JP2005121727A - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP2005121727A
JP2005121727A JP2003353915A JP2003353915A JP2005121727A JP 2005121727 A JP2005121727 A JP 2005121727A JP 2003353915 A JP2003353915 A JP 2003353915A JP 2003353915 A JP2003353915 A JP 2003353915A JP 2005121727 A JP2005121727 A JP 2005121727A
Authority
JP
Japan
Prior art keywords
charge
transfer complex
charge transfer
compound
quinone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003353915A
Other languages
Japanese (ja)
Inventor
Shinichi Tamura
信一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003353915A priority Critical patent/JP2005121727A/en
Publication of JP2005121727A publication Critical patent/JP2005121727A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive charge electrophotographic photoreceptor having high sensitivity, low residual potential, and stable electrostatic characteristics and photochemical durability for repeated use. <P>SOLUTION: A charge transfer complex having the following properties is used for an electron transport substance in the positive charge photoreceptor. The complex formed of a quinone compound and a hole transport substance is expressed by general formula (I), and the strongest peak of the IR absorption spectrum of the complex appearing at 1,600 to 1,700 cm<SP>-1</SP>assigned to the quinone structure is shifted toward a higher wave number by ≥3 cm<SP>-1</SP>compared with the quinone compound before the formation of the charge transfer complex. In formula (I), D represents a hole transport compound, X an oxygen atom or a compound of formula (II) or (III), each of R1 to R14 a hydrogen atom, halogen atom, alkyl group, aralkyl group or alkoxy group and may be identical to or different from others, and n is an integer of 1 or 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は電子写真に用いる有機感光体に関するもので、より詳細には、新規な優れた電子輸送性を有する電荷移動錯体と、これを用いた優れた感度と光疲労と環境安定性を有する正帯電用有機電子写真感光体に関する。   The present invention relates to an organic photoreceptor for use in electrophotography. More specifically, the present invention relates to a novel charge transfer complex having excellent electron transportability, and a positive sensitivity having excellent sensitivity, light fatigue, and environmental stability using the same. The present invention relates to an organic electrophotographic photosensitive member for charging.

電子写真法はカ−ルソンが米国特許第2.297.691号に明らかにしたように、光導電性と静電現象とを巧妙に組み合わせたものであり、電子写真感光体を暗所にて、コロナ放電等により表面を一様に帯電させたのち、帯電した電子写真感光体の表面を露光して光像の静電潜像を形成し、これに着色した電荷粉体(トナ−)を付着させて可視像に変える画像形成法の一種である。現在では、この電子写真技術は複写機やレーザープリンター等に広く普及されるに伴って、使用される環境条件もオフィスユースからホームユースにまで広がり、これらの広い使用環境に対する信頼性と安全性も強く求められている。 The electrophotographic method is a skillful combination of photoconductivity and electrostatic phenomenon as revealed by Carson in U.S. Pat. No. 2,297.691, and the electrophotographic photosensitive member is placed in a dark place. After the surface is uniformly charged by corona discharge or the like, the surface of the charged electrophotographic photosensitive member is exposed to form an electrostatic latent image of a light image, and a colored charge powder (toner) is formed on the surface. It is a kind of image forming method that is attached to a visible image. Currently, as this electrophotographic technology is widely used in copying machines, laser printers, etc., the environmental conditions for use have expanded from office use to home use, and the reliability and safety of these wide use environments are also improved. There is a strong demand.

従来、電子写真感光体としては、アモルファスシリコン、セレン、酸化亜鉛、硫化カドミウム等の無機光導電性物質を主成分とする感光体が広く用いられてきた。しかし、このような無機感光体は光感度、耐久性や安全性等に満足できる特性を有していないことから、多くの有機電子材料が開発され、近年では、電荷発生物質と電荷輸送物質を用いた有機電子写真感光体が多く使用されるようになってきている。 Conventionally, as electrophotographic photoreceptors, photoreceptors mainly composed of an inorganic photoconductive material such as amorphous silicon, selenium, zinc oxide, cadmium sulfide have been widely used. However, since such inorganic photoreceptors do not have satisfactory characteristics such as photosensitivity, durability, and safety, many organic electronic materials have been developed. In recent years, charge generating substances and charge transporting substances have been developed. The used organic electrophotographic photosensitive member is increasingly used.

このような有機系電子写真感光体は電子写真の帯電方式によって正帯電用感光体と負帯電用感光体に分けられる。また、感光体の層構成は動作機構によって、電荷発生と電荷輸送を同一の層で成される単層型感光体と電荷発生と電荷輸送を別々の層で行う積層型感光体がある。 Such an organic electrophotographic photosensitive member is classified into a positive charging photosensitive member and a negative charging photosensitive member according to an electrophotographic charging method. The layer structure of the photoconductor includes a single-layer type photoconductor in which charge generation and charge transport are made of the same layer, and a stacked type photoconductor in which charge generation and charge transport are made of separate layers depending on the operation mechanism.

ところで、有機電子写真感光体の主要機能成分である電荷輸送物質において、優れた電荷輸送能を有する物質が正孔輸送物質であったことから、特殊な層構成を除いて、実用に供されている電子写真感光体の多くは負帯電用電子写真感光体となり、電子写真の帯電方式も負帯電方式となっている。   By the way, in the charge transport material which is the main functional component of the organic electrophotographic photosensitive member, the material having excellent charge transport ability was a hole transport material, so that it was put into practical use except for a special layer structure. Many of the electrophotographic photosensitive members are negatively charged electrophotographic photosensitive members, and the electrophotographic charging method is also a negative charging method.

しかし、負帯電方式は有害なオゾンや窒素酸化物を多く発生する事と、コロナ放電による帯電を均一にする事が難しい等の問題がある。
それに反して、正帯電方式は上記の負帯電方式の欠点を有していない事とアモルファスシリコンやセレン系の正帯電無機感光体のトナーや多くのプロセス技術を適用できる事から、高性能な正帯電用有機感光体の出現が望まれてきた。
However, the negative charging method has problems such as the generation of a lot of harmful ozone and nitrogen oxides and the difficulty of uniform charging by corona discharge.
On the other hand, the positive charging method does not have the disadvantages of the negative charging method described above, and can be applied to toners of amorphous silicon and selenium positively charged inorganic photoreceptors and many process technologies. The appearance of an organic photoreceptor for charging has been desired.

これまでに、開発された正帯電用有機感光体としてはポリビニルカルバゾール(PVK)とトリニトロフルオレノン(TNF)との電荷移動錯体からなる単層型感光体や電荷発生物質と正孔輸送物質を結着剤に分散させた単層型感光体等があったが、前者は低感度である事とトリニトロフルオレノンが発ガン性物質であり、後者は低感度で帯電保持力が低いことと、繰り返し使用時での電気特性の低下等の問題から、両方とも現在は使用されていない。 The positively charged organic photoconductors developed so far include single-layer photoconductors consisting of a charge transfer complex of polyvinylcarbazole (PVK) and trinitrofluorenone (TNF), and charge generating materials and hole transporting materials. There were single layer type photoreceptors dispersed in the adhesive, but the former was low sensitivity and trinitrofluorenone was a carcinogen, the latter was low sensitivity and low charge retention, and repeatedly Both are not currently used due to problems such as degradation of electrical characteristics during use.

上記の電荷発生物質と正孔輸送物質から成る単層型感光体の繰り返し使用時での電気特性低下は感光層中の電子が十分に輸送されずに蓄積する事が原因であることから、これまでに、多くの電子輸送物質の開発が進められてきた。 The deterioration of the electrical characteristics of the single layer type photoreceptor composed of the charge generation material and the hole transport material described above is caused by accumulation of electrons in the photosensitive layer without being sufficiently transported. Until now, many electron transport materials have been developed.

電子輸送能を有する電荷輸送物質として、先に記載したPVKとTNF等の電荷移動錯体(例えば、特許文献1参照)、ジシアノメチレンフルオレンカルボキシレート化合物(例えば、特許文献2参照)、アンスラキノジメタン化合物(例えば、特許文献3参照)、ジフェニルジシアノエチレン化合物(例えば、特許文献4〜5参照)、ナフトキノン化合物(例えば、特許文献6〜8参照)、特定の酸化還元電位を有するベンゾキノン化合物(例えば、特許文献9参照)、ジフェノキノン化合物(例えば、特許文献10参照)、スチルベンキノン化合物(例えば、特許文献11参照)、アゾメチンキノン系化合物(例えば、特許文献12参照)、シッフ塩基型キノン等のキノン系電子輸送物質が開示されている。 Examples of the charge transport material having an electron transporting ability include the above-described charge transfer complexes such as PVK and TNF (for example, see Patent Document 1), dicyanomethylenefluorene carboxylate compound (for example, see Patent Document 2), anthraquinodimethane A compound (for example, see Patent Document 3), a diphenyldicyanoethylene compound (for example, see Patent Documents 4 to 5), a naphthoquinone compound (for example, see Patent Documents 6 to 8), a benzoquinone compound having a specific redox potential (for example, Patent Document 9), diphenoquinone compounds (for example, see Patent Document 10), stilbene quinone compounds (for example, see Patent Document 11), azomethine quinone compounds (for example, see Patent Document 12), quinone systems such as Schiff base quinone An electron transport material is disclosed.

しかし、電荷移動錯体やニトロ基やシアノ基を有する電子輸送物質の移動度は低く、高感度の感光体を得る事が難しい事の他に、ニトロ基やシアノ基を有する物質は発ガン性などの安全衛生上の懸念が心配される事から、実用に供された例はない。 However, the mobility of charge transport complexes and electron transport materials with nitro and cyano groups is low, making it difficult to obtain highly sensitive photoconductors. Substances with nitro and cyano groups are also carcinogenic. Since there are concerns about health and safety concerns, there have been no practical examples.

これに対して、キノン系電子移動物質は発ガン性などの衛生上の問題は少ない事から、多く開示されている。しかし、ベンゾキノン化合物やナフトキノン化合物の低分子系キノン化合物の移動度は低く、未だ、十分な電子輸送能力を有していない。この低移動度の原因としては、電子受容基であるキノン基に対して、電子放出に必要な共役系が小さい為であるとされていることから、共役系が大きく、分子量の大きなキノン系電子輸送物質が提案されてきた。 On the other hand, quinone-based electron transfer substances have been disclosed in large numbers because there are few hygiene problems such as carcinogenicity. However, the mobility of low molecular weight quinone compounds such as benzoquinone compounds and naphthoquinone compounds is low and still does not have sufficient electron transport capability. The reason for this low mobility is that the conjugated system necessary for electron emission is small compared to the quinone group, which is an electron accepting group, so that the conjugated system is large and the molecular weight is large. Transport materials have been proposed.

これらの、共役系が大きく高分子量の化合物の中で、特に注目された化合物として、ジフェノキノン化合物やスチルベンキノン化合物がある。しかし、これらの高分子量のキノン化合物は有機溶剤に対して溶解性が低い事と結着剤樹脂との親和性が低いことから、感光層中で結晶化が起こり易く成る。結晶化が起こると、出力画像ではノイズとなることから、感光層に十分な量を含有させる事が難しいという欠点がある。 Among these compounds having a large conjugated system and a high molecular weight, there are diphenoquinone compounds and stilbenequinone compounds as compounds that have attracted particular attention. However, since these high molecular weight quinone compounds have low solubility in organic solvents and low affinity with the binder resin, crystallization is likely to occur in the photosensitive layer. When crystallization occurs, it becomes a noise in the output image, so that it is difficult to contain a sufficient amount in the photosensitive layer.

このようなジフェノキノンの欠点を改善するために、非対称型構造のジフェノキノンや低分子であるベンゾキノン誘導体を補助成分として加える事により、溶解性の向上や結晶化防止などの改善技術も提案されてきたが、その移動度は、未だ、低く、正孔輸送物質を用いた負帯電感光体と比べると、感度の低さと残留電位の高さの問題や繰り返し使用時における電荷蓄積による感度、帯電保持率、残留電位等の基本的な電気特性の変化や劣化等の問題は解決されていない。 In order to improve the disadvantages of diphenoquinone, improvement techniques such as improved solubility and prevention of crystallization have been proposed by adding diphenoquinone having an asymmetric structure or a low molecular weight benzoquinone derivative as an auxiliary component. , Its mobility is still low, compared to negatively charged photoconductors using hole transport materials, the problem of low sensitivity and high residual potential, sensitivity due to charge accumulation during repeated use, charge retention, Problems such as changes and deterioration of basic electrical characteristics such as residual potential have not been solved.

また、これらの化合物を正孔輸送物質と共存させる単層型感光体に適用する場合、正孔輸送物質と電荷移動錯体を形成すると、着色による有効光透過率の低減や、移動度の低下を引き起こすとされている(例えば、非特許文献1、特許文献9)。このために、正孔輸送物質を共存させる場合、電荷移動錯体を形成しないような組合せや製造技術上の課題を生じさせる。 In addition, when these compounds are applied to a single-layer type photoreceptor coexisting with a hole transport material, forming a charge transfer complex with the hole transport material reduces the effective light transmittance due to coloring and the mobility. (For example, Non-Patent Document 1 and Patent Document 9). For this reason, when a hole transport material is allowed to coexist, a problem that does not form a charge transfer complex and a problem in manufacturing technology are caused.

更に、キノン構造を有する電子輸送物質の問題点は、キノン構造がプロトンによりヒドロキノン化され易い事である。ヒドロキノン化合物は電子輸送能を有しない他に、移動電荷(電子)のトラップとして作用し、微量の存在でも感度等の電気特性の著しい劣化を引き起こす。これを防止するために、キノン基を遮蔽するかさ高い置換基を導入する事や、高い還元電位を有する物質を用いる等の改善案も提示されているが、電子写真プロセスで用いられる高電場下では、未だ不十分であり、光による大気中の水分から生じるプロトンとの反応を防止する事は困難であり、感光体の交換時や製造時に、光に暴露された部分の電気特性が変わることから、出力画像上で画像濃度の異なった光露光痕を生じる等の問題がある。 Furthermore, a problem of the electron transport material having a quinone structure is that the quinone structure is easily hydroquinoneized by protons. The hydroquinone compound does not have an electron transporting ability, but also acts as a trap for mobile charge (electrons), and causes a significant deterioration in electrical characteristics such as sensitivity even in the presence of a small amount. In order to prevent this, improvements such as the introduction of bulky substituents that block the quinone group and the use of substances with a high reduction potential have been proposed, but under the high electric field used in the electrophotographic process. However, it is still inadequate, and it is difficult to prevent the reaction with protons generated from moisture in the atmosphere due to light, and the electrical characteristics of the parts exposed to light change when the photoconductor is replaced or manufactured. Therefore, there is a problem that light exposure traces having different image densities are generated on the output image.

これまでに、上記の電子移動物質を用いた正帯電感光体の層構成の多くは単層型である。この理由は、上記のような移動度の小さな電子輸送物質を用いる場合、電子の輸送距離が長い積層型感光体よりも、電子の平均輸送距離が短い単層型構成の方が低移動度電子輸送物質には有利である事と、単層型は感光層の塗布数が一回であり、製造コストを押さえられる事と、積層型感光体の電荷発生層のような薄膜部がない事から、基体である素管表面の欠陥に左右され難い等の理由が考えられていたからである。 To date, many of the layer configurations of positively charged photoconductors using the above-described electron transfer materials are single layer types. The reason for this is that when an electron transport material having a low mobility as described above is used, the single-layer configuration in which the average transport distance of electrons is short is lower than the multi-layer photoreceptor in which the transport distance of electrons is long. Because it is advantageous for transport materials, the single-layer type requires only one photosensitive layer coating, reduces manufacturing costs, and does not have a thin film part like the charge generation layer of a multilayer photoconductor. This is because the reason that it is difficult to be influenced by defects on the surface of the base tube, which is the base, has been considered.

しかし、理想的な層構成として考えられてきた単層型も多くの欠点がある事が次第に明らかになってきた。例えば、単層型は基体のキズなどの感光層下部の欠陥には鈍感であるが、クリーニングブレードやトナー添加材や紙粉などによる感光体表面のキズなどの欠陥に敏感であり、この表面キズが画像上にノイズとして出現し易くなる事である。このような画像上のノイズは信頼性を必要とする文書を出力する機器への適用は問題を生じる。および、電荷の移動度が電場の強さに依存する以上、残留電位の高さは積層型感光体の水準に到達する事は困難であり、高いコントラスト現像電位を必要とする高階調性の画像出力には適さない事などが挙げられる。このような理由などから、感光体構成として高感度で残留電位の低い単層型正帯電感光体と共に、信頼性の高い積層型正帯電感光体にも適用が可能な高い安定性と高移動度で結着剤樹脂との親和性が高く結晶化し難い電子移動物質が求められている。
米国特許3,484,237 特開昭61−148159号 公報 特開昭63−170257号 公報 特開昭63−175860号 公報 特開昭63−174993号 公報 特開昭63− 85749号 公報 特開平06−110227号 公報 特開平09−151157号 公報 特開平05−45908号 公報 特開平01−206349号 公報 特許第2805376号 特開2000−199979号 公報 横山等;電子写真学会誌,第30巻,P274(1991)
However, it has gradually become clear that the single layer type, which has been considered as an ideal layer structure, has many drawbacks. For example, the single layer type is insensitive to defects under the photosensitive layer such as scratches on the substrate, but is sensitive to defects such as scratches on the surface of the photoreceptor due to cleaning blades, toner additives, paper dust, etc. Is likely to appear as noise on the image. Such noise on an image causes a problem when applied to a device that outputs a document that requires reliability. Since the charge mobility depends on the strength of the electric field, it is difficult for the residual potential to reach the level of the multilayer photoreceptor, and a high gradation image that requires a high contrast development potential. For example, it is not suitable for output. For this reason, high stability and high mobility that can be applied to single-layer positively charged photoconductors with high sensitivity and low residual potential as well as highly reliable stacked positively charged photoconductors. Therefore, an electron transfer material that has high affinity with the binder resin and is difficult to crystallize is demanded.
US Pat. No. 3,484,237 JP-A-61-148159 JP 63-170257 A JP-A 63-175860 Japanese Patent Laid-Open No. 63-174993 JP-A 63-85749 Japanese Patent Laid-Open No. 06-110227 Japanese Patent Laid-Open No. 09-151157 Japanese Patent Laid-Open No. 05-45908 Japanese Patent Laid-Open No. 01-206349 Japanese Patent No. 2805376 JP 2000-199979 A Yokoyama et al .; Journal of the Electrophotographic Society, Volume 30, P274 (1991)

本発明の目的は上記問題に鑑み、高移動度で、結着剤樹脂との親和性が高く、感光層中で結晶化し難く、かつプロトンに攻撃され難く、光に対して安定性の高い電子輸送物質を提供することにある。 In view of the above problems, an object of the present invention is an electron having high mobility, high affinity with a binder resin, hardly crystallizing in a photosensitive layer, hardly attacked by protons, and highly stable to light. To provide a transport material.

また、別の目的として、このような電子輸送物質を感光体に適用する事により、光劣化による光露光痕が無い高い信頼性と高感度かつ繰り返し使用時に電位変動の少ない正帯電の単層型感光体と積層型感光体を提供する事にある。 As another object, by applying such an electron transport material to the photoreceptor, a single layer type of positive charge with high reliability and high sensitivity without light exposure traces due to light deterioration and little potential fluctuation during repeated use. The object is to provide a photoreceptor and a multilayer photoreceptor.

本発明者は、前記目的を達成するために各種有機材料について鋭意検討を重ねた結果、これまで、従来の特性低下の要因とされてきた電子輸送物質において、下記に記載する特定の電荷移動錯体が従来の電子輸送物質や正帯電感光体の課題を解決する優れた電子輸送物質である事を発見し、本発明の完成に至ったものである。 As a result of intensive studies on various organic materials in order to achieve the above object, the present inventor has found that the following specific charge transfer complexes described below have been used in electron transport materials that have been considered to be a cause of deterioration in conventional characteristics. Was found to be an excellent electron transport material that solves the problems of conventional electron transport materials and positively charged photoreceptors, and the present invention has been completed.

本発明に係わる電子輸送物質は、電子吸引性分子であるキノン系化合物と電子供与性分子である正孔輸送化合物とで形成される下記一般式Iで示される電荷移動錯体において、その赤外吸収スペクトルのキノン構造に帰属する1600〜1700cm−1に現れる最も強い吸収ピーク位置が電荷移動錯体形成前のキノン系化合物と比べて、3cm−1以上高波数側にシフトしていることによって特徴づけられる電荷移動錯体である。 The electron transport material according to the present invention is a charge transfer complex represented by the following general formula I formed by a quinone compound that is an electron-withdrawing molecule and a hole-transport compound that is an electron-donating molecule. The strongest absorption peak position appearing at 1600 to 1700 cm −1 belonging to the quinone structure of the spectrum is characterized by being shifted to a higher wavenumber side by 3 cm −1 or more than the quinone compound before the charge transfer complex formation. It is a charge transfer complex.

Figure 2005121727
ただし、式中Dは正孔輸送化合物を示し、Xは酸素原子、もしくは一般式IIもしくは一般式IIIを示し、R1〜R14は同じでも異なっていてもよい水素原子、ハロゲン原子、アルキル基、アラルキル基またはアルコキシ基を示す。また、nは1もしくは2の整数である。
Figure 2005121727
In the formula, D represents a hole transport compound, X represents an oxygen atom, or general formula II or general formula III, and R1 to R14 may be the same or different hydrogen atom, halogen atom, alkyl group, aralkyl. Represents a group or an alkoxy group. N is an integer of 1 or 2.

この本発明に係わる電荷移動錯体である電子輸送物質は優れた移動度を有しており、単層型感光体や積層型感光体の電子輸送物質として用いた場合、残留電位が低く、かつ、優れた感度を有する正帯電感光体を提供する事が出来る。   The electron transport material which is a charge transfer complex according to the present invention has excellent mobility, and when used as an electron transport material of a single layer type photoreceptor or a multilayer photoreceptor, the residual potential is low, and A positively charged photoreceptor having excellent sensitivity can be provided.

また、本発明に係わる電荷輸送物質に於いて、赤外線吸収スペクトルのシフト波数が異なる電荷移動錯体を2種以上含有する電荷輸送組成物である場合、光に対する優れた安定性を有し、この電荷輸送組成物を電荷輸送物質として単層型や積層型感光体に用いる事により、光化学的な光疲労耐性に優れた正帯電感光体を提供する事が出来る Further, in the charge transport material according to the present invention, when the charge transport composition contains two or more charge transfer complexes having different shift wave numbers in the infrared absorption spectrum, the charge transport material has excellent stability to light. By using the transport composition as a charge transport material for a single layer type or a multilayer type photoreceptor, a positively charged photoreceptor excellent in photochemical light fatigue resistance can be provided.

このように、本発明に係わる電荷輸送錯体が優れた材料化学的観点および電子材料的観点からも電子輸送物質となっているが、材料化学的な観点から、本発明に係わる電荷移動錯体が電荷移動錯体を形成していないキノン系化合物に対する優位性は次のように説明する事が出来る。 Thus, although the charge transport complex according to the present invention is an electron transport material from the viewpoint of excellent material chemistry and electronic material, the charge transfer complex according to the present invention is charged from the viewpoint of material chemistry. The superiority over the quinone compound not forming the transfer complex can be explained as follows.

1.分子が3次元的に非対称となっていることから、結晶化し難くなっている。
2.化学的に活性なキノン構造は3次元的に遮蔽・保護されており、プロトン等を含めた化学的活性種に対して、化学的な安定性が増している。
3.キノンの吸収位置が高波数側にシフトしたという事は構造化学的に他の物質に変化した事を示している他に、物理的にはキノン(>C=O)の結合エネルギーが大きくなって、物理的な強度が増した事を示している。
4.このように、本発明に係わる電荷移動錯体は化学的および物理的に強度と安定性を増していることから、化学的および物理的な外的変動要因に対して安定性が強化されており、光化学的安定性を向上させる要因となっている。
5.また、キノン基(>C=O)のシフト波数の異なる電荷移動錯体が共存する場合は、有害な光波長成分を相互に吸収すると同時に、エネルギーバンド幅が広がる事からクエンチャーとして作用する。
1. Since the molecule is asymmetric in three dimensions, it is difficult to crystallize.
2. The chemically active quinone structure is three-dimensionally shielded and protected, and has increased chemical stability against chemically active species including protons.
3. The fact that the absorption position of quinone has shifted to the high wavenumber side indicates that it has changed to another substance in terms of structural chemistry, and physically, the binding energy of quinone (> C = O) has increased. This indicates that the physical strength has increased.
4). As described above, since the charge transfer complex according to the present invention is chemically and physically increased in strength and stability, the stability is enhanced against chemical and physical external fluctuation factors. It is a factor that improves photochemical stability.
5). In addition, when charge transfer complexes having different shift wave numbers of quinone groups (> C═O) coexist, they act as quenchers because they absorb harmful light wavelength components from each other and widen the energy bandwidth.

電子輸送能の観点から、電荷移動錯体を形成していないキノン系化合物に対する優位性は、次のように説明する事が出来る。 From the viewpoint of electron transport ability, the superiority over quinone compounds not forming a charge transfer complex can be explained as follows.

1.電荷移動錯体は分子内で、電荷が強く分離分極されていることから、中性分子と比べて、極性と反対の電荷を受容し易い。また、受容された電荷は、電荷移動錯体形成ブリッジを介して、速やかに電荷放出部に移動し、ここから、隣接する電荷移動錯体に電荷を放出し易くしている。 1. Since charge transfer complexes are strongly separated and polarized in the molecule, the charge transfer complex easily accepts a charge opposite to the polarity compared to a neutral molecule. In addition, the accepted charge quickly moves to the charge release portion via the charge transfer complex forming bridge, and from this, the charge is easily released to the adjacent charge transfer complex.

2.また、この電荷移動錯体は分子の形が3次元的に対称性が失われている事から、結晶化し難くなっており、感光層中では均一に分子状に分散されている事と分子が大きくなっている事によって、電荷輸送物質である分子間距離は短くなっていることは電荷のホッピングに有利となり、電荷輸送能の向上に繋がっている。 2. In addition, this charge transfer complex is difficult to crystallize because the shape of the molecule is three-dimensionally lost, and it is difficult to crystallize in the photosensitive layer. Therefore, the fact that the intermolecular distance, which is a charge transport material, is short is advantageous for charge hopping and leads to an improvement in charge transport ability.

また、電荷移動錯体による電荷輸送のメカニズムは電荷移動錯体を形成していない正孔輸送物質と電子輸送物質からなる組成物(以下、電荷輸送組成物と略す)とは全く異なる。組成が類似の単層型感光体を例にすれば、電荷輸送組成物中での電荷輸送は正孔と電子が行われることから、同一層中での正孔と電子の電気的引力による移動電荷の蓄積や移動度の低下が避けられないのに対して、電荷移動錯体中での電荷輸送は電子によって行われることから、正負の電気的相互作用は無い事と、電荷移動面積密度が電荷輸送組成物の正孔輸送ルートが電子輸送ルートとなる事となって、2倍となることから、移動度低下や電荷の蓄積は低減し、電子写真感光体における繰り返し使用時の感度の低下や残留電位の上昇などが防げる効果となって現れる。 Further, the mechanism of charge transport by the charge transfer complex is completely different from a composition comprising a hole transport material and an electron transport material (hereinafter abbreviated as a charge transport composition) not forming a charge transfer complex. In the case of a single-layer type photoconductor having a similar composition, charge transport in the charge transport composition is carried out by holes and electrons, so that movement of holes and electrons in the same layer by electric attraction is performed. While charge accumulation and mobility decrease are inevitable, charge transport in charge transfer complexes is carried out by electrons, so there is no positive or negative electrical interaction, and charge transfer area density is charged. Since the hole transport route of the transport composition becomes the electron transport route and doubles, the mobility and charge accumulation are reduced, and the sensitivity during repeated use in the electrophotographic photoreceptor is reduced. An increase in the residual potential appears as an effect that can be prevented.

電子輸送性キノン化合物と正孔輸送化合物からなる本発明の電荷移動錯体は原料の電子輸送性キノン化合物に比して、優れた電子輸送性を有し、電荷の蓄積がすくないことから、繰り返し使用時においても優れた感度と安定した電気特性の単層型および積層型の正帯電電子写真感光体を得ることが出来る。また、キノン構造形成による、キノン構造による吸収波数の異なる電荷移動錯体からなる組成物電荷移動剤を用いることにより、光に対する劣化が全く認められない優れた正帯電の電子写真感光体を提供する事が出来る。 The charge transfer complex of the present invention consisting of an electron transporting quinone compound and a hole transporting compound has excellent electron transporting properties compared to the raw material electron transporting quinone compound, and is not repeatedly accumulated. Even in such a case, it is possible to obtain single-layer and multi-layer positively charged electrophotographic photoreceptors having excellent sensitivity and stable electrical characteristics. In addition, by using a charge transfer agent composed of a charge transfer complex having a different absorption wave number due to a quinone structure due to formation of a quinone structure, an excellent positively charged electrophotographic photosensitive member in which no deterioration with respect to light is observed is provided. I can do it.

本発明に係わる電子輸送物質としての一般式Iで示される電荷移動錯体はキノン系化合物と電子供与性分子である正孔輸送物質の化学的反応により形成されており、その反応中心はキノン構造と正孔輸送物質中のアミン基構造が深く関与しているが、反応のし易さは両者の置換基等による立体障害性や電気的性質によっても異なる。しかし、通常は、本発明に適したキノン系化合物としては、還元電位が高すぎると反応し難くなる事と、得られる電荷移動錯体が不安定となりやすいことから、あまり高い還元電位を有するキノン系化合物は好ましくはなく、還元電位を代表的な指標にとれば、−1V以下が好ましい。更に好ましくは−0.8V以下が好ましい。しかし、正孔輸送物質との相互作用もあることから、得られる電荷移動錯体が安定であり、キノンのシフト波数が3cm−1以上である限り、限定されるものではない。 The charge transfer complex represented by the general formula I as an electron transport material according to the present invention is formed by a chemical reaction between a quinone compound and a hole transport material which is an electron donating molecule, and the reaction center is a quinone structure. The amine group structure in the hole transport material is deeply involved, but the ease of reaction varies depending on the steric hindrance and electrical properties due to the substituents of both. However, as a quinone compound suitable for the present invention, a quinone compound having a very high reduction potential is usually obtained because it becomes difficult to react if the reduction potential is too high, and the resulting charge transfer complex tends to be unstable. The compound is not preferred, and is preferably −1 V or less when the reduction potential is taken as a representative index. More preferably, -0.8V or less is preferable. However, it is not limited as long as the charge transfer complex obtained is stable and the shift wave number of quinone is 3 cm −1 or more because of the interaction with the hole transport material.

以下に、本発明の実施例および比較例で用いた、代表的な本発明に係わる電荷移動錯体を構成するキノン系化合物の具体的化合物を示す。ただし、これに限定されるものではない。 The specific compounds of the quinone compounds constituting the typical charge transfer complexes according to the present invention used in Examples and Comparative Examples of the present invention are shown below. However, it is not limited to this.

Figure 2005121727
Figure 2005121727

Figure 2005121727
Figure 2005121727

また、本発明に係わる電荷移動錯体のもう一つの構成成分である電子供与性分子としての正孔輸送物質は従来から公知のヒドラゾン系化合物、カルバゾール系化合物、ブタジエン系化合物、スチルベン系化合物、アリールアミン系化合物が挙げられるが、正孔輸送物質分子中にはアミン基構造を有する事が必要であるが、本発明の実施例および比較例で用いた正孔輸送化合物の具体的化合物を以下に示す。ただし、これに限定されるものではない。   In addition, hole transport materials as electron donating molecules that are another constituent of the charge transfer complex according to the present invention include conventionally known hydrazone compounds, carbazole compounds, butadiene compounds, stilbene compounds, arylamines. Although it is necessary to have an amine group structure in the hole transport material molecule, specific compounds of the hole transport compounds used in Examples and Comparative Examples of the present invention are shown below. . However, it is not limited to this.

Figure 2005121727
Figure 2005121727

Figure 2005121727
Figure 2005121727

Figure 2005121727
Figure 2005121727

ところで、電荷移動錯体の形成には電子吸引性のキノン分子と電子供与性基であるアミン基構造が関与しており、正孔輸送物質中にアミン構造が複数個存在する場合には、この数の最大数までのキノン系化合物との電荷移動錯体が可能であるが、本発明における範囲はキノン化合物と電子供与性分子である正孔輸送材物質とのモル比は1/1もしくは2/1が好ましい。 By the way, the formation of a charge transfer complex involves an electron-withdrawing quinone molecule and an amine group structure which is an electron-donating group. If there are multiple amine structures in the hole transport material, this number However, the range in the present invention is that the molar ratio of the quinone compound to the hole transport material which is an electron donating molecule is 1/1 or 2/1. Is preferred.

本発明に係わる電荷移動錯体は以下のような方法によって製造することができる。(1)キノン系化合物と電子供与性化合物とを、これら両者が可溶性で、生成錯体が不溶性または離溶性の溶媒中で反応させ生成物を沈澱させる方法。(2) キノン系化合物と電子供与性化合物の両原料および生成物が可溶性の溶媒中で反応させた後、生成物の貧溶媒を加えて生成物を沈澱させる方法。(3) 同じく両原料および生成物が可溶性の溶媒中で反応させ、生成物の貧溶媒を加えるか、または反応溶媒を留去して生成物を沈澱させる方法。(4)同じく両原料および生成物が可溶性の溶媒中で反応させ、冷却することによって、生成物を析出させる方法等の一般的な結晶析出法が可能である。また、これらを組み合わせる事により、本発明の電荷移動錯体を得る事が出来る。 The charge transfer complex according to the present invention can be produced by the following method. (1) A method of precipitating a product by reacting a quinone compound and an electron donating compound in a solvent in which both are soluble and the resulting complex is insoluble or insoluble. (2) A method in which the raw material and the product of the quinone compound and the electron donating compound are reacted in a soluble solvent, and then the product is precipitated by adding a poor solvent of the product. (3) A method in which both raw materials and the product are reacted in a solvent in which both the raw materials and the product are soluble and the poor solvent of the product is added, or the reaction solvent is distilled off to precipitate the product. (4) Similarly, a common crystal precipitation method such as a method of precipitating the product is possible by reacting both raw materials and the product in a soluble solvent and cooling. Moreover, the charge transfer complex of this invention can be obtained by combining these.

上記の方法によって得られる化合物が単なる分子の混合物でなく、新規な電荷移動錯体である事は、生成物の吸収スペクトルが原料であるキノン系化合物と電子供与性物質の個々の吸収スペクトルの和ではなく、新しい吸収ピークの出現や、元々の個々の吸収ピークの消失によって原料の物質とは異なる物質であることを確認することが出来るが、本発明に係わる要件は、赤外線吸収スペクトルにおいて、1600〜1700cm−1に現れる、キノン基の伸縮振動に帰属する1600〜1700cm−1に現れる最も強い吸収ピーク位置の電荷移動錯体形成前後のシフト波数によって識別される。 The compound obtained by the above method is not a simple mixture of molecules but a novel charge transfer complex. The product absorption spectrum is the sum of the individual absorption spectra of the quinone compound and the electron donating substance. However, it can be confirmed that the substance is different from the raw material by the appearance of a new absorption peak or the disappearance of the original individual absorption peak. appears at 1700 cm -1, is identified by the strongest absorption shift wavenumber of about charge transfer complex formed of peak positions appearing in 1600~1700Cm -1 attributable to the stretching vibration of the quinone group.

以下、本発明の感光体の好適例の具体的構成について図面を参照しながら説明する。図1および図2は、感光体の各種構成例を示す模式的断面図である。 Hereinafter, a specific configuration of a preferred example of the photoreceptor of the present invention will be described with reference to the drawings. 1 and 2 are schematic cross-sectional views showing various configuration examples of the photoreceptor.

本発明の電荷移動錯体を電荷輸送物質として単層型感光体に適用する場合、電荷発生物質が分散された結着材溶液に本発明の電荷移動錯体を溶解させた電荷発生輸送塗布液を導電性基体の上に塗布・乾燥することによって単層型感光体が得られる。このとき、感光層の被膜の強度と電気的特性の観点から、感光層全固形分中の電荷移動錯体の含有率は30〜60重量%が好ましい。これ以上の含有率を増やすと感光層の被膜強度が弱くなる。また、これ以下の含有量では、電荷のホッピング距離が長くなることにより、移動度の低下が起こり、感度の低下や繰り返しでの残留電位の増加等により好ましくはない。また、電荷発生輸送層中の電荷発生剤の量は全固形分中の0.4〜2.5重量%が好ましい。 When the charge transfer complex of the present invention is applied to a single layer type photoreceptor as a charge transport material, a charge generation transport coating solution in which the charge transfer complex of the present invention is dissolved in a binder solution in which the charge generation material is dispersed is electrically conductive. A single layer type photoreceptor can be obtained by coating and drying on a conductive substrate. At this time, the content of the charge transfer complex in the total solid content of the photosensitive layer is preferably 30 to 60% by weight from the viewpoint of the strength of the coating of the photosensitive layer and the electrical characteristics. Increasing the content more than this decreases the film strength of the photosensitive layer. On the other hand, if the content is less than this, the hopping distance of the charge becomes long, so that the mobility is lowered, which is not preferable because the sensitivity is lowered or the residual potential is repeatedly increased. The amount of the charge generating agent in the charge generating / transporting layer is preferably 0.4 to 2.5% by weight in the total solid content.

また、導電性支持体/電荷発生層/電荷輸送物質を含有する電荷輸送層を順次積層してなる積層型感光体においては、電荷輸送物質としての電荷移動錯体の配合割合は、電荷輸送層の全固形分中の含有率は36〜60重量%が好ましい。 In addition, in a laminated type photoreceptor in which a conductive support / charge generation layer / charge transport layer containing a charge transport material is sequentially laminated, the blending ratio of the charge transfer complex as the charge transport material is as follows. The content in the total solid content is preferably 36 to 60% by weight.

また、上記の電荷発生輸送層や電荷輸送層には、本発明の電荷移動錯体の他に、公知の正孔輸送物質や電子移動物質を併用して含有させることも可能である。 In addition to the charge transfer complex of the present invention, the charge generation / transport layer and the charge transport layer may contain a known hole transport material or electron transfer material in combination.

また、上記の電荷発生輸送層や電荷輸送層は電荷キャリアを輸送できる限界があるので必要以上に膜厚を厚くすることは出来ないが、5〜40μm、特に10〜30μmの範囲が好ましい。 Further, the charge generation / transport layer and the charge transport layer have a limit of transporting charge carriers, and thus the film thickness cannot be increased more than necessary, but the range of 5 to 40 μm, particularly 10 to 30 μm is preferable.

また、本発明の電荷移動錯体は、電子輸送物質としての機能とは別に、光に対する安定剤としての機能も有する。本発明の電荷移動錯体をこのような光安定剤として用いる場合には、電子移動物質として用いる電荷移動錯体のキノン基のシフト波数が異なっている場合に、強くその効果を発揮する。そして、このような目的で使用する場合の添加量は、電荷輸送に関与する必要が無いことから、電子移動物質に対しての含有率は10重量%以下でも十分であり、実質的には0.5〜5重量%でも十分な効果が発揮される。 Further, the charge transfer complex of the present invention has a function as a stabilizer against light in addition to the function as an electron transport material. When the charge transfer complex of the present invention is used as such a light stabilizer, the effect is strongly exerted when the shift wave number of the quinone group of the charge transfer complex used as the electron transfer material is different. And since the addition amount in the case of using for such a purpose does not need to be concerned with charge transport, the content rate with respect to an electron transfer substance is sufficient even if it is 10 weight% or less, and is substantially 0 A sufficient effect is exhibited even at 5 to 5% by weight.

本発明に係わる電子写真感光体に用いられる電荷発生物質としては、1)モノアゾ、ビスアゾ、トリスアゾなどのアゾ系顔料(2)金属フタロシアニン、非金属フタロシアニンなどのフタロシアニン系顔料(3)インジゴ、チオインジゴなどのインジゴ系顔料(4)ペリレン酸無水物、ペリレン酸イミドなどのペリレン系顔料(5)アンスラキノン、ピレンキノンなどの多環キニン系顔料(6)スクワリリウム色素(7)ピリリウム塩、チオピリリウム塩類(8)トリフェニルメタン系色素(9)等の有機系電荷発生物質やセレン、非晶質シリコンなどの無機物系電荷発生物質を用いることが出来る。 Examples of the charge generating material used in the electrophotographic photoreceptor according to the present invention include 1) azo pigments such as monoazo, bisazo, trisazo, etc. (2) phthalocyanine pigments such as metal phthalocyanine and nonmetal phthalocyanine (3) indigo, thioindigo, etc. Indigo pigments (4) Perylene pigments such as perylene acid anhydrides and perylene imides (5) Polycyclic quinine pigments such as anthraquinone and pyrenequinone (6) Squalilium dyes (7) Pyryllium salts, thiopyrylium salts (8) Organic charge generation materials such as triphenylmethane dye (9) and inorganic charge generation materials such as selenium and amorphous silicon can be used.

本発明に係わる電子写真感光体に用いられる結着剤としては広範囲な結着性樹脂から選択でき、例えば、ポリカーボネート、ポリエステル、ポリアリレート、ブチラール樹脂、ポリスチレン、ポリビニルアセタール、ジアリルフタレート樹脂、アクリル樹脂、メタクリル樹脂、酢酸ビニル樹脂、フェノール樹脂、シリコン樹脂、ポリスルホン、スチレン−ブタジエン共重合体、アルキッド樹脂、エポキシ樹脂、尿素樹脂、塩化ビニル−酢酸ビニル共重合体などが挙げられるが、これらに限定されるものではない。これら樹脂は単独、また共重合体ポリマーとして1種または2種以上混合して用いてもよい。 The binder used in the electrophotographic photoreceptor according to the present invention can be selected from a wide range of binder resins, such as polycarbonate, polyester, polyarylate, butyral resin, polystyrene, polyvinyl acetal, diallyl phthalate resin, acrylic resin, Examples include, but are not limited to, methacrylic resin, vinyl acetate resin, phenol resin, silicone resin, polysulfone, styrene-butadiene copolymer, alkyd resin, epoxy resin, urea resin, vinyl chloride-vinyl acetate copolymer. It is not a thing. These resins may be used alone or in combination as a copolymer polymer.

更に、感光体中に酸化防止剤、紫外線吸収剤、可塑剤、シリコーンオイル等の潤滑剤を必要に応じて添加することもできる。 Further, a lubricant such as an antioxidant, an ultraviolet absorber, a plasticizer, or silicone oil can be added to the photoreceptor as necessary.

本発明に係わる電子写真感光体で用いることができる導電性基板としては、アルミニウム、ニッケル、銅、ステンレス等の金属板、金属ドラムまたは金属箔、アルミニウム、酸化錫、ヨウ化銅の薄膜を塗布したプラスチックフィルムあるいはガラス等が挙げられる。また、これらの導電性基板の表面にはアルマイトや樹脂製のブロッキング層(中間層)が設けられてもよい。 As a conductive substrate that can be used in the electrophotographic photoreceptor according to the present invention, a metal plate such as aluminum, nickel, copper, and stainless steel, a metal drum or metal foil, a thin film of aluminum, tin oxide, and copper iodide was applied. A plastic film, glass, etc. are mentioned. Further, an alumite or resin blocking layer (intermediate layer) may be provided on the surface of these conductive substrates.

単層型感光体の電荷発生輸送層や積層型感光体の電荷輸送層を形成する際は、適当な有機溶媒を用い、ディップコーティング法、スプレーコーティング法、スピンナーコーティング法、ローラーコーティング法、マイヤーバーコーティング法、ブレードコーティング法などのコーティング法を用いて行うことができる。 When forming a charge generation / transport layer of a single layer type photoreceptor or a charge transport layer of a multilayer type photoreceptor, an appropriate organic solvent is used, and a dip coating method, a spray coating method, a spinner coating method, a roller coating method, a Meyer bar A coating method such as a coating method or a blade coating method can be used.

以下、本発明の電荷移動錯体の合成例と、感光体への適用結果を実施例に基づき具体的に説明する。 Hereinafter, a synthesis example of the charge transfer complex of the present invention and a result of application to a photoreceptor will be specifically described based on examples.

(電荷移動錯体の合成例)キノン化合物(I1)の27.6重量部(0.1モル部)と正孔輸送物質(II1)の28.6重郎部(0.05モル部)を加熱したテトラヒドロフラン200部に攪拌しながら完全に溶解した後、ロータリーエバポレータで減圧下、溶剤を蒸発させながら析出してくる初期の約10重量%の結晶と残母液に含まれる約10重量%の結晶を除いた析出結晶を濾過した後、冷却したメタノールで洗浄後、乾燥して、(I1)と(II1)のモル比が2/1の電荷移動錯体化合物である電荷移動錯体(CT1)を得た。 (Synthesis Example of Charge Transfer Complex) 27.6 parts by weight (0.1 mole part) of the quinone compound (I1) and 28.6 parts by weight (0.05 mole part) of the hole transport material (II1) were heated. After completely dissolving with stirring in 200 parts of tetrahydrofuran, remove about 10% by weight of the initial crystals and about 10% by weight of crystals contained in the residual mother liquor, while precipitating while evaporating the solvent under reduced pressure on a rotary evaporator. The precipitated crystals were filtered, washed with cooled methanol, and dried to obtain a charge transfer complex (CT1) which is a charge transfer complex compound having a molar ratio of (I1) to (II1) of 2/1.

さらに、(CT1)の合成法と同様にして、キノン系化合物の(I1)、(I2)、(I3)、および比較例に用いる(Ia1)、(Ia2)と正孔輸送物質の(II1)〜(II9)を表3の組合せで、電荷移動錯体の(CT2)〜(CT20)、比較に用いる(NCT1)、(NCT2)を得た。 Further, in the same manner as the synthesis method of (CT1), (I1), (I2), (I3) of the quinone compounds and (Ia1), (Ia2) used for the comparative examples and (II1) of the hole transport material -(II9) were combined in Table 3 to obtain (CT2) to (CT20) of charge transfer complexes, and (NCT1) and (NCT2) used for comparison.

(分析・評価)得られた電荷移動錯体の元素分析値はほぼ理論計算値と一致していた。これらの電荷移動錯体の中で、電荷移動錯体(CT1)とその原料である(I1)、(II1)、および電荷移動錯体(CT11)とその原料である(I2)、(II2)の赤外線吸収スペクトルと主要吸収ピーク位置を図3、図4、表1に示す。図3,図4、表1からもわかるように、形成された電荷移動錯体のピーク位置や相対強度は原料とは異なっている。また、原料の赤外線吸収スペクトル強度の合成和でもないことから、原料のキノン化合物は別の物質(電荷移動錯体)に変化している事が確認された。 (Analysis / Evaluation) Elemental analysis values of the obtained charge-transfer complex almost coincided with theoretical calculation values. Among these charge transfer complexes, infrared absorption of the charge transfer complex (CT1) and its raw materials (I1) and (II1), and the charge transfer complex (CT11) and its raw materials (I2) and (II2) The spectrum and main absorption peak positions are shown in FIGS. As can be seen from FIGS. 3, 4, and Table 1, the peak position and relative intensity of the formed charge transfer complex are different from those of the raw material. Moreover, since it was not the synthetic sum of the infrared absorption spectrum intensity of a raw material, it was confirmed that the quinone compound of the raw material has changed into another substance (charge transfer complex).

また、本発明で特徴とする、キノン(C=Oの伸縮振動)の電荷移動錯体形成前と形成後の吸収位置は(CT1)では1646.91cm−1から1650.77cm−1に変化している。また、(CT11)では1606.41cm−1から1612.2cm−1に変化しており、それぞれ3.86cm−1、5.79cm−1高波数シフトしていたことからも新しい物質に変化している事が示された。ここで、(CT1)〜(CT20)、(NCT1)、(NCT2)でのまとめた結果表2に示す。 Also features in the present invention, the absorption position after forming the charge transfer complex formed prior to the quinone (stretching vibration of C = O) is changed to 1650.77Cm -1 from 1646.91Cm -1 in (CT1) Yes. Moreover, changes are changing (CT11) in the 1606.41Cm -1 to 1612.2Cm -1, respectively 3.86Cm -1, the new substance from the fact that has been shifted 5.79Cm -1 wavenumber It was shown that Here, the summarized results in (CT1) to (CT20), (NCT1), and (NCT2) are shown in Table 2.

Figure 2005121727
Figure 2005121727

Figure 2005121727
注)CT:電荷移動錯体
Figure 2005121727
Note) CT: Charge transfer complex

上記で得られた電荷移動錯体を電子移動物質として感光体を作成して、その効果を調べた。尚、本発明の感光体の内容に係わる評価は次の方法によって行った。 A photoconductor was prepared using the charge transfer complex obtained above as an electron transfer material, and the effect was examined. The evaluation relating to the content of the photoreceptor of the present invention was performed by the following method.

(基本電気特性評価)電子写真感光体の基本電気特性は、表面電位が600Voltになるようにコロナ帯電器を調整した後、帯電→5秒暗所放置→5秒間露光(780nmに調整された光強度1μW光)を1サイクルとして、これを繰り返し10000サイクル行い、表面電位(Vo)、帯電保持率(Vk5)、感度(E1/2)、残留電位(Vr)の変化を測定した。ここで、Voは帯電直後の表面電位、帯電保持率(Vk)は帯電直後の表面電位(Vo)から5秒後の露光直前までの表面電位の保持率であり、感度(E1/2)は露光直前の表面電位が1/2とするに必要な露光エネルギー、また、残留電位(Vr)は5秒露光後の表面電位である。また、参考値として、ブラザー社のレーザープリンター(HL1060)に使用されている単層型正帯電感光体を比較として用いた。 (Evaluation of basic electrical characteristics) The basic electrical characteristics of the electrophotographic photosensitive member are as follows: after adjusting the corona charger so that the surface potential is 600 Volt, charging → 5 seconds exposure in the dark → 5 seconds exposure (light adjusted to 780 nm) An intensity of 1 μW light) was taken as one cycle, and this was repeated for 10,000 cycles, and changes in surface potential (Vo), charge retention (Vk5), sensitivity (E1 / 2), and residual potential (Vr) were measured. Here, Vo is the surface potential immediately after charging, the charge retention rate (Vk) is the surface potential retention rate from the surface potential (Vo) immediately after charging to just before the exposure after 5 seconds, and the sensitivity (E1 / 2) is The exposure energy required to reduce the surface potential immediately before exposure to ½, and the residual potential (Vr) are the surface potential after exposure for 5 seconds. Further, as a reference value, a single-layer positively charged photoreceptor used in a Brother laser printer (HL1060) was used as a comparison.

(光劣化耐久性特性)光による感光体劣化の耐久性は、感光体表面の一部を黒紙で光遮蔽した感光体に1000luxの蛍光灯光を1時間、露光する。この感光体を正帯電用レーザープリンター(ブラザー工業(株)製HL−1060改造機)で2000枚印字を行い、露光部分と黒紙による非露光部分の画像濃度差から感光体の光劣化に対する耐久性を評価した。 (Photodegradation durability characteristics) The durability of photoconductor degradation due to light is obtained by exposing a photoconductor with a portion of the surface of the photoconductor light-shielded with black paper to 1000 lux fluorescent light for 1 hour. This photoconductor was printed 2000 sheets with a positively charged laser printer (manufactured by Brother Industries, Ltd. HL-1060) and durability against photodegradation of the photoconductor due to the difference in image density between the exposed portion and the non-exposed portion due to black paper. Sex was evaluated.

(積層型感光体の作成と評価)
比較例1:テトラヒドロフランにポリビニルブチラール樹脂50重量部とX型無金属フタロシアニン50重量部を溶解分散させた電荷発生層液を表面がアルマイト加工された円筒状アルミニウム素管の上にディップコーティング法により塗布・乾燥し、厚さ0.2μmの電荷発生層を形成した後、その上に、テトラヒドロフラン500重量部にポリカーボネート樹脂55重量部と電荷輸送物質として比較化合物(NCT1)を45重量部を溶解させた電荷輸送層液をディップコーティング法により塗布した後、乾燥し、17μmの電荷輸送層からなる積層型感光体(感比1)を作成した。
(Production and evaluation of multilayer photoconductor)
Comparative Example 1: A charge generation layer solution in which 50 parts by weight of polyvinyl butyral resin and 50 parts by weight of X-type metal-free phthalocyanine are dissolved and dispersed in tetrahydrofuran is applied onto a cylindrical aluminum base tube whose surface is anodized by dip coating. After drying to form a 0.2 μm thick charge generation layer, 55 parts by weight of a polycarbonate resin and 45 parts by weight of a comparative compound (NCT1) as a charge transport material were dissolved in 500 parts by weight of tetrahydrofuran. The charge transport layer solution was applied by a dip coating method and then dried to prepare a laminated photoreceptor (sensitivity ratio 1) composed of a 17 μm charge transport layer.

比較例2:比較例1の電荷輸送物質(NCT1)45重量部を(NCT2)45重量部に置き換えて、実施例と同じ膜厚構成の積層型感光体(感比2)を作成した。 Comparative Example 2: A multilayer photoreceptor (sensitivity ratio 2) having the same film thickness as that of the example was prepared by replacing 45 parts by weight of the charge transport material (NCT1) of Comparative Example 1 with 45 parts by weight of (NCT2).

実施例1:テトラヒドロフランにポリビニルブチラール樹脂50重量部とX型無金属フタロシアニン50重量部を溶解分散させた電荷発生層液を表面がアルマイト加工された円筒状アルミニウム素管の上にディップコーティング法により塗布、乾燥し、厚さ0.2μmの電荷発生層を形成した後、その上に、テトラヒドロフラン500重量部にポリカーボネート樹脂55重量部と電荷輸送物質(I1)を45重量部(0.04モル部)を溶解させた電荷輸送層液(0.04(電荷輸送物質モル部)/全固形分100重量部)をディップコーティング法により塗布した後、乾燥し、17μmの電荷輸送層からなる積層型感光体(感1A)を作成した。 Example 1: A charge generation layer solution in which 50 parts by weight of polyvinyl butyral resin and 50 parts by weight of X-type metal-free phthalocyanine are dissolved and dispersed in tetrahydrofuran is applied to a cylindrical aluminum tube whose surface is anodized by dip coating. After drying and forming a 0.2 μm thick charge generation layer, 500 parts by weight of tetrahydrofuran and 55 parts by weight of polycarbonate resin and 45 parts by weight (0.04 mole part) of the charge transport material (I1) are formed thereon. A charge transport layer solution (0.04 (charge transport material mole part) / 100 parts by weight of total solids) in which lysate is applied is applied by a dip coating method, dried, and a laminated photoreceptor comprising a 17 μm charge transport layer (Feel 1A) was created.

次に、電荷移動錯体と出発材料のキノン系化合物との分子当たりの電荷輸送能力を比較するために、電荷輸送層組成の電荷輸送物質モル部/全固形分重量部が等しくなるように(感1A)の(CT1)を(CT1)の出発材料である(I1)22.9重量部(0.04モル部)とポリカーボネート77.1重量部からなるテトラヒドロフラン溶液を(感1A)と同じ電荷発生層上に17μmの電荷輸送層からなる比較積層型感光体(感比1A) Next, in order to compare the charge transport capability per molecule of the charge transfer complex and the quinone compound of the starting material, the charge transport material mole parts / total solids weight parts of the charge transport layer composition should be equal (sensitivity). 1A) (CT1) is a starting material of (CT1) (I1) A tetrahydrofuran solution consisting of 22.9 parts by weight (0.04 moles) and 77.1 parts by weight of polycarbonate is the same charge generation as (Sensitive 1A) Comparative laminate type photoreceptor comprising a charge transport layer of 17 μm on the layer (sensitivity 1A)

次に、(感1A)の電荷輸送層組成の電荷輸送物質(CT1)の1重量部の(CT20)を添加剤成分として、(感1A)の電荷輸送層液に添加した液を(感1A)と同じ電荷発生層上に乾燥膜厚が17μmにした積層型感光体(感1B)を作成し、これらの感光体、感比1、感比2,感1A,感比1A、感1Bについて、電子写真基本電気特性と光化学的な光劣化耐久性を調べた。 Next, a solution obtained by adding 1 part by weight of (CT20) of the charge transport material (CT1) having the charge transport layer composition of (Sense 1A) to the charge transport layer solution of (Sense 1A) (Sense 1A) ) On the same charge generation layer as in (1), a laminated type photoconductor (sensitivity 1B) is prepared, and the photosensitivity, sensitivity ratio 1, sensitivity ratio 2, sensitivity 1A, sensitivity ratio 1A, and sensitivity 1B are prepared. Electrophotographic basic electrical characteristics and photochemical photodegradation durability were investigated.

(実施例2〜20)実施例1の感1A、感比1A、感1Bの感光体の電荷発生材料、電荷輸送材料および添加剤を表3に記載する構成材料に置き換えて、(感1A)、(感比1A)、(感1B)と同じ条件で感光体(感2A)〜(感20A)、(感比2A)〜(感比20A)、(感2B)〜(感20B)を作成した。 (Examples 2 to 20) The charge generating material, charge transporting material, and additive of the photosensor of Example 1 with Sensitivity 1A, Sensitivity 1A, and Sensitivity 1B were replaced with the constituent materials shown in Table 3 (Sense 1A). , (Sensitivity 1A), (Sensitivity 2B), (Sensitivity 2A) to (Sensitivity 20A), (Sensitivity 2A) to (Sensitivity 20A), (Sensitivity 2B) to (Sensitivity 20B) are created. did.

上記で作成した、(感1A)〜(感20A)の全てに於いて、電荷輸送層での結晶化は起こらなかった。一方、実施例1の(感1A)における電荷輸送物質を同重量部(45重量部)のI1、I2、I3に置き換えたものは、全て、電荷輸送層にI1、I2、I3が析出し、感光体としての評価が出来ないものであった。 In all of (Sense 1A) to (Sense 20A) prepared above, crystallization in the charge transport layer did not occur. On the other hand, in the case where the charge transport material in Example 1 (Sense 1A) was replaced with the same parts by weight (45 parts by weight) of I1, I2, and I3, I1, I2, and I3 were all deposited in the charge transport layer, Evaluation as a photoconductor was not possible.

Figure 2005121727
注)TiOPc=チタニルフタロシアニン、H2Pc=X型無金属フタロシアニン
Figure 2005121727
Note) TiOPc = titanyl phthalocyanine, H2Pc = X-type metal-free phthalocyanine

(評価)実施例で作成された感光体の電気特性の代表例を表3に示す。
表3の(感1A)と(感比1)、(感比2)、(感3A)の結果から分かるように、1600〜1700cm−1のキノンの吸収が3cm−1以下のものは、初期特性が悪く、さらに、繰り返し特性も電位変動が大きく、実使用には適さないものであった。
(Evaluation) Table 3 shows typical examples of the electrical characteristics of the photoreceptors prepared in the examples.
Table 3 (the sensitive 1A) (sensitive ratio 1), (sensitive ratio 2), as can be seen from the results of (sensitive 3A), the absorption of quinones 1600~1700Cm -1 is 3 cm -1 following are the initial The characteristics were poor, and further, the repetition characteristics had large potential fluctuations and were not suitable for actual use.

また、電荷移動錯体と出発材料のキノン系分子との分子当たりの電荷輸送能の比較である(感1A)と(感比1A)との比較において、(感比1A)は初期感度、帯電保持率、残留電位の全てが(感1A)に劣る他に、繰り返しにより、感度の低下と残留電位の上昇が認められ、実使用には適さないものであり、一分子当たりの電荷輸送能は電荷移動錯体が出発材料のキノン系分子より優れており、優れた特性の感光体を得ることが出来ることが示された。 In addition, in comparison of (sensitivity 1A) and (sensitivity ratio 1A), which is a comparison of charge transport capacity per molecule between the charge transfer complex and the quinone-based molecule of the starting material, (sensitivity ratio 1A) is the initial sensitivity, charge retention. In addition to being inferior to (sensitivity 1A) in all of the ratio and residual potential, a decrease in sensitivity and an increase in residual potential were observed due to repetition, which is not suitable for practical use. It was shown that the transfer complex is superior to the quinone molecule as a starting material, and a photoreceptor having excellent characteristics can be obtained.

また、電荷輸送材料が単一成分である(感1A)はレーザープリンターの初期画像では光照射痕の影響は目立たない程度のものであったが、ランニングを繰り返すに伴って、光を照射した部分と非照射部分の濃度差が顕著となったのに対して、(感1B)は初期画像、および1000枚コピー後の画像においても全く光照射痕は認められず、本発明の電荷移動錯体が優れた光安定剤であることが示された。 In addition, the charge transport material is a single component (feeling 1A), but the effect of light irradiation traces was inconspicuous in the initial image of the laser printer, but the portion irradiated with light as the running was repeated The difference in density between the non-irradiated part and the non-irradiated part became remarkable, but (Sensitive 1B) showed no light irradiation marks in the initial image and the image after 1000 copies, and the charge transfer complex of the present invention It has been shown to be an excellent light stabilizer.

また、実施例2〜実施例20においても、全て、電荷移動錯体の電子移動剤は電荷移動錯体形成前のキノン系化合物から作られた感比1Aに相当する感比2A〜感比20Aは繰り返しにより、全て感度低下と残留電位の増加が感1Aと同様な結果となったのに対して、感2A〜感20Aは繰り返しによる電気特性の変化はほとんど認められなかった。これらの結果から、キノン系化合物よりも本発明の電荷移動錯体が1分子当たりの電荷輸送能が優れたものであることが示された。 Also in Examples 2 to 20, all of the charge transfer complex electron transfer agents have a sensitivity ratio 2A to a sensitivity ratio 20A corresponding to a sensitivity ratio 1A made from a quinone compound before formation of the charge transfer complex. As a result, the decrease in sensitivity and the increase in the residual potential were the same as those of the feeling 1A, whereas the feeling 2A to the feeling 20A showed almost no change in electrical characteristics due to repetition. From these results, it was shown that the charge transfer complex of the present invention was superior in charge transport capability per molecule than the quinone compound.

Figure 2005121727
Figure 2005121727

(単層型感光体の作成と評価)
比較例3:テトラヒドロフラン600重量部に54重量部のポリカーボネートが溶解したテトラヒドロフラン溶液にX型無金属フタロシアニン1重量部をボールミルで分散させた液に電荷輸送物質として、比較化合物(NCT1)を45重量部を溶解させた電荷発生輸送層液を表面がアルマイト加工された円筒状アルミニウム素管の上にディップコーティング法により塗布・乾燥し、厚さ22μmの電荷発生輸送層からなる単層型感光体(感比3)を作成した。
(Production and evaluation of single-layer type photoreceptor)
Comparative Example 3: 45 parts by weight of a comparative compound (NCT1) was used as a charge transport material in a solution obtained by dispersing 1 part by weight of an X-type metal-free phthalocyanine in a tetrahydrofuran solution in which 54 parts by weight of polycarbonate was dissolved in 600 parts by weight of tetrahydrofuran. The charge generation and transport layer solution in which the solution is dissolved is coated and dried on a cylindrical aluminum base tube whose surface is anodized by the dip coating method, and a single layer type photoconductor comprising a charge generation and transport layer having a thickness of 22 μm (photosensitive layer). A ratio 3) was created.

比較例4:比較例3の単層型感光体(感比3)の電荷輸送物質(NCT1)を同重量部の(NCT2)に置き換えた単層型感光体(感比4)を作成した。 Comparative Example 4: A single layer type photoreceptor (sensitivity ratio 4) was prepared by replacing the charge transport material (NCT1) of the single layer type photoreceptor (sensitivity ratio 3) of comparative example 3 with the same weight part of (NCT2).

実施例21:テトラヒドロフラン600重量部に54重量部のポリカーボネートが溶解したテトラヒドロフラン溶液に電荷発生物質のX型無金属フタロシアニン1重量部をボールミルで分散させた液に電荷輸送物質として、電荷移動錯体()化1を45重量部を溶解させた電荷発生輸送液を表面がアルマイト加工された円筒状アルミニウム素管の上にディップコーティング法により塗布・乾燥し、厚さ22μmの電荷発生輸送層を形成し、単層型感光体(単感21A)を作成した。得られた感光体は結晶化のない優れた外観であった。 Example 21: Charge transfer complex () as a charge transport material in a solution obtained by dispersing 1 part by weight of an X-type metal-free phthalocyanine as a charge generation material in a tetrahydrofuran solution in which 54 parts by weight of polycarbonate is dissolved in 600 parts by weight of tetrahydrofuran A charge generation and transport liquid in which 45 parts by weight of Chemical Formula 1 is dissolved is applied and dried on a cylindrical aluminum base tube whose surface is anodized by a dip coating method to form a charge generation and transport layer having a thickness of 22 μm. A single layer type photoreceptor (single sensitivity 21A) was prepared. The obtained photoreceptor had an excellent appearance without crystallization.

次に、単感21Aの電荷発生輸送液組成に添加剤としてCT10を0.5重量部を更に加えた電荷発生輸送液を上記感光体(単感21A)と同様にして、単層型感光体(単感21B)を作成した。 Next, a charge generation and transport liquid obtained by further adding 0.5 parts by weight of CT10 as an additive to the charge generation and transport liquid composition of the single sensitivity 21A is treated in the same manner as the above photoreceptor (single sensitivity 21A). (Single sense 21B) was created.

実施例22−40:実施例21感光体の単感21Aでの電荷発生物質、電荷輸送物質を表2の実施例22から実施例40の電荷発生物質、電荷輸送物質に置き換えて単感22A〜単感40A、また、単感21Bに相当する単感22B〜単感40Bにおいては、表2の電荷移動錯体の添加剤0.5重量部を単感21Bと同様にして作成した。 Examples 22 to 40: Example 21 The charge generating substance and the charge transporting substance in the photosensitive element 21A are replaced with the charge generating and charge transporting substances in Examples 22 to 40 in Table 2 to obtain the single feeling 22A to 22A. In the senses 40A and the senses 22B to 40B corresponding to the senses 21B, 0.5 parts by weight of the charge transfer complex additive shown in Table 2 was prepared in the same manner as the senses 21B.

実施例21〜40で作成された単層型感光体の電気特性を表4に示す。尚、光による安定化のために加えられた添加剤としての異なるキノン吸収シフト波数の電荷移動錯体の有無(単感Aと単感B)による電気特性はほぼ同じ値であった。 Table 4 shows the electrical characteristics of the single layer type photoreceptors prepared in Examples 21 to 40. In addition, the electrical property by the presence or absence (single-sensitivity A and single-sensitivity B) of the charge transfer complex of a different quinone absorption shift wave number as an additive added for the stabilization by light was a substantially the same value.

(単層型感光体の評価)表4の結果から、単感21Aと比べて、1600〜1700cm−1のキノンのシフト吸収波数が3cm−1以下の電荷移動錯体から作られた感比3,感比4、単感23A感等の感光体はシフト波数が3cm−1以上の電荷移動錯体から作られた単層型感光体に対して、帯電保持率(Vk)感度(E1/2)、残留電位(Vr)等の初期特性が劣っている。更に、10000回の繰り返し使用によって、帯電保持率(Vk)感度(E1/2)、残留電位(Vr)特性も大きく変動していることと、参考資料として用いた、レーザープリンターHL1060に用いられているジフェノキノンと正孔輸送剤を用いた単層型感光体に対しても帯電保持率(Vk)、感度(E1/2)、残留電位(Vr)および繰り返し特性が優れていることから、本発明の電荷移動錯体が優れた電子輸送能を有する電子移動物質であることが示された。 From the results of Table 4 (Evaluation of a single layer type photosensitive member), as compared to the single sense 21A, sensitive ratio of 3 to shift the absorption wave number of quinones 1600~1700Cm -1 it was made from 3 cm -1 or less of the charge transfer complex, A photosensitive member having a sensitivity ratio of 4, a single sensitivity of 23A, and the like has a charge retention rate (Vk) sensitivity (E1 / 2), compared to a single layer type photosensitive member made of a charge transfer complex having a shift wave number of 3 cm −1 or more. Initial characteristics such as residual potential (Vr) are inferior. Furthermore, the charge retention rate (Vk) sensitivity (E1 / 2) and residual potential (Vr) characteristics are greatly changed by 10,000 repeated use, and it is used for the laser printer HL1060 used as a reference material. The present invention also has excellent charge retention (Vk), sensitivity (E1 / 2), residual potential (Vr), and repeatability with respect to a single-layer type photoreceptor using diphenoquinone and a hole transport agent. It has been shown that the charge transfer complex is an electron transfer material having an excellent electron transport ability.

更に、温度35℃湿度90%の高温高湿時の環境での光疲労耐性について実施例21の単感21Aと単感21Bを比べると、単感21Aは初期画像において光疲労痕を生じる、実機でランニングするとこの光疲労痕は更に強調されるが、単感21Bは初期画像および実機ランニング後の画像にも光疲労痕は生じなかった。また、実施例22〜40における単感22B〜40Bにおいても、光疲労痕は生じない、光に対して優れた耐性を有する感光体であった。 Further, when comparing the light sensitivity 21A and the light sensitivity 21B of Example 21 with respect to light fatigue resistance in an environment of high temperature and high humidity at a temperature of 35 ° C. and a humidity of 90%, the light sensitivity 21A causes light fatigue marks in the initial image. This fatigue fatigue mark is further emphasized when running on, but no light fatigue trace was observed in the initial image and the image after running the actual machine. In addition, even in the single senses 22B to 40B in Examples 22 to 40, the photoconductor was excellent in resistance to light without causing light fatigue marks.

Figure 2005121727
Figure 2005121727

光に対して安定であることから、感光体の製造時や交換時に、遮光の必要性がない。また、正帯電用である事から、有害なオゾンを減らす事が出来る事から、より安全な環境と信頼性の高い画像が求められるオフィスおよびホームユースのレーザープリンターへの適用が可能である。   Since it is stable to light, there is no need for light shielding during manufacture or replacement of the photoreceptor. In addition, since it is for positive charging, harmful ozone can be reduced, so it can be applied to office and home use laser printers that require a safer environment and more reliable images.

単層型電子写真感光体の模式図Schematic diagram of single-layer type electrophotographic photoreceptor 積層型電子写真感光体の模式図Schematic diagram of multilayer electrophotographic photoreceptor 合成例の電荷移動錯体(CT1)、原料(I1,II1)の赤外線吸収スペクトル比較図Infrared absorption spectrum comparison chart of charge transfer complex (CT1) and raw materials (I1, II1) of synthesis example 合成例の電荷移動錯体(CT11)、原料(I2,II2)の赤外線吸収スペクトル比較図Infrared absorption spectrum comparison chart of charge transfer complex (CT11) and raw material (I2, II2) of synthesis example

符号の説明Explanation of symbols

1 導電性基体
2 ブロッキング層(中間層)
3 電荷発生層
4 電荷輸送層
5 電荷発生輸送層
1 Conductive substrate 2 Blocking layer (intermediate layer)
3 Charge Generation Layer 4 Charge Transport Layer 5 Charge Generation Transport Layer

Claims (4)

導電性基体上に電荷発生物質および電荷輸送物質を含有する感光層を設けた電子写真感光体に於いて、該電荷輸送物質が電子吸引性分子であるキノン系化合物と電子供与性分子である正孔輸送化合物とで形成される下記一般式Iで示される電荷移動錯体の赤外吸収スペクトルのキノン構造に帰属する1600〜1700cm−1に現れる最も強い吸収ピーク位置が電荷移動錯体形成前のキノン系化合物に比して3cm−1以上高波数シフトした電荷移動錯体である事を特徴とする電子写真感光体。
Figure 2005121727
ただし、式中Dは正孔輸送化合物を示し、Xは酸素原子、もしくは一般式(II)もしくは(III)を示し、R1〜R14は同じでも異なっていてもよい水素原子、ハロゲン原子、アルキル基、アラルキル基またはアルコキシ基を示す。また、nは1もしくは2の整数である。
In an electrophotographic photosensitive member in which a photosensitive layer containing a charge generating material and a charge transport material is provided on a conductive substrate, the charge transport material is a quinone compound that is an electron-withdrawing molecule and a positive compound that is an electron-donating molecule. The strongest absorption peak appearing at 1600-1700 cm −1 belonging to the quinone structure of the infrared absorption spectrum of the charge transfer complex represented by the following general formula I formed with the pore transport compound is a quinone system before the charge transfer complex is formed. An electrophotographic photosensitive member, characterized in that it is a charge transfer complex shifted by a high wave number by 3 cm -1 or more as compared with a compound.
Figure 2005121727
In the formula, D represents a hole transport compound, X represents an oxygen atom, or general formula (II) or (III), and R1 to R14 may be the same or different from each other, a hydrogen atom, a halogen atom, or an alkyl group. Represents an aralkyl group or an alkoxy group. N is an integer of 1 or 2.
請求項1の電子写真感光体において、該電荷輸送物質が請求項1の電荷移動錯体における赤外吸収スペクトルのシフト波数が異なる電荷移動錯体を2種以上含む組成物であることを特徴とする電荷移動錯体組成物。 The electrophotographic photoreceptor according to claim 1, wherein the charge transport material is a composition containing two or more charge transfer complexes having different shift wave numbers of infrared absorption spectra in the charge transfer complex according to claim 1. Transfer complex composition. 請求項1および請求項2における電子写真感光体が導電性基体/電荷発生層/電荷輸送層の順に積層されていることを特徴とする正帯電積層型電子写真感光体。 3. A positively charged layered electrophotographic photoreceptor, wherein the electrophotographic photoreceptor according to claim 1 and 2 is laminated in the order of a conductive substrate / charge generation layer / charge transport layer. 請求項1および請求項2における電子写真感光体が電荷発生物質と電荷輸送物質が同一層にあることを特徴とする正帯電単層型電子写真感光体。

3. A positively charged single layer type electrophotographic photosensitive member according to claim 1, wherein the charge generating material and the charge transporting material are in the same layer.

JP2003353915A 2003-10-14 2003-10-14 Electrophotographic photoreceptor Pending JP2005121727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003353915A JP2005121727A (en) 2003-10-14 2003-10-14 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003353915A JP2005121727A (en) 2003-10-14 2003-10-14 Electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JP2005121727A true JP2005121727A (en) 2005-05-12

Family

ID=34612062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003353915A Pending JP2005121727A (en) 2003-10-14 2003-10-14 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2005121727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205037A (en) * 2008-02-29 2009-09-10 Kyocera Mita Corp Single-layer electrophotographic photoreceptor and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205037A (en) * 2008-02-29 2009-09-10 Kyocera Mita Corp Single-layer electrophotographic photoreceptor and image forming apparatus

Similar Documents

Publication Publication Date Title
US4665000A (en) Photoresponsive devices containing aromatic ether hole transport layers
JP2718048B2 (en) Charge transport agent for electrophotographic photosensitive member and electrophotographic photosensitive member
JPH0664351B2 (en) Photoconductive imaging member containing an alkoxyamine charge transfer molecule
JP2007248946A (en) Electrophotographic photoreceptor and image forming apparatus
JP4316634B2 (en) Electrophotographic photosensitive member containing enamine compound, image forming apparatus provided with the same, enamine compound and method for producing the same
JPH01134457A (en) Electrophotographic sensitive body
JP4134200B2 (en) Electrophotographic photoreceptor and image forming apparatus
JPH01134462A (en) Electrophotographic sensitive body
US5004662A (en) Electrophotographic photosensitive material containing m-phenylenediamine compound
JP2005121727A (en) Electrophotographic photoreceptor
JP3623662B2 (en) Electrophotographic photoreceptor
JP4779850B2 (en) Electrophotographic photoreceptor and image forming apparatus
JP2008134406A (en) Electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor
JP3725981B2 (en) Electrophotographic photoreceptor
EP0449565A1 (en) Photosensitive material for electrophotography
JPH06148917A (en) Electrophotographic sensitive body
JP5309122B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JP3433582B2 (en) Electrophotographic photoreceptor
JP3619668B2 (en) Electrophotographic photoreceptor
JP2000219689A (en) Dinitroantholinimide derivative and electrophotographic sensitizer using the same
JP4330592B2 (en) Electrophotographic photosensitive member and image forming apparatus
JP3577853B2 (en) Electrophotographic photoreceptor
JPH03290665A (en) Electrophotographic sensitive body
JPH02285357A (en) Electrophotographic sensitive body
JPH06273950A (en) Electrophotographic sensitive body