JP2005121960A - Polarized light light source device of projection-type display apparatus - Google Patents

Polarized light light source device of projection-type display apparatus Download PDF

Info

Publication number
JP2005121960A
JP2005121960A JP2003357804A JP2003357804A JP2005121960A JP 2005121960 A JP2005121960 A JP 2005121960A JP 2003357804 A JP2003357804 A JP 2003357804A JP 2003357804 A JP2003357804 A JP 2003357804A JP 2005121960 A JP2005121960 A JP 2005121960A
Authority
JP
Japan
Prior art keywords
polarized light
light
light source
reflecting mirror
polarizing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003357804A
Other languages
Japanese (ja)
Other versions
JP4382434B2 (en
Inventor
Atsushi Kato
厚志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp NEC Display Solutions Ltd
Original Assignee
NEC Viewtechnology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Viewtechnology Ltd filed Critical NEC Viewtechnology Ltd
Priority to JP2003357804A priority Critical patent/JP4382434B2/en
Publication of JP2005121960A publication Critical patent/JP2005121960A/en
Application granted granted Critical
Publication of JP4382434B2 publication Critical patent/JP4382434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Projection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarized light light source device of a projection-type display apparatus which efficiently uniformizes the types of polarizing of non-polarized light, without using a prism-like beam splitter made of glass. <P>SOLUTION: A light-emitting diode 11, radiating a non-polarized light, is disposed at a first focus 12a of an ellipsoidal reflection mirror 12, and a 1/4 wavelength plate 13 and a reflection type polarizing element 14 are disposed near a second focus 12b of the mirror 12. Among non-polarized lights from the light-emitting diode 11, a p-polarized light component passes through the reflective polarizing element 14 and is used as a direct illumination light. The light of s-polarized light component reflected by the element 14 proceeds toward the first focus 12a of the mirror 12 as a circular polarized light via the 1/4 wavelength plate 13, and is reflected by a flat reflecting mirror 15 disposed there and is changed again in the proceeding direction and made incident on the plate 13. The light is converted polarized to the p-polarized light there, so as to be able to pass through the element 14, and to be used as illumination light. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、投写型表示装置の光源装置に関し、特に偏光光源装置に関する。   The present invention relates to a light source device for a projection display device, and more particularly to a polarized light source device.

現在、大画面で映像を手軽に楽しめる電子機器として投写型表示装置が知られている。投写型表示装置は、白色光源を用いて、液晶パネルやDMD(ディジタルミラーデバイス)といった二次元光変調器に生成した画像を、投写レンズを使ってスクリーン上に拡大投写する装置であり、従来、光源としては高圧水銀ランプやメタルハライドランプ等の高輝度の放電ランプが使用されているのが一般的である。しかしながら、これらの放電ランプは波長400nmから700nm超にわたる発光スペクトル特性を有している。このため投写型表示装置においては、R(赤)、G(緑)、B(青)に相当する波長領域をダイクロイックフィルター等の光学部品で選択して使用しており、この画像形成に必要のない波長成分の光は、赤外領域の光では熱の発生を、また紫外領域の光では二次元光変調器へのダメージ等の問題を引き起こしていた。さらに、可視光利用域の光であっても、黄色成分の波長領域等はダイクロイックフィルター等で選択されることがなく、光の利用効率という点で損失となっていた。さらに、従来実用化されている放電ランプの寿命は1500〜4000時間程度であり、民生用として普及するためには寿命特性の改善が望まれている。   Currently, a projection display device is known as an electronic device that allows users to easily enjoy images on a large screen. A projection display device is a device that uses a white light source to enlarge and project an image generated on a two-dimensional light modulator such as a liquid crystal panel or DMD (digital mirror device) onto a screen using a projection lens. As a light source, a high-intensity discharge lamp such as a high-pressure mercury lamp or a metal halide lamp is generally used. However, these discharge lamps have emission spectral characteristics ranging from wavelengths of 400 nm to over 700 nm. For this reason, in the projection display apparatus, wavelength regions corresponding to R (red), G (green), and B (blue) are selected and used by optical parts such as a dichroic filter, and are necessary for this image formation. The light having a non-wavelength component causes heat generation in the light in the infrared region, and causes problems such as damage to the two-dimensional optical modulator in the light in the ultraviolet region. Furthermore, even in the case of light in the visible light utilization region, the wavelength region of the yellow component is not selected by a dichroic filter or the like, and is a loss in terms of light utilization efficiency. Furthermore, the life of discharge lamps that have been put into practical use is about 1500 to 4000 hours, and improvement of life characteristics is desired for widespread use for consumer use.

一方、寿命特性改善の要望に対応するため、固体光源であるレーザーを光源に利用して、投写型表示装置を構成するという提案がなされている(特許文献1参照)。   On the other hand, in order to respond to the demand for improving the life characteristics, a proposal has been made to configure a projection display device using a laser that is a solid light source as a light source (see Patent Document 1).

また、発光ダイオードを光源にした投写型表示装置としては特許文献2に開示された装置が知られている。
特開平5−210082号公報 特開2002−244212号公報
As a projection display device using a light emitting diode as a light source, a device disclosed in Patent Document 2 is known.
JP-A-5-210082 JP 2002-244212 A

しかしながら、半導体レーザーや発光ダイオードのような固体光源は、放電ランプに比べて光出力が低いという大きな問題があり、これが主原因となって、これまで投写型表示装置用の光源としての実用化が阻害されていた。しかし最近では発光ダイオード(LED)開発の進歩はめざましいものがあり、高輝度で高効率な青や緑のLEDも登場しはじめたことにより、以前から比較的高輝度、高効率であった赤色LEDと組み合わせることで投写型表示装置の光源を実現できる可能性がでてきた。特に発光ダイオードは半導体レーザーに比べて低価格であることから投写型表示装置全体のコストダウンが期待できる。このように投写型表示装置の光源として非常に有望な発光ダイオードであるが、その利用に当たっては、二次元光変調器が液晶パネルの場合、発光光が非偏光光であるために約半分の光は画像表示に利用できずに損失となるため、偏光の種類を統一した上で照明光として利用する必要がある。特許文献2においては、偏光ビームスプリッターと1/2波長板を用いた偏光変換素子アレイを用いて偏光の種類の統一を行っている。偏光ビームスプリッターは、接合面に誘電体多層膜が形成された2つのプリズムが多数格子状に接合された基板状のものであって、光学ガラス製であり、高度な接合技術を要する高価な光学素子であるために低コストな投写型表示装置の実現のためには好ましくない。   However, solid-state light sources such as semiconductor lasers and light-emitting diodes have a major problem that their light output is lower than that of discharge lamps. This is the main cause, and so far they have been put into practical use as light sources for projection display devices. It was inhibited. Recently, however, there has been remarkable progress in the development of light-emitting diodes (LEDs), and high-brightness and high-efficiency blue and green LEDs have begun to appear. The possibility of realizing a light source for a projection display device has come out. In particular, since light emitting diodes are less expensive than semiconductor lasers, the overall cost of the projection display device can be expected to be reduced. Thus, it is a very promising light emitting diode as a light source for a projection display device. However, when the two-dimensional light modulator is a liquid crystal panel, about half of the light is emitted because the emitted light is non-polarized light. Since it cannot be used for image display and is lost, it is necessary to unify the types of polarized light and use it as illumination light. In Patent Document 2, the types of polarized light are unified using a polarization conversion element array using a polarization beam splitter and a half-wave plate. The polarizing beam splitter is a substrate-like substrate in which a large number of two prisms each having a dielectric multilayer film formed on the bonding surface are bonded in a lattice shape, and is made of optical glass and is an expensive optical device that requires advanced bonding technology. Since it is an element, it is not preferable for realizing a low-cost projection display device.

本発明の目的は、プリズム状のガラス製偏光ビームスプリッタ−を用いることなく効率良く非偏光光の偏光の種類の統一を行った投写型表示装置の偏光光源装置を提供することにある。   An object of the present invention is to provide a polarized light source device for a projection display device in which the types of polarization of non-polarized light are efficiently unified without using a prismatic glass polarizing beam splitter.

本発明の投写型表示装置の偏光光源装置は、非偏光光を発生させる光源部と、その光源部から出射された非偏光光から直線偏光光を作り出す偏光形成手段とを有している。   The polarized light source device of the projection display device of the present invention includes a light source unit that generates non-polarized light, and a polarization forming unit that generates linearly polarized light from the non-polarized light emitted from the light source unit.

偏光形成手段は、楕円面反射鏡と、1/4波長板と、反射型偏光素子と、平面反射鏡とを備えており、光源部から出射した非偏光光は反射型偏光素子に入射し、その反射型偏光素子は所定の直線偏光光のみを照明光として通過させるとともに所定の直線偏光光以外の入射光は反射光として反射し、その反射光は楕円面反射鏡、平面反射鏡、および1/4波長板を経由して所定の直線偏光光として再び反射型偏光素子に入射し、その反射型偏光素子は照明光として通過させることを特徴とする。   The polarization forming means includes an ellipsoidal reflecting mirror, a quarter-wave plate, a reflective polarizing element, and a planar reflecting mirror, and the non-polarized light emitted from the light source unit enters the reflective polarizing element, The reflective polarizing element allows only predetermined linearly polarized light to pass as illumination light and reflects incident light other than the predetermined linearly polarized light as reflected light. The reflected light is an ellipsoidal reflecting mirror, a plane reflecting mirror, and 1 The light is again incident on the reflective polarizing element as a predetermined linearly polarized light via the / 4 wavelength plate, and the reflective polarizing element is transmitted as illumination light.

楕円面反射鏡には、その楕円面反射鏡の内部の第1の焦点と、その第1の焦点からの投射光の楕円面反射鏡からの反射光がその楕円面反射鏡外部で集束する第2の焦点とが規定されており、光源部は、保持手段によって第1の焦点近傍に保持されており、平面反射鏡は、反射面の反対の面が光源部と近接するように楕円面反射鏡の軸線に沿って配置されており、1/4波長板と反射型偏光素子とは互いに近接して1/4波長板の一面が楕円面反射鏡の開口部に対向するように第2の焦点近傍に配置されていてもよいし、反射型偏光素子はその反射型偏光素子の一面が楕円面反射鏡の開口部に対向するように第2の焦点近傍に配置され、1/4波長板が平面反射鏡の反射面に近接して配置されていてもよい。   The ellipsoidal reflecting mirror includes a first focal point inside the ellipsoidal reflecting mirror and a reflected light from the ellipsoidal reflecting mirror of the projection light from the first focal point that is focused outside the ellipsoidal reflecting mirror. The light source unit is held in the vicinity of the first focus by the holding means, and the flat reflector reflects the ellipsoidal surface so that the surface opposite to the reflection surface is close to the light source unit. The second wavelength plate is disposed along the axis of the mirror, the second wavelength plate and the reflective polarizing element are close to each other, and one surface of the quarter wavelength plate faces the opening of the ellipsoidal reflecting mirror. The reflective polarizing element may be disposed in the vicinity of the focal point, or the reflective polarizing element is disposed in the vicinity of the second focal point so that one surface of the reflective polarizing element is opposed to the opening of the ellipsoidal reflecting mirror. May be arranged close to the reflecting surface of the plane reflecting mirror.

光源部の保持手段が平面反射鏡であり、平面反射鏡を構成する鏡面処理された基板の裏面に光源部が実装されていてもよい。   The holding means of the light source unit may be a plane reflecting mirror, and the light source unit may be mounted on the back surface of the mirror-treated substrate constituting the plane reflecting mirror.

光源部は発光ダイオードであることが望ましく、発光ダイオードの発光色は、赤、青、緑、白のいずれかである。   The light source unit is preferably a light emitting diode, and the light emission color of the light emitting diode is one of red, blue, green, and white.

本発明の偏光光源装置は、非偏光光を効率よく直線偏光光に偏光の種類を統一することができ、しかも高価な偏光ビームスプリッターではなく反射型の平板状の偏光素子を使うので、低コストでかつコンパクトな投写型表示装置の偏光光源装置を提供できるという効果がある。非常に安価な光源である発光ダイオードで発生する非偏光光を用いることによりさらに低コストにできる効果がある。   The polarized light source device of the present invention can efficiently unpolarize light into linearly polarized light and can unify the types of polarization, and uses a reflective flat plate-shaped polarizing element instead of an expensive polarizing beam splitter. And a compact polarized light source device for a projection display device can be provided. By using non-polarized light generated by a light emitting diode which is a very inexpensive light source, there is an effect that the cost can be further reduced.

(第1の実施の形態)
本発明の投写型表示装置の偏光光源装置の第1の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態の偏光光源装置の構成を示す模式的部分断面側面図である。図1において楕円面反射鏡12は断面として示されている。本発明の第1の実施の形態の偏光光源装置10は、発光ダイオード11と、楕円面反射鏡12と、1/4波長板13と、反射型偏光素子14と平面反射鏡15とを備える。
(First embodiment)
A first embodiment of a polarized light source device of a projection display device of the present invention will be described with reference to the drawings. FIG. 1 is a schematic partial cross-sectional side view showing the configuration of the polarized light source device according to the first embodiment of the present invention. In FIG. 1, the ellipsoidal reflecting mirror 12 is shown as a cross section. The polarized light source device 10 according to the first embodiment of the present invention includes a light emitting diode 11, an ellipsoidal reflecting mirror 12, a quarter-wave plate 13, a reflective polarizing element 14, and a planar reflecting mirror 15.

楕円面反射鏡12では、楕円面反射鏡12内部の第1の焦点12aと、第1の焦点12aからの放射光が楕円面で反射して収束する第2の焦点12bとが規定されている。平面反射鏡15は楕円面反射鏡12の軸線にその裏面が近接するように楕円面反射鏡12内部に配置され、発光ダイオード11は楕円面反射鏡12内部の第1の焦点12a近傍に配置される。1/4波長板13と反射型偏光素子14とは隣接して設けられ1/4波長板13の一面が楕円面反射鏡12と対向するように楕円面反射鏡12の第2の焦点12b近傍に配置される。   In the ellipsoidal reflecting mirror 12, a first focal point 12a inside the ellipsoidal reflecting mirror 12 and a second focal point 12b in which the radiated light from the first focal point 12a is reflected by the ellipsoid and converged are defined. . The plane reflecting mirror 15 is disposed inside the ellipsoidal reflecting mirror 12 so that the back surface thereof is close to the axis of the ellipsoidal reflecting mirror 12, and the light emitting diode 11 is disposed in the vicinity of the first focal point 12a inside the ellipsoidal reflecting mirror 12. The The quarter-wave plate 13 and the reflective polarizing element 14 are provided adjacent to each other, and the vicinity of the second focal point 12 b of the ellipsoidal reflector 12 so that one surface of the quarter-wave plate 13 faces the ellipsoidal reflector 12. Placed in.

発光ダイオード11は偏光光源装置10の光源であって非偏光光を発光する。発光色は目的に応じてR(赤色)、G(緑色)、B(青色)、W(白色)が選択される。発光ダイオード11としては、発光素子としてGaP系やGaAsP系、GaAlAs系の材料を用いたものを使用できる。通常、砲弾型と呼ばれる光を透過する熱硬化製樹脂で封止さていて、光を射出するレンズ面を有している構造が一般的であるが、レンズ面を有していない平面状に樹脂封止された構造のものを利用してもよい。発光ダイオード11は、その発光部が楕円面反射鏡12の第1の焦点12a近傍に配置されているので、発光ダイオード11から放射される光束は、断面が楕円形状を有する楕円面反射鏡12により、その殆どが一旦第2の焦点12b近傍に収束されることになる。   The light emitting diode 11 is a light source of the polarized light source device 10 and emits non-polarized light. As the emission color, R (red), G (green), B (blue), or W (white) is selected according to the purpose. As the light emitting diode 11, a light emitting element using a GaP-based, GaAsP-based, or GaAlAs-based material can be used. Normally, it is sealed with a thermosetting resin that transmits light, called a shell type, and has a lens surface that emits light, but it has a flat surface that does not have a lens surface. A resin-sealed structure may be used. Since the light emitting diode 11 has its light emitting portion disposed in the vicinity of the first focal point 12a of the ellipsoidal reflecting mirror 12, the luminous flux emitted from the light emitting diode 11 is caused by the ellipsoidal reflecting mirror 12 having an elliptical cross section. Most of them are once converged in the vicinity of the second focal point 12b.

楕円面反射鏡12としては母材がガラス製のものにアルミコーティングされたものや、樹脂の塊を楕円形状にくりぬき、アルミコーティングしたものなど、種々の構造のものが利用可能である。   As the ellipsoidal reflecting mirror 12, various structures such as a glass whose base material is coated with aluminum or a resin lump formed by hollowing out a lump of resin into an elliptical shape can be used.

1/4波長板13は、カルサイト(calcite)や水晶等の結晶材料や、延伸した透明なPVA膜をTAC膜等で挟んだフィルムタイプのもの等が知られている。1/4波長板13は位相差板であって、入射する直線偏光光の振動方向と45度の角度にその光学軸を配置すると、入射する直線偏光光を円偏光光に変換する特性がある。また、円偏光光の入射に対しては直線偏光光に変換する。   As the quarter wavelength plate 13, a crystal material such as calcite or quartz, or a film type in which a stretched transparent PVA film is sandwiched between TAC films or the like is known. The quarter-wave plate 13 is a retardation plate, and has a characteristic of converting incident linearly polarized light into circularly polarized light when its optical axis is arranged at an angle of 45 degrees with the vibration direction of the incident linearly polarized light. . In addition, the circularly polarized light is converted into linearly polarized light when incident.

反射型偏光素子14は、互いに直交する直線偏光光のうち、その一方を透過させ、他を反射させる特性を有する素子であって、このような偏光素子としては、例えば米国MOXTEK社のProFlux(登録商標)や住友スリーエム社の製品名HMF(Heart Management Filter)が知られている。ProFluxは、ガラス基板上に、幅が約65nm、高さが100〜200nm、そしてピッチが140nm程度であるAlの微細なグリッドが形成されたもので、入射するランダム偏光光に対してp偏光成分を透過させ、s偏光成分を反射させる偏光素子である。また、HMFは、ポリエステル系の多層構造の樹脂フィルムであって、アクリル系の粘着剤を介してガラス基板等に貼り合わせて利用される。入射するランダム偏光光に対してp偏光成分を透過させ、s偏光成分を反射させる特性がある。いずれも、基材の偏光分離面の裏面には反射防止膜を施して光量損失を抑える構成とすることも可能である。   The reflective polarizing element 14 is an element having a characteristic of transmitting one of linearly polarized light beams orthogonal to each other and reflecting the other, and as such a polarizing element, for example, ProFlux (registered by US company MOXTEK) is registered. Trademark) and Sumitomo 3M's product name HMF (Heart Management Filter) are known. ProFlux is a glass substrate on which a fine grid of Al with a width of about 65 nm, a height of 100 to 200 nm, and a pitch of about 140 nm is formed. Is a polarizing element that transmits the light and reflects the s-polarized component. HMF is a polyester-based multi-layer resin film, and is used by being bonded to a glass substrate or the like via an acrylic adhesive. The p-polarized component is transmitted with respect to the incident randomly polarized light, and the s-polarized component is reflected. In any case, an antireflection film may be provided on the back surface of the polarization separation surface of the base material to reduce the light amount loss.

楕円面反射鏡12の第1の焦点12a近傍には発光ダイオード11のほか、平面反射鏡15が配置されている。この平面反射鏡15は発光ダイオード11が支持される基板を平板としその裏面を鏡面とすることで製作が可能である。また、発光ダイオード11と平面反射鏡15とを別々に配置しても構わない。   In addition to the light emitting diode 11, a planar reflecting mirror 15 is disposed in the vicinity of the first focal point 12 a of the ellipsoidal reflecting mirror 12. The planar reflecting mirror 15 can be manufactured by using a flat plate as a substrate on which the light emitting diode 11 is supported and a mirror surface on the back surface. Further, the light emitting diode 11 and the planar reflecting mirror 15 may be arranged separately.

次に本発明の偏光光源装置10の偏光変換について図1および図2を参照しながら詳細に説明する。図2は図1の1/4波長板、反射型偏光素子近傍の模式的拡大側面図である。発光ダイオード11からは非偏光の光束が放射される。発光ダイオード11の発光中心は、楕円面反射鏡12の第1の焦点12a近傍に配置されることが望ましく、これらの光束は断面が楕円形状の楕円面反射鏡12でその大部分が反射され、楕円面反射鏡12の第2の焦点12bに向けて非偏光光201として収束される。楕円面反射鏡12の第2の焦点12b近傍には1/4波長板13と反射型偏光素子14とが設けられており、発光ダイオード11からの非偏光光201は、最初に1/4波長板13に達し、1/4波長板13を透過して反射型偏光素子14に入射する。反射型偏光素子14においては入射する非偏光光のうち、p偏光光は反射型偏光素子14を透過して偏光光源装置10からのp偏光光202の射出光束となるが、s偏光光203は反射される。このs偏光光203は、反射によりその進行方向が反転して1/4波長板13側に進行する。1/4波長板13通過後は円偏光光204となって、楕円面反射鏡12の発光ダイオード11の光投射側とは反対側の鏡面に達し、そこで反射されて楕円面反射鏡12の第1の焦点12a近傍に収束する光束となる。この収束点には平面反射鏡15が配置されており、この平面反射鏡15により再度反射されて楕円面反射鏡12を経て円偏光光205として再び1/4波長板13に入射する。1/4波長板を通過の際に円偏光光205はp偏光光206に偏光変換されるので、次の反射型偏光素子14を透過することができ、p偏光光206は照明光として利用される。このようにして発光ダイオード11からの非偏光光201の殆どをp偏光光202、206に偏光変換できるので非常に効率のよい偏光光源装置10が提供される。   Next, the polarization conversion of the polarized light source device 10 of the present invention will be described in detail with reference to FIGS. FIG. 2 is a schematic enlarged side view of the vicinity of the quarter-wave plate and the reflective polarizing element of FIG. A non-polarized light beam is emitted from the light emitting diode 11. The light emission center of the light emitting diode 11 is preferably disposed in the vicinity of the first focal point 12a of the ellipsoidal reflecting mirror 12, and most of these light beams are reflected by the ellipsoidal reflecting mirror 12 having an elliptical cross section. The light is converged as unpolarized light 201 toward the second focal point 12 b of the ellipsoidal reflecting mirror 12. A quarter-wave plate 13 and a reflective polarizing element 14 are provided in the vicinity of the second focal point 12b of the ellipsoidal reflecting mirror 12, and the unpolarized light 201 from the light emitting diode 11 is first a quarter wavelength. It reaches the plate 13, passes through the quarter-wave plate 13, and enters the reflective polarizing element 14. Of the incident non-polarized light in the reflective polarizing element 14, the p-polarized light is transmitted through the reflective polarizing element 14 and becomes an emitted light beam of the p-polarized light 202 from the polarized light source device 10, but the s-polarized light 203 is Reflected. The traveling direction of the s-polarized light 203 is reversed by reflection and proceeds toward the quarter wavelength plate 13. After passing through the quarter-wave plate 13, it becomes circularly polarized light 204, reaches the mirror surface of the ellipsoidal reflecting mirror 12 on the side opposite to the light projection side of the light emitting diode 11, is reflected there, and is reflected by the ellipsoidal reflecting mirror 12. The light beam converges in the vicinity of one focal point 12a. A plane reflecting mirror 15 is disposed at the convergence point, and is reflected again by the plane reflecting mirror 15 and then enters the quarter wavelength plate 13 again as the circularly polarized light 205 through the ellipsoidal reflecting mirror 12. Since the circularly polarized light 205 is converted into the p-polarized light 206 when passing through the quarter-wave plate, it can pass through the next reflective polarizing element 14, and the p-polarized light 206 is used as illumination light. The In this way, since most of the non-polarized light 201 from the light emitting diode 11 can be converted into p-polarized light 202 and 206, the highly efficient polarized light source device 10 is provided.

なお、本実施の形態において1/4波長板13と反射型偏光素子14はそれぞれ独立して用意されているが、これらを一体型の構成とすることも可能である。例えば1つのガラス基板の一方に1/4波長板を貼りつけ、もう一方に反射型偏光素子を形成すれば、構成がより簡素なものとなる。また、この実施の形態では1/4波長板13と反射型偏光素子14とが隣接して配置された例で示したが、隣接して配置されなくともよい。   In the present embodiment, the quarter-wave plate 13 and the reflective polarizing element 14 are prepared independently, but they may be integrated. For example, if a quarter wavelength plate is attached to one glass substrate and a reflective polarizing element is formed on the other glass substrate, the configuration becomes simpler. In this embodiment, the quarter wavelength plate 13 and the reflective polarizing element 14 are disposed adjacent to each other, but may not be disposed adjacent to each other.

(第2の実施の形態)
図3は本発明の第2の実施の形態の偏光光源装置の構成を示す模式的部分断面側面図である。第1の実施の形態と同じ構成については同じ符号を用いて説明する。第1の実施の形態では1/4波長板13と反射型偏光素子14とは隣接して配置されていたが、第2の実施の形態の偏光光源装置30では図3に示すように、1/4波長板33を反射型偏光素子14と離して平面反射鏡15に貼り合わせている。その他の構成は第1の実施の形態と同じなので説明を省力する。発光ダイオード11で放射された非偏光光301は断面が楕円形の楕円面反射鏡12で収束光となって反射型偏光素子14に達する。p偏光光成分のp偏光光302は反射型偏光素子14を透過してそのまま照明光となるが、反射型偏光素子14で反射されたs偏光光成分のs偏光光303は楕円面反射鏡12へと進み、楕円面反射鏡12で反射されて第1の焦点12a近傍に向けて集束する。この集束点付近には1/4波長板33が貼り合わされた平面反射鏡15があり、s偏光光303は1/4波長板33を透過し、平面反射鏡15により反射され、再び1/4波長板33を透過するという過程でp偏光光に偏光変換が実施される。このp偏光光306は楕円面反射鏡12で反射されて第2の焦点12b、すなわち反射型偏光素子14に向けて入射し、反射型偏光素子14をそのまま透過してp偏光光306の照明光となる。このようにして発光ダイオード11から放射された非偏光光301のその殆どが偏光方向が統一されたp偏光光302、306に偏光変換され、照明光として利用することが可能になる。
(Second Embodiment)
FIG. 3 is a schematic partial cross-sectional side view showing the configuration of the polarized light source device according to the second embodiment of the present invention. The same components as those in the first embodiment will be described using the same reference numerals. In the first embodiment, the quarter wavelength plate 13 and the reflective polarizing element 14 are disposed adjacent to each other. However, in the polarization light source device 30 of the second embodiment, as shown in FIG. The / 4 wavelength plate 33 is bonded to the planar reflecting mirror 15 apart from the reflective polarizing element 14. Since other configurations are the same as those of the first embodiment, the description is omitted. The non-polarized light 301 emitted from the light emitting diode 11 reaches the reflective polarizing element 14 as convergent light by the elliptical reflecting mirror 12 having an elliptical cross section. The p-polarized light 302 of the p-polarized light component passes through the reflective polarizing element 14 and becomes the illumination light as it is, but the s-polarized light 303 of the s-polarized light component reflected by the reflective polarizing element 14 is the ellipsoidal reflecting mirror 12. , And is reflected by the ellipsoidal reflecting mirror 12 and converges toward the vicinity of the first focal point 12a. In the vicinity of this focusing point, there is a plane reflecting mirror 15 to which a quarter wavelength plate 33 is bonded, and the s-polarized light 303 is transmitted through the quarter wavelength plate 33, reflected by the plane reflecting mirror 15, and again 1/4. In the process of passing through the wave plate 33, polarization conversion is performed on the p-polarized light. The p-polarized light 306 is reflected by the ellipsoidal reflecting mirror 12 and enters the second focal point 12 b, that is, the reflective polarizing element 14. The p-polarized light 306 passes through the reflective polarizing element 14 as it is and is illuminated by the p-polarized light 306. It becomes. In this way, most of the non-polarized light 301 emitted from the light emitting diode 11 is converted into p-polarized light 302 and 306 having a uniform polarization direction, and can be used as illumination light.

これまで光源を発光ダイオードとして説明してきたがこれに限定されるものではなく、非偏光光を投射する半導体発光素子を含む小型の発光素子に適用することが可能である。   Although the light source has been described as a light emitting diode so far, the present invention is not limited to this, and can be applied to a small light emitting element including a semiconductor light emitting element that projects non-polarized light.

次に本発明の偏光光源装置を備えた投写型表示装置について説明する。図4は本発明の偏光光源装置を備えた投写型表示装置の1例の主要構成を示した模式的部分断面側面図である。偏光光源装置は第1の態様の偏光光源装置10を用いることとしているが、第2の態様の偏光光源装置30を用いてもよい。ここでは白色光を発光する発光ダイオード41、楕円面反射鏡42、1/4波長板43、偏光素子44、平面反射鏡45で偏光光源装置40が構成されている。また、表示光学系60として、カラーホイール61、ロッドインテグレータ62、フィールドレンズ63、コンデンサレンズ64、液晶パネル65、投写レンズ66を有する。   Next, a projection display device provided with the polarized light source device of the present invention will be described. FIG. 4 is a schematic partial cross-sectional side view showing the main configuration of an example of a projection display device provided with the polarized light source device of the present invention. Although the polarized light source device uses the polarized light source device 10 of the first aspect, the polarized light source device 30 of the second aspect may be used. Here, the light source diode 41 that emits white light, the ellipsoidal reflecting mirror 42, the quarter-wave plate 43, the polarizing element 44, and the planar reflecting mirror 45 constitute the polarized light source device 40. The display optical system 60 includes a color wheel 61, a rod integrator 62, a field lens 63, a condenser lens 64, a liquid crystal panel 65, and a projection lens 66.

発光ダイオード41から照射された白色光を時分割でR、G、Bの各色に分解する回転式のカラーホイール61が1/4波長板43の直前に配置されている。さらに、偏光光源装置40から照射される偏光光の光束がロッドインテグレータ62に入射する構成となっている。ロッドインテグレータ62を用いることで発光ダイオード41の発光ムラの画像表示への影響が軽減できる。偏光光源装置40で偏光の種類が統一された例えばp偏光光はロッドインテグレータ62で光強度が均一化され、ロッドインテグレータ62の射出端の照明情報がフィールドレンズ63、コンデンサレンズ64等により、液晶パネル65上に結像する。液晶パネル65の前後には偏光子と検光子が備えられているが、この図では省略されている。そして液晶パネル65上の画像は投写レンズ66により不図示のスクリーン上に拡大投写される。光源である発光ダイオード41から放射された非偏光の白色光の殆どを偏光に変換後、カラーホイール61により時分割でR、G、Bに分割し、それぞれの色の光に対して液晶パネル65の変調を同期させて画像表示するので、光源の光の利用効率が高い単板型の投写型表示装置4が得られる。   A rotary color wheel 61 that separates the white light emitted from the light emitting diode 41 into R, G, and B colors in a time-sharing manner is disposed immediately before the quarter-wave plate 43. Further, the light beam of polarized light emitted from the polarized light source device 40 is incident on the rod integrator 62. By using the rod integrator 62, the influence of uneven light emission of the light emitting diode 41 on the image display can be reduced. For example, p-polarized light whose polarization type is unified by the polarized light source device 40 is made uniform by the rod integrator 62, and the illumination information of the exit end of the rod integrator 62 is supplied to the liquid crystal panel by the field lens 63, the condenser lens 64, and the like. An image is formed on 65. A polarizer and an analyzer are provided before and after the liquid crystal panel 65, but are omitted in this drawing. The image on the liquid crystal panel 65 is enlarged and projected on a screen (not shown) by the projection lens 66. After most of the non-polarized white light emitted from the light emitting diode 41 as the light source is converted into polarized light, it is divided into R, G, and B by time division by the color wheel 61, and the liquid crystal panel 65 for each color light. Since the image is displayed in synchronization with each other, a single-plate projection display device 4 with high light use efficiency of the light source can be obtained.

図5は本発明の偏光光源装置を備えた投写型表示装置の他の例の主要構成を示した模式的部分断面側面図である。偏光光源装置は第1の態様の偏光光源装置10を用いることとしているが、第2の態様の偏光光源装置30を用いてもよい。図4の投写型表示装置との違いは、表示光学系70に3つの透過型液晶パネル751、752、753を用い、カラーホイール61を用いずにR、G、Bの3系統の偏光光源装置501、502、503とクロスダイクロイックプリズム71が用いられている点である。例えば、R用の偏光光源装置501は、R色の色光を発光する発光ダイオード51が楕円面反射鏡52の第1の焦点近傍に配置されており、放射される非偏光光の光束は楕円面反射鏡52でその大部分が反射されて、楕円面反射鏡52の第2の焦点近傍に収束する。第2の焦点近傍には1/4波長板53と反射型偏光素子54が隣接して配置されているので、非偏光光の光束のうち、p偏光光は反射型偏光素子54を通過して、ロッドインテグレータ72へと入射して、その後フィールドレンズ73を介してR用の液晶パネル751の照明を行う。反射型偏光素子54で反射されたs偏光の光束は1/4波長板53を通過して円偏光光となり楕円面反射鏡52で反射されて発光ダイオード51の放射側とは逆の位置に配置される平面反射鏡55へ到達し、そこで反射されて再び楕円面反射鏡52の第2の焦点へむけて収束光となって進行する。楕円面反射鏡52の第2の焦点付近にある1/4波長板53を通過時にp偏光に偏光が変換されて反射型偏光素子54を透過可能となり、ロッドインテグレータ72へと入射して、R用の液晶パネル751の照明光となる。なお、液晶パネル751の前後には検光子と偏光子が配置されているがこの図では省略されている。G用の偏光光源装置502、B用の偏光光源装置503における動作はR用偏光光源装置501の動作と同じなので説明を省略する。各偏光光源装置501(R)、502(G)、503(B)により、光源で発生する非偏光光は効率よく偏光変換されて、対応する液晶パネル751(R)、752(G)、753(B)を照明し、それらの画像はクロスダイクロイックプリズム71で合成されて、その後投写レンズ76により不図示のスクリーンに拡大表示される。   FIG. 5 is a schematic partial cross-sectional side view showing the main configuration of another example of a projection display device provided with the polarized light source device of the present invention. Although the polarized light source device uses the polarized light source device 10 of the first aspect, the polarized light source device 30 of the second aspect may be used. 4 is different from the projection display device of FIG. 4 in that three transmissive liquid crystal panels 751, 752, and 753 are used in the display optical system 70, and three types of polarized light source devices of R, G, and B are used without using the color wheel 61. 501, 502, 503 and a cross dichroic prism 71 are used. For example, in the R polarized light source device 501, the light emitting diode 51 that emits R color light is disposed in the vicinity of the first focal point of the ellipsoidal reflecting mirror 52, and the emitted non-polarized light beam is an ellipsoidal surface. Most of the light is reflected by the reflecting mirror 52 and converges in the vicinity of the second focal point of the ellipsoidal reflecting mirror 52. Since the quarter-wave plate 53 and the reflective polarizing element 54 are disposed adjacent to each other in the vicinity of the second focal point, the p-polarized light among the non-polarized light beams passes through the reflective polarizing element 54. Then, the light enters the rod integrator 72, and then the R liquid crystal panel 751 is illuminated via the field lens 73. The s-polarized light beam reflected by the reflective polarizing element 54 passes through the quarter-wave plate 53 to become circularly polarized light, is reflected by the ellipsoidal reflecting mirror 52, and is disposed at a position opposite to the radiation side of the light emitting diode 51. The reflected light reaches the plane reflecting mirror 55, is reflected there, and travels toward the second focal point of the ellipsoidal reflecting mirror 52 again as convergent light. When the light passes through the quarter-wave plate 53 near the second focal point of the ellipsoidal reflecting mirror 52, the polarized light is converted into p-polarized light and can pass through the reflective polarizing element 54, and enters the rod integrator 72. It becomes the illumination light of the liquid crystal panel 751 for use. Note that an analyzer and a polarizer are arranged before and after the liquid crystal panel 751, but they are omitted in this figure. Since the operations of the G polarized light source device 502 and the B polarized light source device 503 are the same as those of the R polarized light source device 501, the description thereof is omitted. By each polarized light source device 501 (R), 502 (G), 503 (B), the non-polarized light generated by the light source is efficiently polarized and converted, and the corresponding liquid crystal panels 751 (R), 752 (G), 753 are converted. Illuminating (B), these images are synthesized by the cross dichroic prism 71 and then enlarged and displayed on a screen (not shown) by the projection lens 76.

発光ダイオードを光源に使用した偏光光源装置として、表示光学系が液晶パネルの投写型表示装置の光学系に利用できる。   As a polarized light source device using a light emitting diode as a light source, a display optical system can be used for an optical system of a projection display device of a liquid crystal panel.

本発明の第1の実施の形態の偏光光源装置の構成を示す模式的部分断面側面図である。It is a typical fragmentary sectional side view which shows the structure of the polarized light source device of the 1st Embodiment of this invention. 図1の1/4波長板、反射型偏光素子近傍の模式的拡大側面図である。FIG. 2 is a schematic enlarged side view of the vicinity of a quarter-wave plate and a reflective polarizing element in FIG. 1. 本発明の第2の実施の形態の偏光光源装置の構成を示す模式的部分断面側面図である。It is a typical fragmentary sectional side view which shows the structure of the polarized light source device of the 2nd Embodiment of this invention. 本発明の偏光光源装置を備えた投写型表示装置の1例の主要構成を示した模式的部分断面側面図である。It is the typical partial cross section side view which showed the main structures of one example of the projection type display apparatus provided with the polarized light source device of this invention. 本発明の偏光光源装置を備えた投写型表示装置の他の例の主要構成を示した模式的部分断面側面図である。It is the typical partial cross section side view which showed the main structures of the other example of the projection type display apparatus provided with the polarized light source device of this invention.

符号の説明Explanation of symbols

10、30、40 偏光光源装置
11、41、51 発光ダイオード
12、42、52 楕円面反射鏡
12a 第1の焦点
12b 第2の焦点
13、33、43、53 1/4波長板
14、44、54 反射型偏光素子
15、45、55 平面反射鏡
60、70 表示光学系
61 カラーホイール
62、72 ロッドインテグレータ
63、73 フィールドレンズ
64 コンデンサレンズ
65 液晶パネル
66、76 投写レンズ
71 クロスダイクロイックプリズム
201、301 非偏光光
202、206、302、306 p偏光光
203、303 s偏光光
204、205 円偏光光
501 R用偏光光源装置
502 G用偏光光源装置
503 B用偏光光源装置
751 R用液晶パネル
752 G用液晶パネル
751 B用液晶パネル
10, 30, 40 Polarized light source device 11, 41, 51 Light emitting diode 12, 42, 52 Ellipsoidal reflector 12a First focal point 12b Second focal point 13, 33, 43, 53 1/4 wavelength plate 14, 44, 54 Reflective Polarizing Element 15, 45, 55 Planar Reflector 60, 70 Display Optical System 61 Color Wheel 62, 72 Rod Integrator 63, 73 Field Lens 64 Condenser Lens 65 Liquid Crystal Panel 66, 76 Projection Lens 71 Cross Dichroic Prism 201, 301 Non-polarized light 202, 206, 302, 306 p-polarized light 203, 303 s-polarized light 204, 205 Circularly polarized light 501 R polarized light source device 502 G polarized light source device 503 B polarized light source device 751 R liquid crystal panel 752 G Liquid crystal panel 751 B liquid crystal panel

Claims (6)

直線偏光光の光束をライトバルブに放射して該ライトバルブに投写映像を形成させ、該投写映像を投射面に拡大投写して該投射面上に画像を形成する投写型表示装置に用いられる前記直線偏光光の光束生成用の偏光光源装置であって、
前記偏光光源装置は、非偏光光を出射する光源部と、該光源部から出射された非偏光光から直線偏光光を作り出す偏光形成手段とを有し、
前記偏光形成手段は、楕円面反射鏡と、1/4波長板と、反射型偏光素子と、平面反射鏡とを備え、
前記光源部から出射した非偏光光は前記反射型偏光素子に入射し、該反射型偏光素子は所定の直線偏光光のみを照明光として通過させるとともに所定の直線偏光光以外の入射光は反射光として反射し、該反射光は前記楕円面反射鏡、前記平面反射鏡、および前記1/4波長板を経由して前記所定の直線偏光光となって再び前記反射型偏光素子に入射し、該反射型偏光素子は照明光として通過させることを特徴とする投写型表示装置の偏光光源装置。
The projection type display device used for radiating a light beam of linearly polarized light to a light valve to form a projected image on the light valve, and enlarging and projecting the projected image on a projection surface to form an image on the projection surface. A polarized light source device for generating a luminous flux of linearly polarized light,
The polarized light source device includes a light source unit that emits non-polarized light, and a polarization forming unit that generates linearly polarized light from the non-polarized light emitted from the light source unit,
The polarization forming means includes an ellipsoidal reflecting mirror, a quarter-wave plate, a reflective polarizing element, and a planar reflecting mirror.
The non-polarized light emitted from the light source unit enters the reflective polarizing element, and the reflective polarizing element allows only predetermined linearly polarized light to pass as illumination light, and incident light other than the predetermined linearly polarized light is reflected light. The reflected light becomes the predetermined linearly polarized light via the ellipsoidal reflecting mirror, the planar reflecting mirror, and the quarter wavelength plate, and is incident on the reflective polarizing element again. A polarized light source device for a projection display device, wherein the reflective polarizing element is passed as illumination light.
前記楕円面反射鏡には、該楕円面反射鏡の内部の第1の焦点と、該第1の焦点からの投射光の前記楕円面反射鏡からの反射光が該楕円面反射鏡外部で集束する第2の焦点とが規定されており、
前記光源部は、保持手段によって前記第1の焦点近傍に保持されており、前記平面反射鏡は、反射面の反対の面が前記光源部と近接するように前記楕円面反射鏡の軸線に沿って配置されており、前記1/4波長板と前記反射型偏光素子とは互いに近接して前記1/4波長板の一面が前記楕円面反射鏡の開口部に対向するように前記第2の焦点近傍に配置されている、請求項1に記載の投写型表示装置の偏光光源装置。
The ellipsoidal reflector has a first focal point inside the ellipsoidal reflector and the reflected light from the ellipsoidal reflector of the projection light from the first focal point is focused outside the ellipsoidal reflector. A second focus is defined,
The light source unit is held in the vicinity of the first focal point by a holding unit, and the planar reflecting mirror is along the axis of the elliptical reflecting mirror so that the surface opposite to the reflecting surface is close to the light source unit. The quarter-wave plate and the reflective polarizing element are close to each other, and one surface of the quarter-wave plate faces the opening of the ellipsoidal reflecting mirror. The polarized light source device for a projection display device according to claim 1, wherein the polarized light source device is disposed near a focal point.
前記楕円面反射鏡には、該楕円面反射鏡の内部の第1の焦点と、該第1の焦点からの投射光の前記楕円面反射鏡からの反射光が該楕円面反射鏡外部で集束する第2の焦点とが規定されており、
前記光源部は、発光部が前記第1の焦点近傍位置するように保持手段によって保持されており、前記平面反射鏡は、反射面の反対の面が前記光源部と近接するように前記楕円面反射鏡の軸線に沿って配置されており、前記反射型偏光素子は該反射型偏光素子の一面が前記楕円面反射鏡の開口部に対向するように前記第2の焦点近傍に配置され、前記1/4波長板が前記平面反射鏡の反射面に近接して配置されている、請求項1に記載の投写型表示装置の偏光光源装置。
The ellipsoidal reflector has a first focal point inside the ellipsoidal reflector and the reflected light from the ellipsoidal reflector of the projection light from the first focal point is focused outside the ellipsoidal reflector. A second focus is defined,
The light source unit is held by a holding unit so that the light emitting unit is positioned in the vicinity of the first focal point, and the planar reflecting mirror has the elliptical surface so that the surface opposite to the reflecting surface is close to the light source unit. Arranged along the axis of the reflecting mirror, and the reflecting polarizing element is arranged in the vicinity of the second focal point so that one surface of the reflecting polarizing element faces the opening of the ellipsoidal reflecting mirror, The polarized light source device of the projection display device according to claim 1, wherein a quarter-wave plate is disposed in the vicinity of the reflecting surface of the planar reflecting mirror.
前記光源部の保持手段が前記平面反射鏡であり、該平面反射鏡を構成する鏡面処理された基板の裏面に前記光源部が実装されている、請求項1から請求項3のいずれか1項に記載の投写型表示装置の偏光光源装置。   The holding means of the said light source part is the said plane reflective mirror, The said light source part is mounted in the back surface of the mirror-processed board | substrate which comprises this plane reflective mirror. A polarized light source device for a projection display device according to claim 1. 前記光源部は発光ダイオードである、請求項1から請求項3のいずれか1項に記載の投写型表示装置の偏光光源装置。   The polarized light source device for a projection display device according to any one of claims 1 to 3, wherein the light source unit is a light emitting diode. 前記発光ダイオードの発光色は、赤、青、緑、白のいずれかである、請求項5に記載の投写型表示装置の偏光光源装置。   The polarized light source device of the projection display device according to claim 5, wherein a light emission color of the light emitting diode is any one of red, blue, green, and white.
JP2003357804A 2003-10-17 2003-10-17 Polarized light source device for projection display device Expired - Fee Related JP4382434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003357804A JP4382434B2 (en) 2003-10-17 2003-10-17 Polarized light source device for projection display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003357804A JP4382434B2 (en) 2003-10-17 2003-10-17 Polarized light source device for projection display device

Publications (2)

Publication Number Publication Date
JP2005121960A true JP2005121960A (en) 2005-05-12
JP4382434B2 JP4382434B2 (en) 2009-12-16

Family

ID=34614593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003357804A Expired - Fee Related JP4382434B2 (en) 2003-10-17 2003-10-17 Polarized light source device for projection display device

Country Status (1)

Country Link
JP (1) JP4382434B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114375A (en) * 2005-10-19 2007-05-10 Ricoh Opt Ind Co Ltd Light irradiation device, liquid crystal display apparatus and liquid crystal projection apparatus
JP2009086561A (en) * 2007-10-03 2009-04-23 Mitsubishi Electric Corp Projection liquid crystal display device
JP2010513948A (en) * 2006-12-15 2010-04-30 トムソン ライセンシング Lighting module and method
US9204167B2 (en) 2005-01-24 2015-12-01 Thomson Licensing Video error detection technique using a CRC parity code
CN111781170A (en) * 2019-04-03 2020-10-16 阳程科技股份有限公司 Polarized light alignment detection device and detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9204167B2 (en) 2005-01-24 2015-12-01 Thomson Licensing Video error detection technique using a CRC parity code
JP2007114375A (en) * 2005-10-19 2007-05-10 Ricoh Opt Ind Co Ltd Light irradiation device, liquid crystal display apparatus and liquid crystal projection apparatus
JP2010513948A (en) * 2006-12-15 2010-04-30 トムソン ライセンシング Lighting module and method
JP2009086561A (en) * 2007-10-03 2009-04-23 Mitsubishi Electric Corp Projection liquid crystal display device
CN111781170A (en) * 2019-04-03 2020-10-16 阳程科技股份有限公司 Polarized light alignment detection device and detection method

Also Published As

Publication number Publication date
JP4382434B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP5874058B2 (en) Light source device and projection display device
KR101109592B1 (en) Light source module and image projection apparatus employing the same
JP3960377B2 (en) Light source device and projection display device
JP2004184777A (en) Light source device and projection type display device
JP2006154602A (en) Light source device and image display device
JP2012509512A (en) Color synthesizer for polarization conversion
JP2007219442A (en) Projector
JP2015049441A (en) Illumination device and projector
JP2006227361A (en) Polarized light transformation optical element, lighting system, and projector
JP2005292561A (en) Light source device and projection type display device
US20110057557A1 (en) Projection led module and method of making a projection led module
JP2012078537A (en) Light source device and projection type video display device
WO2020054397A1 (en) Light source device and projection-type video display device
JP7203317B2 (en) Light source device and projection type image display device
JP6269037B2 (en) Fluorescent light emitting device, light source device and projector
JP4725456B2 (en) Solid state light source and projector
JP2016145881A (en) Wavelength conversion element, illumination device, and projector
JP4382434B2 (en) Polarized light source device for projection display device
JP4564757B2 (en) Light source device and projection display device
JP4382503B2 (en) Light source device for projection display device and projection display device
JP2006064859A (en) Light emitting device and liquid crystal projecting device
JP2000193926A (en) Light source unit, illuminating optical system and projection type display device
JP2008084606A (en) Light source device and projector
JP2006337428A (en) Illuminating optical system, optical engine and projection image display apparatus
US7837331B2 (en) Illuminator and projector with increased illumination efficiency

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees