JP2005121430A - Liquid concentration detector, and fuel supply system for fuel cell equipped with the same - Google Patents

Liquid concentration detector, and fuel supply system for fuel cell equipped with the same Download PDF

Info

Publication number
JP2005121430A
JP2005121430A JP2003355199A JP2003355199A JP2005121430A JP 2005121430 A JP2005121430 A JP 2005121430A JP 2003355199 A JP2003355199 A JP 2003355199A JP 2003355199 A JP2003355199 A JP 2003355199A JP 2005121430 A JP2005121430 A JP 2005121430A
Authority
JP
Japan
Prior art keywords
liquid
fuel cell
fuel
ultrasonic wave
mixed liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003355199A
Other languages
Japanese (ja)
Inventor
Shin Kiuchi
慎 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2003355199A priority Critical patent/JP2005121430A/en
Publication of JP2005121430A publication Critical patent/JP2005121430A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a mixing condition of a liquid mixture with local nonuniformity estimated as a cause. <P>SOLUTION: This detector is provided with a liquid concentration sensor 31 for measuring a concentration of the liquid mixture mixed with liquids different in dielectric constants, by detecting a dielectric constant of the liquid mixture, and an ultrasonic transducer 32 provided in a flow passage 14 for the liquid mixture to irradiate the liquid mixture with an ultrasonic wave, and measures the concentration of the liquid mixture irradiated with the ultrasonic wave from the ultrasonic transducer 32. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、たとえば液体燃料を用いて作動する燃料電池の液体燃料濃度のように、混合液体の液体濃度(混合割合)を検出する液体濃度検出装置及びこれを備えた燃料電池の燃料供給装置に関するものである。   The present invention relates to a liquid concentration detection device that detects a liquid concentration (mixing ratio) of a mixed liquid, such as a liquid fuel concentration of a fuel cell that operates using liquid fuel, and a fuel supply device for a fuel cell including the same. Is.

近年、たとえばPDA(電子手帳)、コンピュータ、携帯電話など、小型で持ち運べる情報機器の利用形態を総称して「モバイル」と呼び、さらには、このような利用形態の機器類を総称して「モバイル機器」という用語が広く用いられている。このようなモバイル機器においては、その機能が年々増加して電源(電池)に対する要求も厳しいものとなっている。しかしながら、現在の主流であるリチウムイオン電池等の電池類は、モバイル機器側の進化に追いついていないのが現状であり、小型で寿命の長い電源の開発が求められている。   In recent years, usage forms of small and portable information devices such as PDAs (electronic notebooks), computers, mobile phones and the like are collectively referred to as “mobile”, and devices of such usage forms are collectively referred to as “mobile”. The term “equipment” is widely used. In such a mobile device, its functions are increasing year by year, and the demand for a power source (battery) has become severe. However, the current mainstream batteries, such as lithium ion batteries, have not caught up with the evolution of mobile devices, and there is a need for the development of small and long-life power supplies.

このような背景から、モバイル機器の機能強化に対応し、しかも、長時間駆動を可能にする将来的に有望な電源として燃料電池が注目され、その実用化に向けた研究開発が鋭意進められている。
現在、燃料電池にはいくつかの種類があり、上述したモバイル機器用の燃料電池としては、メタノールを直接燃料として使用する直接メタノール型燃料電池(DMFC:Direct Methanol Fuel Cell)が有望視されている。このような直接メタノール型燃料電池のシステムは、たとえば特表2003−507859号公報及び特表2003−510777号公報に開示されている。そして、このような直接メタノール型燃料電池においては、その制御パラメータとして水で希釈したメタノール濃度が重要になるため、上記公報には、水及びメタノールを混合した混合液体の誘電率を利用してメタノール濃度を検出する方法も開示されている。
Against this background, fuel cells are attracting attention as a promising power source that can support the enhancement of functions of mobile devices and can be operated for a long time, and research and development for its practical use has been earnestly advanced. Yes.
Currently, there are several types of fuel cells, and a direct methanol fuel cell (DMFC) that uses methanol as a direct fuel is promising as a fuel cell for mobile devices described above. . Such a direct methanol fuel cell system is disclosed, for example, in Japanese Patent Publication No. 2003-507859 and Japanese Patent Publication No. 2003-510777. In such a direct methanol fuel cell, the concentration of methanol diluted with water is important as a control parameter. Therefore, in the above publication, the dielectric constant of a mixed liquid in which water and methanol are mixed is used. A method for detecting the concentration is also disclosed.

また、従来より、水に溶けない高分子の物質を水などに均等になじませるため、超音波で高分子を分解して溶け込ませることが行われている。(たとえば、特許文献1及び特許文献2参照)。
特開平11−71463号公報 特開2002−226598号公報
Conventionally, in order to evenly blend a polymer substance that is not soluble in water with water or the like, the polymer is decomposed and dissolved by ultrasonic waves. (For example, refer to Patent Document 1 and Patent Document 2).
JP-A-11-71463 JP 2002-226598 A

上述したように、直接メタノール型燃料電池においては、その制御パラメータとして水で希釈したメタノール濃度が重要になるため、水及びメタノールを混合した混合液体の誘電率を利用してメタノール濃度を正確に検出することが求められる。
しかしながら、本発明者の実験によれば、コンデンサとして機能する一対の電極をメタノール水溶液中に設置して誘電率の変動からメタノール濃度を測定した場合、図3に示すように、時間の経過に応じて静電容量の測定値が大きく変動するという不安定な結果が得られた。
As described above, in the direct methanol fuel cell, the methanol concentration diluted with water is important as its control parameter. Therefore, the methanol concentration is accurately detected by using the dielectric constant of the mixed liquid of water and methanol. It is required to do.
However, according to the experiments of the present inventors, when a pair of electrodes functioning as a capacitor is installed in a methanol aqueous solution and the methanol concentration is measured from the change in dielectric constant, as shown in FIG. Thus, unstable results were obtained in which the measured capacitance value fluctuated greatly.

すなわち、図3の実験結果について、横軸に測定開始からの時間(秒)をとり、縦軸に静電容量の測定値(pF)をとったグラフを示すと、上段の超音波なし(右側の目盛り)の場合には、測定開始からおおよそ53.4pF〜53.7pFの範囲でかなりの変動をしていることがわかる。このような測定値の変動は、メタノール水溶液に局所的な不均一(濃淡)があるためと推測される。
上述した測定値の変動は、メタノール水溶液濃度の測定値を直接メタノール型燃料電池の制御パラメータとして用いる上で好ましいことではなく、燃料電池側の制御を適切に行うためにも変動のない正確な濃度測定が望まれる。特に、直接メタノール型燃料電池の場合、現状では数パーセントのメタノール濃度で使用されていることに加えて、電池自体を小型化する必要があるため非常に小さな電極をメタノール水溶液の流れの中に設置して静電容量を検出することとなる。このため、メタノール水溶液に局所的な濃淡が存在していればその影響を受けやすく、結果的に濃淡を検出した変動が検出されて測定誤差となる。従って、このようなメタノール濃度の測定誤差を小さくするためには、局所的な不均一の解消が望まれる。
That is, for the experimental results in FIG. 3, the horizontal axis indicates the time (seconds) from the start of measurement, and the vertical axis indicates the measured capacitance value (pF). In the case of (scale), it can be seen that there is considerable fluctuation in the range of approximately 53.4 pF to 53.7 pF from the start of measurement. Such fluctuations in measured values are presumed to be due to local non-uniformity (shading) in the aqueous methanol solution.
The above-mentioned fluctuations in the measured value are not preferable when the measured value of the methanol aqueous solution concentration is used directly as a control parameter for the methanol fuel cell, and an accurate concentration that does not fluctuate in order to appropriately control the fuel cell side. Measurement is desired. In particular, in the case of direct methanol fuel cells, in addition to being currently used at a methanol concentration of several percent, it is necessary to reduce the size of the cell itself, so a very small electrode is installed in the flow of aqueous methanol solution. Thus, the capacitance is detected. For this reason, if there is local shading in the aqueous methanol solution, it is easily affected, and as a result, fluctuations in detecting shading are detected, resulting in measurement errors. Therefore, in order to reduce such a measurement error of methanol concentration, it is desired to eliminate local nonuniformity.

さらに、直接メタノール型燃料電池において、局所的に濃度の高いメタノール水溶液が供給されると、クロスオーバーと呼ばれる現象を生じるおそれがあり、電池寿命を低下させる原因になるなどして好ましくない。
本発明は、上記の事情に鑑みてなされたもので、局所的な不均一が原因と推測される混合液体の混合状態を改善することにより、測定値に変動が生じない高精度な濃度測定を可能にする液体濃度検出装置及びこれを備えた燃料電池の燃料供給装置の提供を目的としている。
Furthermore, in a direct methanol fuel cell, when a locally concentrated aqueous methanol solution is supplied, a phenomenon called crossover may occur, which is not preferable because it causes a reduction in battery life.
The present invention has been made in view of the above circumstances, and by improving the mixed state of the mixed liquid presumed to be caused by local non-uniformity, highly accurate concentration measurement that does not cause fluctuations in the measured value is achieved. It is an object of the present invention to provide a liquid concentration detection device that enables this and a fuel supply device for a fuel cell including the same.

本発明は、上記の問題を解決するため、以下の手段を採用する。
本発明の液体濃度検出装置は、誘電率の異なる液体を混合してなる混合液体の液体濃度を混合液体の誘電率を検出することにより測定する液体濃度センサと、前記混合液体の流路に設けられて前記混合液体に超音波を照射する少なくとも一つの超音波発生手段とを具備し、該超音波発生手段から超音波を照射した混合液体の液体濃度を測定することを特徴とするものである。
The present invention employs the following means in order to solve the above problems.
The liquid concentration detection device of the present invention is provided in a liquid concentration sensor for measuring the liquid concentration of a mixed liquid obtained by mixing liquids having different dielectric constants by detecting the dielectric constant of the mixed liquid, and in the flow path of the mixed liquid. And at least one ultrasonic wave generating means for irradiating the mixed liquid with ultrasonic waves, and measuring the liquid concentration of the mixed liquid irradiated with ultrasonic waves from the ultrasonic wave generating means. .

このような液体濃度検出装置によれば、少なくとも一つの超音波発生手段から超音波を照射した混合液体の液体濃度を測定するので、混合液体の局所的な濃度の不均一を解消した状態として濃度測定を実施することができる。   According to such a liquid concentration detection device, the liquid concentration of the mixed liquid irradiated with ultrasonic waves from at least one ultrasonic wave generating means is measured. Measurements can be performed.

本発明の燃料電池の燃料供給装置は、燃料と電解質とを混合してなる混合液体を燃料電池に供給する燃料電池の燃料供給装置であって、液体の燃料を貯蔵しておく燃料貯蔵容器と、液体の電解質を貯蔵しておく電解質貯蔵容器と、前記燃料容器及び前記電解質容器から供給される燃料及び電解質を混合させる混合容器と、該混合容器から混合液体を燃料電池に供給して閉回路の流路を循環させる液送手段と、誘電率の異なる液体を混合してなる混合液体の液体濃度を混合液体の誘電率を検出することにより測定する液体濃度センサと、前記混合液体の流路に設けられて前記混合液体に超音波を照射する少なくとも一つの超音波発生手段とを備え、該超音波発生手段から超音波を照射した混合液体の液体濃度を測定する液体濃度検出装置と、を具備して構成したことを特徴とするものである。   A fuel supply device for a fuel cell according to the present invention is a fuel supply device for a fuel cell that supplies a mixed liquid obtained by mixing fuel and an electrolyte to the fuel cell, and a fuel storage container for storing liquid fuel. An electrolyte storage container for storing a liquid electrolyte, a mixing container for mixing the fuel and the electrolyte supplied from the fuel container and the electrolyte container, and a mixed liquid from the mixing container to the fuel cell to form a closed circuit A liquid feeding means for circulating the flow path, a liquid concentration sensor for measuring the liquid concentration of the mixed liquid obtained by mixing liquids having different dielectric constants by detecting the dielectric constant of the mixed liquid, and the flow path for the mixed liquid And a liquid concentration detection device for measuring the liquid concentration of the mixed liquid irradiated with ultrasonic waves from the ultrasonic wave generating means. It is characterized in that configured by Bei.

このような燃料電池の燃料供給装置によれば、超音波発生手段から超音波を照射して局所的な濃度の不均一を解消した混合液体の液体濃度を測定する液体濃度検出装置を備えているので、燃料電池を制御する制御パラメータとして高精度で安定した液体濃度の測定値を得ることができる。   According to such a fuel supply device for a fuel cell, there is provided a liquid concentration detection device for measuring the liquid concentration of the mixed liquid in which the local concentration unevenness is eliminated by irradiating ultrasonic waves from the ultrasonic wave generation means. Therefore, a highly accurate and stable measured value of the liquid concentration can be obtained as a control parameter for controlling the fuel cell.

本発明の燃料電池の燃料供給装置においては、前記液体濃度センサが前記混合容器と燃料電池との間を連結する流路に配設され、前記超音波発生手段が前記混合容器と前記液体濃度センサとの間を連結する流路に配設されていることが好ましい。
この場合、前記超音波発生手段は、特に前記混合タンクの出口部近傍に配設されていることが好ましい。
In the fuel supply apparatus for a fuel cell according to the present invention, the liquid concentration sensor is disposed in a flow path connecting the mixing container and the fuel cell, and the ultrasonic wave generating means is the mixing container and the liquid concentration sensor. It is preferable that it is arrange | positioned in the flow path which connects between.
In this case, it is preferable that the ultrasonic wave generating means is particularly disposed in the vicinity of the outlet of the mixing tank.

また、本発明の燃料電池の燃料供給装置においては、前記超音波発生手段が、前記液送手段に配設されていることが好ましい。   In the fuel cell fuel supply apparatus of the present invention, it is preferable that the ultrasonic wave generating means is disposed in the liquid feeding means.

さらに、本発明の燃料電池の燃料供給装置においては、前記超音波発生部が、前記流路、前記混合タンク及び/または前記液送手段の外壁側の外壁側に配設されていてもよい。   Furthermore, in the fuel supply device for a fuel cell according to the present invention, the ultrasonic wave generator may be disposed on the outer wall side of the flow channel, the mixing tank, and / or the outer wall side of the liquid feeding means.

本発明の液体濃度検出装置によれば、超音波が照射された混合液体の液体濃度を測定するので、局所的な濃度の不均一が解消された状態で濃度測定を行うことができ、ばらつきがなく安定した高精度の測定値を得ることができる。   According to the liquid concentration detection apparatus of the present invention, since the liquid concentration of the mixed liquid irradiated with ultrasonic waves is measured, the concentration measurement can be performed in a state in which the local concentration non-uniformity is eliminated, and there is variation. Stable and highly accurate measurement values can be obtained.

また、本発明による燃料電池の燃料供給装置によれば、超音波が照射された混合液体の液体濃度を測定する液体濃度検出装置を備えているので、局所的な濃度の不均一が解消された混合液体の濃度を測定することができる。このため、燃料電池の燃料供給装置では、ばらつきがなく高精度で安定した液体濃度の測定値を得て制御パラメータとし、燃料電池の出力制御を容易かつ高精度に実施できるという顕著な効果が得られる。そして、直接メタノール型燃料電池で濃度が均一なメタノール水溶液を燃料として循環させることができるので、クロスオーバー現象を防止して電池寿命の向上にも効果を奏する。   In addition, according to the fuel supply device of the fuel cell according to the present invention, since the liquid concentration detection device for measuring the liquid concentration of the mixed liquid irradiated with ultrasonic waves is provided, the local concentration unevenness is eliminated. The concentration of the mixed liquid can be measured. For this reason, the fuel supply device of the fuel cell has a remarkable effect that the measurement value of the liquid concentration with high accuracy and stability can be obtained as a control parameter without variation, and the output control of the fuel cell can be easily and accurately performed. It is done. Since a methanol aqueous solution having a uniform concentration can be circulated as a fuel in a direct methanol fuel cell, the crossover phenomenon is prevented and the battery life is improved.

以下、本発明に係る液体濃度検出装置及びこれを備えた燃料電池の燃料供給装置の一実施形態を図面に基づいて説明する。
図1は、本発明の第1の実施形態として、直接メタノール型燃料電池の燃料供給装置を示す構成図である。この燃料供給装置10は、燃料のメタノールと電解質の水とを混合してなる混合液体(メタノール水溶液)を燃料電池(DMFC)20に供給する燃料電池の燃料供給装置である。この燃料供給装置10は、液体の燃料であるメタノールを貯蔵しておく燃料貯蔵容器のメタノールタンク11と、液体の電解質である水を貯蔵しておく電解質貯蔵容器の水タンク12と、メタノールタンク11及び水タンク12から供給されるメタノール及び水を混合させる混合容器である混合タンク13と、この混合タンク13からメタノール/水の混合液体を燃料電池20に供給して閉回路の流路14を循環させる液送手段のポンプ15と、混合液体中のメタノール濃度を測定する液体濃度検出装置30とを具備して構成される。
Hereinafter, an embodiment of a liquid concentration detection device according to the present invention and a fuel supply device for a fuel cell including the same will be described with reference to the drawings.
FIG. 1 is a configuration diagram showing a fuel supply device of a direct methanol fuel cell as a first embodiment of the present invention. The fuel supply device 10 is a fuel supply device for a fuel cell that supplies a mixed liquid (aqueous methanol solution) obtained by mixing methanol as fuel and electrolyte water to a fuel cell (DMFC) 20. The fuel supply device 10 includes a methanol tank 11 as a fuel storage container that stores methanol as a liquid fuel, a water tank 12 as an electrolyte storage container that stores water as a liquid electrolyte, and a methanol tank 11. And a mixing tank 13 which is a mixing container for mixing methanol and water supplied from the water tank 12, and a mixed liquid of methanol / water is supplied from the mixing tank 13 to the fuel cell 20 to circulate in the closed circuit channel 14. And a liquid concentration detector 30 for measuring the methanol concentration in the mixed liquid.

メタノールタンク11及び水タンク12は、それぞれが図示しない流量制御手段を備えている。流量制御手段の具体例としては、燃料電池に設けられた図示しない制御部からの制御信号を受けて、開閉制御や開度調整がなされる流量制御弁等がある。
また、ポンプ15についても、上述した流量制御手段と同様に、運転・停止や運転速度等の制御信号を制御部から受けて運転される。
Each of the methanol tank 11 and the water tank 12 includes a flow rate control means (not shown). As a specific example of the flow rate control means, there is a flow rate control valve or the like that performs opening / closing control or opening degree adjustment in response to a control signal from a control unit (not shown) provided in the fuel cell.
The pump 15 is also operated by receiving control signals such as operation / stop and operation speed from the control unit, as in the above-described flow rate control means.

液体濃度検出装置30は、混合液体の液体濃度を混合液体の誘電率を検出することにより測定する液体濃度センサ31と、上述した混合液体の流路14の適所に設けられ、該流路14を流れる混合液体に超音波を照射する超音波発生手段の超音波振動子32とを具備して構成される。なお、超音波振動子32は、少なくとも一カ所に一つ設けられていればよいが、必要に応じて複数としてもよい。   The liquid concentration detection device 30 is provided at an appropriate position between the liquid concentration sensor 31 that measures the liquid concentration of the mixed liquid by detecting the dielectric constant of the mixed liquid and the flow path 14 of the mixed liquid described above. The ultrasonic transducer 32 is an ultrasonic generator that irradiates the flowing mixed liquid with ultrasonic waves. Note that one ultrasonic transducer 32 may be provided at least in one place, but a plurality of ultrasonic transducers 32 may be provided as necessary.

液体濃度センサ31は、コンデンサとして機能する一対の電極が混合液体中に設置されており、電極間に存在する混合液体の濃度に応じて変化する誘電率を図示しない回路基板で検出して、混合液体のメタノール濃度を測定するものである。すなわち、メタノール及び水のように、互いの誘電率が異なる液体を混合してなる混合液体は、その混合割合に応じて誘電率が変化することを利用して液体濃度の測定を行うものである。なお、この液体濃度検出装置30で測定したメタノール濃度は、燃料電池20の図示しない制御部に入力されて出力制御の制御パラメータとして使用される。   The liquid concentration sensor 31 has a pair of electrodes functioning as a capacitor installed in a mixed liquid, and detects a dielectric constant that changes according to the concentration of the mixed liquid existing between the electrodes by a circuit board (not shown) to perform mixing. It measures the methanol concentration of the liquid. That is, a liquid mixture obtained by mixing liquids having different dielectric constants, such as methanol and water, measures the liquid concentration using the fact that the dielectric constant changes according to the mixing ratio. . The methanol concentration measured by the liquid concentration detection device 30 is input to a control unit (not shown) of the fuel cell 20 and used as a control parameter for output control.

超音波振動子32は、液体濃度を測定する混合液体に超音波を照射するものであり、たとえば混合タンク13と燃料電池20との間、より具体的には燃料電池20の上流側に設置することが好ましい液体濃度センサ30の液体濃度センサ31との間の流路14に配設されている。このように、混合タンク13の出口側でかつ液体濃度センサ31の上流側に超音波振動子32を配設して超音波を照射すれば、混合タンク13内で一次撹拌を行い、さらに、濃度測定する混合液体に対し確実かつ効率的な超音波照射を施して二次撹拌を行うことができる。なお、超音波振動子32は、液体濃度センサ31に超音波の影響が及ばないようにするため、液体濃度センサ31からできるだけ離れた位置である混合タンク13の出口近傍に設置し、混合タンク13で混合されて流路14に流出したメタノール水溶液に超音波照射を施すことが望ましい。   The ultrasonic transducer 32 irradiates the mixed liquid whose liquid concentration is measured with ultrasonic waves, and is installed, for example, between the mixing tank 13 and the fuel cell 20, more specifically on the upstream side of the fuel cell 20. The liquid concentration sensor 30 is preferably disposed in the flow path 14 between the liquid concentration sensor 31 and the liquid concentration sensor 31. As described above, when the ultrasonic vibrator 32 is disposed on the outlet side of the mixing tank 13 and on the upstream side of the liquid concentration sensor 31 and irradiated with ultrasonic waves, primary stirring is performed in the mixing tank 13, and the concentration is further increased. Secondary mixing can be performed by applying reliable and efficient ultrasonic irradiation to the mixed liquid to be measured. The ultrasonic transducer 32 is installed in the vicinity of the outlet of the mixing tank 13 at a position as far as possible from the liquid concentration sensor 31 so that the liquid concentration sensor 31 is not affected by the ultrasonic waves. It is desirable to apply ultrasonic irradiation to the aqueous methanol solution that has been mixed and flowed into the flow path 14.

また、図示の超音波振動子32は、流路14の外側である外壁に設置されており、流路14の管路内部を流れる混合液体に管路の肉厚を通過する超音波を照射している。なお、超音波振動子32としては、圧電セラミックス等の圧電素子を使用できる。
このように、超音波振動子32を流路14の外壁側に設置すると、流路14内に設置する場合と比較して超音波の出力を大きくする必要が生じるものの、混合液体と直接接触しないという利点があり、たとえば耐食性や防水性等を確保する対策が不要となる。
The illustrated ultrasonic transducer 32 is installed on the outer wall that is outside the flow path 14, and irradiates the mixed liquid that flows inside the pipe line of the flow path 14 with ultrasonic waves that pass through the thickness of the pipe line. ing. As the ultrasonic transducer 32, a piezoelectric element such as piezoelectric ceramics can be used.
As described above, when the ultrasonic transducer 32 is installed on the outer wall side of the flow path 14, it is necessary to increase the output of the ultrasonic wave as compared with the case where it is installed in the flow path 14, but it is not in direct contact with the mixed liquid. For example, it is not necessary to take measures to ensure corrosion resistance, waterproofness, and the like.

上述した構成の燃料供給装置10では、流量制御手段によりメタノールタンク11及び水タンク12から供給されたメタノール及び水が混合タンク13内で混合され、所望の液体濃度としたメタノール水溶液が得られる。このメタノール水溶液は、ポンプ15の運転により、超音波振動子32、液体濃度検出装置30及び燃料電池20の順に通過して流路14を循環する。このため、液体濃度検出装置30で濃度測定される混合液体は、超音波振動子32から超音波の照射を受けたものとなる。   In the fuel supply device 10 having the above-described configuration, methanol and water supplied from the methanol tank 11 and the water tank 12 are mixed in the mixing tank 13 by the flow rate control means, and an aqueous methanol solution having a desired liquid concentration is obtained. This aqueous methanol solution passes through the ultrasonic vibrator 32, the liquid concentration detection device 30, and the fuel cell 20 in this order by the operation of the pump 15 and circulates in the flow path 14. For this reason, the mixed liquid whose concentration is measured by the liquid concentration detection device 30 is the one that has been irradiated with ultrasonic waves from the ultrasonic transducer 32.

このようにして超音波の照射を受けたメタノール水溶液は、液体濃度検出装置30が誘電率の変化から液体濃度(メタノール濃度)を測定し、この液体濃度が燃料電池20の出力制御を行う制御パラメータとして使用される。ここでの液体濃度測定は、液体濃度センサ31における検出電極間の静電容量を検出し、この静電容量から誘電率を算出した後、この誘電率から液体濃度を算出して得られる。   The aqueous methanol solution that has been irradiated with ultrasonic waves in this way has the liquid concentration detector 30 measure the liquid concentration (methanol concentration) from the change in dielectric constant, and this liquid concentration controls the output of the fuel cell 20. Used as. The liquid concentration measurement here is obtained by detecting the capacitance between the detection electrodes in the liquid concentration sensor 31, calculating the dielectric constant from the capacitance, and then calculating the liquid concentration from the dielectric constant.

図3に示す実験結果のグラフには、横軸に測定開始からの時間(秒)をとり、縦軸に静電容量の測定値(pF)をとって、経過時間に応じた測定値の変化が示されている。この実験結果によれば、下段となる超音波あり(左側の目盛り)の場合、測定開始直後の約37.9pFから50秒間程度測定値が略直線的に低下した後には、おおよそ37.75pF±0.05pFの範囲内に入ると共に、激しい変動のない(ばらつきのない)安定した値が得られている。このような実験結果から、超音波の照射を受けたメタノール水溶液では、局所的な濃淡の不均一が解消されて均一な濃度の水溶液になっていると解釈することができる。   In the graph of the experimental results shown in FIG. 3, the horizontal axis represents the time (seconds) from the start of measurement, and the vertical axis represents the measured capacitance value (pF), and the change in the measured value according to the elapsed time. It is shown. According to this experimental result, in the case of the lower ultrasonic wave (left scale), after the measurement value decreases approximately linearly from about 37.9 pF immediately after the start of measurement to about 37.75 pF ± A stable value is obtained that is within the range of 0.05 pF and is free from severe fluctuations (no variation). From these experimental results, it can be interpreted that the aqueous methanol solution that has been irradiated with ultrasonic waves has been solved with local unevenness of density and has an aqueous solution with a uniform concentration.

この実験のサンプル水としては、水100mlにメタノール3mlの割合で混合したメタノール水溶液を使用する。このサンプル水をビーカーに入れ、ビーカーごと50W超音波洗浄機に30秒間浸すことで混合液体への超音波照射を行った。なお、静電容量の測定は、超音波の照射を終了したサンプル水内に一対の平板電極を配設し、所定の交流電圧を印加しながら10秒間隔で測定して得られた測定値を図3にプロットした。
また、超音波なしの実験結果についても、超音波照射以外は全く同じ条件で静電容量を測定した。
As sample water for this experiment, an aqueous methanol solution mixed with 100 ml of water at a ratio of 3 ml of methanol is used. This sample water was put into a beaker, and the mixed liquid was irradiated with ultrasonic waves by immersing the whole beaker in a 50 W ultrasonic cleaner for 30 seconds. In addition, the capacitance is measured by arranging a pair of flat plate electrodes in the sample water after the irradiation of ultrasonic waves, and measuring the measurement values obtained by measuring at 10 second intervals while applying a predetermined AC voltage. Plotted in FIG.
Moreover, also about the experimental result without an ultrasonic wave, the electrostatic capacitance was measured on the completely same conditions except ultrasonic irradiation.

ところで、超音波照射以外は同様の条件で繰り返し行った実験結果において、静電容量の測定値は、超音波ありが37.75pF程度、超音波なしが38.05pF程度と両測定値間には常に同程度の差が生じている。このような差が生じるのは、超音波の混合撹拌効果により均一性が増して、誘電率の低いメタノールの影響がより顕著に発現したためと推測される。
また、超音波ありの場合、最初の約50秒間は略直線的な変化をしているが、このような変化が生じるのは、液体濃度センサを溶液中へ投入すると、液体濃度センサの電極最表面への極性分子の最配列のための時間が必要であることを示しているためと推測される。また、電極表面の材質や静電容量の検出回路方法によって略直線的な変化以外の異なる変化を示すことも推測される。
By the way, in the experimental results repeatedly performed under the same conditions except for the ultrasonic irradiation, the measured value of the capacitance is about 37.75 pF when there is an ultrasonic wave and about 38.05 pF when there is no ultrasonic wave. There is always a similar difference. This difference is presumed to be due to the fact that the uniformity is increased by the mixing and stirring effect of ultrasonic waves, and the influence of methanol having a low dielectric constant is more prominent.
In addition, in the case of the presence of ultrasonic waves, there is a substantially linear change for the first approximately 50 seconds. Such a change occurs when the liquid concentration sensor is put into a solution and the electrode concentration of the liquid concentration sensor is the highest. This is presumed to be due to the fact that time for realignment of polar molecules to the surface is necessary. It is also speculated that different changes other than a substantially linear change are exhibited depending on the electrode surface material and the capacitance detection circuit method.

続いて、本発明の第2の実施形態を図2に基づいて説明する。
図2に示す直接メタノール型燃料電池の燃料供給装置10Aは、超音波振動子32の設置位置及び設置個数が異なっており、他の構成は第1の実施形態と同様である。従って、ここでは図1と同様の構成要素には同じ符号を付し、その詳細な説明は省略する。
図2の場合、超音波振動子32は混合タンク13の内部と、混合タンク13と液体濃度センサ31との間を連結する流路14内に設置されている。すなわち、メタノールと水とを混合する混合タンク13内で第1回目の超音波照射を行い、さらに、実際に濃度測定を行う液体濃度検出センサ31の上流側近傍で第2回目の超音波照射を行っている。
Subsequently, a second embodiment of the present invention will be described with reference to FIG.
The direct methanol fuel cell fuel supply apparatus 10A shown in FIG. 2 is different in the installation position and the number of ultrasonic transducers 32, and the other configuration is the same as that of the first embodiment. Accordingly, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
In the case of FIG. 2, the ultrasonic transducer 32 is installed inside the mixing tank 13 and in the flow path 14 connecting the mixing tank 13 and the liquid concentration sensor 31. That is, the first ultrasonic irradiation is performed in the mixing tank 13 in which methanol and water are mixed, and the second ultrasonic irradiation is performed in the vicinity of the upstream side of the liquid concentration detection sensor 31 that actually performs concentration measurement. Is going.

このような超音波振動子32の配置とすれば、混合タンク13内及び液体濃度センサ31の上流側の2箇所で2回の超音波照射による撹拌を行うことができるので、局所的な濃淡のない混合状態のメタノール水溶液をより一層確実に形成することができる。また、超音波振動子32を混合タンク32や流路14の内部に配設したので、外部に設置する場合と比較して小さな出力で同等の効果を得ることができる。   With such an arrangement of the ultrasonic vibrator 32, it is possible to perform stirring by ultrasonic irradiation twice in the mixing tank 13 and the upstream side of the liquid concentration sensor 31. It is possible to more reliably form a methanol aqueous solution in a mixed state. Further, since the ultrasonic transducer 32 is disposed inside the mixing tank 32 and the flow path 14, the same effect can be obtained with a small output as compared with the case where it is installed outside.

さて、本発明における超音波振動子32は、上述した第1及び第2の実施形態に限定されることはなく、適宜変更することができる。
すなわち、メタノール水溶液は閉回路の流路14を循環し、必要量のメタノールや水が適宜補充されて所望の濃度を維持するものであるから、超音波振動子32は、閉回路の流路14内であれば液体濃度センサ31の上流側及び下流側の近傍を除いてどこに設置してもよい。従って、超音波振動子32の設置位置は、上述した混合タンク13と燃料電池20との間を連結する流路14は勿論のこと、ポンプ15の適所、あるいは流路14の他の部分としてもよい。なお、混合タンク13についても、メタノール水溶液が循環する流路の一部であるから、超音波振動子32の単独設置や他の部分との併設が可能である。
The ultrasonic transducer 32 in the present invention is not limited to the first and second embodiments described above, and can be changed as appropriate.
That is, the aqueous methanol solution circulates in the closed circuit channel 14 and is supplemented with a necessary amount of methanol or water as appropriate to maintain a desired concentration. As long as it is inside, it may be installed anywhere except in the vicinity of the upstream side and downstream side of the liquid concentration sensor 31. Accordingly, the ultrasonic transducer 32 can be installed not only at the flow path 14 connecting the mixing tank 13 and the fuel cell 20 described above, but also at an appropriate place of the pump 15 or other part of the flow path 14. Good. Note that the mixing tank 13 is also a part of the flow path through which the aqueous methanol solution circulates, so that the ultrasonic vibrator 32 can be installed alone or in combination with other parts.

また、超音波振動子32の設置位置は、混合タンク13や流路14の外側、あるいは内側のいずれであってもよい。
なお、本発明は、上述した実施形態に限定されることはなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
Further, the installation position of the ultrasonic transducer 32 may be either outside or inside the mixing tank 13 or the flow path 14.
In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably.

本発明の液体濃度検出装置は、特に、直接メタノール型燃料電池におけるメタノール水溶液中のメタノール濃度検出手段として好適ではあるが、この他にも、たとえば混合割合に応じて誘電率が変化するアルコール類の水溶液濃度など、すなわち誘電率の異なる複数の液体の混合割合を検出する濃度検出手段としても広く使用することができる。
また、本発明の液体濃度検出装置は、たとえばビタミンのような固体または粉体を水に溶かして得られる水溶液の濃度を検出する濃度検出手段としても使用可能である。
The liquid concentration detection device of the present invention is particularly suitable as a means for detecting the concentration of methanol in an aqueous methanol solution in a direct methanol fuel cell. In addition to this, for example, alcohols whose dielectric constant changes depending on the mixing ratio are used. It can also be widely used as a concentration detection means for detecting the concentration of an aqueous solution, that is, the mixing ratio of a plurality of liquids having different dielectric constants.
The liquid concentration detection device of the present invention can also be used as a concentration detection means for detecting the concentration of an aqueous solution obtained by dissolving a solid or powder such as vitamin in water.

本発明に係る燃料電池の燃料供給装置の第1の実施形態を示す系統図である。1 is a system diagram showing a first embodiment of a fuel supply device for a fuel cell according to the present invention. 本発明に係る燃料電池の燃料供給装置の第2の実施形態を示す系統図である。It is a systematic diagram showing a second embodiment of a fuel supply device of a fuel cell according to the present invention. 本発明の効果を示す実験結果のグラフであり、メタノール水溶液に超音波を照射した場合及び照射しない場合について、経過時間(秒)と静電容量(pF)の測定値との関係が示されている。It is a graph of the experimental result which shows the effect of this invention, and the relationship between the elapsed time (second) and the measured value of an electrostatic capacitance (pF) is shown about the case where an ultrasonic wave is irradiated to methanol aqueous solution, and the case where it does not irradiate. Yes.

符号の説明Explanation of symbols

10,10A 燃料供給装置
11 メタノールタンク(燃料貯蔵容器)
12 水タンク(電解質貯蔵容器)
13 混合タンク(混合容器)
14 流路
15 ポンプ(液送手段)
20 燃料電池(DMFC)
30 液体濃度検出装置
31 液体濃度センサ
32 超音波振動子(超音波発生手段)
10, 10A Fuel supply device 11 Methanol tank (fuel storage container)
12 Water tank (electrolyte storage container)
13 Mixing tank (mixing container)
14 flow path 15 pump (liquid feeding means)
20 Fuel cell (DMFC)
30 Liquid Concentration Detection Device 31 Liquid Concentration Sensor 32 Ultrasonic Vibrator (Ultrasonic Generator)

Claims (6)

誘電率の異なる液体を混合してなる混合液体の液体濃度を混合液体の誘電率を検出することにより測定する液体濃度センサと、前記混合液体の流路に設けられて前記混合液体に超音波を照射する少なくとも一つの超音波発生手段とを具備し、該超音波発生手段から超音波を照射した混合液体の液体濃度を測定することを特徴とする液体濃度検出装置。   A liquid concentration sensor for measuring a liquid concentration of a mixed liquid obtained by mixing liquids having different dielectric constants by detecting a dielectric constant of the mixed liquid; and an ultrasonic wave is provided to the mixed liquid provided in the flow path of the mixed liquid. A liquid concentration detection apparatus comprising: at least one ultrasonic wave generation unit that irradiates, and measuring a liquid concentration of a mixed liquid irradiated with ultrasonic waves from the ultrasonic wave generation unit. 燃料と電解質とを混合してなる混合液体を燃料電池に供給する燃料電池の燃料供給装置であって、
液体の燃料を貯蔵しておく燃料貯蔵容器と、
液体の電解質を貯蔵しておく電解質貯蔵容器と、
前記燃料容器及び前記電解質容器から供給される燃料及び電解質を混合させる混合容器と、
該混合容器から混合液体を燃料電池に供給して閉回路の流路を循環させる液送手段と、 誘電率の異なる液体を混合してなる混合液体の液体濃度を混合液体の誘電率を検出することにより測定する液体濃度センサと、前記混合液体の流路に設けられて前記混合液体に超音波を照射する少なくとも一つの超音波発生手段とを備え、該超音波発生手段から超音波を照射した混合液体の液体濃度を測定する液体濃度検出装置と、
を具備して構成したことを特徴とする燃料電池の燃料供給装置。
A fuel supply device for a fuel cell for supplying a fuel cell with a mixed liquid obtained by mixing a fuel and an electrolyte,
A fuel storage container for storing liquid fuel;
An electrolyte storage container for storing a liquid electrolyte;
A mixing container for mixing the fuel and electrolyte supplied from the fuel container and the electrolyte container;
A liquid feeding means for supplying the mixed liquid from the mixing container to the fuel cell to circulate through the flow path of the closed circuit, and a liquid concentration of the mixed liquid formed by mixing liquids having different dielectric constants to detect the dielectric constant of the mixed liquid A liquid concentration sensor for measuring by this, and at least one ultrasonic wave generation unit that is provided in the flow path of the mixed liquid and irradiates the mixed liquid with ultrasonic waves, and the ultrasonic wave is irradiated from the ultrasonic wave generation unit A liquid concentration detection device for measuring the liquid concentration of the mixed liquid;
A fuel supply device for a fuel cell, comprising:
前記液体濃度センサが前記混合容器と燃料電池との間を連結する流路に配設され、前記超音波発生手段が前記混合容器と前記液体濃度センサとの間を連結する流路に配設されていることを特徴とする請求項2に記載の燃料電池の燃料供給装置。   The liquid concentration sensor is disposed in a flow path connecting the mixing container and the fuel cell, and the ultrasonic wave generating means is disposed in a flow path connecting the mixing container and the liquid concentration sensor. The fuel supply device for a fuel cell according to claim 2, wherein the fuel supply device is a fuel cell. 前記超音波発生手段が前記混合タンクの出口部近傍に配設されていることを特徴とする請求項3に記載の燃料電池の燃料供給装置。   4. The fuel supply apparatus for a fuel cell according to claim 3, wherein the ultrasonic wave generating means is disposed in the vicinity of the outlet of the mixing tank. 前記超音波発生手段が、前記液送手段に配設されていることを特徴とする請求項2に記載の燃料電池の燃料供給装置。   3. The fuel supply device for a fuel cell according to claim 2, wherein the ultrasonic wave generating means is disposed in the liquid feeding means. 前記超音波発生部が、前記流路、前記混合タンク及び/または前記液送手段の外壁側に配設されていることを特徴とする請求項2から5のいずれかに記載の燃料電池の燃料供給装置。
The fuel of the fuel cell according to any one of claims 2 to 5, wherein the ultrasonic wave generator is disposed on an outer wall side of the flow path, the mixing tank, and / or the liquid feeding means. Feeding device.
JP2003355199A 2003-10-15 2003-10-15 Liquid concentration detector, and fuel supply system for fuel cell equipped with the same Withdrawn JP2005121430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003355199A JP2005121430A (en) 2003-10-15 2003-10-15 Liquid concentration detector, and fuel supply system for fuel cell equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003355199A JP2005121430A (en) 2003-10-15 2003-10-15 Liquid concentration detector, and fuel supply system for fuel cell equipped with the same

Publications (1)

Publication Number Publication Date
JP2005121430A true JP2005121430A (en) 2005-05-12

Family

ID=34612877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003355199A Withdrawn JP2005121430A (en) 2003-10-15 2003-10-15 Liquid concentration detector, and fuel supply system for fuel cell equipped with the same

Country Status (1)

Country Link
JP (1) JP2005121430A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102449A1 (en) * 2007-02-22 2008-08-28 Fujitsu Limited Fuel cell
US8161798B2 (en) 2006-08-14 2012-04-24 Samsung Sdi Co., Ltd. Density sensing device and fuel cell system with it
CN103633352A (en) * 2013-11-27 2014-03-12 武汉理工大学 Performance improvement method and structure of direct alcohol fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8161798B2 (en) 2006-08-14 2012-04-24 Samsung Sdi Co., Ltd. Density sensing device and fuel cell system with it
WO2008102449A1 (en) * 2007-02-22 2008-08-28 Fujitsu Limited Fuel cell
CN103633352A (en) * 2013-11-27 2014-03-12 武汉理工大学 Performance improvement method and structure of direct alcohol fuel cell

Similar Documents

Publication Publication Date Title
US6306285B1 (en) Techniques for sensing methanol concentration in aqueous environments
KR101778810B1 (en) Monitoring of electroplating additives
CN1300886C (en) Liquid fuel direct supply fuel cell system and its operation controlling method and controller
Mousa et al. Detecting proton exchange membrane fuel cell hydrogen leak using electrochemical impedance spectroscopy method
US20020109511A1 (en) Method of determining a fuel concentration in the electrolyte of fuel cells operated with liquid fuel
US6748793B2 (en) Ultrasound sensing of concentration of methanol&#39;s aqueous solution
Dotelli et al. Analysis and compensation of PEM fuel cell instabilities in low-frequency EIS measurements
US10234435B2 (en) Conductivity detector and ion chromatography system including the same
Zago et al. On the actual cathode mixed potential in direct methanol fuel cells
US10155672B2 (en) Electro-deionization control system
JP5370484B2 (en) Hydrogen concentration measuring device and fuel cell system
JP2005121430A (en) Liquid concentration detector, and fuel supply system for fuel cell equipped with the same
Geng et al. An alternating pulse electrochemical methanol concentration sensor for direct methanol fuel cells
Dib et al. Statistical Short Time Analysis for Proton Exchange Membrane Fuel Cell Diagnostic‐Application to Water Management
US20090269625A1 (en) Methods and Systems for Determining and Controlling Fuel Concentrations in Fuel Cells
JP2006196414A (en) Fuel cell inspection system
WO2016140354A1 (en) Electric potential control device, electric potential control method, measurement device, and measurement method
JP2005030948A (en) Concentration measuring apparatus, and concentration measuring method
CN109239132B (en) Concentration sensor and detection method for direct methanol fuel cell system
JP2004347609A (en) Coil flaw inspecting device and method
JP2005129237A (en) Water treatment apparatus of fuel cell system
JP2003043007A (en) Electrochemical water quality measuring instrument and water treatment plant equipped therewith
JP2004347610A (en) Coil flaw inspecting device and method
JP2022131211A (en) Membrane electrode assembly evaluation method, membrane electrode assembly evaluation device, and membrane electrode assembly manufacturing method
JP2003149191A (en) Gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060302

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070806