JP2005121766A - Transparent antistatic triacetylcellulose film for liquid crystal display - Google Patents
Transparent antistatic triacetylcellulose film for liquid crystal display Download PDFInfo
- Publication number
- JP2005121766A JP2005121766A JP2003354596A JP2003354596A JP2005121766A JP 2005121766 A JP2005121766 A JP 2005121766A JP 2003354596 A JP2003354596 A JP 2003354596A JP 2003354596 A JP2003354596 A JP 2003354596A JP 2005121766 A JP2005121766 A JP 2005121766A
- Authority
- JP
- Japan
- Prior art keywords
- film
- conductive polymer
- triacetyl cellulose
- transparent antistatic
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Surface Treatment Of Optical Elements (AREA)
- Liquid Crystal (AREA)
Abstract
Description
本発明は透明帯電防止トリアセチルセルロースフィルムに関し、より詳しくは、液晶ディスプレイ(LCD)用のトリアセチルセルロースフィルムにおいて、導電性高分子を含む塗布液を塗布してなる液晶ディスプレイ用の透明帯電防止トリアセチルセルロースフィルムに関するものである。 The present invention relates to a transparent antistatic triacetylcellulose film, and more particularly, to a transparent antistatic triacetyl film for a liquid crystal display obtained by applying a coating liquid containing a conductive polymer in a triacetylcellulose film for a liquid crystal display (LCD). The present invention relates to an acetylcellulose film.
LCDは、光の偏光差を用いて作動するものであり、液晶高分子の装入は上記偏光体で液晶高分子を挟持した形で行われ、かかる偏光体又は偏光フィルムによるねじれ角に従いカラーモードが変わるようになる。偏光フィルムは、支持フィルムとなるトリアセチルセルロースフィルム間に偏光物質が入り込むと、裏面に塗られている接着剤のためにLCDの他の構造物と接着するようになる。偏光フィルムの支持フィルムとしてのトリアセチルセルロースフィルムは、LCDへの使用前に、一側は保護フィルム、他側は接着剤が塗られているが、この保護フィルムを取り除くか、接着剤を塗るなどの加工途中に発生する静電気に因ってフィルムが損傷されることがある。 The LCD is operated by using the polarization difference of light, and the liquid crystal polymer is inserted in such a form that the liquid crystal polymer is sandwiched between the polarizers, and the color mode according to the twist angle of the polarizer or the polarizing film. Will change. When the polarizing material enters between the triacetyl cellulose films serving as the support film, the polarizing film adheres to other structures of the LCD due to the adhesive applied on the back surface. The triacetyl cellulose film as the supporting film for the polarizing film is coated with a protective film on one side and an adhesive on the other side before use in LCD. Remove this protective film or apply an adhesive, etc. The film may be damaged due to static electricity generated during the processing.
また、偏光フィルムに完成した後、LCD画面において最外側に露出されるトリアセチルセルロース層は、静電気防止処理のほかにも、ギラツキ及び反射についても防止処理がなされてからこそ、実際の使用にあたって外部に発現される画面の鮮明度が保持される。又、LCDは複数の層を積層してなるものであるため、作動に際して全体の複層構造のうち、何れか1箇所で静電気が発生したとしたら、構造全体が損傷される可能性がある。 In addition to the antistatic treatment, the triacetylcellulose layer exposed on the outermost surface of the LCD screen after completion of the polarizing film is also protected against glare and reflection. The sharpness of the screen expressed in the image is maintained. Further, since the LCD is formed by laminating a plurality of layers, if static electricity is generated at any one of the entire multilayer structure during operation, the entire structure may be damaged.
更に、光の歪曲現象を防ぐためには、加工中に生じ得る埃の付着をも未然に防止しなければならない。かかる事情で、できる限り内・外部構造全体に対して静電気防止処理を施す試みが行われている。ここで注意すべき点は、光が変色しないこと、可視光線領域の透過度の減少しない物質を使用すること、有・無機粒子等の生じない静電気防止剤を使用すること等である。最近は、偏光フィルムにギラツキ防止処理を施して光の反射を抑えているが、かかる処理を施した部分にも同様に静電気防止処理を行わなければならない。 Furthermore, in order to prevent the light distortion phenomenon, it is necessary to prevent dust from being attached during processing. Under such circumstances, attempts have been made to apply antistatic treatment to the entire internal and external structures as much as possible. The points to be noted here are that the light does not change color, the use of a substance that does not decrease the transmittance in the visible light region, the use of an antistatic agent that does not produce organic and inorganic particles, and the like. Recently, the anti-glare treatment is applied to the polarizing film to suppress the reflection of light. However, the antistatic treatment must be similarly applied to the portion subjected to the treatment.
このようにLCD偏光フィルムの支持フィルムとなるトリアセチルセルロースフィルムには、静電気防止能力は勿論のこと、透明性を兼ね備える帯電防止剤が求められ、代表的にイオン導電性物質帯電防止剤が挙げられる。しかし、このイオン導電性帯電防止剤は分子量が少ないため、使用中の粒子の漏れに因り製品を汚染させる恐れがある。更に、無湿の環境では、その静電気防止の性能が格段と減少して経時劣化を示すだけでなく、結局は静電気防止性能が消滅するという問題があるため、使用に制約があった。 Thus, an antistatic agent having transparency as well as an antistatic ability is required for the triacetylcellulose film as a support film for the LCD polarizing film, and an ion conductive material antistatic agent is typically mentioned. . However, since the ion conductive antistatic agent has a low molecular weight, it may contaminate the product due to leakage of particles during use. Furthermore, in a non-humid environment, there is a problem that not only the antistatic performance is remarkably reduced to show deterioration with time but also the antistatic performance eventually disappears.
一方、金属酸化物は、薄い厚さでの静電気防止処理にあたって透明性を保持できるものである。しかし、インジウムチンオキシド、ドープされた酸化錫、及びドープされた酸化チタニウムなどの粒子は、光の散乱や屈折を誘導し得る形をしており、非常に高価なだけでなく、粒子が不純物として作用する可能性があるという問題点があった。 On the other hand, the metal oxide can maintain transparency in the antistatic treatment with a thin thickness. However, particles such as indium tin oxide, doped tin oxide, and doped titanium oxide are shaped to induce light scattering and refraction, and are not only very expensive, but also particles as impurities There was a problem that it might work.
本発明はかかる問題点を解決するために、透明性及び帯電防止の性能を兼備した導電性高分子を使用する。この導電性高分子は、高い導電度と透明性を有し、導電度、即ち抵抗の調節が容易で基底材料の物性を全く変化させず、特に、不純物を発生することなく導電度を変化無しに永久的に維持できるといった長所を有する。 In order to solve this problem, the present invention uses a conductive polymer having both transparency and antistatic performance. This conductive polymer has high conductivity and transparency, easy to adjust the conductivity, that is, resistance, does not change the physical properties of the base material at all, especially without changing the conductivity without generating impurities It has the advantage that it can be maintained permanently.
従って、本発明の目的は、帯電防止剤として上記のような長所を有する導電性高分子を塗布してなる液晶ディスプレイ用の透明帯電防止トリアセチルセルロースフィルムを提供することにある。
本発明の他の目的は、帯電防止剤として導電性高分子と共に有機シリケート、コロイダルシリカを塗布することにより、ギラツキ防止性能の向上は勿論のこと、透明度に優れた帯電防止性能を有するLCD偏光フィルム用トリアセチルセルロースフィルムを提供することにある。
Accordingly, an object of the present invention is to provide a transparent antistatic triacetylcellulose film for a liquid crystal display obtained by applying a conductive polymer having the above-mentioned advantages as an antistatic agent.
Another object of the present invention is to apply an organic silicate and colloidal silica together with a conductive polymer as an antistatic agent to improve the antiglare performance as well as to provide an antistatic performance with excellent transparency. An object of the present invention is to provide a triacetyl cellulose film.
本発明のまた他の目的は、低屈折率の物質層を単独に形成するか、或いは導電性高分子と混合して塗布することにより、表面からの反射光量を減少させて画面の鮮明度を高めると共に、画面上における使用者映像の映りこみを減少させた液晶ディスプレイ用の透明帯電防止トリアセチルセルロースフィルムを提供することにある。
また、使用途中のすり傷や工程中の不純物を除去するために使用されるアルコールなど溶媒への耐性を持たせるために、本発明ではハードコート性質を与えられるコーティング剤を、導電性高分子の塗布液に混合するか、或いは導電性高分子の膜上に厚さ1〜2μで塗布する。これにより、ハードで静電気防止の物性が与えられる。
Another object of the present invention is to reduce the amount of light reflected from the surface by forming a low refractive index material layer alone or by mixing it with a conductive polymer, thereby improving the sharpness of the screen. It is an object of the present invention to provide a transparent antistatic triacetylcellulose film for a liquid crystal display which is enhanced and reduces the reflection of a user image on the screen.
In order to provide resistance to solvents such as alcohol used for removing scratches during use and impurities in the process, in the present invention, a coating agent capable of imparting hard coat properties is used as a conductive polymer. It mixes with a coating liquid, or it apply | coats by 1-2 micrometers in thickness on the film | membrane of a conductive polymer. As a result, physical and antistatic properties are provided.
本発明は、透明帯電防止トリアセチルセルロースフィルムに関し、より詳しくは、液晶ディスプレイ用のトリアセチルセルロースフィルムにおいて、導電性高分子を含む塗布液を、膜厚5nm〜5μmで塗布した透明帯電防止トリアセチルセルロースフィルムに関するものである。 The present invention relates to a transparent antistatic triacetyl cellulose film, and more specifically, a transparent antistatic triacetyl film in which a coating liquid containing a conductive polymer is applied in a film thickness of 5 nm to 5 μm in a triacetyl cellulose film for a liquid crystal display. The present invention relates to a cellulose film.
本発明で使用される導電性高分子は、ポリエチレンジオキシチオフェン、ポリチオフェン、ポリアニリン、ポリピロール、及びこれら誘導体の群から適宜選択されたものであり、塗布液中には最後固形分含量を基準として20〜40重量部含まれる。もし、導電性高分子が20重量部未満であれば所定の導電度を維持し難くなり、40重量部を超過すれば透明度が低下する問題があるため、本発明では導電性高分子を、塗布後最後の固形分含量を基準として塗布液中に20〜40重量部含ませる。 The conductive polymer used in the present invention is appropriately selected from the group consisting of polyethylene dioxythiophene, polythiophene, polyaniline, polypyrrole, and derivatives thereof, and the coating liquid contains 20 based on the final solid content. -40 parts by weight are included. If the conductive polymer is less than 20 parts by weight, it becomes difficult to maintain the predetermined conductivity, and if it exceeds 40 parts by weight, there is a problem that the transparency is lowered. Thereafter, 20 to 40 parts by weight are contained in the coating solution based on the last solid content.
また、導電性高分子を含む塗布液をトリアセチルセルロースフィルムに塗布する時、塗布液は、5nm未満では静電気防止能力が低下し、5μmを超えては透明度が減少するという問題がある。従って、本発明において、導電性高分子を含む塗布液の厚さは、50〜300nmが好ましい。 Further, when a coating solution containing a conductive polymer is applied to a triacetyl cellulose film, the coating solution has a problem that the antistatic ability is reduced when the thickness is less than 5 nm, and the transparency is decreased when the thickness exceeds 5 μm. Therefore, in the present invention, the thickness of the coating solution containing a conductive polymer is preferably 50 to 300 nm.
本発明において、ポリエチレンジオキシチオフェン、ポリチオフェン、ポリアニリン、ポリピロール、又はその誘導体などの導電性高分子を含む塗布液を、トリアセチルセルロースフィルムに取り付ける時には、導電性高分子及びバインダーを溶媒中に混合して導電性高分子を含む塗布液を準備した後、これをトリアセチルセルロースフィルムに所定の厚さで塗布する方法を用いる。本発明のバインダーは、溶媒や外部摩擦による導電性高分子膜の変形を防止すると同時に、トリアセチルセルロースフィルムに対する導電性高分子の接着力を向上させる役割をするものであって、本発明では、発明の目的に合わせて透明性に優れたものを選ぶのが望ましい。例えば、Baytron PH(ドイツのバイエル社製)は水溶液に分散されている形をするため、アクリル系、アマイド系、ウレタン系などの水溶性バインダーと溶媒を混合して塗布すればよい。また、水、アルコールに混合される有機溶剤を用いると、水溶性に比べて優れた物性を有する有機溶剤型バインダーとの混合使用も可能となる。 In the present invention, when a coating liquid containing a conductive polymer such as polyethylenedioxythiophene, polythiophene, polyaniline, polypyrrole, or a derivative thereof is attached to the triacetyl cellulose film, the conductive polymer and the binder are mixed in a solvent. Then, after preparing a coating liquid containing a conductive polymer, a method of applying the coating liquid to a triacetyl cellulose film at a predetermined thickness is used. The binder of the present invention serves to prevent the conductive polymer film from being deformed by a solvent or external friction, and at the same time to improve the adhesion of the conductive polymer to the triacetyl cellulose film. It is desirable to select one having excellent transparency in accordance with the purpose of the invention. For example, Baytron PH (manufactured by Bayer AG, Germany) is dispersed in an aqueous solution, and therefore, a water-soluble binder such as an acrylic, amide, or urethane and a solvent may be mixed and applied. Further, when an organic solvent mixed with water or alcohol is used, it can be mixed with an organic solvent-type binder having physical properties superior to those of water solubility.
本発明で用いる導電性高分子において、ポリエチレンジオキシチオフェンは、高分子主鎖に隣接した酸素原子の電子供与効果により優れた透明度を有するため、薄く塗布する場合、可視光領域の透明度が高まってトリアセチルセルロースフィルムの鮮明度をより一層向上させる。一方、ポリピロールとポリアニリンは、それぞれが濃い緑色と茶色を有するものであるため、透明性には多少劣るものの、これらをトリアセチルセルロースフィルムに数〜数十nmで均一に塗布すると、透明度を向上させることができる。 In the conductive polymer used in the present invention, polyethylene dioxythiophene has excellent transparency due to the electron donating effect of oxygen atoms adjacent to the polymer main chain, and therefore, when applied thinly, the transparency in the visible light region is increased. The sharpness of the triacetyl cellulose film is further improved. On the other hand, since polypyrrole and polyaniline are dark green and brown, respectively, they are slightly inferior in transparency, but when they are uniformly applied to a triacetyl cellulose film at several to several tens of nm, the transparency is improved. be able to.
また、上記のように合成された導電性高分子をバインダーと混合使用する方法の他に、導電性高分子を直接フィルムで重合して使用することも可能であり、その方法は次のように大別される。その一つは、導電性高分子モノマー、反応性酸化剤及びドーパントを一緒に混合して基底フィルムであるトリアセチルセルロースフィルムに塗布し直接重合することにより、静電気防止性能を付与することである。もう一つは、公知の方法である気相重合法を用いる方法であって、重合反応を起こす酸化剤とドーパントを、単独で或いは物性を示すバインダーと混合して基底フィルムであるトリアセチルセルロースフィルムに塗布し、上記酸化剤の面に導電性高分子モノマーを蒸気化し接触することにより、重合反応を生成させて導電性高分子膜を形成する方法である。この時、導電性高分子膜の損傷を抑える必要があり、このために重合時に物性を示す水分散型、溶剤型及びUV硬化型のバインダーを混合使用するか、又は導電性高分子膜を形成した後、薄い厚さで熱硬化型若しくはUV硬化型のコーティング剤、ハードコート剤でもって保護膜を形成する方法も適用可能である。 In addition to the method in which the conductive polymer synthesized as described above is mixed with a binder, it is also possible to directly polymerize the conductive polymer with a film, and the method is as follows. Broadly divided. One of them is to impart antistatic performance by mixing a conductive polymer monomer, a reactive oxidant and a dopant together, coating the base film on a triacetyl cellulose film and directly polymerizing it. The other is a method using a gas phase polymerization method which is a known method, and a triacetyl cellulose film which is a base film by mixing an oxidizing agent and a dopant that cause a polymerization reaction either alone or with a binder exhibiting physical properties. This is a method in which a conductive polymer monomer is vaporized and brought into contact with the surface of the oxidant to generate a polymerization reaction to form a conductive polymer film. At this time, it is necessary to suppress damage to the conductive polymer film. For this purpose, a water-dispersed, solvent-type, and UV-curable binder that exhibits physical properties during polymerization is mixed or used, or a conductive polymer film is formed. After that, a method of forming a protective film with a thin thickness thermosetting or UV curable coating agent or hard coating agent is also applicable.
本発明において、導電性高分子を含む塗布液中のバインダーは、該塗布液の中に最後の固形分含量を基準として20〜40重量部含まれ、かかるバインダーは有、無機の何れでも構わない。特に、トリアセチルセルロースフィルムへの塗布膜厚を調節し、適切な屈折率の無機バインダーを使用すると、低反射効果が得られるという利点がある。また、低屈折率の高分子バインダーを単独に又は導電性高分子と混合して使用すれば、低反射性能を付与することができる。合成された導電性高分子溶液に混合使用される有機バインダーとしては、水溶性及び溶剤型の何れも使用が可能であり、アクリル系、エステル系、ウレタン系、イミド系、エポキシ系、アマイド系、カーボネート系、アルキッド系、及び水酸基、カルボニル基、カルボキシル基、官能基を含む全ての種類のバインダーを使用することができる。 In the present invention, the binder in the coating liquid containing the conductive polymer is contained in the coating liquid in an amount of 20 to 40 parts by weight based on the last solid content, and the binder may be either organic or inorganic. . In particular, when the coating thickness on the triacetyl cellulose film is adjusted and an inorganic binder having an appropriate refractive index is used, there is an advantage that a low reflection effect can be obtained. Further, if a low refractive index polymer binder is used alone or mixed with a conductive polymer, low reflection performance can be imparted. As the organic binder mixed and used in the synthesized conductive polymer solution, both water-soluble and solvent-type can be used, and acrylic, ester, urethane, imide, epoxy, amide, All types of binders including carbonates, alkyds, and hydroxyl groups, carbonyl groups, carboxyl groups, and functional groups can be used.
更に、2つ以上のバインダーを95:5〜5〜95の割合で混合するか、2つ以上の官能基を含むバインダーを単独で使用すると優れた物性が得られる。又、アクリルを硬化させるメラミン等の硬化剤を、全体バインダー含量に対して1〜5重量部加えて硬化させると、高い耐摩擦性及び耐溶剤性を有する導電性高分子塗布膜を形成することができる。無機バインダーとしては、シリケート又はチタネートが用いられ、特に硬化後に全て除去される置換基よりは、有機高分子フィルムに対して接着力及び常用性を示す置換基を有する機能性シリケート、機能性チタネートを使用するのが望ましい。 Furthermore, when two or more binders are mixed in a ratio of 95: 5 to 5 to 95, or a binder containing two or more functional groups is used alone, excellent physical properties can be obtained. In addition, when 1 to 5 parts by weight of a curing agent such as melamine for curing acrylic is added to the total binder content and cured, a conductive polymer coating film having high friction resistance and solvent resistance is formed. Can do. As the inorganic binder, silicate or titanate is used. In particular, a functional silicate or functional titanate having a substituent that exhibits adhesion and regularity to the organic polymer film is used rather than a substituent that is completely removed after curing. It is desirable to use it.
これらシリケート及びチタネートは炭素数1〜4のアルコキシ基に置換されたものが用いられる。硬化剤としての水は、無機バインダーであるシリケート又はチタネート含量に対して3〜8モル比で添加される。また、ジブチル錫ジラウレート(DBTDL;Dibutyl Tin Dilaurate)などの硬化促進剤を、全体バインダー含量に対して0.001〜0.1重量部加えても良い。 As these silicates and titanates, those substituted with an alkoxy group having 1 to 4 carbon atoms are used. Water as a curing agent is added in a molar ratio of 3 to 8 with respect to the content of silicate or titanate as an inorganic binder. Moreover, you may add 0.001-0.1 weight part of hardening accelerators, such as a dibutyl tin dilaurate (DBTDL; Dibutyl Tin Dilaurate), with respect to the whole binder content.
導電性高分子を優れた物性のハードコート剤と混合するか、又は導電性高分子の塗布後にハードコート剤を1〜2μの薄い膜厚さで更に塗布することができるが、この時、上記ハードコート剤としては、熱硬化又はUV硬化により物性が発現されるコーティング剤であれば何れも使用可能である。 The conductive polymer can be mixed with a hard coating agent having excellent physical properties, or the hard coating agent can be further applied with a thin film thickness of 1 to 2 μm after the application of the conductive polymer. Any hard coating agent can be used as long as it exhibits physical properties by heat curing or UV curing.
このように導電性高分子を低屈折率のバインダーと混合して熱硬化又はUV硬化させると低反射性能を付与することができるが、低屈折物質としては通常プロリン及びシリコンを含む化合物が使用される。また、一般に低屈折率の化合物はその屈折率が1.4以下であるが、プロリン系化合物では1.3までも調節が可能であるため、これを静電気処理を前後して使用するか、或いは導電性高分子と混合使用すればよい。この時には、低屈折物質の物性を調節することで、ハードコート性を同時に付与することもできる。 Thus, when a conductive polymer is mixed with a binder having a low refractive index and cured by heat or UV, low reflection performance can be imparted, but a compound containing proline and silicon is usually used as the low refractive material. The In general, a compound with a low refractive index has a refractive index of 1.4 or less, but a proline compound can be adjusted to 1.3, so that it can be used before and after electrostatic treatment, or What is necessary is just to mix and use with a conductive polymer. At this time, the hard coat property can be imparted simultaneously by adjusting the physical properties of the low refractive material.
導電性高分子のトリアセチルセルロースフィルムへの塗布に際して、作業の容易性のために使用される溶媒は、導電性高分子を含む塗布液中に50〜70重量部含まれる。水溶性溶媒の場合、水は約10〜15重量部、炭素数4以下のアルコールは50〜60重量部使用され、グリコールのように沸点の高い溶媒は、全体溶媒重量に対して1〜5重量部混合される。また、溶剤型の溶媒の場合は、炭素数4以下のアルコール、トルエン、キシレン、N−メチルピロリジノン、炭素数5以下のケトン等を単独で使用するか、若しくは2つ以上を95:5〜5:95の割合で混合使用する。 When the conductive polymer is applied to the triacetylcellulose film, the solvent used for ease of work is contained in an amount of 50 to 70 parts by weight in the coating liquid containing the conductive polymer. In the case of a water-soluble solvent, water is used in an amount of about 10 to 15 parts by weight, an alcohol having 4 or less carbon atoms is used in an amount of 50 to 60 parts by weight, and a solvent having a high boiling point such as glycol is 1 to 5 parts by weight based on the total solvent weight. Part mixed. In the case of a solvent-type solvent, an alcohol having 4 or less carbon atoms, toluene, xylene, N-methylpyrrolidinone, a ketone having 5 or less carbon atoms, or the like, or two or more of 95: 5 to 5 are used. : Mix and use at a ratio of 95.
一方、本発明によれば、無処理トリアセチルセルロースフィルムに対してギラツキ防止及び帯電防止の処理を同時に施すことができる。即ち、導電性高分子分散液5〜20重量部と、バインダーとしての有機シリケート20〜40重量部を使用し、全体重量を100としてコロイダルシリカ20〜30重量部を上記した30〜45重量部に溶解させる。その後、導電性高分子、有機シリケートおよびコロイダルシリカを含む溶液を、トリアセチルセルロースフィルムに塗布し硬化すると、表面のギラツキの度合いが90%以上減少してギラツキ及び帯電の防止性能を有するトリアセチルセルロースフィルムを製造することができる。 On the other hand, according to the present invention, anti-glare and anti-static treatments can be simultaneously applied to an untreated triacetyl cellulose film. That is, 5 to 20 parts by weight of the conductive polymer dispersion and 20 to 40 parts by weight of organic silicate as a binder are used, and the total weight is set to 100 to 20 to 30 parts by weight of colloidal silica. Dissolve. Thereafter, when a solution containing a conductive polymer, organic silicate and colloidal silica is applied to the triacetyl cellulose film and cured, the degree of glare on the surface is reduced by 90% or more, and the triacetyl cellulose has glare and antistatic properties. A film can be produced.
一般に、4つのアルキル基を有する有機シリケートを硬化させると、中間体を経てガラスのような−SiO−結合ができて無機物の物性を持つようになるが、この時、完璧な高分子の形でなく、前駆体の程度に反応をさせたものを、コロイダルシリカ(Colloidal Silica)という。この化合物は、ガラスのように完璧に架橋化したものではなく、外部条件によりその反応が中間程度で停止した状態であって、有機シリケートを直接反応させる場合は、反応時間が長く条件が厳しいため、このコロイダルシリカを使用する。また、この化合物は上記の長所の他にも、均一な寸法の粒子状で存在するため、表面コーティングに用いると、光を散乱させてギラツキを防止する性質を有する。 In general, when an organic silicate having four alkyl groups is cured, a glass-like —SiO— bond is formed via an intermediate and has inorganic properties, but at this time, in a perfect polymer form. Without reacting to the extent of the precursor, it is called Colloidal Silica. This compound is not completely cross-linked like glass and is in a state where the reaction is stopped at an intermediate level due to external conditions, and when the organic silicate is reacted directly, the reaction time is long and the conditions are severe. This colloidal silica is used. In addition to the above-mentioned advantages, this compound exists in the form of particles having a uniform size, and therefore has the property of preventing glare by scattering light when used for surface coating.
また、高分子物質であるポリメチルメタクリレートを微細な粒子(数十nm)に分散し導電性高分子と混合使用しても、上記と同様なギラツキ防止の効果を付与することができる。
本発明では、トリアセチルセルロースフィルムに導電性高分子膜を塗布しながら低反射層又はハードコートを単独に形成することができ、かかる低反射層又はハードコートの位置は任意に決定される。また、これら低反射層又はハードコートの形成は、本明細書で説明した方法でなされる。
Even if polymethyl methacrylate, which is a polymer substance, is dispersed in fine particles (several tens of nm) and mixed with a conductive polymer, the same glare-preventing effect as described above can be imparted.
In the present invention, the low reflective layer or the hard coat can be formed independently while applying the conductive polymer film to the triacetyl cellulose film, and the position of the low reflective layer or the hard coat is arbitrarily determined. The formation of these low reflection layers or hard coats is performed by the method described in this specification.
本発明によれば、優れた可視光線透過度及び帯電防止性能を有し、アルコール等の溶剤への耐性、2Hの硬度を備え、表面抵抗も105−1010Ω/面積と調節可能であるだけでなく、低反射性能も付与し得るLCD偏光フィルム用のトリアセチルセルロースフィルムが得られる。 According to the present invention, it has excellent visible light transmittance and antistatic performance, resistance to solvents such as alcohol, 2H hardness, and surface resistance can be adjusted to 10 5 -10 10 Ω / area. In addition, a triacetyl cellulose film for an LCD polarizing film that can be imparted with low reflection performance can be obtained.
以下、実施例を通して本発明をより詳しく説明する。しかし、以下の実施例は本発明の一例に過ぎず、決して本発明の権利範囲を限定するものではない。 Hereinafter, the present invention will be described in more detail through examples. However, the following examples are merely examples of the present invention and do not limit the scope of the present invention in any way.
<実施例1>
ポリエチレンジオキシチオフェン分散液(Baytron PH;バイエル社製)5重量部、アクリル系バインダー10重量部、及び水15重量部を、エチルアルコールとイソプロピルアルコールとを2:3の割合で混合した混合液70重量部に加え、この溶液を公知の方法でトリアセチルセルロースフィルムに200nmで塗布した後60℃にて2分乾燥した。
乾燥後、ASTM関連規定に基づき、上記トリアセチルセルロースフィルムの表面抵抗、接着力、可視光透過度を測定したところ、表面抵抗は106オーム/面積(Ω/□)、接着力は5B、可視光透過度は基底フィルム対比99%であった。
<Example 1>
A mixed solution 70 in which 5 parts by weight of a polyethylenedioxythiophene dispersion (Baytron PH; manufactured by Bayer), 10 parts by weight of an acrylic binder, and 15 parts by weight of water are mixed with ethyl alcohol and isopropyl alcohol in a ratio of 2: 3. In addition to parts by weight, this solution was applied to a triacetyl cellulose film at 200 nm by a known method and then dried at 60 ° C. for 2 minutes.
After drying, on the basis of the ASTM related provisions, the surface resistance, adhesive force of the triacetyl cellulose film was measured for visible light transmittance, surface resistance 10 6 ohms / area (Omega / □), adhesion 5B, visible The light transmittance was 99% relative to the base film.
<実施例2>
ポリエチレンジオキシチオフェン分散液(Baytron PH;バイエル社製)5重量部、アクリル系バインダー10重量部、及び水15重量部を、エチルアルコールとイソプロピルアルコールとを2:3の割合で混合した混合液70重量部に加え、この溶液を既に公知の方法でギラツキ防止処理を施したトリアセチルセルロースフィルム(AG-TAC Film;フジ社製)に厚さ200nmで塗布した後60℃にて2分乾燥した。
乾燥後、ASTM関連規定に基づき、上記トリアセチルセルロースフィルムの表面抵抗、接着力、可視光透過度を測定したところ、表面抵抗は106Ω/面積、接着力は5B、可視光透過度は基底フィルム対比99%と測定された。
<Example 2>
A mixed solution 70 in which 5 parts by weight of a polyethylenedioxythiophene dispersion (Baytron PH; manufactured by Bayer), 10 parts by weight of an acrylic binder, and 15 parts by weight of water are mixed with ethyl alcohol and isopropyl alcohol in a ratio of 2: 3. In addition to parts by weight, this solution was applied at a thickness of 200 nm to a triacetyl cellulose film (AG-TAC Film; manufactured by Fuji Co., Ltd.) that had already been subjected to glare prevention treatment by a known method, and then dried at 60 ° C. for 2 minutes.
After drying, the surface resistance, adhesive strength, and visible light transmittance of the above triacetyl cellulose film were measured according to ASTM related regulations. The surface resistance was 10 6 Ω / area, the adhesive strength was 5B, and the visible light transmittance was the base. It was measured to be 99% relative to the film.
<実施例3>
ポリエチレンジオキシチオフェン分散液(Baytron PH;バイエル社製)5重量部、アクリル系バインダー10重量部、及び水15重量部を、エチルアルコールとイソプロピルアルコールとを2:3の割合で混合した混合液70重量部に加え、この溶液を既に公知の方法で低反射処理されたトリアセチルセルロースフィルムに厚さ200nmで塗布した後、60℃にて2分間乾燥した。
乾燥後、ASTM関連規定に基づき上記トリアセチルセルロースフィルムの表面抵抗、接着力、可視光透過度を測定したところ、表面抵抗は106Ω/面積、接着力は5B、可視光透過度は基底フィルム対比99%であった。
<Example 3>
A mixed solution 70 in which 5 parts by weight of a polyethylenedioxythiophene dispersion (Baytron PH; manufactured by Bayer), 10 parts by weight of an acrylic binder, and 15 parts by weight of water are mixed with ethyl alcohol and isopropyl alcohol in a ratio of 2: 3. In addition to parts by weight, this solution was applied at a thickness of 200 nm to a triacetylcellulose film which had been subjected to low reflection treatment by a known method, and then dried at 60 ° C. for 2 minutes.
After drying, the surface resistance, adhesive strength, and visible light transmittance of the above triacetyl cellulose film were measured according to ASTM related regulations. The surface resistance was 10 6 Ω / area, the adhesive strength was 5B, and the visible light transmittance was the base film. The contrast was 99%.
<実施例4>
エチレンジオキシチオフェンモノマー2重量部、酸化剤兼ドーパントであるフェリックトルエンスルホン酸塩(Iron(III)―toluene sulfonate)5重量部を、ノルマルブタノールとエチルアルコールとを1:4の割合で混合した混合液93重量部に加え、この溶液を、予め厚さ0.1μのアクリルプライマーを塗布したトリアセチルセルロースフィルムに対して200nmで塗布した後、60℃にて5分硬化させエチルアルコールで洗浄した後60℃で1分間乾燥させた。
乾燥後、 ASTM関連規定に基づき上記トリアセチルセルロースフィルムの表面抵抗、接着力、可視光透過度を測定したところ、表面抵抗は105Ω/面積、接着力は5B、可視光透過度は基底フィルム対比98%と観察された。
<Example 4>
Mixing 2 parts by weight of ethylenedioxythiophene monomer and 5 parts by weight of ferric toluene sulfonate (Iron (III) -toluene sulfonate), which is an oxidizing agent and dopant, in a mixture of normal butanol and ethyl alcohol in a ratio of 1: 4 In addition to 93 parts by weight of the solution, this solution was applied to a triacetyl cellulose film previously coated with a 0.1 μm thick acrylic primer at 200 nm, then cured at 60 ° C. for 5 minutes and washed with ethyl alcohol. Dry at 60 ° C. for 1 minute.
After drying, the surface resistance, adhesive strength, and visible light transmittance of the above triacetyl cellulose film were measured according to ASTM related regulations. The surface resistance was 10 5 Ω / area, the adhesive strength was 5B, and the visible light transmittance was the base film. A contrast of 98% was observed.
<実施例5>
酸化剤兼ドーパントであるフェリック -トルエンスルホン酸塩5重量部をノルマルブタノール95重量部に溶解してトリアセチルセルロースフィルムに塗布した後、60℃のオーブンで約1分間乾燥した。酸化剤兼ドーパントを塗布したこの基材を、3,4−エチレンジオキシチオフェンモノマーとエチルアルコールとの混合溶液の蒸気で飽和されたチャンバー内で反応させた。この時、上記3,4−エチレンジオキシチオフェンモノマーとエチルアルコールとの混合比率は5:5とした。チャンバー内温度約50℃、反応時間5分で導電性高分子フィルムを製造した。こうして得たフィルムの表面抵抗は105Ω/面積であった。
上記のトリアセチルセルロースフィルムをASTMの関連規定に基づき、その表面抵抗、接着力、可視光透過度を測定したところ、表面抵抗105Ω/面積、接着力5B、可視光透過度は基底フィルム対比97%と測定された。
<Example 5>
After 5 parts by weight of ferric-toluenesulfonate, which is an oxidizing agent and dopant, was dissolved in 95 parts by weight of normal butanol and applied to a triacetyl cellulose film, it was dried in an oven at 60 ° C. for about 1 minute. This base material coated with an oxidizing agent and a dopant was reacted in a chamber saturated with vapor of a mixed solution of 3,4-ethylenedioxythiophene monomer and ethyl alcohol. At this time, the mixing ratio of the 3,4-ethylenedioxythiophene monomer and ethyl alcohol was 5: 5. A conductive polymer film was produced at a chamber temperature of about 50 ° C. and a reaction time of 5 minutes. The film thus obtained had a surface resistance of 10 5 Ω / area.
When the surface resistance, adhesive strength, and visible light transmittance of the above triacetyl cellulose film were measured according to ASTM regulations, the surface resistance was 10 5 Ω / area, the adhesive strength was 5B, and the visible light transmittance was compared with the base film. It was measured to be 97%.
<実施例6>
ポリエチレンジオキシチオフェン分散液5重量部、有機シリケート15重量部、及びコロイダルシリカ10重量部を混合し、これをエチルアルコールとイソプロピルアルコールとを2:3の割合で混合した溶媒70重量部に加えた後、これをトリアセチルセルロースフィルムに100nmで塗布し60℃にて2分間乾燥した後、再び60℃で24時間にかけて後硬化を行った。
こうして得たトリアセチルセルロースフィルムに対して、ASTM関連規定に基づきその表面抵抗、接着力、可視光透過度を測定したところ、表面抵抗は106-7Ω/面積、接着力は5B、基底フィルム対比のギラツキ防止性能は90%以上と高まったことが分かった。
<Example 6>
5 parts by weight of a polyethylenedioxythiophene dispersion, 15 parts by weight of an organic silicate, and 10 parts by weight of colloidal silica were mixed, and this was added to 70 parts by weight of a solvent in which ethyl alcohol and isopropyl alcohol were mixed at a ratio of 2: 3. Thereafter, this was applied to a triacetyl cellulose film at 100 nm, dried at 60 ° C. for 2 minutes, and then post-cured again at 60 ° C. for 24 hours.
The surface resistance, adhesive strength, and visible light transmittance of the triacetylcellulose film thus obtained were measured according to ASTM related regulations. The surface resistance was 10 6-7 Ω / area, the adhesive strength was 5B, and the base film. It was found that the anti-glare performance increased to 90% or more.
<実施例7>
ポリエチレンジオキシチオフェン分散液(Baytron PH;バイエル社製)30重量部と、UV硬化型ハードコート剤(UC150H;URAY社製)をイソプロピルアルコールに20重量部となるように希釈した溶液を70重量部混合し、この混合液をトリアセチルセルロースフィルムに対して厚さ1μmで塗布した後60℃で1分間乾燥しUV塗布機で硬化させた。
乾燥後、ASTM関連規定に基づき、上記トリアセチルセルロースフィルムの表面抵抗、接着力、可視光透過度を測定したところ、表面抵抗は107Ω/面積、接着力は5B、可視光透過度は基底フィルム対比96%であった。また、アルコールを浸漬した綿棒で20回繰り返して擦る実験でもついたものはなく、その硬度は2Hと観察された。
<Example 7>
30 parts by weight of a polyethylenedioxythiophene dispersion (Baytron PH; manufactured by Bayer) and 70 parts by weight of a solution obtained by diluting a UV curable hard coat agent (UC150H; manufactured by URAY) to 20 parts by weight in isopropyl alcohol After mixing, this mixed solution was applied to a triacetyl cellulose film at a thickness of 1 μm, dried at 60 ° C. for 1 minute, and cured with a UV coater.
After drying, the surface resistance, adhesive strength, and visible light transmittance of the above triacetyl cellulose film were measured according to ASTM related regulations. The surface resistance was 10 7 Ω / area, the adhesive strength was 5B, and the visible light transmittance was the base. It was 96% relative to the film. In addition, no experiment was made by rubbing 20 times with a cotton swab dipped in alcohol, and the hardness was observed to be 2H.
<実施例8>
ポリエチレンジオキシチオフェン分散液(Baytron PH;バイエル社製)30重量部と、UV硬化型ハードコート剤(UC150H;URAY社製)をイソプロピルアルコールに20重量部となるように希釈した溶液を70重量部混合し、この混合液を低反射処理済みのトリアセチルセルロースフィルムに厚さ1μmで塗布した後60℃で1分間乾燥しUV塗布機で硬化させた。
乾燥後、ASTM関連規定に基づき、上記トリアセチルセルロースフィルムの表面抵抗、接着力、可視光透過度を測定したところ、表面抵抗は107Ω/面積、接着力は5B、可視光透過度は基底フィルム対比96%であった。また、アルコールを浸漬した綿棒で20回繰り返して擦する実験でもついたものはなく、その硬度は2Hと観察された。
<Example 8>
30 parts by weight of a polyethylenedioxythiophene dispersion (Baytron PH; manufactured by Bayer) and 70 parts by weight of a solution obtained by diluting a UV curable hard coat agent (UC150H; manufactured by URAY) to 20 parts by weight in isopropyl alcohol After mixing, this mixed solution was applied to a triacetyl cellulose film having been subjected to a low reflection treatment at a thickness of 1 μm, dried at 60 ° C. for 1 minute, and cured with a UV coater.
After drying, the surface resistance, adhesive strength, and visible light transmittance of the above triacetyl cellulose film were measured according to ASTM related regulations. The surface resistance was 10 7 Ω / area, the adhesive strength was 5B, and the visible light transmittance was the base. It was 96% relative to the film. In addition, no experiment was made by rubbing 20 times with a cotton swab dipped in alcohol, and the hardness was observed to be 2H.
<実施例9>
エチレンジオキシチオフェンモノマー2重量部、酸化剤兼ドーパントであるフェリック -トルエンスルホン酸塩5重量部を、ノルマルブタノールとエチルアルコールとを1:4の割合で混合した混合溶媒93重量部に加え、この溶液を上記のトリアセチルセルロースフィルムに50nmで塗布した。次いで、80℃にて5分間硬化させエチルアルコールで洗浄した後60℃で1分間乾燥させた。
導電性高分子膜を塗布した上層に、UVハードコート剤(UC150H;URAY社)を乾燥膜厚さが1μとなるように塗布した後硬化させた。
その後、ASTM関連規定に基づき、上記トリアセチルセルロースフィルムの表面抵抗、接着力、可視光透過度を測定したところ、表面抵抗は108Ω/面積、接着力は5B、可視光透過度は基底フィルム対比98%と測定された。また、イソプロピルアルコールを浸漬した綿棒で20回繰り返し擦する実験でもついたものはなく、その硬度は3Hであった。
<Example 9>
2 parts by weight of ethylenedioxythiophene monomer and 5 parts by weight of ferric-toluenesulfonate which is an oxidizing agent / dopant are added to 93 parts by weight of a mixed solvent in which normal butanol and ethyl alcohol are mixed at a ratio of 1: 4. The solution was applied to the above triacetyl cellulose film at 50 nm. Subsequently, it was cured at 80 ° C. for 5 minutes, washed with ethyl alcohol, and dried at 60 ° C. for 1 minute.
A UV hard coating agent (UC150H; URAY) was applied to the upper layer to which the conductive polymer film was applied so as to have a dry film thickness of 1 μm and then cured.
Thereafter, the surface resistance, adhesive strength, and visible light transmittance of the triacetyl cellulose film were measured based on ASTM-related regulations. The surface resistance was 10 8 Ω / area, the adhesive strength was 5B, and the visible light transmittance was the base film. The contrast was measured to be 98%. In addition, there was nothing that was associated with 20-times repeated rubbing with a cotton swab dipped in isopropyl alcohol, and the hardness was 3H.
<実施例10>
ポリエチレンジオキシチオフェン分散液(Baytron PH;バイエル社製造)20重量部、プロリン系低屈折コーティング剤(FC100;MIWON社製)をイソプロピルアルコールに35重量部となるように希釈した溶液を80重量部混合した混合溶液を、低反射処理されたトリアセチルセルロースフィルムに対して厚さ1μmで塗布し、60℃にて1分間乾燥しUV塗布機で硬化させた。
乾燥後、ASTM関連規定に基づき、上記トリアセチルセルロースフィルムの表面抵抗、接着力、可視光透過度を測定したところ、表面抵抗は108Ω/面積、接着力は5B、可視光透過度は基底フィルム対比97%と測定された。また、近赤外線分光分析器(Near IR Spectrometer)で測定した反射率は、可視光領域で1.5%と観察された。
<Example 10>
20 parts by weight of a polyethylene dioxythiophene dispersion (Baytron PH; manufactured by Bayer) and 80 parts by weight of a solution obtained by diluting a proline low refractive coating agent (FC100; manufactured by MIWON) to 35 parts by weight in isopropyl alcohol The obtained mixed solution was applied to a triacetyl cellulose film subjected to low reflection treatment at a thickness of 1 μm, dried at 60 ° C. for 1 minute, and cured with a UV coater.
After drying, the surface resistance, adhesive strength, and visible light transmittance of the above triacetyl cellulose film were measured based on ASTM related regulations. The surface resistance was 10 8 Ω / area, the adhesive strength was 5B, and the visible light transmittance was the base. The film was measured to be 97% relative to the film. Moreover, the reflectance measured with a near infrared spectrometer (Near IR Spectrometer) was observed to be 1.5% in the visible light region.
Claims (8)
導電性高分子を含む塗布液を厚さ5nm〜5μmで塗布してなることを特徴とする透明帯電防止トリアセチルセルロースフィルム。 In the triacetyl cellulose film for liquid crystal display,
A transparent antistatic triacetyl cellulose film obtained by coating a coating solution containing a conductive polymer at a thickness of 5 nm to 5 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003354596A JP4340509B2 (en) | 2003-10-15 | 2003-10-15 | Transparent antistatic triacetyl cellulose film for liquid crystal display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003354596A JP4340509B2 (en) | 2003-10-15 | 2003-10-15 | Transparent antistatic triacetyl cellulose film for liquid crystal display |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005121766A true JP2005121766A (en) | 2005-05-12 |
JP4340509B2 JP4340509B2 (en) | 2009-10-07 |
Family
ID=34612457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003354596A Expired - Fee Related JP4340509B2 (en) | 2003-10-15 | 2003-10-15 | Transparent antistatic triacetyl cellulose film for liquid crystal display |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4340509B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8456070B2 (en) | 2006-12-28 | 2013-06-04 | Dai Nippon Printing Co., Ltd. | Optical layered body, polarizer and image display device |
JP2021056512A (en) * | 2019-10-01 | 2021-04-08 | 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. | Hard coat film and window and image display device containing the same |
JP2021056515A (en) * | 2019-10-01 | 2021-04-08 | 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. | Hard coat film and window and image display device containing the same |
JP2021056513A (en) * | 2019-10-01 | 2021-04-08 | 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. | Hard coat film and window and image display device containing the same |
WO2021117323A1 (en) * | 2019-12-13 | 2021-06-17 | 日東電工株式会社 | Liquid crystal panel |
CN113056498A (en) * | 2018-05-04 | 2021-06-29 | 图尔库大学 | Method for producing polymer film |
CN113748374A (en) * | 2019-06-28 | 2021-12-03 | 日东电工株式会社 | Polarizing film with adhesive layer and liquid crystal panel |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102952423B (en) * | 2011-08-17 | 2017-05-10 | 长濑化成株式会社 | Organic conductive film |
-
2003
- 2003-10-15 JP JP2003354596A patent/JP4340509B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8456070B2 (en) | 2006-12-28 | 2013-06-04 | Dai Nippon Printing Co., Ltd. | Optical layered body, polarizer and image display device |
CN113056498A (en) * | 2018-05-04 | 2021-06-29 | 图尔库大学 | Method for producing polymer film |
CN113748374A (en) * | 2019-06-28 | 2021-12-03 | 日东电工株式会社 | Polarizing film with adhesive layer and liquid crystal panel |
JP2021056513A (en) * | 2019-10-01 | 2021-04-08 | 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. | Hard coat film and window and image display device containing the same |
JP2021056515A (en) * | 2019-10-01 | 2021-04-08 | 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. | Hard coat film and window and image display device containing the same |
JP2021056512A (en) * | 2019-10-01 | 2021-04-08 | 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. | Hard coat film and window and image display device containing the same |
JP7039669B2 (en) | 2019-10-01 | 2022-03-22 | 東友ファインケム株式会社 | Hardcourt film and windows and image display devices containing it |
JP7039670B2 (en) | 2019-10-01 | 2022-03-22 | 東友ファインケム株式会社 | Hardcourt film and windows and image display devices containing it |
JP7039671B2 (en) | 2019-10-01 | 2022-03-22 | 東友ファインケム株式会社 | Hardcourt film and windows and image display devices containing it |
WO2021117323A1 (en) * | 2019-12-13 | 2021-06-17 | 日東電工株式会社 | Liquid crystal panel |
JP2021096307A (en) * | 2019-12-13 | 2021-06-24 | 日東電工株式会社 | Liquid crystal panel |
CN114761865A (en) * | 2019-12-13 | 2022-07-15 | 日东电工株式会社 | Liquid crystal panel |
JP7497153B2 (en) | 2019-12-13 | 2024-06-10 | 日東電工株式会社 | LCD panel |
Also Published As
Publication number | Publication date |
---|---|
JP4340509B2 (en) | 2009-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5674729B2 (en) | Antistatic hard coat layer forming composition, optical film, method for producing optical film, polarizing plate, and image display device | |
EP1735645B1 (en) | Anti-reflective coating composition and coating film with excellent stain resistance | |
US8318043B2 (en) | Composition for liquid crystal film, liquid crystal film using composition, and method of manufacturing liquid crystal film | |
JP5312627B2 (en) | Optical film having antistatic layer, and antireflection film, polarizing plate and image display device using the same | |
US20060092495A1 (en) | Anti-glare anti-reflection film, polarizing plate, and image display device | |
JPWO2005085913A1 (en) | Antireflection film and method for producing the same | |
CN109313286B (en) | Optical film for protecting polarizer, polarizing plate including the same, and image display device | |
KR102605517B1 (en) | Antistatic hard coat film, polarizer, touch panel, liquid crystal display device and manufacturing method | |
JP2011046193A (en) | Laminate, anti-reflection film, polarizing plate, and image displaying apparatus | |
JP2011048359A (en) | Antireflective film, polarizing plate, and image display device | |
JP2019533186A (en) | Optical film forming composition, optical film and polarizing plate containing the same | |
JP4340509B2 (en) | Transparent antistatic triacetyl cellulose film for liquid crystal display | |
JP5380211B2 (en) | Optical film having antistatic layer, antireflection film, polarizing plate, and image display device | |
KR101610871B1 (en) | Organic light emitting diode display | |
JP7335900B2 (en) | Polarizing plate, liquid crystal display device, organic electroluminescence device | |
TW201026764A (en) | Composition for forming hard-coat layer, hard-coat film, optical element, and image display | |
KR102077318B1 (en) | Optical film and display device comprising the same | |
KR100709866B1 (en) | Brightness-enhanced optical film of low reflectivity for display and display device using this | |
JP2013011874A (en) | Method for manufacturing spectacle lens | |
KR20220084808A (en) | Hollow silica particle and method of preparing the same | |
JP2012068415A (en) | Hardcoat coating liquid and antireflection film | |
JP2011081121A (en) | Optical laminate | |
JP2010144009A (en) | Coating composition, laminate, and method of producing laminate | |
KR102210175B1 (en) | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element | |
KR20040020085A (en) | Transprant Antistatic Triacetyl Cellulose(TAC) Films for Liquid Crystal Display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050511 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061121 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20070221 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20070226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070515 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080507 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080806 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080811 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080905 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080910 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20081006 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20081009 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090609 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090706 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120710 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130710 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |