JP2005121922A - Light modulation equipment - Google Patents

Light modulation equipment Download PDF

Info

Publication number
JP2005121922A
JP2005121922A JP2003357203A JP2003357203A JP2005121922A JP 2005121922 A JP2005121922 A JP 2005121922A JP 2003357203 A JP2003357203 A JP 2003357203A JP 2003357203 A JP2003357203 A JP 2003357203A JP 2005121922 A JP2005121922 A JP 2005121922A
Authority
JP
Japan
Prior art keywords
optical
signal
modulator
light
carrier wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003357203A
Other languages
Japanese (ja)
Other versions
JP4434688B2 (en
Inventor
Takeshi Nakatogawa
剛 中戸川
Mikio Maeda
幹夫 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2003357203A priority Critical patent/JP4434688B2/en
Publication of JP2005121922A publication Critical patent/JP2005121922A/en
Application granted granted Critical
Publication of JP4434688B2 publication Critical patent/JP4434688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide light modulation equipment which easily suppresses light carrier wave power of an output signal of a light modulator. <P>SOLUTION: The light modulation equipment is equipped with the light modulator (an light SSB modulator 3) generating a light modulation signal by modulating a light carrier wave with a transmission signal and outputs a light signal in which the light carrier wave is suppressed by halving-branching the light carrier wave generated in a light source, generating the light modulation signal by inputting one branched light carrier wave to the light modulator and modulating it with the transmission signal and multiplexing the other branched light carrier wave and output light from the light modulator in such a way that they are mutually canceled. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、伝送信号を光ファイバ網で伝送するための光変調装置に関するものである。   The present invention relates to an optical modulation device for transmitting a transmission signal through an optical fiber network.

放送波を直接受信できず、共同受信用のケーブルの引き込みが困難な既設の集合住宅や、光ファイバ敷設経路に河川が横切る場合などに、光ファイバで伝送した放送波をミリ波帯に周波数変換して無線伝送する研究が進められている。このような伝送システムのうち、放送波などの伝送信号とミリ波帯の高周波信号を光信号に変換した後、多重して光伝送し、受信端で“伝送信号”と“ミリ波帯に周波数変換(自己ヘテロダイン検波)した伝送信号”の両者あるいはどちらか一方を出力する方法が提案されている(非特許文献1参照)。   Frequency conversion of broadcast waves transmitted by optical fiber to millimeter wave band, such as existing apartment houses that cannot receive broadcast waves directly and it is difficult to pull in cables for joint reception, or when a river crosses an optical fiber installation route Research on wireless transmission is underway. Among such transmission systems, after converting transmission signals such as broadcast waves and high-frequency signals in the millimeter wave band to optical signals, they are multiplexed and optically transmitted, and the “transmission signal” and the frequency in the millimeter-wave band are received at the receiving end. There has been proposed a method of outputting both or one of the transmission signals converted (self-heterodyne detection) (see Non-Patent Document 1).

一般に、光変調方式としては、レーザーダイオードへの注入電流を電気信号で変調することにより光強度を変調する「直接変調方式」と、レーザーダイオードは一定出力で動作させ、外部の変調素子で変調を行う「外部変調方式」とがある。直接変調方式は簡便な方法であるが、電流注入により半導体の屈折率が大きく変動(チャーピング)し、動的な波長広がりとなり、受信端で光波形に歪みをもたらす場合がある。一方、外部変調方式はこの動的波長広がりを十分低く抑えることができる。   In general, the light modulation method is the "direct modulation method", which modulates the light intensity by modulating the current injected into the laser diode with an electrical signal, and the laser diode is operated at a constant output and modulated by an external modulation element. There is an “external modulation method” to be performed. Although the direct modulation method is a simple method, the refractive index of the semiconductor largely fluctuates (chirping) due to current injection, resulting in dynamic wavelength broadening, which may cause distortion of the optical waveform at the receiving end. On the other hand, the external modulation method can suppress the dynamic wavelength spread sufficiently low.

高周波信号を通常の外部変調器で光強度変調により伝送する場合、波長分散の影響により、光上側波、光搬送波、光下側波に到着時間差が生じ、特定の伝送距離で受光すると干渉により高周波信号を受信できないという問題があることが知られている。この問題を解決する方法の一つとして、干渉の原因となる一方の光側波帯を伝送しない単一側波帯変調(SSB:Single Side Band)方式が提案されている。光SSB変調器は、ニオブ酸リチウム(LiNbO3)光変調素子を用いたマッハツェンダー型(MZ)光変調器で構成することができる(非特許文献2参照)。 When high-frequency signals are transmitted by optical intensity modulation with a normal external modulator, arrival time differences occur in the optical upper wave, optical carrier wave, and lower optical wave due to the effects of chromatic dispersion. It is known that there is a problem that a signal cannot be received. As one method for solving this problem, a single sideband modulation (SSB) system that does not transmit one optical sideband that causes interference has been proposed. The optical SSB modulator can be composed of a Mach-Zehnder (MZ) optical modulator using a lithium niobate (LiNbO 3 ) optical modulator (see Non-Patent Document 2).

また、特許文献1の図2には、マッハツェンダー型(MZ)光変調器を用いた光SSB変調器の構成法が開示されている。   Further, FIG. 2 of Patent Document 1 discloses a configuration method of an optical SSB modulator using a Mach-Zehnder (MZ) optical modulator.

鈴木健児、他3名「地上波デジタル放送のミリ波光ファイバ伝送実験」、社団法人映像情報メディア学会技術報告、Vol.27, No.45, PP.1〜6, BCT2003-13(Jul.2003)Kenji Suzuki, 3 others "Millimeter-wave optical fiber transmission experiment of digital terrestrial broadcasting", The Institute of Image Information and Television Engineers Technical Report, Vol.27, No.45, PP.1-6, BCT2003-13 (Jul.2003) G. H. Smith, D. Novak, and Z. Ahmed : "Novel technique for generation of optical SSB with carrier using a single MZM to overcome fiber chromatic dispersion", MWP96, PDP-2, 1996G. H. Smith, D. Novak, and Z. Ahmed: "Novel technique for generation of optical SSB with carrier using a single MZM to overcome fiber chromatic dispersion", MWP96, PDP-2, 1996

特開2001−264714号公報JP 2001-264714 A

本発明者は、前記従来技術を検討した結果、以下の問題点を見いだした。   As a result of examining the prior art, the present inventor has found the following problems.

光SSB変調器に用いられるニオブ酸リチウム外部変調器(LN外部変調器)は、電気・光変換特性に非線形性があることが知られている。地上デジタル放送で用いられるOFDM(直交周波数分割多重)信号の振幅の瞬時値は平均値よりかなり大きいため、多チャンネル伝送時には非線形性により発生する3次相互変調歪みの影響が顕著である。伝送信号帯域内に発生する3次相互変調歪み(IM3)は、等価的に伝送信号のCN比(搬送波電力対雑音電力比)を劣化させる。光変調度を高くしていくと伝送信号のCN比が高くなる一方で、光変調器の非線形性によりCI比(搬送波電力対3次相互変調歪み電力比)が低下し、実効的にCN比を低下させる。つまり、光変調器の非線形性の影響を避けるため、光変調度が制限されることになる。   Lithium niobate external modulators (LN external modulators) used for optical SSB modulators are known to have nonlinearity in electrical / optical conversion characteristics. Since the instantaneous value of the amplitude of an OFDM (Orthogonal Frequency Division Multiplexing) signal used in terrestrial digital broadcasting is much larger than the average value, the influence of third-order intermodulation distortion caused by non-linearity is significant during multi-channel transmission. Third-order intermodulation distortion (IM3) occurring in the transmission signal band equivalently degrades the CN ratio (carrier power to noise power ratio) of the transmission signal. Increasing the degree of optical modulation increases the CN ratio of the transmission signal, while the non-linearity of the optical modulator decreases the CI ratio (carrier power to third-order intermodulation distortion power ratio), effectively increasing the CN ratio. Reduce. In other words, the degree of light modulation is limited in order to avoid the influence of nonlinearity of the light modulator.

一般に、長距離伝送後の受信端でのCN比を高くするためには、光変調器の出力を光増幅器で増幅させた後、光ファイバ伝送路に入力したり、光ファイバ伝送路の途中で増幅させるといった方法が用いられる。   In general, in order to increase the CN ratio at the receiving end after long-distance transmission, the output of the optical modulator is amplified by an optical amplifier and then input to the optical fiber transmission line or in the middle of the optical fiber transmission line. A method such as amplification is used.

光SSB変調器の出力信号は、光搬送波信号と光変調された伝送信号(単一側波帯)に分けられるが、伝送信号の電力以上に光搬送波電力が大きいため、増幅器を用いても光変調された伝送信号が十分に増幅されないといった問題があった。   The output signal of the optical SSB modulator is divided into an optical carrier signal and an optically modulated transmission signal (single sideband), but the optical carrier power is larger than the power of the transmission signal. There is a problem that the modulated transmission signal is not sufficiently amplified.

上記のように、光SSB方式は波長分散の影響を受けにくいという特徴を有するが、そのままでは光変調度を深くすることができない。この場合、長距離伝送のために光増幅器を用いても、光搬送波の大きな電力のために伝送信号の増幅が制限されてしまう。伝送信号の光変調度を大きくするためには、光変調された伝送信号の電力のみを増幅させるか、光搬送波の電力のみを抑圧しなければならない。   As described above, the optical SSB system has a feature that it is hardly affected by chromatic dispersion, but the optical modulation degree cannot be deepened as it is. In this case, even if an optical amplifier is used for long-distance transmission, amplification of the transmission signal is limited due to the large power of the optical carrier wave. In order to increase the optical modulation degree of the transmission signal, it is necessary to amplify only the power of the optically modulated transmission signal or suppress only the power of the optical carrier wave.

本発明は、このような問題に鑑みてなされたものであり、本発明の目的は、光SSB変調器出力信号の光搬送波電力を容易に抑圧することが可能な光変調装置を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide an optical modulation device capable of easily suppressing the optical carrier power of the output signal of the optical SSB modulator. is there.

本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述及び添付図面によって明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

上記のような問題を解決するために、本発明では、光搬送波を伝送信号で変調して光変調信号を生成する光変調器を備える光変調装置であって、光源で生成した光搬送波を2分岐する手段と、分岐された光搬送波の一方を前記光変調器に入力して伝送信号で変調して光変調信号を生成し、分岐された光搬送波の他方と前記光変調器の出力光とが互いに打ち消しあうように合波することで光搬送波が抑圧された光信号を出力する手段とを備える。   In order to solve the above-described problems, the present invention provides an optical modulation device including an optical modulator that generates an optical modulation signal by modulating an optical carrier wave with a transmission signal, and uses two optical carrier waves generated by a light source. A branching means; one of the branched optical carriers is input to the optical modulator and modulated with a transmission signal to generate an optical modulation signal; the other of the branched optical carriers and the output light of the optical modulator; And a means for outputting an optical signal in which the optical carrier wave is suppressed by multiplexing so as to cancel each other.

本発明の前記光変調器は光SSB変調器である。
本発明では、前記光SSB変調器の直流バイアス電流を調整して、前記光SSB変調器の出力光の位相を調整することにより、光搬送波を抑圧する程度を決める。
The optical modulator of the present invention is an optical SSB modulator.
In the present invention, the degree of suppression of the optical carrier wave is determined by adjusting the DC bias current of the optical SSB modulator and adjusting the phase of the output light of the optical SSB modulator.

本発明では、合波により得られる光信号の光搬送波電力が伝送信号電力より小さくならない範囲で光搬送波を抑圧する。   In the present invention, the optical carrier wave is suppressed in a range where the optical carrier power of the optical signal obtained by multiplexing does not become smaller than the transmission signal power.

このように、本発明では、光源の出力を2分岐し、一方を光SSB変調器に光搬送波信号として入力し、他方を光SSB変調器の出力信号と合波する構成とした。   Thus, in the present invention, the output of the light source is divided into two, one is input as an optical carrier signal to the optical SSB modulator, and the other is combined with the output signal of the optical SSB modulator.

光SSB変調器を経由した光搬送波と光SSB変調器を経由しない光搬送波とが互いに打ち消しあうように位相を調整して合成することで、光搬送波電力を抑圧することができる。このとき、合波後の光搬送波の位相も変化してしまうが受信端での検波には影響がない。   The optical carrier power can be suppressed by adjusting and synthesizing the phases so that the optical carrier wave passing through the optical SSB modulator and the optical carrier wave not passing through the optical SSB modulator cancel each other. At this time, the phase of the optical carrier wave after the multiplexing also changes, but the detection at the receiving end is not affected.

光搬送波の位相差の調整は光SSB変調器の直流バイアス電流を調整することで容易に実現可能である。   The adjustment of the phase difference of the optical carrier can be easily realized by adjusting the DC bias current of the optical SSB modulator.

なお、光SSB変調器の代わりに光DSB(Double Side Band)変調器を用いた場合、合波後の光搬送波の位相変動が受信端での検波に影響を与えてしまう。このため、合波後も位相変化がないように、打ち消す側の光搬送波の振幅を調整し、かつ正確に逆位相となるように位相を調整しなければならず、装置の構成が複雑になり、設定が困難であるといった新たな課題が発生してしまう。   When an optical DSB (Double Side Band) modulator is used instead of the optical SSB modulator, the phase variation of the optical carrier wave after the multiplexing affects the detection at the receiving end. For this reason, the amplitude of the optical carrier on the cancellation side must be adjusted so that the phase does not change even after multiplexing, and the phase must be adjusted so that the phase is accurately reversed, which complicates the configuration of the apparatus. A new problem such as difficulty in setting occurs.

本願発明を用いることで、急峻な光バンドパスフィルタを用いずに、簡素な構成で光変調器出力信号の光搬送波電力を容易に抑圧できる。   By using the present invention, the optical carrier power of the optical modulator output signal can be easily suppressed with a simple configuration without using a steep optical bandpass filter.

光搬送波電力が抑圧され、光変調された伝送信号を光増幅器で増幅できるため、多波の信号を長距離伝送する場合には特に有効な光変調装置である。   Since the optical carrier power is suppressed and the optically modulated transmission signal can be amplified by an optical amplifier, the optical modulation device is particularly effective when a multiwave signal is transmitted over a long distance.

以下、図面を参照して、発明の実施の形態を詳細に説明する。
図1は本発明の一実施の形態である光変調装置の概略構成を説明するための図である。
Hereinafter, embodiments of the invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram for explaining a schematic configuration of a light modulation device according to an embodiment of the present invention.

図1に示すように、本実施の形態の光変調装置は、発振周波数fcの無変調のレーザ光を光搬送波aとして出力する光源1と、中心周波数fsの電気信号bを出力する電気信号源2と、光源1から出力された光搬送波aを光分配器で2分岐して得られる一方の搬送波fと電気信号bとが入力される光SSB変調器3と、光搬送波aを2分岐して得られる他方の光搬送波cと光SSB変調器3から出力される光変調信号(光信号j)とを合波する光合成器とを備える構成となっている。   As shown in FIG. 1, the light modulation device of the present embodiment includes a light source 1 that outputs unmodulated laser light having an oscillation frequency fc as an optical carrier a, and an electric signal source that outputs an electric signal b having a center frequency fs. 2, an optical SSB modulator 3 to which one carrier wave f obtained by branching the optical carrier a output from the light source 1 by an optical distributor and an electric signal b, and an optical carrier a are branched into two. The other optical carrier c obtained in this way and an optical synthesizer for combining the optical modulation signal (optical signal j) output from the optical SSB modulator 3 are provided.

光SSB変調器3は、マッハツェンダー型(MZ)光変調器で構成されており、入力された光搬送波fは2つの光導波路に分岐され、各光導波路を伝搬後に合波される構成となっている。各光導波路には電極が配置されており、一方の電極には電気信号bと同相の電気信号dが印加され、他方の電極には電気信号bをπ/2位相シフトした電気信号gが印加される構成となっている。また、一方の電極には直流バイアス電流4が接続され、他方の電極には直流バイアス信号源5が接続されており、各光導波路を伝搬する光信号h、iの光合成位相をπ/2に設定するための直流バイアス電流と、分岐された光搬送波cに対する光信号jの位相を調整するための直流バイアス電流とを印加する構成となっている。   The optical SSB modulator 3 is configured with a Mach-Zehnder (MZ) optical modulator, and the input optical carrier f is branched into two optical waveguides and combined after propagating through the optical waveguides. ing. An electrode is disposed in each optical waveguide, an electric signal d having the same phase as the electric signal b is applied to one electrode, and an electric signal g obtained by shifting the electric signal b by π / 2 phase is applied to the other electrode. It becomes the composition which is done. Also, a DC bias current 4 is connected to one electrode, and a DC bias signal source 5 is connected to the other electrode, so that the optical synthesis phase of the optical signals h and i propagating through each optical waveguide is π / 2. A DC bias current for setting and a DC bias current for adjusting the phase of the optical signal j with respect to the branched optical carrier c are applied.

以下、図1に基づいて、本実施の形態の光変調装置の動作を説明する。
光源1から発振周波数fc、無変調の光搬送波aを出力する。光搬送波aを光搬送波fと光搬送波cとに分岐し、光搬送波fを光SSB変調器3に入力する。一方、電気信号源2から電気信号bを出力し、光SSB変調器3に入力する。
Hereinafter, the operation of the light modulation device of this embodiment will be described with reference to FIG.
The light source 1 outputs an oscillation frequency fc and an unmodulated optical carrier wave a. The optical carrier a is branched into an optical carrier f and an optical carrier c, and the optical carrier f is input to the optical SSB modulator 3. On the other hand, an electrical signal b is output from the electrical signal source 2 and input to the optical SSB modulator 3.

光SSB変調器3では、MZ光変調器のhとiの光合成位相をπ/2に設定しておき、π/2の位相差を持った電気信号dとgとで、MZ光変調器の2つの光導波路において位相変調を施す。   In the optical SSB modulator 3, the optical synthesis phase of h and i of the MZ optical modulator is set to π / 2, and the electrical signals d and g having a phase difference of π / 2 are used to generate the optical SSB modulator 3. Phase modulation is performed in the two optical waveguides.

光SSB変調器出力の光信号jと光搬送波cを合波した光信号kが光変調装置出力となる。   An optical signal k obtained by combining the optical signal j output from the optical SSB modulator and the optical carrier c becomes the output of the optical modulator.

光搬送波a、電気信号b、光搬送波c、光信号j、光信号kの各信号について、振幅周波数特性の模式図をそれぞれ吹き出し内に示す。   A schematic diagram of the amplitude frequency characteristics for each of the optical carrier a, electrical signal b, optical carrier c, optical signal j, and optical signal k is shown in the balloon.

なお、光源1、電気信号源2は、装置の構成機器とはせず、装置外部から供給するように構成してもよい。   The light source 1 and the electric signal source 2 may be configured to be supplied from the outside of the apparatus, not as the components of the apparatus.

このように、光源1から出力された光搬送波aの内で、分岐後に光SSB変調器3に入力された光搬送波fは、従来の光SSB変調器と同様に、2つの光導波路にそれぞれ分岐される。   In this way, among the optical carrier a output from the light source 1, the optical carrier f input to the optical SSB modulator 3 after branching is branched into two optical waveguides, as in the conventional optical SSB modulator. Is done.

一方の光導波路に分岐された光搬送波は、電気信号源2から出力される電気信号bと同相の電気信号dで位相変調され(光信号h)、他方の光導波路に分岐された光搬送波は、電気信号源2から出力される電気信号bをπ/2の位相シフトした電気信号gで位相変調される(光信号i)。このとき、電気信号dおよび電気信号gが印加される電極には直流バイアス電源4、5からの直流バイアス電流も印加され、光信号iと光信号hとの光合成位相はπ/2となる。   The optical carrier branched into one optical waveguide is phase-modulated with an electrical signal d in phase with the electrical signal b output from the electrical signal source 2 (optical signal h), and the optical carrier branched into the other optical waveguide is The electric signal b output from the electric signal source 2 is phase-modulated with an electric signal g obtained by shifting the phase by π / 2 (optical signal i). At this time, a DC bias current from the DC bias power sources 4 and 5 is also applied to the electrodes to which the electric signal d and the electric signal g are applied, and the optical synthesis phase of the optical signal i and the optical signal h becomes π / 2.

従って、位相変調後の光信号h、iを合波して得られる光信号jは、吹き出しに示すように、周波数fcの光搬送波とその一方の側波帯である中心周波数fc−fsの伝送信号とからなる光信号となる。   Therefore, the optical signal j obtained by combining the phase-modulated optical signals h and i is transmitted at the center frequency fc-fs which is an optical carrier of frequency fc and one of its sidebands, as shown in the balloon. It becomes an optical signal consisting of the signal.

また、光信号h、iには直流バイアス信号源4、5により、合波時の位相差をπ/2に設定するための直流バイアス電流と共に、光SSB変調器3の光信号jの光搬送波成分と分岐した光搬送波cとが互いに打ち消しあうように、光信号jの位相を調整するための直流バイアス電流も印加されている。   In addition, the optical signals h and i are supplied from the DC bias signal sources 4 and 5 to the optical carrier wave of the optical signal j of the optical SSB modulator 3 together with the DC bias current for setting the phase difference at the time of multiplexing to π / 2. A DC bias current for adjusting the phase of the optical signal j is also applied so that the component and the branched optical carrier c cancel each other.

その結果、光信号jと光搬送波cとの合波により、光信号jの内の周波数fcの光搬送波成分のみが抑圧され、吹き出しに示すように、光信号jと同じ電力の中心周波数fc−fsの伝送信号と光信号jよりも抑圧された光搬送波成分とからなる光信号kが得られる。本実施の形態の光変調装置では、例えば、出力される光信号kの光搬送波電力が受信側での検波等に好ましい電力であるためには、合波により得られる光信号kの周波数fcの光搬送波電力が中心周波数fc−fsの伝送信号(単一側波帯)電力よりも小さくならないことが望ましい。このために、光SSB変調器の直流バイアス電流を調整して、光信号jの光搬送波位相を変え光搬送波cと打ち消しあうようにする。なお、直流バイアス電流はマッハツェンダー型光変調器の電極に印加される直流電圧を変えて調整する。   As a result, by combining the optical signal j and the optical carrier c, only the optical carrier component of the frequency fc in the optical signal j is suppressed, and as shown in the balloon, the center frequency fc− of the same power as the optical signal j is suppressed. An optical signal k composed of the fs transmission signal and the optical carrier component suppressed from the optical signal j is obtained. In the optical modulation device according to the present embodiment, for example, in order for the optical carrier power of the output optical signal k to be preferable power for detection on the receiving side, the frequency fc of the optical signal k obtained by multiplexing is set. It is desirable that the optical carrier power does not become smaller than the transmission signal (single sideband) power of the center frequency fc-fs. For this purpose, the direct current bias current of the optical SSB modulator is adjusted to change the optical carrier phase of the optical signal j so as to cancel the optical carrier c. The DC bias current is adjusted by changing the DC voltage applied to the electrode of the Mach-Zehnder optical modulator.

以上説明したように、本実施の形態の光変調装置では、光SSB変調器3に入力する光搬送波aを分岐し、この分岐した光搬送波cを用いて光信号jの光搬送波電力を抑圧した光信号kを得ることができるので、簡易な構成で光SSB変調器出力信号の光搬送波電力を容易に抑圧することができる。   As described above, in the optical modulation device according to the present embodiment, the optical carrier a input to the optical SSB modulator 3 is branched, and the optical carrier power of the optical signal j is suppressed using the branched optical carrier c. Since the optical signal k can be obtained, the optical carrier power of the optical SSB modulator output signal can be easily suppressed with a simple configuration.

光信号kの光搬送波電力が抑圧されているので、光変調された伝送信号を光増幅器で十分に増幅でき、多波の信号を長距離伝送する場合には特に有効である。   Since the optical carrier power of the optical signal k is suppressed, the optically modulated transmission signal can be sufficiently amplified by an optical amplifier, which is particularly effective when a multiwave signal is transmitted over a long distance.

なお、本実施の形態の光変調装置では、光SSB変調器3の側で光搬送波電力fcを抑圧するための位相を制御する構成としたが、これに限定されることはなく、分岐した後の光搬送波cの位相を制御する構成としてもよいことはいうまでもない。   In the optical modulation device of the present embodiment, the phase for suppressing the optical carrier power fc is controlled on the optical SSB modulator 3 side, but the present invention is not limited to this, and after branching Needless to say, the phase of the optical carrier c may be controlled.

また、本実施の形態では、光SSB変調器での光搬送波を抑圧したが、当然、SSB変調に限られるものではなく、変調後に搬送波が残る変調方式に適用可能である。   In the present embodiment, the optical carrier wave in the optical SSB modulator is suppressed, but it is naturally not limited to SSB modulation, and can be applied to a modulation method in which a carrier wave remains after modulation.

以上、本発明者によってなされた発明を、前記発明の実施の形態に基づき具体的に説明したが、本発明は、前記発明の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。   The invention made by the present inventor has been specifically described based on the embodiment of the invention, but the invention is not limited to the embodiment of the invention and does not depart from the gist of the invention. Of course, various changes can be made.

本発明の一実施の形態である光変調装置の概略構成を説明するための図である。It is a figure for demonstrating schematic structure of the optical modulation apparatus which is one embodiment of this invention.

符号の説明Explanation of symbols

1…光源 2…電気信号源
3…光SSB変調器 4、5…直流バイアス信号源
DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Electric signal source 3 ... Optical SSB modulator 4, 5 ... DC bias signal source

Claims (4)

光搬送波を伝送信号で変調して光変調信号を生成する光変調器を備える光変調装置であって、
光源で生成した光搬送波を2分岐する手段と、
分岐された光搬送波の一方を前記光変調器に入力して伝送信号で変調して光変調信号を生成し、分岐された光搬送波の他方と前記光変調器の出力光とが互いに打ち消しあうように合波することで光搬送波が抑圧された光信号を出力する手段と、
を備える光変調装置。
An optical modulation device comprising an optical modulator that generates an optical modulation signal by modulating an optical carrier wave with a transmission signal,
Means for bifurcating the optical carrier wave generated by the light source;
One of the branched optical carriers is input to the optical modulator and modulated with a transmission signal to generate an optical modulation signal so that the other of the branched optical carriers and the output light of the optical modulator cancel each other. Means for outputting an optical signal in which the optical carrier wave is suppressed by being combined with
A light modulation device.
前記光変調器は光SSB変調器である請求項1に記載の光変調装置。   The optical modulator according to claim 1, wherein the optical modulator is an optical SSB modulator. 前記光SSB変調器の直流バイアス電流を調整して、前記光SSB変調器の出力光の位相を調整することにより、光搬送波を抑圧する程度を決める請求項2に記載の光変調装置。   The optical modulation device according to claim 2, wherein the degree of suppression of the optical carrier wave is determined by adjusting a DC bias current of the optical SSB modulator and adjusting a phase of output light of the optical SSB modulator. 合波により得られる光信号の光搬送波電力が伝送信号電力より小さくならない範囲で光搬送波を抑圧する請求項1ないし3のうちいずれか1項に記載の光変調装置。
The optical modulation device according to any one of claims 1 to 3, wherein the optical carrier wave is suppressed in a range in which the optical carrier power of the optical signal obtained by the multiplexing does not become smaller than the transmission signal power.
JP2003357203A 2003-10-17 2003-10-17 Light modulator Expired - Fee Related JP4434688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003357203A JP4434688B2 (en) 2003-10-17 2003-10-17 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003357203A JP4434688B2 (en) 2003-10-17 2003-10-17 Light modulator

Publications (2)

Publication Number Publication Date
JP2005121922A true JP2005121922A (en) 2005-05-12
JP4434688B2 JP4434688B2 (en) 2010-03-17

Family

ID=34614160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003357203A Expired - Fee Related JP4434688B2 (en) 2003-10-17 2003-10-17 Light modulator

Country Status (1)

Country Link
JP (1) JP4434688B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271072A (en) * 2007-04-19 2008-11-06 Nippon Telegr & Teleph Corp <Ntt> Light ssb transmitter
JP2008271286A (en) * 2007-04-23 2008-11-06 Nippon Telegr & Teleph Corp <Ntt> Light ssb transmitter
WO2012111321A1 (en) * 2011-02-16 2012-08-23 日本電信電話株式会社 Optical frequency shifter and optical modulator using same
JP2017040882A (en) * 2015-08-21 2017-02-23 住友大阪セメント株式会社 Light modulator
JP2017536011A (en) * 2014-10-01 2017-11-30 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Optical transmitter using pre-compensation for dispersion inherent in optical receiver

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271072A (en) * 2007-04-19 2008-11-06 Nippon Telegr & Teleph Corp <Ntt> Light ssb transmitter
JP2008271286A (en) * 2007-04-23 2008-11-06 Nippon Telegr & Teleph Corp <Ntt> Light ssb transmitter
WO2012111321A1 (en) * 2011-02-16 2012-08-23 日本電信電話株式会社 Optical frequency shifter and optical modulator using same
CN103370892A (en) * 2011-02-16 2013-10-23 日本电信电话株式会社 Optical frequency shifter and optical modulator using same
US8948546B2 (en) 2011-02-16 2015-02-03 Nippon Telegraph And Telephone Corporation Optical frequency shifter and optical modulator using the same
CN103370892B (en) * 2011-02-16 2016-01-20 日本电信电话株式会社 Optical frequency shifter and use the optical modulator of this optical frequency shifter
JP2017536011A (en) * 2014-10-01 2017-11-30 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Optical transmitter using pre-compensation for dispersion inherent in optical receiver
JP2017040882A (en) * 2015-08-21 2017-02-23 住友大阪セメント株式会社 Light modulator

Also Published As

Publication number Publication date
JP4434688B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
US6556327B1 (en) Signal converter, optical transmitter and optical fiber transmission system
JP3609447B2 (en) System for dispersion compensation in optical fiber high-speed systems.
US7302120B2 (en) Optical modulator
JPWO2005088877A1 (en) Optical transmitter and optical transmission system
JP4878358B2 (en) Optical SSB modulator
TW201017245A (en) Light-modulating apparatus
JPH1152313A (en) Optical modulation device
JPH11205240A (en) Optical transmitter
JP2005215196A (en) Optical modulation device and optical modulation method
WO2007080950A1 (en) Angle modulation device
JPH09191289A (en) Optical transmission system and optical transmission method
JP4434688B2 (en) Light modulator
WO2006011410A1 (en) Modulator, optical transmitter and optical transmission apparatus
JP2001159750A (en) Optical transmitter and optical modulator
JPH11145535A (en) Signal converter, light transmitter, and optical fiber transmission device
JP2006287410A (en) Optical transmitter, optical receiver, and optical transmission system
TW200835182A (en) Directly modulated or externally modulated laser optical transmission system with feed forward noise cancellation
JP4728275B2 (en) Optical SSB transmitter
JP2008158133A (en) Optical modulator circuit and method
Kim Cost-effective and dispersion-tolerant cascade modulation for millimeter-wave-over-fiber applications
JP2000122015A (en) Optical modulator
JP6547116B2 (en) Light modulator
JP4709799B2 (en) Optical SSB modulator
JP2004080350A (en) High frequency signal transmission system
JP2018191088A (en) Wavelength dispersion compensation apparatus and wavelength dispersion compensation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees