JP2005122948A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery Download PDF

Info

Publication number
JP2005122948A
JP2005122948A JP2003354473A JP2003354473A JP2005122948A JP 2005122948 A JP2005122948 A JP 2005122948A JP 2003354473 A JP2003354473 A JP 2003354473A JP 2003354473 A JP2003354473 A JP 2003354473A JP 2005122948 A JP2005122948 A JP 2005122948A
Authority
JP
Japan
Prior art keywords
sodium
resistance layer
sulfur battery
sulfur
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003354473A
Other languages
Japanese (ja)
Inventor
Hiromi Tokoi
博見 床井
Isamu Sone
勇 曽根
Takeshi Hiranuma
健 平沼
Tadahiko Mitsuyoshi
忠彦 三吉
Hisamitsu Hato
久光 波東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003354473A priority Critical patent/JP2005122948A/en
Publication of JP2005122948A publication Critical patent/JP2005122948A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sodium-sulfur battery, capable of high output operation and stably operating over a long period. <P>SOLUTION: The sodium-sulfur battery is formed, by arranging a high-resistance layer having preferential permeability to sodium polysulfide higher than that to sulfur, between a solid electrolyte and a current-collecting electrode, and arranging a cylinder-shaped auxiliary conductor, having preferential permeability to sulfur higher than that to sodium polysulfide on its outer periphery. An appropriate flow path of sodium polysulfide is formed, by making the high-resistance layer penetrate in the radial direction of the auxiliary conductor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はナトリウム硫黄電池に係り、特に電力貯蔵用等に好適なナトリウム硫黄電池に関する。   The present invention relates to a sodium sulfur battery, and more particularly to a sodium sulfur battery suitable for power storage and the like.

ナトリウム硫黄電池は、負極活物質にナトリウム、正極活物質に硫黄、及び多硫化ナトリウムが用いられ、正極と負極の隔壁にナトリウムイオンに導電性がある固体電解質管が用いられる高温型二次電池である。ナトリウムイオンに導電性がある固体電解質管としては、ベータアルミナが用いられ、袋管を用いる場合が多い。一般に、ナトリウムイオンに導電性がある固体電解質管とナトリウム,硫黄及び多硫化ナトリウムを収納する1つの容器から1つの電池が構成される。これを単電池と呼ぶ。大電力を蓄えるには、通常多数本の単電池を直並列に接続して用いられる。   The sodium-sulfur battery is a high-temperature secondary battery in which sodium is used for the negative electrode active material, sulfur and sodium polysulfide are used for the positive electrode active material, and a solid electrolyte tube having conductivity for sodium ions is used for the partition walls of the positive electrode and the negative electrode. is there. Beta alumina is used as a solid electrolyte tube having conductivity for sodium ions, and a bag tube is often used. In general, one battery is composed of a solid electrolyte tube having conductivity with sodium ions and one container containing sodium, sulfur and sodium polysulfide. This is called a single cell. In order to store a large amount of power, a large number of single cells are usually connected in series and parallel.

ナトリウム硫黄電池の通常の運転温度は280℃〜370℃と高温であるため、複数の単電池を断熱容器に詰めてモジュールとする。1単電池当たりの電池出力を増大するには、電池のジュール損失を低減して大電流で放電運転する必要がある。電池のジュール損失を低減するには電池の内部抵抗を極力低減する必要がある。   Since the normal operating temperature of a sodium sulfur battery is as high as 280 ° C. to 370 ° C., a plurality of single cells are packed in a heat insulating container to form a module. In order to increase the battery output per unit cell, it is necessary to reduce the Joule loss of the battery and perform a discharge operation with a large current. In order to reduce battery Joule loss, it is necessary to reduce the internal resistance of the battery as much as possible.

ナトリウム硫黄電池の放電反応は次式で示せる。
正極側:xS + 2Na+ + 2e- → Na2x (x=3〜5)
負極側:2Na → 2Na+ + 2e-
全反応:2Na + xS → Na2x
充電反応は上式の逆反応である。
The discharge reaction of the sodium sulfur battery can be expressed by the following equation.
Positive electrode side: xS + 2Na + + 2e → Na 2 S x (x = 3 to 5)
Negative electrode side: 2Na → 2Na + + 2e
Total reaction: 2Na + xS → Na 2 S x
The charging reaction is the reverse reaction of the above equation.

上記した電池反応でNa2Sx の生成と解離は正極である硫黄極で生じる。従って、電池の内部抵抗の大半は、硫黄極の抵抗であり、内部抵抗を極力低減するには、硫黄極の抵抗を低減することが最も有効である。 In the battery reaction described above, Na 2 Sx is generated and dissociated at the sulfur electrode as the positive electrode. Therefore, most of the internal resistance of the battery is the resistance of the sulfur electrode, and in order to reduce the internal resistance as much as possible, it is most effective to reduce the resistance of the sulfur electrode.

従来のナトリウム硫黄電池の一例を図2に示す。固体電解質管1はベータアルミナ等の材料により、一方の端部が閉じられた袋管状に作られ、この内部に装着された下部に開口部をもつステンレス等の金属材料で作られた袋管状の安全容器2にナトリウムが貯蔵されている。安全容器2の外表面と固体電解質管1の内表面とは一定の間隔をもって配置され、固体電解質管1の内表面に充放電に必要な最小限のナトリウムが供給されるようになっている。固体電解質管1の外表面側には、正極活物質である硫黄、及び多硫化ナトリウムが充填され、正極(硫黄極)が形成されている。硫黄は絶縁物であり、多硫化ナトリウムも電子伝導性に乏しいため、正極での電池反応を成立させるため電子伝導性のある補助導電材が、正極(硫黄極)3の全領域に必要となる。このため、硫黄極内での電池活物質の流動性は極めて小さい。   An example of a conventional sodium-sulfur battery is shown in FIG. The solid electrolyte tube 1 is made of a material such as beta-alumina, and is made into a bag tube with one end closed, and a bag tube made of a metal material such as stainless steel having an opening in the lower portion mounted inside the solid electrolyte tube 1. Sodium is stored in the safety container 2. The outer surface of the safety container 2 and the inner surface of the solid electrolyte tube 1 are arranged at a constant interval so that a minimum amount of sodium necessary for charging and discharging is supplied to the inner surface of the solid electrolyte tube 1. The outer surface side of the solid electrolyte tube 1 is filled with sulfur, which is a positive electrode active material, and sodium polysulfide to form a positive electrode (sulfur electrode). Since sulfur is an insulator and sodium polysulfide is poor in electron conductivity, an auxiliary conductive material having electron conductivity is required for the entire region of the positive electrode (sulfur electrode) 3 in order to establish a battery reaction at the positive electrode. . For this reason, the fluidity of the battery active material in the sulfur electrode is extremely small.

また、電池の内部抵抗を低減する方法として、図3のような集電極10を用いたものがある。図3は固体電解質管1の軸を水平に設置したものを軸方向に対して直角に断面した図である。固体電解質管1はベータアルミナ等の材料により円筒管形状に作られ、内部にステンレス等の金属材料で作られた円筒管形状の安全容器が装着され、ナトリウム7が充填されている。安全容器の外表面と固体電解質管1の内表面との間にナトリウム供給体が装着され、安全容器の開口部を介して、固体電解質管1の内表面に充放電に必要な最小限のナトリウム7が供給されるようになっている。また、多硫化ナトリウムに比べ硫黄に優先的浸透性の高い円筒形状の補助導電体9と硫黄に比べ多硫化ナトリウムに優先浸透性がある高抵抗層8を装着し、電池反応領域へ硫黄11及び多硫化ナトリウム12を供給するようにしたものである。   Further, as a method for reducing the internal resistance of the battery, there is a method using a collector electrode 10 as shown in FIG. FIG. 3 is a cross-sectional view of the solid electrolyte tube 1 in which the shaft is installed horizontally and perpendicular to the axial direction. The solid electrolyte tube 1 is made into a cylindrical tube shape using a material such as beta alumina, and a cylindrical tube-shaped safety container made of a metal material such as stainless steel is mounted inside and filled with sodium 7. A sodium supply body is mounted between the outer surface of the safety container and the inner surface of the solid electrolyte tube 1, and the minimum sodium necessary for charging and discharging the inner surface of the solid electrolyte tube 1 through the opening of the safety container. 7 is supplied. In addition, a cylindrical auxiliary conductor 9 having a higher preferential permeability to sulfur than sodium polysulfide and a high resistance layer 8 having a preferential permeability to sodium polysulfide compared to sulfur are attached, and sulfur 11 and Sodium polysulfide 12 is supplied.

特開2002−75438号公報JP 2002-75438 A 特開2002−367671号公報JP 2002-367671 A

上記背景技術では、高出力で電池を充放電運転すると内部抵抗が上昇して電池の運転領域が狭くなり、結果的に電池容量が充分取れない電池となることがあった。これは、高出力になると電池活物質が充分に電池反応領域へ供給されていないためである。例えば、高抵抗層を使って多硫化ナトリウムを電池反応領域へ充分供給するには、高抵抗層からなる流路断面積を増大する必要がある。しかし、流路の断面積を大きくすると実質的な高抵抗層の厚みが厚くなり、電池の内部抵抗が増大して電池のエネルギー効率を低下せざるを得ない。   In the above background art, when a battery is charged / discharged at a high output, the internal resistance increases and the operating range of the battery is narrowed. As a result, the battery may not have sufficient battery capacity. This is because the battery active material is not sufficiently supplied to the battery reaction region at high output. For example, in order to sufficiently supply sodium polysulfide to the battery reaction region using the high resistance layer, it is necessary to increase the cross-sectional area of the channel composed of the high resistance layer. However, if the cross-sectional area of the flow path is increased, the thickness of the substantial high resistance layer is increased, and the internal resistance of the battery is increased to reduce the energy efficiency of the battery.

本発明の目的は、高出力運転可能で、かつ、長時間安定して運転できるナトリウム硫黄電池を提供することにある。   An object of the present invention is to provide a sodium-sulfur battery that can be operated at a high output and can be stably operated for a long time.

本発明のナトリウム硫黄電池は、固体電解質管と集電極間に硫黄に比べ多硫化ナトリウムに優先浸透性の高い高抵抗層を配置し、その外周に多硫化ナトリウムに比べ硫黄に優先浸透性の高い円筒形状の補助導電体を配置し、高抵抗層が補助導電体の径方向に貫通するようにして、電池反応に必要な多硫化ナトリウムを電池反応領域へ供給し、さらに反応生成物を排出することが容易となるように、多硫化ナトリウムの適切な流路パスを設けたものである。   In the sodium-sulfur battery of the present invention, a high-resistance layer having higher preferential permeability for sodium polysulfide than sulfur is disposed between the solid electrolyte tube and the collector electrode, and the preferential permeability for sulfur is higher on the outer periphery than sodium polysulfide. Cylindrical auxiliary conductor is arranged, high resistance layer penetrates in the radial direction of auxiliary conductor, sodium polysulfide necessary for battery reaction is supplied to battery reaction area, and reaction product is discharged In order to facilitate this, a suitable flow path for sodium polysulfide is provided.

本発明によれば、従来のナトリウム硫黄電池の高抵抗層を改善することにより、多硫化ナトリウムの電池反応領域への十分な供給と反応生成物の排出が容易となり、高出力で長時間安定して運転することが可能となる。   According to the present invention, by improving the high resistance layer of the conventional sodium-sulfur battery, sufficient supply of sodium polysulfide to the battery reaction region and discharge of the reaction product are facilitated, and high output is stable for a long time. Driving.

多硫化ナトリウムの流路断面積を増大し、高出力運転を可能とするという目的を、電池の内部抵抗を増大せずに実現した。   The purpose of increasing the channel cross-sectional area of sodium polysulfide and enabling high output operation was achieved without increasing the internal resistance of the battery.

図1は本発明に係るナトリウム硫黄電池の第1の実施例であり、袋管状の固体電解質管1の長手方向(軸方向)に対して直角に切断した横断面である。   FIG. 1 shows a first embodiment of a sodium-sulfur battery according to the present invention, which is a cross section cut at right angles to the longitudinal direction (axial direction) of a bag-shaped solid electrolyte tube 1.

図1に示す如く、ナトリウム硫黄電池は、正極容器4内に固体電解質管1が装着され、固体電解質管1の内部にナトリウムが充填され、負極であるナトリウム極6となっている。   As shown in FIG. 1, the sodium-sulfur battery has a solid electrolyte tube 1 mounted in a positive electrode container 4, and the solid electrolyte tube 1 is filled with sodium to form a sodium electrode 6 that is a negative electrode.

固体電解質管1の外周には、多硫化ナトリウムに比べ抵抗率が高い高抵抗層13が設けられている。高抵抗層13の一例としてはアルミナやガラス等絶縁物を多孔体やメッシュに加工し、シート状に成形した物、または、粒子状や粉末状態の物を用いる。高抵抗層
13の外周には電子伝導性のある補助導電体9を設ける。補助導電体9の一例としてはグラファイトやカーボン、その他金属を多孔体やメッシュ,フェルト状に加工し、シート状に成形した物、または、粒子状や粉末状態の物を用いる。さらに、補助導電体9の外周には充放電反応の電流を流すための集電極10を設ける。集電極10は正極容器4と電気的に接続されている。
A high resistance layer 13 having a higher resistivity than sodium polysulfide is provided on the outer periphery of the solid electrolyte tube 1. As an example of the high resistance layer 13, an insulating material such as alumina or glass is processed into a porous body or mesh and formed into a sheet shape, or a particulate or powdered material is used. An auxiliary conductor 9 having electron conductivity is provided on the outer periphery of the high resistance layer 13. As an example of the auxiliary conductor 9, graphite, carbon, or other metal is processed into a porous body, mesh, or felt and formed into a sheet, or a particle or powder. Further, a collector electrode 10 is provided on the outer periphery of the auxiliary conductor 9 to flow a charge / discharge reaction current. The collector electrode 10 is electrically connected to the positive electrode container 4.

尚、バルク15の活物質液面高さ17は、集電極10全体が液面下になるように配置されている。   In addition, the active material liquid level height 17 of the bulk 15 is arrange | positioned so that the collector electrode 10 whole may become below a liquid level.

ここで、高抵抗層13は、硫黄に比べ多硫化ナトリウムに優先的に濡れ易い材料、すなわち、優先浸透性がある材料を用い、固体電解質管1の外周に装着するばかりでなく、固体電解質管1の径方向に向かう多硫化ナトリウム流路をも形成するように補助導電体9を貫通して装着されている。補助導電体9を貫通した高抵抗層13は、補助導電体9の外周に装着された集電極の開口部14を経て、硫黄11、並びに多硫化ナトリウム12からなる電池活物質で構成されるバルク15の活物質と直接接触する構造とした。仮に、高抵抗層がバルクに直接接触しないと周囲の補助導電体や集電極の部材の影響や付着した活物質の影響を受け、貫通流路としての役割を十分に果たせないことになる。   Here, the high resistance layer 13 is made of a material that preferentially gets wet with sodium polysulfide as compared with sulfur, that is, a material having preferential permeability, and is not only attached to the outer periphery of the solid electrolyte tube 1 but also the solid electrolyte tube 1. The auxiliary conductor 9 is attached so as to form a sodium polysulfide flow path in the radial direction of 1. The high-resistance layer 13 penetrating the auxiliary conductor 9 passes through the opening 14 of the collector electrode attached to the outer periphery of the auxiliary conductor 9, and is a bulk composed of a battery active material made of sulfur 11 and sodium polysulfide 12. The structure was in direct contact with 15 active materials. If the high resistance layer is not in direct contact with the bulk, it will not be able to fulfill its role as a through-flow channel due to the influence of the surrounding auxiliary conductors and the members of the collector electrode and the attached active material.

本実施例ではバルク15に直接接触した高抵抗層13で形成される貫通流路断面積を、固体電解質管1の下半分が上半分より大きくなるように構成した。図1では下半分の高抵抗層13の貫通流路断面積は、上半分に比べ、2倍以上とした例を概念図として示した。無論、高抵抗層13で形成される貫通流路断面積は電池の電流密度等、使用条件に合わせて選定する必要があり、図1のように下半分の高抵抗層13の貫通流路断面積は、上半分に比べ、2倍以上とする必要性はない。実施例では、多硫化ナトリウムは硫黄に比べ密度が高く下方に沈降するため、充電時に下方から多硫化ナトリウム12を吸い上げ、補助導電体9へ供給し易くするため、このような構成とした。   In this embodiment, the through-flow channel cross-sectional area formed by the high resistance layer 13 in direct contact with the bulk 15 is configured so that the lower half of the solid electrolyte tube 1 is larger than the upper half. In FIG. 1, an example in which the cross-sectional area of the through-flow passage of the high resistance layer 13 in the lower half is twice or more that in the upper half is shown as a conceptual diagram. Of course, it is necessary to select the cross-sectional area of the through-flow passage formed by the high-resistance layer 13 according to usage conditions such as the current density of the battery. The area does not need to be more than twice the upper half. In the embodiment, since sodium polysulfide has a higher density than the sulfur and settles downward, the sodium polysulfide 12 is sucked up from below during charging and is easily supplied to the auxiliary conductor 9.

以下、充放電に伴う電池内の活物質挙動を説明する。電池はナトリウムや硫黄等電池活物質が液体状態となる280℃以上に加熱して運転した。   Hereinafter, the behavior of the active material in the battery accompanying charge / discharge will be described. The battery was operated by heating to 280 ° C. or higher at which the battery active material such as sodium or sulfur was in a liquid state.

放電運転では、補助導電体9に含浸された硫黄がナトリウム極(負極)6から固体電解質管1を透過したナトリウムイオンと反応して、多硫化ナトリウム12を生成する。生成した多硫化ナトリウム12は、高抵抗層13を流路としてバルク15へと流下する。不足する硫黄はバルク15の硫黄11から集電極の開口部14を経て、補助導電体9に供給される。   In the discharge operation, sulfur impregnated in the auxiliary conductor 9 reacts with sodium ions that have passed through the solid electrolyte tube 1 from the sodium electrode (negative electrode) 6 to generate sodium polysulfide 12. The generated sodium polysulfide 12 flows down to the bulk 15 using the high resistance layer 13 as a flow path. Insufficient sulfur is supplied from the sulfur 11 in the bulk 15 to the auxiliary conductor 9 via the opening 14 of the collector electrode.

一方充電では、補助導電体9内の多硫化ナトリウム12をナトリウム7と硫黄11に解離し、ナトリウム7は高抵抗層13を経て固体電解質管1を透過し、ナトリウム極(負極)6にもどる。硫黄11は多硫化ナトリウム12との密度差でバルク15の硫黄11へと流出する。無論、バルク15では硫黄11と多硫化ナトリウム12は二層に分離する。充電反応で不足した多硫化ナトリウム12はバルク15に貫通した高抵抗層13を経て、補給される。さらに充電が進んでも固体電解質管1の真下に存在する高抵抗層18によって電池容器の底部に存在する多硫化ナトリウム12が吸上げられ、補助導電体9の上部まで供給されるので正極容器4内に存在する殆どの多硫化ナトリウム12が充電可能である。   On the other hand, in charging, the sodium polysulfide 12 in the auxiliary conductor 9 is dissociated into sodium 7 and sulfur 11, and the sodium 7 passes through the high-resistance layer 13 and passes through the solid electrolyte tube 1 and returns to the sodium electrode (negative electrode) 6. Sulfur 11 flows out into the sulfur 15 in the bulk 15 due to a density difference from the sodium polysulfide 12. Of course, in the bulk 15, the sulfur 11 and the sodium polysulfide 12 are separated into two layers. The sodium polysulfide 12 that is insufficient in the charging reaction is supplied through the high resistance layer 13 that penetrates the bulk 15. Even when charging further proceeds, the sodium polysulfide 12 present at the bottom of the battery container is sucked up by the high resistance layer 18 present immediately below the solid electrolyte tube 1 and is supplied to the upper part of the auxiliary conductor 9. Most sodium polysulfide 12 present in the battery can be charged.

図4は本発明の第2の実施例を示す図である。図1の高抵抗層13の一部を改善したものである。固体電解質管1からバルク15へ向かい高抵抗層13で形成される貫通流路断面積を増大し、バルク15と接触する部分の貫通流路断面積を最も増大した構造とした。これによって、外周に向かうに従い多硫化ナトリウムの流量を増大できる。   FIG. 4 is a diagram showing a second embodiment of the present invention. A part of the high resistance layer 13 of FIG. 1 is improved. The cross-sectional area of the through-flow passage formed by the high-resistance layer 13 is increased from the solid electrolyte tube 1 to the bulk 15, and the cross-sectional area of the through-flow passage in the portion in contact with the bulk 15 is maximized. Thereby, the flow rate of sodium polysulfide can be increased toward the outer periphery.

実施例の高抵抗層材としては固体電解質管1に悪影響を及ぼさないように、カリウムやカルシウムの含有量を削減したシリガラスを用いた。バインダについても吟味し、バインダレスのシリガラスを用いた。なお、固体電解質管1に接触した高抵抗層13と補助導電体9を貫通してバルク15に接触する高抵抗層13は、材質的に同一である必要はないし、一体構造である必要もない。   As the high resistance layer material of the example, silica glass with reduced potassium and calcium contents was used so as not to adversely affect the solid electrolyte tube 1. The binder was also examined and binderless silica glass was used. The high resistance layer 13 in contact with the solid electrolyte tube 1 and the high resistance layer 13 passing through the auxiliary conductor 9 and in contact with the bulk 15 do not need to be the same in material and do not have to be an integral structure. .

実施例の高抵抗層13の製法は、補助導電体9の両面、すなわち、固体電解質管1に接する側と集電極10または、バルク15に接する側から、高抵抗層材をニードルパンチによって打ち込んだ。高抵抗層材をニードルパンチで打ち込む位置は集電極の開口部14に合わせることが好ましい。無論、ニードルパンチで打ち込まなくとも高抵抗層13と補助導電体9とが接触できる状態であれば一向に機能を損なうものでない。   In the manufacturing method of the high resistance layer 13 of the example, the high resistance layer material was driven by needle punching from both sides of the auxiliary conductor 9, that is, the side in contact with the solid electrolyte tube 1 and the side in contact with the collector electrode 10 or the bulk 15. . The position where the high resistance layer material is driven by the needle punch is preferably matched with the opening 14 of the collector electrode. Of course, as long as the high resistance layer 13 and the auxiliary conductor 9 can be brought into contact with each other without being driven by a needle punch, the function is not impaired.

上記材料や製法の記載は実施例1にも適用できるものである。   The above description of materials and manufacturing methods can also be applied to Example 1.

図5は本発明の第3の実施例を示す図である。図1の高抵抗層13の一部を改善したものである。固体電解質管1からバルク15へ向かう高抵抗層13をリング状にして周方向の全領域にバルク15への貫通流路を形成して貫通流路断面積を増大したものである。   FIG. 5 is a diagram showing a third embodiment of the present invention. A part of the high resistance layer 13 of FIG. 1 is improved. The high resistance layer 13 from the solid electrolyte tube 1 toward the bulk 15 is formed in a ring shape to form a through channel to the bulk 15 in the entire region in the circumferential direction to increase the through channel cross-sectional area.

上記の実施例1,2,3では、バルク15の活物質液面高さ17は、集電極10全体が液面下になるように配置したが、活物質液面高さ17が低く、集電極10が露出しても上記機能を損なうものでない。この場合はカバーガス16の空間を減圧状態とすることが好ましい。正極活物質は硫黄蒸気の形で補助導電体9に供給され易くなる。   In the above Examples 1, 2, and 3, the active material liquid level height 17 of the bulk 15 is arranged so that the entire collector electrode 10 is below the liquid level, but the active material liquid level height 17 is low, and Even if the electrode 10 is exposed, the above function is not impaired. In this case, it is preferable that the space of the cover gas 16 is in a reduced pressure state. The positive electrode active material is easily supplied to the auxiliary conductor 9 in the form of sulfur vapor.

また、正極容器については図14とも矩形としたが円形,楕円形等任意の形状であっても何ら機能を損ねるものではない。さらに、本実施例では、固体電解質管の軸を水平設置したが、縦設置型や斜め設置型のナトリウム硫黄電池にも適用可能である。   Further, although the positive electrode container is rectangular in FIG. 14, it does not impair any function even if it has an arbitrary shape such as a circle or an ellipse. Furthermore, in this embodiment, the axis of the solid electrolyte tube is horizontally installed, but the present invention can also be applied to a vertically installed type or an obliquely installed type sodium sulfur battery.

本発明のナトリウム硫黄電池の第1の実施例を示す横断面図。1 is a cross-sectional view showing a first embodiment of a sodium-sulfur battery of the present invention. 従来例のナトリウム硫黄電池の構造を示す縦断面図。The longitudinal section which shows the structure of the sodium sulfur battery of a prior art example. 集電極を用いた従来のナトリウム硫黄電池の構造を示す横断面図。The cross-sectional view which shows the structure of the conventional sodium sulfur battery using a collector electrode. 本発明のナトリウム硫黄電池の第2の実施例を示す横断面図。The cross-sectional view which shows the 2nd Example of the sodium sulfur battery of this invention. 本発明のナトリウム硫黄電池の第3の実施例を示す縦断面図。The longitudinal cross-sectional view which shows the 3rd Example of the sodium sulfur battery of this invention.

符号の説明Explanation of symbols

1…固体電解質管、2…安全容器、3…硫黄極、4…正極容器、5…負極容器、6…ナトリウム極、7…ナトリウム、8,13,18…高抵抗層、9…補助導電体、10…集電極、11…硫黄、12…多硫化ナトリウム、14…集電極の開口部、15…バルク、16…カバーガス及び硫黄蒸気、17…活物質液面高さ。
DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte tube, 2 ... Safety container, 3 ... Sulfur electrode, 4 ... Positive electrode container, 5 ... Negative electrode container, 6 ... Sodium electrode, 7 ... Sodium, 8, 13, 18 ... High resistance layer, 9 ... Auxiliary conductor DESCRIPTION OF SYMBOLS 10 ... Collector electrode, 11 ... Sulfur, 12 ... Sodium polysulfide, 14 ... Opening part of collector electrode, 15 ... Bulk, 16 ... Cover gas and sulfur vapor | steam, 17 ... Active material liquid level height.

Claims (13)

ナトリウムを必須成分とする負極活物質と、硫黄並びに多硫化ナトリウムを主成分とする正極活物質で構成されるバルクと、前記負極活物質と正極活物質間に介在し、ナトリウムイオンが通過可能な固体電解質管並びに、正極電流を流す集電極を主たる構成要素とするナトリウム硫黄電池において、前記固体電解質管と集電極間に多硫化ナトリウムよりも大きな抵抗率を持つ高抵抗層と電子伝導性を補うための補助導電体からなる硫黄極が装着され、前記高抵抗層は、硫黄に比べ多硫化ナトリウムに優先浸透性が高く、ナトリウムイオンによる電気伝導性に優れ、充電時には多硫化ナトリウムを前記バルクから充電反応する前記補助導電体の径方向,周方向並びに軸方向の全領域へ供給可能であり、放電反応時は多硫化ナトリウムを放電反応する上記全領域の補助導電体から前記バルクへ排出可能であることを特徴とするナトリウム硫黄電池。   A negative electrode active material containing sodium as an essential component, a bulk composed of a positive electrode active material containing sulfur and sodium polysulfide as main components, and a sodium ion that passes between the negative electrode active material and the positive electrode active material. In a sodium-sulfur battery mainly composed of a solid electrolyte tube and a collector electrode that conducts a positive current, a high resistance layer having higher resistivity than sodium polysulfide and the electron conductivity are supplemented between the solid electrolyte tube and the collector electrode. The high-resistance layer has higher preferential permeability to sodium polysulfide than sulfur, and has superior electrical conductivity due to sodium ions, and the sodium polysulfide is removed from the bulk during charging. It can be supplied to the entire area in the radial, circumferential and axial directions of the auxiliary conductor that is charged, and sodium polysulfide is discharged during the discharge reaction. Sodium sulfur battery, characterized in that that the auxiliary conductor of the entire region can be discharged to the bulk. 請求項1記載のナトリウム硫黄電池において、前記補助導電体の周方向並びに軸方向の全領域を径方向に高抵抗層材が貫通していることを特徴とするナトリウム硫黄電池。   The sodium-sulfur battery according to claim 1, wherein a high-resistance layer material penetrates all regions in the circumferential direction and the axial direction of the auxiliary conductor in the radial direction. 請求項1記載のナトリウム硫黄電池において、前記補助導電体中を貫通する高抵抗層材からなる貫通流路断面積が重力方向下方程増大していることを特徴とするナトリウム硫黄電池。   The sodium-sulfur battery according to claim 1, wherein a through-flow passage cross-sectional area made of a high-resistance layer material penetrating through the auxiliary conductor increases toward the lower side in the gravity direction. 請求項1記載のナトリウム硫黄電池において、前記補助導電体中を貫通した高抵抗層材がバルクの電池活物質中に直接接触していることを特徴とするナトリウム硫黄電池。   2. The sodium-sulfur battery according to claim 1, wherein the high-resistance layer material penetrating through the auxiliary conductor is in direct contact with the bulk battery active material. 請求項1記載のナトリウム硫黄電池において、前記補助導電体中を貫通した高抵抗層材がバルクの電池活物質中に直接接触し、かつ、固体電解質管との接触面に比べ、バルクとの接触面の方が高抵抗層材からなる貫通流路断面積が増大していることを特徴とするナトリウム硫黄電池。   2. The sodium-sulfur battery according to claim 1, wherein the high-resistance layer material penetrating the auxiliary conductor is in direct contact with the bulk battery active material, and is in contact with the bulk as compared with the contact surface with the solid electrolyte tube. A sodium-sulfur battery characterized in that the cross-sectional area of a through-flow passage made of a high-resistance layer material on the surface is increased. 請求項5記載のナトリウム硫黄電池において、前記バルクとの接触面の高抵抗層材からなる貫通流路断面積が増大する位置を集電極の開口部に一致させたことを特徴とするナトリウム硫黄電池。   6. The sodium-sulfur battery according to claim 5, wherein a position where a cross-sectional area of a through-flow passage made of a high-resistance layer material on a contact surface with the bulk increases coincides with an opening of the collector electrode. . 請求項1記載のナトリウム硫黄電池において、前記補助導電体中を貫通した高抵抗層材がバルクの電池活物質中に直接接触し、バルクとの接触面と固体電解質管との接触面の高抵抗層材からなる貫通流路断面積を増大する手法として、補助導電体の両面から高抵抗層材をニードルパンチで打ち込むことを特徴とするナトリウム硫黄電池。   2. The sodium-sulfur battery according to claim 1, wherein the high resistance layer material penetrating through the auxiliary conductor is in direct contact with the bulk battery active material, and the high resistance of the contact surface between the bulk and the solid electrolyte tube is high. A sodium-sulfur battery characterized in that a high resistance layer material is driven with a needle punch from both sides of an auxiliary conductor as a method for increasing the cross-sectional area of the through-flow passage made of a layer material. 請求項1記載のナトリウム硫黄電池において、前記高抵抗層材として多硫化ナトリウムの抵抗率より高い抵抗率を持つ部材を用いたことを特徴とするナトリウム硫黄電池。   2. The sodium sulfur battery according to claim 1, wherein a member having a resistivity higher than that of sodium polysulfide is used as the high resistance layer material. 請求項1記載のナトリウム硫黄電池において、前記高抵抗層材としてカリウムやカルシウム等を低減したシリガラスを用いることを特徴とするナトリウム硫黄電池。   2. The sodium-sulfur battery according to claim 1, wherein the high-resistance layer material is made of silica glass with reduced potassium or calcium. 請求項1記載のナトリウム硫黄電池において、前記高抵抗層材としてバインダを含まないガラス,アルミナ等を用いることを特徴とするナトリウム硫黄電池。   The sodium-sulfur battery according to claim 1, wherein the high-resistance layer material is made of glass, alumina, or the like that does not contain a binder. 請求項1記載のナトリウム硫黄電池において、前記電池活物質の液面から補助導電体並びに高抵抗層を電池活物質に浸漬して液体で供給したことを特徴とするナトリウム硫黄電池。   2. The sodium-sulfur battery according to claim 1, wherein the auxiliary conductor and the high resistance layer are immersed in the battery active material from the liquid surface of the battery active material and supplied in liquid form. 請求項1記載のナトリウム硫黄電池において、前記電池活物質の液面から露出させた集電極空間を電池活物質の蒸気圧が主成分となるように減圧したことを特徴とするナトリウム硫黄電池。   2. The sodium-sulfur battery according to claim 1, wherein the collector electrode space exposed from the liquid surface of the battery active material is decompressed so that the vapor pressure of the battery active material is a main component. 請求項1記載のナトリウム硫黄電池において、前記固体電解質管の軸を水平に設置したことを特徴とするナトリウム硫黄電池。
2. The sodium-sulfur battery according to claim 1, wherein the axis of the solid electrolyte tube is installed horizontally.
JP2003354473A 2003-10-15 2003-10-15 Sodium-sulfur battery Pending JP2005122948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003354473A JP2005122948A (en) 2003-10-15 2003-10-15 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003354473A JP2005122948A (en) 2003-10-15 2003-10-15 Sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JP2005122948A true JP2005122948A (en) 2005-05-12

Family

ID=34612375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003354473A Pending JP2005122948A (en) 2003-10-15 2003-10-15 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP2005122948A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101546960B1 (en) * 2013-12-03 2015-08-25 재단법인 포항산업과학연구원 Felt of sodium sulfur battery and method for manufacturing the felt
KR20160119206A (en) * 2014-02-07 2016-10-12 바스프 에스이 Electrode unit for an electrochemical device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101546960B1 (en) * 2013-12-03 2015-08-25 재단법인 포항산업과학연구원 Felt of sodium sulfur battery and method for manufacturing the felt
KR20160119206A (en) * 2014-02-07 2016-10-12 바스프 에스이 Electrode unit for an electrochemical device
US20160351970A1 (en) * 2014-02-07 2016-12-01 Basf Se Electrode unit for an electrochemical device
US10629959B2 (en) 2014-02-07 2020-04-21 Basf Se Electrode unit for an electrochemical device
KR102355603B1 (en) * 2014-02-07 2022-01-26 바스프 에스이 Electrode unit for an electrochemical device

Similar Documents

Publication Publication Date Title
US20180294533A1 (en) Liquid Metal Alloy Energy Storage Device
US3932195A (en) Electric cells
US9577297B2 (en) Electrochemical cells including a conductive matrix
CA2037742C (en) Electrochemical cell
KR810000921B1 (en) High temperature battery
CA1054671A (en) Alkali metal/sulfur cell with gas fuel cell electrode
US4064325A (en) Electric storage batteries
JP2019503062A (en) Device for electrical energy storage, method for assembling and starting the device and method for operating the device
KR101834726B1 (en) Natrium Secondary Battery
JP6671291B2 (en) Electrode unit for electrochemical equipment
JP2005122948A (en) Sodium-sulfur battery
JP6546099B2 (en) Alkali metal insertion materials as electrodes in electrolysis cells
JP2013041825A (en) Energy storage device and associated method
JP2002184456A (en) Sodium-sulfur battery
US4403020A (en) Electrochemical cell
KR20160028748A (en) Na based Secondary Battery
KR101255242B1 (en) Electrochemical cell
JP2001243975A (en) Sodium sulfur battery, its usage and module using the same
JP2005197139A (en) Sodium sulfur battery
JP2003223929A (en) Sodium-sulfur battery
US3413151A (en) Rod and block energy storage apparatus
US4230780A (en) Sodium-sulphur electric cell
US20110300422A1 (en) Liquid sodium battery
KR101234237B1 (en) Electrochemical Cell
JP2002184457A (en) Sodium-sulfur battery