JP2005120998A - Intake port structure of internal combustion engine - Google Patents

Intake port structure of internal combustion engine Download PDF

Info

Publication number
JP2005120998A
JP2005120998A JP2003360030A JP2003360030A JP2005120998A JP 2005120998 A JP2005120998 A JP 2005120998A JP 2003360030 A JP2003360030 A JP 2003360030A JP 2003360030 A JP2003360030 A JP 2003360030A JP 2005120998 A JP2005120998 A JP 2005120998A
Authority
JP
Japan
Prior art keywords
intake port
combustion chamber
passage portion
wall surface
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003360030A
Other languages
Japanese (ja)
Inventor
Shikio Katayama
誌輝郎 片山
Takeshi Okumura
猛 奥村
Fumiro Takamiya
二三郎 高宮
Akira Nakawatase
明 中渡瀬
Hideshi Hashizume
秀史 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003360030A priority Critical patent/JP2005120998A/en
Publication of JP2005120998A publication Critical patent/JP2005120998A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake port structure of an internal combustion engine capable of suppressing decrease in flow coefficient. <P>SOLUTION: In an intake port structure of an internal combustion engine, an intake port 10 has a vertical passage 12 vertically extending to a combustion chamber top surface 2 so as to open to it and a tilt passage 11 communicating with the vertical passage 12 and extending in the direction tilted in a vertical direction of the combustion chamber top surface 2. A recess 21 is formed in a tilt wall surface 11a which is a lower wall surface of the tilt passage 11. In the recess 21, an end of the combustion chamber side is extended to the boundary D between the tilt passage 11 and the vertical passage 12 so as to be gradually widened toward the combustion chamber side. The end of the combustion chamber side in the recess 21 is provided with a connecting surface 22 in which an edge 31 is formed with respect to a vertical wall surface 12a of the vertical passage 12 to be connected. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関の吸気ポート構造に関し、特に吸気ポートの形状に係る改良に関するものである。   The present invention relates to an intake port structure of an internal combustion engine, and more particularly to an improvement related to the shape of an intake port.

従来、内燃機関の吸気ポートは、シリンダヘッドに形成され、吸気管から燃焼室へと外気、混合気等の流体を送り込むものである。該吸気ポートは、燃焼室頂面に開口して該燃焼室頂面に対して垂直に延びる垂直通路部と、その垂直通路部に連なるとともに前記燃焼室頂面の垂直方向に対して傾斜した方向に延びる傾斜通路部とを有している。そして、近年では、燃焼室の内部に強力な渦(スワール)を発生させる手法として、吸気ポートの形状に改良を加え、傾斜通路部と垂直通路部との境界部にエッジを形成することが知られている。つまり、前記流体は吸気ポートの壁面に沿って流れつつも、エッジを形成した部分で壁面から剥離し、該部分と対向する壁面側へ流れる。このため、該流体は燃焼室に対して斜め方向に強い勢いで流れ込み、スワールが発生する。このようなエッジとして、例えば特許文献1には、前記境界部の下方壁面に、傾斜通路部に対して所定の角度で繋がる平坦部を形成し、該平坦部と前記垂直通路部とでエッジを形成することが記載されている。また特許文献2には、前記傾斜通路部の壁面と前記垂直通路部の壁面とを交差させ、通路断面における下方壁面の少なくとも140度の角度範囲にエッジを形成し、上方壁面では前記傾斜通路部の壁面と前記垂直通路部の壁面とを滑らかな曲面で連ねることが記載されている。
特開平10−238401号公報 特開平8−42390号公報
Conventionally, an intake port of an internal combustion engine is formed in a cylinder head, and feeds fluid such as outside air or air-fuel mixture from an intake pipe to a combustion chamber. The intake port is open to the top surface of the combustion chamber and extends perpendicularly to the top surface of the combustion chamber, and is connected to the vertical passage portion and is inclined with respect to the vertical direction of the top surface of the combustion chamber And an inclined passage portion extending in the direction. In recent years, as a technique for generating a strong vortex (swirl) inside the combustion chamber, it has been known that the shape of the intake port is improved and an edge is formed at the boundary between the inclined passage portion and the vertical passage portion. It has been. That is, while the fluid flows along the wall surface of the intake port, the fluid is separated from the wall surface at the portion where the edge is formed and flows toward the wall surface facing the portion. For this reason, the fluid flows in an oblique direction with respect to the combustion chamber and generates a swirl. As such an edge, for example, in Patent Document 1, a flat portion connected to the inclined passage portion at a predetermined angle is formed on the lower wall surface of the boundary portion, and the edge is formed by the flat portion and the vertical passage portion. It is described to form. In Patent Document 2, the wall surface of the inclined passage portion and the wall surface of the vertical passage portion are intersected to form an edge in an angle range of at least 140 degrees on the lower wall surface in the passage cross section, and the inclined passage portion is formed on the upper wall surface. And connecting the wall surface of the vertical passage part with a smooth curved surface.
Japanese Patent Laid-Open No. 10-238401 JP-A-8-42390

ところが、上記従来のように吸気ポート内に平坦部を突出させたり、吸気ポートの径を絞ったり等の手法でエッジを形成した場合、吸気ポートの流量係数の低下を抑制することが非常に困難である。この流量係数の低下は、燃焼室への吸気量の低減を招くことから、内燃機関の性能を低下させる要因となる。   However, when the edge is formed by a method such as projecting a flat portion in the intake port or reducing the diameter of the intake port as in the conventional case, it is very difficult to suppress a decrease in the flow coefficient of the intake port. It is. This reduction in the flow coefficient causes a reduction in the amount of intake air into the combustion chamber, which causes a reduction in the performance of the internal combustion engine.

すなわち、内燃機関は所望とする性能となるように予め設計諸元を定めて製造されており、この設計諸元に基づいて吸気ポートの径は必要十分な所定値となるよう定められている。しかし、上記従来の手法ではエッジを形成した部分で吸気ポートの径を前記所定値未満とせざるを得ず、流量係数は必然的に低下してしまう。また一方で、エッジを形成した部分で吸気ポートの径を前記所定値とすれば、当該部分以外で吸気ポートの径を前記所定値を超えるものとせざるを得ず、設計諸元そのものを変更する必要が生じてしまう。   That is, the internal combustion engine is manufactured with predetermined design specifications so as to achieve desired performance, and the diameter of the intake port is determined to be a predetermined and sufficient predetermined value based on the design specifications. However, in the above conventional method, the diameter of the intake port must be less than the predetermined value at the portion where the edge is formed, and the flow coefficient inevitably decreases. On the other hand, if the diameter of the intake port is set to the predetermined value at the portion where the edge is formed, the diameter of the intake port must be larger than the predetermined value except for the portion, and the design specification itself is changed. Necessity arises.

このようにエッジを形成することは、たしかにスワールの強化による内燃機関の性能向上を図るには有効であるものの、一方で流量係数の低下による内燃機関の性能低下を避けられず、所望とする性能を確保することが困難となっていた。   Although forming the edge in this way is effective for improving the performance of the internal combustion engine by strengthening the swirl, on the other hand, it is inevitable that the performance of the internal combustion engine is reduced due to the decrease in the flow coefficient, and the desired performance is achieved. It was difficult to ensure.

本発明はこうした実情に鑑みてなされたものであり、その目的は、流量係数の低下を抑えることのできる内燃機関の吸気ポート構造を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an intake port structure of an internal combustion engine that can suppress a decrease in a flow coefficient.

以下、上述した目的を達成するための手段及びその作用効果を記載する。
請求項1記載の発明は、燃焼室頂面に開口して該燃焼室頂面に対して垂直に延びる垂直通路部と、その垂直通路部に連なるとともに前記燃焼室頂面の垂直方向に対して傾斜した方向に延びる傾斜通路部とを有して吸気ポートを構成する内燃機関の吸気ポート構造において、前記傾斜通路部の下方壁面に、燃焼室側の端が前記傾斜通路部と前記垂直通路部との境界部まで延伸されて、燃焼室側に向かうに従い幅広となる凹部を形成するととともに、該凹部の前記燃焼室側の端に、前記垂直通路部の壁面に対してエッジを形成して繋がる接続面を設けたことを要旨としている。
In the following, means for achieving the above-described object and its operational effects are described.
According to a first aspect of the present invention, there is provided a vertical passage portion that opens to the top surface of the combustion chamber and extends perpendicularly to the top surface of the combustion chamber, and is connected to the vertical passage portion and is perpendicular to the vertical direction of the top surface of the combustion chamber. In an intake port structure of an internal combustion engine having an inclined passage portion extending in an inclined direction and constituting an intake port, an end on the combustion chamber side is formed on the lower wall surface of the inclined passage portion and the inclined passage portion and the vertical passage portion And forming a recess that becomes wider toward the combustion chamber side, and at the end of the recess on the combustion chamber side, an edge is formed and connected to the wall surface of the vertical passage portion. The gist is that a connection surface is provided.

上記構成によれば、前記傾斜通路部の下方壁面には、燃焼室側の端が前記傾斜通路部と前記垂直通路部との境界部まで延伸されて、燃焼室側に向かうに従い幅広となる凹部が形成されている。そして、該凹部の前記燃焼室側の端には、前記垂直通路部の壁面に対してエッジを形成して繋がる接続面が設けられている。すなわち、このエッジは前記傾斜通路部の壁面に凹部を形成することによって得られるものであり、エッジを形成した部分と凹部が設けられた以外の部分とで、吸気ポートの径は略同一であり、流量係数もまたほぼ同じ値となる。従って上記構成によれば、流量係数の低下を抑えることができる。   According to the above configuration, the lower wall surface of the inclined passage portion has a concave portion whose end on the combustion chamber side extends to the boundary between the inclined passage portion and the vertical passage portion and becomes wider toward the combustion chamber side. Is formed. And the connection surface which forms an edge with respect to the wall surface of the said vertical channel | path part is provided in the end by the side of the said combustion chamber of this recessed part. That is, this edge is obtained by forming a recess in the wall surface of the inclined passage portion, and the diameter of the intake port is substantially the same in the portion where the edge is formed and in the portion other than where the recess is provided. The flow coefficient is also almost the same value. Therefore, according to the said structure, the fall of a flow coefficient can be suppressed.

請求項2に記載の発明は、請求項1記載の内燃機関の吸気ポート構造において、前記接続面を、平坦な面で且つ前記吸気ポートの壁面に沿って周方向へ延びる弧状としたことを要旨としている。   The invention according to claim 2 is the intake port structure of the internal combustion engine according to claim 1, wherein the connection surface is a flat surface and has an arc shape extending in the circumferential direction along the wall surface of the intake port. It is said.

上記構成によれば、前記接続面を平坦な面で且つ前記吸気ポートの壁面に沿って周方向へ延びる弧状としたことで、同接続面は凹部の内面に対し、これらの間で一定の角度を維持しつつ繋がる。このため、凹部の内面に沿って流れる流体は、接続面に到る箇所でその流れ方向が急激に変化し、接続面から剥離して前記傾斜通路部の下方壁面から凝れと対向する上方壁面へ流れやすくなる。この場合、流体は燃焼室に対して斜め方向から強い勢いで流れ込み、同燃焼室内で縦渦(タンブル)を形成する。従って上記構成によれば、スワールのさらなる強化、特にはタンブルの強化を図ることができる。   According to the above configuration, the connection surface is a flat surface and has an arc shape extending in the circumferential direction along the wall surface of the intake port, and the connection surface is at a certain angle with respect to the inner surface of the recess. Keeping connected For this reason, the flow direction of the fluid flowing along the inner surface of the concave portion changes suddenly at the location reaching the connection surface, peels from the connection surface, and moves from the lower wall surface of the inclined passage portion to the upper wall surface facing the stiffening. It becomes easy to flow. In this case, the fluid flows with a strong force from an oblique direction with respect to the combustion chamber, and forms a vertical vortex (tumble) in the combustion chamber. Therefore, according to the above configuration, the swirl can be further strengthened, in particular, the tumble can be strengthened.

請求項3に記載の発明は、請求項1又は請求項2に記載の内燃機関の吸気ポート構造において、前記接続面を、前記吸気ポートの壁面に沿って周方向へ一定幅で形成したことを要旨としている。   According to a third aspect of the present invention, in the intake port structure of the internal combustion engine according to the first or second aspect, the connection surface is formed with a constant width in the circumferential direction along the wall surface of the intake port. It is a summary.

上記構成によれば、接続面を一定幅で形成することで、エッジを形成した部分と凹部が設けられた以外の部分とで、吸気ポートの径は同一となる。従って上記構成によれば、流量係数の低下を抑制することができる。   According to the above configuration, by forming the connection surface with a constant width, the diameter of the intake port is the same in the portion where the edge is formed and the portion other than the portion where the recess is provided. Therefore, according to the said structure, the fall of a flow coefficient can be suppressed.

請求項4に記載の発明は、請求項1から請求項3のいずれか一項に記載の内燃機関の吸気ポート構造において、前記凹部を、燃焼室側に向かうに従い底深くなる形状としたことを要旨としている。   According to a fourth aspect of the present invention, in the intake port structure of the internal combustion engine according to any one of the first to third aspects, the concave portion has a shape that becomes deeper toward the combustion chamber side. It is a summary.

上記構成によれば、凹部が設けられた部分と同凹部が設けられた以外の部分とで、吸気ポートの径の変化が小さく抑えられる。従って上記構成によれば、吸気ポート内における流量係数の変化を抑えることができる。   According to the above configuration, the change in the diameter of the intake port is suppressed to be small between the portion where the recess is provided and the portion other than the portion where the recess is provided. Therefore, according to the above configuration, a change in the flow coefficient in the intake port can be suppressed.

請求項5に記載の発明は、請求項1から請求項4のいずれか一項に記載の内燃機関の吸気ポート構造において、前記凹部の内面を、滑面としたことを要旨としている。
上記構成によれば、凹部の内面を凹凸のない滑面としたことで、流体に想定外の抵抗が加わることを抑え、凹部の内面で流体の流れを好適に制御することができる。
The gist of the invention according to claim 5 is that, in the intake port structure of the internal combustion engine according to any one of claims 1 to 4, the inner surface of the recess is a smooth surface.
According to the above configuration, since the inner surface of the recess is a smooth surface without unevenness, it is possible to suppress unexpected resistance from being added to the fluid, and to appropriately control the flow of the fluid on the inner surface of the recess.

以下、本発明を具体化した一実施形態について、図面を参照して詳細に説明する。
図1(a)に、本実施形態の吸気ポート10の縦断面図を、図2に横断面図を示す。
各図に示すように、吸気ポート10は、内燃機関のシリンダヘッド1に形成され、図示しない吸気管から燃焼室へと外気、混合気等の流体を送り込むものである。当該吸気ポート10は、燃焼室頂面2に開口して該燃焼室頂面2に対して垂直に延びる垂直通路部12と、その垂直通路部12に連なるとともに前記燃焼室頂面2の垂直方向に対して傾斜した方向に延びる傾斜通路部11とを有している。そして、該吸気ポート10は、傾斜通路部11と垂直通路部12との境界部Dが湾曲状に形成されている。なお、これ以降、特に指定しない限りは、該吸気ポート10において、燃焼室側(図1(a)中で下側)を下方とし、吸気管側(図1(a)中で上側)を上方とする。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1A shows a longitudinal sectional view of the intake port 10 of the present embodiment, and FIG. 2 shows a transverse sectional view.
As shown in the drawings, the intake port 10 is formed in the cylinder head 1 of the internal combustion engine, and feeds fluid such as outside air and air-fuel mixture from an unillustrated intake pipe to the combustion chamber. The intake port 10 opens to the combustion chamber top surface 2 and extends perpendicularly to the combustion chamber top surface 2, and is connected to the vertical passage portion 12 and is perpendicular to the combustion chamber top surface 2. And an inclined passage portion 11 extending in a direction inclined with respect to. In the intake port 10, a boundary portion D between the inclined passage portion 11 and the vertical passage portion 12 is formed in a curved shape. Hereinafter, unless otherwise specified, in the intake port 10, the combustion chamber side (lower side in FIG. 1 (a)) is the lower side, and the intake pipe side (upper side in FIG. 1 (a)) is the upper side. And

当該吸気ポート10を開閉する吸気バルブ13は、傘部13a及び弁軸13bを備えて構成されている。この弁軸13bは、シリンダヘッド1に設けられた図示しないバルブガイドに軸方向に往復動可能に支持されている。吸気ポート10の燃焼室への開口部10aには、傘部13aが着座可能な弁座14が設けられている。そして、吸気ポート10は、傘部13aが弁座14に着座することで燃焼室に対して閉じられ、傘部13aが弁座14から離座することで燃焼室に対して開かれる。   The intake valve 13 for opening and closing the intake port 10 includes an umbrella portion 13a and a valve shaft 13b. The valve shaft 13b is supported by a valve guide (not shown) provided in the cylinder head 1 so as to be capable of reciprocating in the axial direction. A valve seat 14 on which the umbrella portion 13a can be seated is provided at the opening portion 10a of the intake port 10 to the combustion chamber. The intake port 10 is closed with respect to the combustion chamber when the umbrella portion 13 a is seated on the valve seat 14, and is opened with respect to the combustion chamber when the umbrella portion 13 a is separated from the valve seat 14.

前記傾斜通路部11で下方壁面となる傾斜壁面11aには、この傾斜壁面11aに沿って凹部21が凹設されている。当該凹部21は、下方へ向かうに従い幅広となる形状、つまり平面視で逆V字状に形成されている。また、凹部21の内面21aは、滑面となるように形成されている。これは、凹部21の内面21aに沿って流れる流体に想定外の抵抗が加わることを抑制することにより、同内面21aで流体の流れを好適に制御するためである。そして、凹部21の下方側となる端は、傾斜通路部11と垂直通路部12との境界部Dまで延伸されている。   A concave portion 21 is provided along the inclined wall surface 11a on the inclined wall surface 11a which is a lower wall surface in the inclined passage portion 11. The concave portion 21 is formed in a shape that becomes wider as it goes downward, that is, in an inverted V shape in plan view. Further, the inner surface 21a of the recess 21 is formed to be a smooth surface. This is because the flow of the fluid is suitably controlled by the inner surface 21a by suppressing an unexpected resistance from being applied to the fluid flowing along the inner surface 21a of the recess 21. The lower end of the recess 21 extends to the boundary portion D between the inclined passage portion 11 and the vertical passage portion 12.

図1(b)に、本実施形態の吸気ポート10で凹部21の縦断面図を示す。なお、同図においては、凹部21の形状の理解を容易にするために、凹部21の深さを誇張して描いてある。   FIG. 1B shows a longitudinal sectional view of the recess 21 in the intake port 10 of the present embodiment. In the figure, the depth of the recess 21 is exaggerated for easy understanding of the shape of the recess 21.

同図に示すように、凹部21の下方側となる端には、接続面22が設けられている。この接続面22は、垂直通路部12の壁面で下方壁面となる垂直壁面12aに対し、凹部21の内面21aを段状に繋げるように構成されている。すなわち、前記凹部21は、傾斜壁面11aで該当部分(図1(b)中に2点鎖線で示す)を切り欠くことにより、垂直通路部12側へ向かうに従い底深くなる形状となるように形成されている。このため、凹部21の内面21aと垂直壁面12aとの間には必然的に段差が存在しており、当該内面21aを垂直壁面12aに繋げるため、接続面22が形成されている。   As shown in the figure, a connection surface 22 is provided at the lower end of the recess 21. The connection surface 22 is configured to connect the inner surface 21 a of the recess 21 in a stepped manner to the vertical wall surface 12 a that is the lower wall surface of the vertical passage portion 12. That is, the concave portion 21 is formed to have a shape that becomes deeper toward the vertical passage portion 12 side by notching a corresponding portion (indicated by a two-dot chain line in FIG. 1B) on the inclined wall surface 11a. Has been. For this reason, there is necessarily a step between the inner surface 21a of the recess 21 and the vertical wall surface 12a, and a connection surface 22 is formed to connect the inner surface 21a to the vertical wall surface 12a.

当該接続面22は、平坦な面とされており、凹部21の内面21aに対し鈍角状に繋がるように形成されている。さらに、該接続面22は、平面視で前記吸気ポート10の壁面に沿って周方向へ延びる弧状とされており、前記内面21aに対し、これらの間で一定の角度を維持するように繋がっている。また、この接続面22は、平面視で前記吸気ポートの壁面に沿って周方向へ一定幅で形成されている。そして、このように形成された接続面22は、垂直壁面12aに対し鈍角状に繋がっており、これら接続面22と垂直壁面12aとの境界により、エッジ31が形成されている。   The connection surface 22 is a flat surface and is formed so as to be connected to the inner surface 21a of the recess 21 in an obtuse angle. Further, the connection surface 22 has an arc shape extending in the circumferential direction along the wall surface of the intake port 10 in a plan view, and is connected to the inner surface 21a so as to maintain a constant angle therebetween. Yes. The connection surface 22 is formed with a constant width in the circumferential direction along the wall surface of the intake port in plan view. The connection surface 22 formed in this way is connected to the vertical wall surface 12a at an obtuse angle, and an edge 31 is formed by the boundary between the connection surface 22 and the vertical wall surface 12a.

続いて、当該吸気ポート10における流体の流れを説明する。
図1(b)に示したように、吸気ポート10へと送り込まれた流体は、まず凹部21に達するまで、傾斜壁面11aに沿って流れる。その後、流体は、これまでの傾斜壁面11aに沿った流れ(図中の2点鎖線で示した矢印)を維持することなく、当該凹部21で流れ方向を変えつつ、凹部21の内面21aに沿って流れ(図中の実線で示した矢印)、接続面22へと到る。なお、前記凹部21は、平面視で逆V字状、つまり垂直通路部12へ向かうに従い流量係数が高まる形状とされていることから、同凹部21を流れる流体に抵抗を加えにくいため、凹部21の内面21aに対する流体の剥離が抑制され、流体は凹部21の内面21aに沿って好適に流れる。
Next, the flow of fluid in the intake port 10 will be described.
As shown in FIG. 1B, the fluid sent to the intake port 10 first flows along the inclined wall surface 11 a until reaching the recess 21. Thereafter, the fluid flows along the inner surface 21a of the recess 21 while changing the flow direction in the recess 21 without maintaining the flow (the arrow indicated by the two-dot chain line in the drawing) along the inclined wall surface 11a. The flow (arrow indicated by a solid line in the figure) reaches the connection surface 22. The concave portion 21 has an inverted V shape in plan view, that is, a shape in which the flow coefficient increases as it goes toward the vertical passage portion 12, and therefore it is difficult to add resistance to the fluid flowing through the concave portion 21. Separation of the fluid with respect to the inner surface 21a is suppressed, and the fluid preferably flows along the inner surface 21a of the recess 21.

この後、流体は、接続面22が凹部21の内面21a及び垂直壁面12aのそれぞれに対し鈍角状に繋がっており、流れ方向が急激に変わることから、エッジ31で接続面22から剥離して吸気ポート10の上方へと流れる。そして、この流体は、吸気ポート10の上方壁面に沿って流れてきた流体と合流し、燃焼室に対して斜め方向から強い勢いで流れ込むことにより、同燃焼室内で縦渦(タンブル)を形成する。   Thereafter, the connection surface 22 is connected to each of the inner surface 21a and the vertical wall surface 12a of the concave portion 21 at an obtuse angle, and the flow direction changes suddenly. Flows above port 10. Then, this fluid joins with the fluid flowing along the upper wall surface of the intake port 10 and flows into the combustion chamber with a strong force from an oblique direction, thereby forming a vertical vortex (tumble) in the combustion chamber. .

さて、当該エッジ31は、傾斜通路部11と垂直通路部12とがほぼ同じ径となるように吸気ポート10を形成した状態で、傾斜壁面11aの中間部から垂直壁面12aとの境界部Dまでを逆V字状に切り欠き、凹部21を形成することによって形成されたものである。従って、図1(a)に示したように、傾斜通路部11で凹部21が設けられた以外の部分の径R1と、エッジ31が設けられた部分で垂直通路部12の径R2とは、凹部21の形成に係る加工が加えられていないことから、同じ長さを保持したままとされる。特に、接続面22を前記吸気ポート10の壁面に沿って周方向へ一定幅で形成することにより、径R2の変化は確実に抑制される。このため、吸気ポート10内で吸気管側の端部と、エッジ31が設けられた部分とは、流量係数が同値であり、流量係数の低下が抑制される。   The edge 31 extends from an intermediate portion of the inclined wall surface 11a to a boundary portion D with the vertical wall surface 12a in a state where the intake port 10 is formed so that the inclined passage portion 11 and the vertical passage portion 12 have substantially the same diameter. Is formed into a reverse V shape by forming a recess 21. Therefore, as shown in FIG. 1A, the diameter R1 of the portion other than the inclined passage portion 11 provided with the recess 21 and the diameter R2 of the vertical passage portion 12 where the edge 31 is provided are: Since the processing related to the formation of the recess 21 is not added, the same length is maintained. In particular, by forming the connection surface 22 with a constant width in the circumferential direction along the wall surface of the intake port 10, the change in the diameter R2 is reliably suppressed. For this reason, the end portion on the intake pipe side in the intake port 10 and the portion where the edge 31 is provided have the same flow coefficient, and a decrease in the flow coefficient is suppressed.

また、当該凹部21は、下方側へ向かうに従い幅広となるよう、平面視で逆V字状に形成されている。すなわち、当該凹部21によって吸気ポートの径が拡がった部分は、等幅で形成された凹部による同部分に比べ小さな範囲とされる。従って、吸気ポートの径が拡がる、換言すれば流量係数が変わる範囲が最小限に抑えられる。さらに、凹部21の深さは、最大値としてもシリンダヘッド1の肉厚を超えることはなく、当該凹部21を設けることによって吸気ポートの径が大きく拡がることはない。従って、凹部21を設けることによる吸気ポートの径への影響は極僅かである。   Moreover, the said recessed part 21 is formed in the reverse V shape by planar view so that it may become wide as it goes below. That is, a portion where the diameter of the intake port is expanded by the concave portion 21 is set to a smaller range than the same portion due to the concave portion formed with an equal width. Accordingly, the diameter of the intake port is expanded, in other words, the range in which the flow coefficient changes is minimized. Furthermore, the depth of the recess 21 does not exceed the thickness of the cylinder head 1 even if it is the maximum value, and the diameter of the intake port does not greatly expand by providing the recess 21. Therefore, the influence on the diameter of the intake port by providing the recess 21 is very small.

以上説明した本実施形態の吸気ポート構造によれば、下記の効果を奏することができる。
(1)エッジ31を形成しても、エッジ31の直近位置の垂直通路部12の径R2と、傾斜通路部11で凹部21が設けられた以外の部分の径R1とは、ほぼ同値に保持されている。従って、吸気ポート10内でエッジ31を形成した部分における流量係数の低下を抑制することができる。
According to the intake port structure of the present embodiment described above, the following effects can be obtained.
(1) Even when the edge 31 is formed, the diameter R2 of the vertical passage portion 12 at the closest position of the edge 31 and the diameter R1 of the portion other than the concave passage 21 provided in the inclined passage portion 11 are maintained at substantially the same value. Has been. Accordingly, it is possible to suppress a decrease in the flow coefficient at the portion where the edge 31 is formed in the intake port 10.

(2)接続面22を平坦な面で形成したことで、凹部21の内面21aに対して接続面22が鈍角状に繋がることから、エッジ31で流体を好適に剥離させ、燃焼室内でタンブルを形成することができる。   (2) Since the connection surface 22 is formed as a flat surface, the connection surface 22 is connected to the inner surface 21a of the recess 21 in an obtuse angle. Therefore, the fluid is preferably peeled off at the edge 31 and tumbled in the combustion chamber. Can be formed.

(3)接続面22を傾斜壁面11aに沿って周方向へ延びる弧状とすることで、接続面22が内面21aに対して一定の角度で繋がることから、好適に流体を接続面22から剥離させて吸気ポート10の上方側へ集めることができる。従って、燃焼室内でタンブルを確実に形成することができる。   (3) Since the connection surface 22 is formed in an arc shape extending in the circumferential direction along the inclined wall surface 11a, the connection surface 22 is connected to the inner surface 21a at a constant angle. Thus, the air can be collected above the intake port 10. Therefore, the tumble can be reliably formed in the combustion chamber.

(4)接続面22を一定幅で形成したことで、エッジ31の直近位置の垂直通路部12の径R2と、傾斜通路部11で凹部21が設けられた以外の部分の径R1とを同値のまま保持することができる。従って、吸気ポート10内でエッジ31を形成した部分における流量係数の低下を防止することができる。   (4) Since the connecting surface 22 is formed with a constant width, the diameter R2 of the vertical passage portion 12 at the closest position of the edge 31 is equal to the diameter R1 of the portion other than the inclined passage portion 11 where the recess 21 is provided. Can be held as it is. Accordingly, it is possible to prevent a decrease in the flow coefficient at the portion where the edge 31 is formed in the intake port 10.

(5)凹部21を垂直通路部12側へ向かうに従い底深くなる形状としたことで、凹部21の形成による吸気ポート10内の流量係数の変化を好適に抑えることができる。
(6)凹部21の内面を凹凸のない滑面としたことで、流体の流れを好適に制御することができる。
(5) Since the concave portion 21 has a shape that becomes deeper toward the vertical passage portion 12 side, a change in the flow coefficient in the intake port 10 due to the formation of the concave portion 21 can be suitably suppressed.
(6) By making the inner surface of the concave portion 21 a smooth surface having no irregularities, the flow of fluid can be suitably controlled.

なお、本実施形態は、次のように変更して具体化することも可能である。
・ 前記接続面22を平坦な面としたまま、内面21aに対して鋭角状に繋げてもよい。あるいは、接続面22を湾曲した面とし、前記内面21aに対して弧状に繋げてもよい。なお、タンブルの強化を図るという観点から見た場合、当該接続面22は本実施形態のような平坦な面とすることが好ましい。つまり、接続面22を内面21aに対して弧状に繋げた場合、流体がその流れを接続面22に案内されることにより、同接続面22から剥離されなくなるおそれがある。
In addition, this embodiment can also be changed and embodied as follows.
-You may connect with the acute angle shape with respect to the inner surface 21a, making the said connection surface 22 into the flat surface. Alternatively, the connection surface 22 may be a curved surface and connected to the inner surface 21a in an arc shape. From the viewpoint of strengthening the tumble, the connection surface 22 is preferably a flat surface as in the present embodiment. In other words, when the connection surface 22 is connected to the inner surface 21 a in an arc shape, the fluid is guided from the flow to the connection surface 22 and may not be peeled off from the connection surface 22.

・ 接続面22は、本実施形態のような一定幅で形成したものに限らず、前記径R2と前記径R1との間に大きな差が生じない程度であれば、各箇所で任意の幅で形成してもよい。   The connection surface 22 is not limited to a constant width as in the present embodiment, and may have an arbitrary width at each location as long as there is no significant difference between the diameter R2 and the diameter R1. It may be formed.

・ 凹部21は、垂直通路部12へ向かうに従い幅広となる形状であれば、実施形態の平面視で逆V字状に限らず、例えば逆U字状、逆Y字状等としてもよい。
・ 凹部21を一定の深さとなるように形成してもよい。
The recess 21 is not limited to an inverted V shape in a plan view of the embodiment, and may be, for example, an inverted U shape, an inverted Y shape, or the like, as long as the recess 21 has a shape that becomes wider toward the vertical passage portion 12.
-You may form the recessed part 21 so that it may become a fixed depth.

・ 流体の流れに影響を与えない程度であれば、凹部21の内面を凹凸状の粗面としてもよい。   The inner surface of the recess 21 may be an uneven rough surface as long as it does not affect the flow of fluid.

(a)は吸気ポートを示す縦断面図、(b)は凹部を示す縦断面図。(A) is a longitudinal cross-sectional view which shows an intake port, (b) is a longitudinal cross-sectional view which shows a recessed part. 吸気ポートを示す平断面図。The plane sectional view showing an intake port.

符号の説明Explanation of symbols

D…境界部、2…燃焼室頂面、10…吸気ポート、11…傾斜通路部、11a…傾斜通路部の下方壁面となる傾斜壁面、12…垂直通路部、12a…垂直通路部の壁面となる垂直壁面、21…凹部、21a…凹部の内面、22…接続面、31…エッジ。   D: Boundary portion, 2 ... Combustion chamber top surface, 10 ... Intake port, 11 ... Inclined passage portion, 11a ... Inclined wall surface as a lower wall surface of the inclined passage portion, 12 ... Vertical passage portion, 12a ... Wall surface of the vertical passage portion A vertical wall surface, 21 ... a recess, 21a ... an inner surface of the recess, 22 ... a connection surface, 31 ... an edge.

Claims (5)

燃焼室頂面に開口して該燃焼室頂面に対して垂直に延びる垂直通路部と、その垂直通路部に連なるとともに前記燃焼室頂面の垂直方向に対して傾斜した方向に延びる傾斜通路部とを有して吸気ポートを構成する内燃機関の吸気ポート構造において、
前記傾斜通路部の下方壁面に、燃焼室側の端が前記傾斜通路部と前記垂直通路部との境界部まで延伸されて、燃焼室側に向かうに従い幅広となる凹部を形成するととともに、該凹部の前記燃焼室側の端に、前記垂直通路部の壁面に対してエッジを形成して繋がる接続面を設けたことを特徴とする内燃機関の吸気ポート構造。
A vertical passage portion that opens to the top surface of the combustion chamber and extends perpendicularly to the top surface of the combustion chamber, and an inclined passage portion that extends in a direction inclined to the vertical direction of the top surface of the combustion chamber while continuing to the vertical passage portion In the intake port structure of the internal combustion engine that constitutes the intake port with
In the lower wall surface of the inclined passage portion, an end on the combustion chamber side is extended to a boundary portion between the inclined passage portion and the vertical passage portion, and a concave portion that becomes wider toward the combustion chamber side is formed. An intake port structure for an internal combustion engine, characterized in that a connection surface is formed at the end on the combustion chamber side of the vertical passage portion so as to form an edge to the wall surface of the vertical passage portion.
前記接続面を、平坦な面で且つ前記吸気ポートの壁面に沿って周方向へ延びる弧状としたことを特徴とする請求項1に記載の内燃機関の吸気ポート構造。 2. The intake port structure for an internal combustion engine according to claim 1, wherein the connection surface is a flat surface and has an arc shape extending in a circumferential direction along a wall surface of the intake port. 前記接続面を、前記吸気ポートの壁面に沿って周方向へ一定幅で形成したことを特徴とする請求項1又は請求項2に記載の内燃機関の吸気ポート構造。 The intake port structure for an internal combustion engine according to claim 1 or 2, wherein the connection surface is formed with a constant width in the circumferential direction along a wall surface of the intake port. 前記凹部を、燃焼室側に向かうに従い底深くなる形状としたことを特徴とする請求項1から請求項3のいずれか一項に記載の内燃機関の吸気ポート構造。 The intake port structure for an internal combustion engine according to any one of claims 1 to 3, wherein the recess has a shape that becomes deeper toward the combustion chamber side. 前記凹部の内面を、滑面としたことを特徴とする請求項1から請求項4のいずれか一項に記載の内燃機関の吸気ポート構造。 The intake port structure for an internal combustion engine according to any one of claims 1 to 4, wherein an inner surface of the recess is a smooth surface.
JP2003360030A 2003-10-20 2003-10-20 Intake port structure of internal combustion engine Pending JP2005120998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003360030A JP2005120998A (en) 2003-10-20 2003-10-20 Intake port structure of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003360030A JP2005120998A (en) 2003-10-20 2003-10-20 Intake port structure of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005120998A true JP2005120998A (en) 2005-05-12

Family

ID=34616015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003360030A Pending JP2005120998A (en) 2003-10-20 2003-10-20 Intake port structure of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005120998A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066381A (en) * 2018-02-05 2018-04-26 トヨタ自動車株式会社 Internal combustion engine
US10233825B2 (en) 2015-09-08 2019-03-19 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2019044632A (en) * 2017-08-30 2019-03-22 ダイハツ工業株式会社 Cylinder head of internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10233825B2 (en) 2015-09-08 2019-03-19 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2019044632A (en) * 2017-08-30 2019-03-22 ダイハツ工業株式会社 Cylinder head of internal combustion engine
JP2018066381A (en) * 2018-02-05 2018-04-26 トヨタ自動車株式会社 Internal combustion engine

Similar Documents

Publication Publication Date Title
KR100925134B1 (en) Intake device of internal combustion engine
US7182057B2 (en) Engine cylinder head having an improved intake port configuration, and engine incorporating same
JP4379503B2 (en) Piston for internal combustion engine
CN106574547B (en) Internal combustion engine
US11326548B2 (en) Engine
EP1344926B1 (en) Intake port of internal combustion engine
US6915774B2 (en) Intake apparatus for internal combustion engine
JP2007046457A (en) Intake port for internal combustion engine and method for manufacturing same
JP2010523875A (en) Cylinder head intake duct and method for manufacturing internal combustion engine
JP2005120998A (en) Intake port structure of internal combustion engine
JP2010174702A (en) Intake port structure
JP4285149B2 (en) Internal combustion engine
JP6304022B2 (en) Internal combustion engine
JP4227885B2 (en) Spool type flow control valve with notch
JP2008274788A (en) Combustion chamber structure of engine
JP4765819B2 (en) Intake port of internal combustion engine
JP4231427B2 (en) Exhaust control valve
JP2006161584A (en) Internal combustion engine
JP2006070810A (en) Intake port for internal combustion engine
JP4320954B2 (en) Engine intake structure
JP2007309275A (en) Intake device for internal combustion engine
JP4830908B2 (en) Intake device for internal combustion engine
JP2006046079A (en) Internal combustion engine provided with intake port for forming tumble flow
JP2007100536A (en) Combustion chamber structure of internal combustion engine
JP4850736B2 (en) Engine intake port structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805

A521 Written amendment

Effective date: 20080926

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081014

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081114