 2010-03-02 2011-09-08 소니 주식회사 Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2011181358A (en) * 2010-03-02 2011-09-15 Sony Corp Nonaqueous electrolytic solution and battery
JP2012023033A (en) * 2010-06-18 2012-02-02 Sony Corp Nonaqueous electrolyte, and nonaqueous electrolyte battery
US8841025B2 (en) 2009-11-05 2014-09-23 Sony Corporation Positive electrode with heteropoly and phosphorous additives and nonaqueous electrolyte battery
CN106099191A (en) * 2010-03-02 2016-11-09 索尼公司 Nonaqueous electrolyte and nonaqueous electrolyte battery
KR101758138B1 (en) * 2009-06-17 2017-07-14 소니 주식회사 Nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, negative electrode for nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, electrolyte for nonaqueous electrolyte battery, and method for producing separator for nonaqueous electrolyte battery
WO2022145033A1 (en) * 2020-12-29 2022-07-07 カワサキモータース株式会社 Positive electrode active material for proton conducting secondary batteries, and proton conducting secondary battery provided wih same
WO2022239205A1 (en) * 2021-05-13 2022-11-17 カワサキモータース株式会社 Proton conducting secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101758138B1 (en) * 2009-06-17 2017-07-14 소니 주식회사 Nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, negative electrode for nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, electrolyte for nonaqueous electrolyte battery, and method for producing separator for nonaqueous electrolyte battery
US8841025B2 (en) 2009-11-05 2014-09-23 Sony Corporation Positive electrode with heteropoly and phosphorous additives and nonaqueous electrolyte battery
KR20110099637A (en) * 2010-03-02 2011-09-08 소니 주식회사 Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2011181358A (en) * 2010-03-02 2011-09-15 Sony Corp Nonaqueous electrolytic solution and battery
US9401529B2 (en) 2010-03-02 2016-07-26 Sony Corporation Nonaqueous electrolytic solution and battery including a heteropolyacid and/or a heteropolyacid compound
CN106099191A (en) * 2010-03-02 2016-11-09 索尼公司 Nonaqueous electrolyte and nonaqueous electrolyte battery
KR101950510B1 (en) * 2010-03-02 2019-02-20 가부시키가이샤 무라타 세이사쿠쇼 Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2012023033A (en) * 2010-06-18 2012-02-02 Sony Corp Nonaqueous electrolyte, and nonaqueous electrolyte battery
WO2022145033A1 (en) * 2020-12-29 2022-07-07 カワサキモータース株式会社 Positive electrode active material for proton conducting secondary batteries, and proton conducting secondary battery provided wih same
WO2022239205A1 (en) * 2021-05-13 2022-11-17 カワサキモータース株式会社 Proton conducting secondary battery

Similar Documents

Publication Publication Date Title
Iwakura et al. The possible use of polymer gel electrolytes in nickel/metal hydride battery
Fan et al. The preparation and electrochemical performance of In (OH) 3-coated Zn-Al-hydrotalcite as anode material for Zn–Ni secondary cell
Becknell et al. Employing the dynamics of the electrochemical interface in aqueous zinc‐ion battery cathodes
Perret et al. Electro-deposition and dissolution of MnO2 on a graphene composite electrode for its utilization in an aqueous based hybrid supercapacitor
Li et al. Development of high-performance hydrogen storage alloys for applications in nickel-metal hydride batteries at ultra-low temperature
JP2006512729A (en) Active electrode composition using conductive polymer binder
Li et al. Electrochemical Performance of MnO2‐based Air Cathodes for Zinc‐air Batteries
JPH08321322A (en) Metallic hydride secondary battery equipped with solid high polymer electrolyte
Kumar et al. Introduction to electrochemical cells
JP2005123156A (en) All-solid secondary battery
CN103456927B (en) Containing vanadyl titanio hydrogen-storing alloy as electrode and preparation method thereof
CN104282952B (en) Electrolyte and battery
CN102544503B (en) Additive for nickel-zinc battery
CN109390580B (en) Vanadium-based hydrogen storage alloy and preparation method and application thereof
Zhang et al. Electrochemical performances of AB5-type hydrogen storage alloy modified with Co3O4
Mondal et al. Energy storage batteries: basic feature and applications
Zhang et al. A convenient method for synthesis of Fe3O4/FeS2 as high-performance electrocatalysts for oxygen evolution reaction and zinc-air batteries
CN102054982A (en) La-Mg-Ni type negative-pole hydrogen storage material for low-temperature nickel-hydrogen battery
Tanaka et al. Effect of rare earth oxide additives on the performance of NiMH batteries
CN102956892B (en) High temperature nickel-hydrogen battery and preparation method thereof
Bhardwaj et al. High capacity, rate-capability, and power delivery at high-temperature by an oxygen-deficient perovskite oxide as proton insertion anodes for energy storage devices
EP3089244B1 (en) Aluminium-manganese oxide electrochemical cell
Begum et al. Electrochemical investigations and characterization of a metal hydride alloy (MmNi3. 6Al0. 4Co0. 7Mn0. 3) for nickel metal hydride batteries
CN101662024A (en) Cathode active substance and preparation method thereof, cathode and battery
CN101114710B (en) alkaline battery additive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070703