JP2005120041A - METHOD OF PURIFYING BIS-pi-ALLYLPALLADIUM COMPLEX AND METHOD FOR SYNTHESIZING ASYMMETRIC ALLYLAMINE - Google Patents

METHOD OF PURIFYING BIS-pi-ALLYLPALLADIUM COMPLEX AND METHOD FOR SYNTHESIZING ASYMMETRIC ALLYLAMINE Download PDF

Info

Publication number
JP2005120041A
JP2005120041A JP2003358265A JP2003358265A JP2005120041A JP 2005120041 A JP2005120041 A JP 2005120041A JP 2003358265 A JP2003358265 A JP 2003358265A JP 2003358265 A JP2003358265 A JP 2003358265A JP 2005120041 A JP2005120041 A JP 2005120041A
Authority
JP
Japan
Prior art keywords
asymmetric
allyl
synthesizing
group
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003358265A
Other languages
Japanese (ja)
Inventor
Yoshinori Yamamoto
嘉則 山本
Stimac Anton
アントン・スティマック
A Fernandes Rodney
ロドニィー・エー・フェルナンデス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003358265A priority Critical patent/JP2005120041A/en
Publication of JP2005120041A publication Critical patent/JP2005120041A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Catalysts (AREA)
  • Furan Compounds (AREA)
  • Hydrogenated Pyridines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for synthesizing an asymmetric allylamine from an imine in high yield and in high asymmetry yield. <P>SOLUTION: The method for synthesizing an asymmetric allylamine represented by formula (6) (wherein R<SB>1</SB>is selected from the group consisting of o-, m- and p-substituted aromatics, naphthyl, an alkenyl, an alkyl, furyl, thiophenyl and a pyridine group; and R<SB>2</SB>is selected from the group consisting of benzyl, an aromatic ring substituted benzyl, allyl, and methyl) comprises reacting an imine represented by formula (5) with an allyltributylstannane in the presence of a bis-π-allylpalladium complex represented by chemical formula (2a) as a catalyst. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ビス−π−アリルパラジウム錯体の精製方法および不斉アリルアミンの合成方法に関する。   The present invention relates to a method for purifying a bis-π-allyl palladium complex and a method for synthesizing an asymmetric allylamine.

ホモアリルアルコールおよびアミンが有用な合成中間体であることから、アルデヒド、ケトン、およびそれらの誘導体のようなカルボニル化合物のアリル化は、C−C結合を形成する最も重要な反応の一つである。多くの方法が研究されてきたが、より有効な新しい方法を求めて研究が続いている。種々のアリル金属試薬の中でも、アリルスタナンおよびアリルシランは非常に有用である。これは、その穏やかな反応性のためであり、触媒活性により高められ、触媒的鏡像体選択反応に適用することができる。   Since homoallylic alcohols and amines are useful synthetic intermediates, allylation of carbonyl compounds such as aldehydes, ketones, and their derivatives is one of the most important reactions that form C—C bonds. . Many methods have been studied, but research continues in search of more effective new methods. Of the various allyl metal reagents, allyl stannane and allyl silane are very useful. This is due to its mild reactivity and is enhanced by catalytic activity and can be applied to catalytic enantioselective reactions.

ルイス酸またはブレンステッド酸を用いたイミンの活性化方法も、同様に研究されてきた。しかしながら、これらの酸は、アミン生成物に強く配位して触媒失活を引き起こす。また、フッ化アニオンまたはアルコキシドは珪素原子に配位することによって、アルキルシランのC−Si結合を同様に活性化することが報告されている。最近、中性配位オルガノ触媒(NCOs)として、キラルスルフォキサイドがN−アシルヒドラゾンのアリル化に用いられている。アルデヒドとの反応も研究されているが、イミンの不斉アリル化に関するものはほとんど存在しない。   Imine activation methods using Lewis or Bronsted acids have been similarly studied. However, these acids coordinate strongly with the amine product and cause catalyst deactivation. Further, it has been reported that a fluoride anion or an alkoxide similarly activates a C—Si bond of alkylsilane by coordinating to a silicon atom. Recently, chiral sulfoxides have been used for the allylation of N-acylhydrazones as neutral coordination organocatalysts (NCOs). Reactions with aldehydes have also been studied, but there is little to do with asymmetric allylation of imines.

本発明者らは、キラルπ−アリルパラジウム錯体の存在下でアリルトリブチルスタナンを用いて、イミンの不斉アリル化触媒反応を報告している(例えば、非特許文献1参照)。しかしながら、得られる不斉アリルアミンの収率および不斉収率は十分ではなく、さらなる改善が求められており、そのための触媒も得られていないのが現状である。
Catalytic Asymmetric Allylation of Imines via Chiral Bis-π-allylpalladium Complexes (H. Nakamura, et al., American Chemical Society(1998))
The present inventors have reported an asymmetric allylation catalyzed reaction of imine using allyltributylstannane in the presence of a chiral π-allyl palladium complex (see, for example, Non-Patent Document 1). However, the yield and asymmetric yield of the obtained asymmetric allylamine are not sufficient, and further improvement is demanded, and the catalyst for that purpose is not obtained.
Catalytic Asymmetric Allylation of Imines via Chiral Bis-π-allylpalladium Complexes (H. Nakamura, et al., American Chemical Society (1998))

本発明は、イミンの不斉アリル化のために好適な触媒となる化合物を得る方法を提供すること目的とする。また本発明は、高い収率および不斉収率で、イミンから不斉アリルアミンを合成する方法を提供することを目的とする。   An object of this invention is to provide the method of obtaining the compound used as a suitable catalyst for asymmetric allylation of imine. Another object of the present invention is to provide a method for synthesizing an asymmetric allylamine from an imine with high yield and asymmetric yield.

本発明の一態様にかかるビス−π−アリルパラジウム錯体の精製方法は、
(1S)−(−)−β−ピネンから、下記化学式(7)で表わされるエキソエチリデンノルピナンのE体とZ体との1:1混合物を得る工程、

Figure 2005120041
前記混合物をアセトン中、n−Bu4NClの存在下でPd(OCOCF32と反応させて、下記化学式(2a)で表わされる化合物と化学式(2b)で表わされる化合物との混合物を得る工程、
Figure 2005120041
前記化合物(2a)と(2b)との混合物を、CH2Cl2/ヘキサン中で2回、結晶化する工程、
結晶化後の前記化合物(2a)と(2b)との混合物を、プロピオニトリル中で3回再結晶化する工程、および
ろ過により前記化学式(2a)で表わされる化合物を単離する工程を具備することを特徴とする。 A method for purifying a bis-π-allyl palladium complex according to one embodiment of the present invention includes:
A step of obtaining a 1: 1 mixture of E-form and Z-form of exoethylidene norpinane represented by the following chemical formula (7) from (1S)-(−)-β-pinene;
Figure 2005120041
Reacting the mixture with Pd (OCOCF 3 ) 2 in the presence of n-Bu 4 NCl in acetone to obtain a mixture of a compound represented by the following chemical formula (2a) and a compound represented by the chemical formula (2b) ,
Figure 2005120041
Crystallizing the mixture of the compounds (2a) and (2b) twice in CH 2 Cl 2 / hexane;
A step of recrystallizing the mixture of the compounds (2a) and (2b) after crystallization in propionitrile three times, and a step of isolating the compound represented by the chemical formula (2a) by filtration. It is characterized by doing.

本発明の一態様にかかる不斉アリルアミンの合成方法は、下記一般式(5)で表わされるイミンとアリルトリブチルスタナンとを、触媒としての下記化学式(2a)で表わされるビス−π−アリルパラジウム錯体の存在下、水を含む溶媒中で反応させることを特徴とする。

Figure 2005120041
A method for synthesizing an asymmetric allylamine according to one embodiment of the present invention includes imine and allyltributylstannane represented by the following general formula (5) as bis-π-allyl palladium represented by the following chemical formula (2a) as a catalyst. The reaction is carried out in a solvent containing water in the presence of the complex.
Figure 2005120041

(前記一般式中、R1は、オルト,メタ,パラ−置換芳香族、ナフチル、アルケニル、アルキル、フリル、チオフェニル、およびピリジン基からなる群から選択され、R2は、ベンジル、芳香環置換ベンジル、アリル、およびメチルからなる群から選択される。)
本発明の他の態様にかかる不斉アリルアミンの合成方法は、下記一般式(5)で表わされるイミンとアリルトリメチルスタナンとを、触媒としての下記化学式(2a)で表わされるビス−π−アリルパラジウム錯体の存在下、水を含む溶媒中で反応させることを特徴とする。

Figure 2005120041
(Wherein R 1 is selected from the group consisting of ortho, meta, para-substituted aromatic, naphthyl, alkenyl, alkyl, furyl, thiophenyl, and pyridine groups; R 2 is benzyl, aromatic ring-substituted benzyl; Selected from the group consisting of, allyl, and methyl.)
A method for synthesizing an asymmetric allylamine according to another embodiment of the present invention comprises imine and allyltrimethylstannane represented by the following general formula (5) as a catalyst and bis-π-allyl represented by the following chemical formula (2a). The reaction is carried out in a solvent containing water in the presence of a palladium complex.
Figure 2005120041

(前記一般式中、R1は、オルト,メタ,パラ−置換芳香族、ナフチル、アルケニル、アルキル、フリル、チオフェニル、およびピリジン基からなる群から選択され、R2は、ベンジル、芳香環置換ベンジル、アリル、およびメチルからなる群から選択される。) (Wherein R 1 is selected from the group consisting of ortho, meta, para-substituted aromatic, naphthyl, alkenyl, alkyl, furyl, thiophenyl, and pyridine groups; R 2 is benzyl, aromatic ring-substituted benzyl; Selected from the group consisting of, allyl, and methyl.)

本発明の態様によれば、イミンの不斉アリル化のために好適な触媒となる化合物を得る方法が提供される。また本発明によれば、高い収率および不斉収率で、イミンから不斉アリルアミンを合成する方法が提供される。   According to the aspect of the present invention, a method for obtaining a compound that becomes a suitable catalyst for asymmetric allylation of imine is provided. Moreover, according to this invention, the method of synthesize | combining asymmetric allylamine from imine with a high yield and asymmetric yield is provided.

以下、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(ビス−π−アリルパラジウム錯体の精製)
本発明の実施形態にかかるビス−π−アリルパラジウム錯体の精製方法においては、まず、(1S)−(−)−β−ピネンから、下記化学式(7)で表わされるエキソエチリデンノルピナンのE体とZ体との1:1混合物を合成する。
(Purification of bis-π-allyl palladium complex)
In the method for purifying a bis-π-allylpalladium complex according to an embodiment of the present invention, first, E form of exoethylidene norpinane represented by the following chemical formula (7) from (1S)-(−)-β-pinene. And a 1: 1 mixture of isomers and Z form.

(1S)−(−)−β−ピネンのエキソ二重結合を常法によりオゾン分解することによって、(1R)−(+)−ノルピノンを得た。オゾン化には、例えば、Brown,H.C;Weissman,S.A.;Perumal,P.T.;Dhokte,U.P.J.Org.Chem.1990,55,1217に記載されている方法を採用することができる。(1R)−(+)−ノルピノンの収率は75%で、[α]D 22+39.4(C=1,MeOH)であった。引き続いて、エチルトリフェニルホスホニウムブロマイドおよびBuOKによりウィッテッヒ反応を行なって、下記化学式(7)で表わされるエキソエチリデンノルピナンを得た。ここでの反応は、例えば、Trost, B. M.; Strege, P. E.; Weber, L.; Fullerton, T. J.; Dietsche, T. J. J. Am. Chem. Soc. 1978,100,3407.に記載されている手法に基づくことができる。収率は83%であり、この生成物は、E体とZ体との1:1混合物であった。

Figure 2005120041
(1R)-(+)-norpinone was obtained by ozonolysis of the exo double bond of (1S)-(−)-β-pinene by a conventional method. For the ozonization, for example, the method described in Brown, HC; Weissman, SA; Perumal, PT; Dhokte, UPJOrg. Chem. 1990, 55, 1217 can be employed. The yield of (1R)-(+)-norpinone was 75%, [α] D 22 +39.4 (C = 1, MeOH). Subsequently, Wittig reaction was performed with ethyltriphenylphosphonium bromide and BuOK to obtain exoethylidene norpinane represented by the following chemical formula (7). The reaction here is based on, for example, the technique described in Trost, BM; Strege, PE; Weber, L .; Fullerton, TJ; Dietsche, TJJ Am. Chem. Soc. 1978, 100, 3407. it can. The yield was 83%, and this product was a 1: 1 mixture of E-form and Z-form.
Figure 2005120041

引き続き、前記一般式(7)で表わされるエキソエチリデンノルピナンから、下記化学式(2a)で表わされる化合物と下記化学式(2b)で表わされる化合物との混合物を得た。ここでの反応には、例えば、Trost, B. M.; Metzner, P. J. J. Am. Chem. Soc. 1980, 102,3572.に記載されている方法を採用することができる。

Figure 2005120041
Subsequently, a mixture of a compound represented by the following chemical formula (2a) and a compound represented by the following chemical formula (2b) was obtained from the exoethylidene norpinane represented by the general formula (7). For this reaction, for example, a method described in Trost, BM; Metzner, PJJ Am. Chem. Soc. 1980, 102, 3572 can be employed.
Figure 2005120041

5g(15.04mmol)のPd(OCOCF32を125mLの乾燥アセトンに溶解して溶液を調製し、これを丸底の二口フラスコに収容した。アルゴン雰囲気中、この中に化学式(7)で表わされるエキソエチリデンノルピナン(2.26g,15.05mmol)を加えて混合物を調製し、TLCで反応をモニターしつつ室温で1時間攪拌した。一方、Bu4NCl(4.56g,16.55mmol)を30mLのアセトンに溶解し、得られた溶液を前述の反応混合物に加えて1時間攪拌した。 A solution was prepared by dissolving 5 g (15.04 mmol) of Pd (OCOCF 3 ) 2 in 125 mL of dry acetone, and this was placed in a round bottom two-necked flask. In an argon atmosphere, exoethylidene norpinane (2.26 g, 15.05 mmol) represented by the chemical formula (7) was added thereto to prepare a mixture, and the mixture was stirred at room temperature for 1 hour while monitoring the reaction by TLC. Meanwhile, Bu 4 NCl (4.56 g, 16.55 mmol) was dissolved in 30 mL of acetone, and the resulting solution was added to the above reaction mixture and stirred for 1 hour.

その結果、鮮明な橙褐色の溶液が得られ、これをセライト製のプラグによりろ過して、Pd−ブラックを除去した。ろ液を濃縮して濃い琥珀色の油状物質を得、シリカゲルカラムクロマトグラフィによりこれを精製した。抽出剤としてはヘキサン/EtOAcを用い、6.92gの半固体状の生成物が得られた。この生成物は、化合物(2a):化合物(2b)=1.3:1の混合物であることが、1H NMRにより示された。 As a result, a clear orange-brown solution was obtained, which was filtered through a plug made of Celite to remove Pd-black. The filtrate was concentrated to give a dark amber oil which was purified by silica gel column chromatography. Hexane / EtOAc was used as the extractant, and 6.92 g of a semi-solid product was obtained. This product was shown by 1 H NMR to be a mixture of compound (2a): compound (2b) = 1.3: 1.

微量のCH2Cl2中に生成物を溶解して30mLのヘキサンを加えたところ、結晶が生成した。結晶化した固体は、焼結ファネルにより濾過してヘキサンで洗浄し、吸引乾燥した。その結果、化合物(2a):化合物(2b)=4.8:1で、3.2gの黄色粉末が得られた。 When the product was dissolved in a small amount of CH 2 Cl 2 and 30 mL of hexane was added, crystals were formed. The crystallized solid was filtered through a sintered funnel, washed with hexane and sucked dry. As a result, compound (2a): compound (2b) = 4.8: 1, and 3.2 g of yellow powder was obtained.

さらなる精製は、図1および図2に示すようなフローチャートにしたがって行なわれる。触媒を回収するために、再結晶(F1〜F3)後のろ液は、図2に示すように組み合わせて濃縮し、黄色の固体フォームを得た。ベンゼンを抽出剤として用いたカラムクロマトグラフィの結果、最初の微量留分は化合物(2b)であり、0.45g、[α]D 22+44.5(c=0.4,CHCl3)であった。その後の留分は、化合物(2a)と(2b)との混合物であった。ろ液F4とF5とを組み合わせ、濃縮して黄色粉末(1g)を得た。 Further purification is performed according to the flow chart as shown in FIGS. In order to recover the catalyst, the filtrates after recrystallization (F1-F3) were combined and concentrated as shown in FIG. 2 to obtain a yellow solid foam. As a result of column chromatography using benzene as an extractant, the first trace fraction was Compound (2b), which was 0.45 g, [α] D 22 +44.5 (c = 0.4, CHCl 3 ). . The subsequent fraction was a mixture of compounds (2a) and (2b). The filtrates F4 and F5 were combined and concentrated to give a yellow powder (1 g).

プロピオニトリル中、連続して3回の再結晶化を行なったところ、化合物(2a):化合物(2b)=100:1(0.452g)が得られた。[α]D 22−17.2(c=0.4,CHCl3)であった。さらに3回、プロピオニトリル中での再結晶を行なった結果、(2a):(2b)は400:1(0.215g)以上となり、[α]D 22−19.8(c=0.4,CHCl3)であった。 When recrystallization was performed three times in succession in propionitrile, compound (2a): compound (2b) = 100: 1 (0.452 g) was obtained. [Α] D 22 -17.2 (c = 0.4, CHCl 3 ). As a result of recrystallization in propionitrile three more times, (2a) :( 2b) was 400: 1 (0.215 g) or more, and [α] D 22 -19.8 (c = 0.0). 4, CHCl 3 ).

1H NMRおよび13C NMRによる分析結果を以下に示す。 The analysis results by 1 H NMR and 13 C NMR are shown below.

(2a):(2b)の1H NMR≧400:1
化合物2a
(CDCl3) δ 3.84-3.80(m,1H), 3.78-3.68(m,1H), 2.7-2.64(m, 1H), 2.55(brt, J=5.5Hz, 1H), 2.44-2.33(m, 1H), 2.08-2.03(m, 1H), 1.77-1.74(m, 2H), 1.34 (s, 3H), 1.13(d, J= 6.5Hz, 3H), 0.91(s, 3H).
13C NMR:(CDCl3) δ 136.0, 72.2, 71.0, 40.5, 39.9, 37.8, 33.8, 29.9, 26.1, 21.7, 13.9.
IR(KBr) 2982, 2951, 2912, 2870, 1499, 1466, 1448, 1429, 1367, 1265, 1219, 1101, 1051, 1032, 974, 860, 758 cm-1
化合物(2b)
1H NMR:(CDCl3) δ 4.47-4.41(m, 1H), 4.33-4.22(m, 1H), 2.67-2.52(m, 1H), 2.36-2.3(m, 1H), 2.2-2.13(m, 1H), 2.08-2.02(m, 1H), 1.87-1.74(m, 2H), 1.29(s, 3H), 1.03(d, J=6.8Hz, 3H), 0.71(s, 3H).
13C NMR:(CDCl3) δ 132.5, 72.7, 70.8, 46.5, 39.9, 38.0, 34.4, 29.9, 26.0, 21.7, 16.2
IR(KBr) 2980, 2918, 2872, 2833, 1468, 1454, 1429, 1369, 1265, 1221, 1099, 1042, 968, 920, 762 cm-1
(不斉アリルアミンの合成)
本発明の実施形態にかかる不斉アリルアミンの合成方法においては、上述のようにして得られた化合物(2a)を用い、下記反応式(1)に示すようにアリルトリブチルスタナンと反応させて、一般式(5)で表わされるイミンの不斉アミノ化が行なわれる。

Figure 2005120041
(2a): 1 H NMR of (2b) ≧ 400: 1
Compound 2a
(CDCl 3 ) δ 3.84-3.80 (m, 1H), 3.78-3.68 (m, 1H), 2.7-2.64 (m, 1H), 2.55 (brt, J = 5.5Hz, 1H), 2.44-2.33 (m, 1H), 2.08-2.03 (m, 1H), 1.77-1.74 (m, 2H), 1.34 (s, 3H), 1.13 (d, J = 6.5Hz, 3H), 0.91 (s, 3H).
13 C NMR: (CDCl 3 ) δ 136.0, 72.2, 71.0, 40.5, 39.9, 37.8, 33.8, 29.9, 26.1, 21.7, 13.9.
IR (KBr) 2982, 2951, 2912, 2870, 1499, 1466, 1448, 1429, 1367, 1265, 1219, 1101, 1051, 1032, 974, 860, 758 cm -1
Compound (2b)
1 H NMR: (CDCl 3 ) δ 4.47-4.41 (m, 1H), 4.33-4.22 (m, 1H), 2.67-2.52 (m, 1H), 2.36-2.3 (m, 1H), 2.2-2.13 (m , 1H), 2.08-2.02 (m, 1H), 1.87-1.74 (m, 2H), 1.29 (s, 3H), 1.03 (d, J = 6.8Hz, 3H), 0.71 (s, 3H).
13 C NMR: (CDCl 3 ) δ 132.5, 72.7, 70.8, 46.5, 39.9, 38.0, 34.4, 29.9, 26.0, 21.7, 16.2
IR (KBr) 2980, 2918, 2872, 2833, 1468, 1454, 1429, 1369, 1265, 1221, 1099, 1042, 968, 920, 762 cm -1
(Synthesis of asymmetric allylamine)
In the method for synthesizing an asymmetric allylamine according to an embodiment of the present invention, the compound (2a) obtained as described above is reacted with allyltributylstannane as shown in the following reaction formula (1). Asymmetric amination of the imine represented by the general formula (5) is performed.
Figure 2005120041

(前記一般式中、R1は、オルト,メタ,パラ−置換芳香族、ナフチル、アルケニル、アルキル、フリル、チオフェニル、およびピリジン基からなる群から選択され、R2は、ベンジル、芳香環置換ベンジル、アリル、およびメチルからなる群から選択される。)
アリルトリブチルスタナンの代わりにアリルトリメチルスタナンを用いることもできる。また、これらにおけるアリル基は、アリル、2−メチルアリル、クロチル、プレニル、および2−メトキシカルボニル−アリル等からなる群から選択される少なくとも一種の置換基により置換されていてもよい。
(Wherein R 1 is selected from the group consisting of ortho, meta, para-substituted aromatic, naphthyl, alkenyl, alkyl, furyl, thiophenyl, and pyridine groups; R 2 is benzyl, aromatic ring-substituted benzyl; Selected from the group consisting of, allyl, and methyl.)
Allyltrimethylstannane can be used in place of allyltributylstannane. In addition, the allyl group in these may be substituted with at least one substituent selected from the group consisting of allyl, 2-methylallyl, crotyl, prenyl, 2-methoxycarbonyl-allyl and the like.

反応式(1)に示されるように、本発明の実施形態にかかる不斉アリルアミンの合成方法においては、溶媒中に水が存在しなければならない。これは、次のような実験により確認された。   As shown in the reaction formula (1), in the method for synthesizing an asymmetric allylamine according to the embodiment of the present invention, water must be present in the solvent. This was confirmed by the following experiment.

まず、0℃の無水条件下、5モル%の化合物(2a)を含むテトラヒドロフラン(THF)溶媒中で、下記化学式(8a)で表わされるイミンのアリル化を行なった。

Figure 2005120041
First, allylation of imine represented by the following chemical formula (8a) was performed in a tetrahydrofuran (THF) solvent containing 5 mol% of the compound (2a) under anhydrous conditions at 0 ° C.
Figure 2005120041

反応条件は次のとおりである。イミン8a(0.5mmol)の乾燥THF溶液(1.25mL:市販の無水THF)をアリルSnBu3(0.5mmol)に加え、混合物を0℃に冷却した。化合物(2a)(5mol%)を加え、GC−MSでモニターしつつ、反応混合物を所定時間攪拌した。アリルトリブチルスタナンや溶媒の種類、反応温度を下記表1に示すように変更して不斉アリル化反応を行なって、化学式(9a)で表わされる不斉アリルアミンを合成した。反応時間、生成物の収率、および不斉収率(%ee)を、反応条件とともに下記表1に示す。

Figure 2005120041
The reaction conditions are as follows. A solution of imine 8a (0.5 mmol) in dry THF (1.25 mL: commercially available anhydrous THF) was added to allyl SnBu 3 (0.5 mmol) and the mixture was cooled to 0 ° C. Compound (2a) (5 mol%) was added, and the reaction mixture was stirred for a predetermined time while monitoring by GC-MS. The kind of allyltributylstannane, the solvent, and the reaction temperature were changed as shown in Table 1 below, and an asymmetric allylation reaction was performed to synthesize an asymmetric allylamine represented by the chemical formula (9a). The reaction time, product yield, and asymmetric yield (% ee) are shown in Table 1 below together with the reaction conditions.
Figure 2005120041

実験1および2は、いずれも標準条件下で反応が行なわれたものの再現性はなく、不斉選択性は低い。さらに、こうした無水条件下では、触媒の分解が観察された。   In Experiments 1 and 2, the reaction was carried out under standard conditions, but there was no reproducibility and asymmetric selectivity was low. In addition, catalyst degradation was observed under these anhydrous conditions.

1当量の水を溶媒中に添加することによって(実験3)、収率および不斉選択性が向上することがわかる。水の存在下では、不斉収率および収率のデータにバラツキがなく、再現性のある結果が得られたことは、より重要である。実験4に示されるように、アリルトリブチルスタナンの使用量を1.25当量に増大した場合には、反応時間が短縮されるとともに、より高い収率および鏡像体選択性が得られた。   It can be seen that by adding 1 equivalent of water to the solvent (Experiment 3), the yield and asymmetric selectivity are improved. More importantly, in the presence of water, the asymmetry yield and yield data are consistent and reproducible results are obtained. As shown in Experiment 4, when the amount of allyltributylstannane used was increased to 1.25 equivalents, the reaction time was shortened, and higher yield and enantioselectivity were obtained.

最初に触媒を添加し、その後にスタナン加えて添加の順番を変更した場合(実験5)には、より長い反応時間が必要とされ、不斉選択性は若干低下することが、実験4との比較からわかる。過剰の水(5当量、実験6)または1当量未満の水(0.5当量、実験7)では、実験4と比較して結果が劣る。−20℃(実験8)では、反応が完了するのにより長い時間を必要とし収率が低下する。同様の結果は、室温(実験9)でも得られた。化合物(2b)が触媒として用いられた場合(実験10)、168時間経過した後でもイミン8aを完全に消費することができず、生成物の収率が低い。しかも、不斉選択性も不完全である。触媒2bは同様のエナンチオマーを与えるものの、2aから2bを分離する必要がある。   When the order of addition was changed by adding the catalyst first and then adding stannane (Experiment 5), a longer reaction time was required, and the asymmetric selectivity slightly decreased. You can see from the comparison. Excess water (5 equivalents, Experiment 6) or less than 1 equivalent of water (0.5 equivalents, Experiment 7) results in inferior results compared to Experiment 4. At −20 ° C. (experiment 8), the reaction takes longer to complete and the yield decreases. Similar results were obtained at room temperature (Experiment 9). When compound (2b) is used as a catalyst (experiment 10), imine 8a cannot be completely consumed even after 168 hours have elapsed, and the yield of the product is low. Moreover, the asymmetric selectivity is incomplete. Although catalyst 2b gives similar enantiomers, it is necessary to separate 2b from 2a.

以上の結果に基づいて、本発明の実施形態にかかる不斉アリルアミンの合成方法においては、水を含む溶媒中で反応を行なうと規定した。なお、溶媒中における水の含有量は、0.7〜4.0当量の範囲内であれば、1当量の場合と同様の効果を得ることができた。また、0℃に限らず、−10〜10℃の範囲内の温度で反応させた場合には、収率および不斉収率ともに許容範囲となった。   Based on the above results, in the method for synthesizing an asymmetric allylamine according to the embodiment of the present invention, it is defined that the reaction is performed in a solvent containing water. In addition, if content of the water in a solvent was in the range of 0.7-4.0 equivalent, the effect similar to the case of 1 equivalent was able to be acquired. Moreover, when it was made to react not only at 0 degreeC but in the temperature within the range of -10-10 degreeC, both the yield and the asymmetric yield became tolerance.

次に、水以外の他の添加剤を用いて、その影響を調べた。0℃の乾燥THF中、5モル%の化合物(2a)および添加剤の存在下、下記化学式(10a)で表わされるイミンをアリルブチルスタナンと反応させた。この不斉アリル化反応により、下記化学式(11a)で表わされる不斉アリルアミンが得られる。

Figure 2005120041
Next, the influence was investigated using additives other than water. In dry THF at 0 ° C., imine represented by the following chemical formula (10a) was reacted with allylbutylstannane in the presence of 5 mol% of compound (2a) and additives. By this asymmetric allylation reaction, an asymmetric allylamine represented by the following chemical formula (11a) is obtained.
Figure 2005120041

反応時間、生成物の収率、および不斉収率(%ee)を、反応条件とともに下記表2にまとめる。

Figure 2005120041
The reaction time, product yield, and asymmetric yield (% ee) are summarized in Table 2 below along with the reaction conditions.
Figure 2005120041

表2に示されるように、1当量の水を添加した場合には、収率および不斉収率の両方について最も優れた結果が得られる。匹敵する結果は、モレキュラーシーブとメタノールとを用いた場合にも得られた。TBAF(テトラブチルアンモニウムフロリド)、i−PrOH(イソプロパノール)、およびKOAc(カリウムアセテート)は不斉選択性が若干低く、KOAcは収率が低い。反応が完了するまでに長時間を要し、収率および不斉体選択性が低いことから、Na2CO3は適切ではない。また、AcOH(酢酸)は、反応時間が長く収率が低いが、水の場合に匹敵する不斉収率が得られる。 As shown in Table 2, the best results for both yield and asymmetric yield are obtained when 1 equivalent of water is added. Comparable results were obtained when using molecular sieves and methanol. TBAF (tetrabutylammonium fluoride), i-PrOH (isopropanol), and KOAc (potassium acetate) have slightly low asymmetric selectivity, and KOAc has a low yield. Na 2 CO 3 is not suitable because it takes a long time to complete the reaction, and the yield and asymmetric selectivity are low. AcOH (acetic acid) has a long reaction time and a low yield, but an asymmetric yield comparable to that of water is obtained.

以上の結果から、1当量の水を含有する溶媒を用いた場合に最も優れた結果が得られることが確認された。   From the above results, it was confirmed that the best results were obtained when a solvent containing 1 equivalent of water was used.

種々のイミンを用いて、本発明の実施形態にかかる方法により不斉アリル化を行ない、不斉アリルアミンを合成した。一般的な方法は、次のとおりである。イミン(0.5mmol)をWheatonマイクロリアクター(容量5mL)中に収容し、このリアクターをAr雰囲気中に維持した。乾燥THF(1.25mL)、脱泡した水(9μL、0.5mmol,1当量)、およびアリルトリブチルスタナン(194μL、0.625mmol,1.25当量)を順次加えた。混合物を0℃に冷却し、キラルパラジウム塩化物錯体2a(14.56mg,0.025mmol,5mol%)を、アルゴン雰囲気中で添加した。反応混合物はアルゴンで置換し、0℃で所定時間攪拌した。反応の進行は、GC−MSまたはTLCによりモニターした。   Using various imines, asymmetric allylation was performed by the method according to the embodiment of the present invention to synthesize asymmetric allylamines. The general method is as follows. The imine (0.5 mmol) was housed in a Wheaton microreactor (5 mL capacity) and the reactor was maintained in an Ar atmosphere. Dry THF (1.25 mL), defoamed water (9 μL, 0.5 mmol, 1 eq), and allyltributylstannane (194 μL, 0.625 mmol, 1.25 eq) were added sequentially. The mixture was cooled to 0 ° C. and chiral palladium chloride complex 2a (14.56 mg, 0.025 mmol, 5 mol%) was added in an argon atmosphere. The reaction mixture was replaced with argon and stirred at 0 ° C. for a predetermined time. The progress of the reaction was monitored by GC-MS or TLC.

反応が完了した後、不透明な反応混合物を1N HCl(2.5mL)中で急冷した。CH3CN(1mL)を添加し、反応混合物を室温で10分間攪拌した。CH3CNは、スタナン副生成物の溶解性を高めるために加えた。その後、3mLのヘキサンを用いて2回抽出を行ない、ヘキサン層を除いた。10%NaOH水溶液(1.25mL)を用いて水層を塩基性とし、得られた溶液を5分間攪拌した。溶液は、5mLのEtOAcで2回抽出し、Na2SO4で乾燥した後、濃縮した。シリカゲルカラムクロマトグラフィによる精製(ヘキサン/EtOAc=5:1)により、ホモアリルアミンが得られた。不斉収率(%ee)は、HPLCにより決定した。 After the reaction was complete, the opaque reaction mixture was quenched in 1N HCl (2.5 mL). CH 3 CN (1 mL) was added and the reaction mixture was stirred at room temperature for 10 minutes. CH 3 CN was added to increase the solubility of the stannane byproduct. Then, extraction was performed twice using 3 mL of hexane, and the hexane layer was removed. The aqueous layer was basified with 10% aqueous NaOH (1.25 mL) and the resulting solution was stirred for 5 minutes. The solution was extracted twice with 5 mL of EtOAc, dried over Na 2 SO 4 and concentrated. Purification by silica gel column chromatography (hexane / EtOAc = 5: 1) gave homoallylamine. Asymmetric yield (% ee) was determined by HPLC.

反応時間、収率、および不斉収率を、用いたイミンおよび生成物とともに以下に示す。さらに、得られた各不斉アリルアミンの分析結果を、以下にまとめる。

Figure 2005120041
The reaction time, yield, and asymmetric yield are shown below along with the imine and product used. Furthermore, the analysis result of each obtained asymmetric allylamine is summarized below.
Figure 2005120041

Figure 2005120041
Figure 2005120041

化合物(13a):N−ベンジル−1−フェニル−3−ブテニルアミン
無色の油状;[α]D 23=+51.2(c 1.45,CHCl3
IR(neat) 3327, 3062, 3026, 3003,2976, 2925, 2837, 1639, 1493, 1454, 1120, 1117, 1070, 1028, 995, 916, 758, 735, 700 cm-1
1H NMR(CDCl3) δ 7.40-7.19 (m, 10H), 5.71(dd, J=17.0, 10.1, 7.0Hz,1H), 5.07(m, 1H), 5.04(m, 1H), 3,69(dd, J=7.6, 6.5Hz, 1H), 3.52(d, J=13.5 z, 2H), 3.67(d, J=13.5Hz, 2H), 2.49-2.33(m, 2H)
13C NMR(CDCl3) δ 143.7, 140.5, 135.4, 128.4, 128.3, 127.3, 127.0, 126.8, 117.5, 61.6, 51.4, 43.0
1719N(237.15)の分析
計算値:C,86.02;H,8.08;N,5.90
分析値:C,85.91;H,8.27;N,5.78
不斉収率は、CHIRALCEL OD−Rカラムを用いて決定
CH3CN/1M NaClO4 aq=40/60,流量=0.8mL/min,254nmでUV検出
R=16.38min(主エナンチオマー),tR=18.48min(副エナンチオマー)。
Compound (13a): N-benzyl-1-phenyl-3-butenylamine colorless oil; [α] D 23 = + 51.2 (c 1.45, CHCl 3 )
IR (neat) 3327, 3062, 3026, 3003,2976, 2925, 2837, 1639, 1493, 1454, 1120, 1117, 1070, 1028, 995, 916, 758, 735, 700 cm-1
1 H NMR (CDCl 3 ) δ 7.40-7.19 (m, 10H), 5.71 (dd, J = 17.0, 10.1, 7.0Hz, 1H), 5.07 (m, 1H), 5.04 (m, 1H), 3,69 (dd, J = 7.6, 6.5Hz, 1H), 3.52 (d, J = 13.5 z, 2H), 3.67 (d, J = 13.5Hz, 2H), 2.49-2.33 (m, 2H)
13 C NMR (CDCl 3 ) δ 143.7, 140.5, 135.4, 128.4, 128.3, 127.3, 127.0, 126.8, 117.5, 61.6, 51.4, 43.0
Analysis of C 17 H 19 N (237.15) Calculated: C, 86.02; H, 8.08; N, 5.90
Analytical value: C, 85.91; H, 8.27; N, 5.78.
Asymmetric yield determined using CHIRALCEL OD-R column
CH 3 CN / 1M NaClO 4 aq = 40/60, flow rate = 0.8 mL / min, UV detection at 254 nm t R = 16.38 min (main enantiomer), t R = 18.48 min (sub enantiomer).

化合物(13b):N-ベンジル−1−(4−メトキシフェニル)−3−ブテニルアミン
無色の油状;[α]D 22=+56.1(c 0.745,CHCl3
IR(neat) 3327, 3063, 3026, 2999, 2931, 2907, 2833, 1638, 1611, 1512, 1456, 1246, 1175, 1036, 995, 915, 735, 698 cm-1
1H NMR(CDCl3) δ 7.34-7.19(m. 7H), 6.89(ddd, J=8.4Hz, 3.4Hz, 2.2Hz, 2H), 5.69(ddt, J=16.4Hz, 10.0Hz, 6.9Hz, 1H), 5.06(ddt, J=16.4Hz, 2Hz, 2Hz, 1H), 5.03(ddt, 10.0Hz, 2Hz, 2Hz, 1H), 3.81(s, 3H), 3.66(d, J=12.8Hz, 1H), 3.64(t, J=6.4Hz, 1H), 3.50(d, J=12.8Hz, 1H), 2.39(ddt, J=6.9, 6.5, 2.0Hz, 2H)
13C NMR(CDCl3) δ 158.6, 140.7, 135.8, 135.6, 128.3, 128.1, 126.8, 117.4, 113.7, 60.9, 55.2, 51.3, 43.1
1821N(267.16)の分析
計算値:C,80.82;H,7.92;N,5.24
分析値:C,80.67;H,7.96;N,5.22
不斉収率は、CHIRALCEL OD−Rカラムを用いて決定
CH3CN/1M NaClO4 aq=40/60,流量=0.8mL/min,254nmで検出
tR=18.02min(エナンチオマー),tR=21.5min(副エナンチオマー)。
Compound (13b): N-benzyl-1- (4-methoxyphenyl) -3-butenylamine colorless oil; [α] D 22 = + 56.1 (c 0.745, CHCl 3 )
IR (neat) 3327, 3063, 3026, 2999, 2931, 2907, 2833, 1638, 1611, 1512, 1456, 1246, 1175, 1036, 995, 915, 735, 698 cm -1
1 H NMR (CDCl 3 ) δ 7.34-7.19 (m. 7H), 6.89 (ddd, J = 8.4Hz, 3.4Hz, 2.2Hz, 2H), 5.69 (ddt, J = 16.4Hz, 10.0Hz, 6.9Hz, 1H), 5.06 (ddt, J = 16.4Hz, 2Hz, 2Hz, 1H), 5.03 (ddt, 10.0Hz, 2Hz, 2Hz, 1H), 3.81 (s, 3H), 3.66 (d, J = 12.8Hz, 1H ), 3.64 (t, J = 6.4Hz, 1H), 3.50 (d, J = 12.8Hz, 1H), 2.39 (ddt, J = 6.9, 6.5, 2.0Hz, 2H)
13 C NMR (CDCl 3 ) δ 158.6, 140.7, 135.8, 135.6, 128.3, 128.1, 126.8, 117.4, 113.7, 60.9, 55.2, 51.3, 43.1
Analysis of C 18 H 21 N (267.16) Calculated: C, 80.82; H, 7.92; N, 5.24
Analytical value: C, 80.67; H, 7.96; N, 5.22.
Asymmetric yield determined using CHIRALCEL OD-R column
CH 3 CN / 1M NaClO 4 aq = 40/60, flow rate = 0.8 mL / min, detected at 254 nm
t R = 18.02 min (enantiomer), t R = 21.5 min (sub-enantiomer).

化合物(13c):N−ベンジル−1−(4−メチルフェニル)−3−ブテニルアミン
無色の油状;[α]D 22=+50.4(c 1.0,CHCl3
IR(neat) 3325, 3061, 3025, 2977, 2921, 1638, 1603, 1513, 1495, 1454, 1350, 1304, 1176, 1029, 995, 916, 816, 735 cm-1
1H NMR(CDCl3) δ 7.28-7.13(m, 7H), 7.09(d, J=8Hz, 2H), 5.6(ddt, J=17.1Hz, 10.3Hz, 7.1Hz, 1H), 5.02(ddt, J=17.1Hz, 2Hz, 2Hz, 1H), 4.97(ddt, J=10.3Hz, 2Hz, 2Hz, 1H), 3.61-3.59(m, 1H), 3.6(d, J=13.4Hz, 1 H), 3.45(d, J=13.4Hz, 1H), 2.34-2.32(m, 2H), 2.3(s, 3H), 1.66 (brs, 1H)
13C NMR(CDCl3) δ 140.7, 136.5, 135.5, 129.0, 128.2, 128.0, 127.2, 126.7, 117.4, 61.2, 51.3, 43.1, 21.0
MS(EI) m/z(相対強度)210 [M+-allyl] (5.7), 132 (0.7), 118 (1.2), 105 (2.9), 91 (100)
1821N(251.37)の分析
計算値:C,86.00;H,8.42;N,5.57
測定値:C,85.82;H,8.66;N,5.52
不斉収率は、CHIRALCEL OD−Rカラムを用いて決定
CH3CN/1M NaClO4 aq=40/60,流量=0.8mL/min,254nmのUVで検出
tR=22.82min(主エナンチオマー),tR=27.20min(副エナンチオマー)。
Compound (13c): N-benzyl-1- (4-methylphenyl) -3-butenylamine colorless oil; [α] D 22 = + 50.4 (c 1.0, CHCl 3 )
IR (neat) 3325, 3061, 3025, 2977, 2921, 1638, 1603, 1513, 1495, 1454, 1350, 1304, 1176, 1029, 995, 916, 816, 735 cm -1
1 H NMR (CDCl 3 ) δ 7.28-7.13 (m, 7H), 7.09 (d, J = 8Hz, 2H), 5.6 (ddt, J = 17.1Hz, 10.3Hz, 7.1Hz, 1H), 5.02 (ddt, J = 17.1Hz, 2Hz, 2Hz, 1H), 4.97 (ddt, J = 10.3Hz, 2Hz, 2Hz, 1H), 3.61-3.59 (m, 1H), 3.6 (d, J = 13.4Hz, 1H), 3.45 (d, J = 13.4Hz, 1H), 2.34-2.32 (m, 2H), 2.3 (s, 3H), 1.66 (brs, 1H)
13 C NMR (CDCl 3 ) δ 140.7, 136.5, 135.5, 129.0, 128.2, 128.0, 127.2, 126.7, 117.4, 61.2, 51.3, 43.1, 21.0
MS (EI) m / z (relative intensity) 210 [M + -allyl] (5.7), 132 (0.7), 118 (1.2), 105 (2.9), 91 (100)
Analysis of C 18 H 21 N (251.37) Calculated: C, 86.00; H, 8.42; N, 5.57
Measurement: C, 85.82; H, 8.66; N, 5.52
Asymmetric yield determined using CHIRALCEL OD-R column
CH 3 CN / 1M NaClO 4 aq = 40/60, flow rate = 0.8 mL / min, detected by UV at 254 nm
t R = 22.82 min (major enantiomer), t R = 27.20 min (minor enantiomer).

化合物(13d):N−ベンジル−1−(2−メトキシフェニル)-3-ブテニルアミン
無色の油状;[α]D 22=+37.2(c 1.0,CHCl3
IR(neat) 3330, 3063, 3027, 3001, 2935, 2835, 1638, 1600, 1586, 1489, 1437, 1363, 1281, 1239, 1173, 1095, 1050, 1029, 996, 914, 754 cm-1
1H NMR(CDCl3) δ 7.38-7.35(m, 1H), 7.26-7.16(m, 6H), 6.95-6.83(m, 2H), 5.72(ddt, J=16.1Hz, 10.2Hz, 6.7Hz, 1H), 5.03-4.93(m, 2H), 4.07-4.03(m, 1H), 3.77(s, 3H), 3.65(d, J=13Hz, 1H), 3.51(d, J=13Hz, 1H), 2.5-2.34(m, 2H), 1.8(brs, 1H)
13C NMR(CDCl3) δ13C NMR(CDCl3) δ 157.2, 140.7, 136.0, 131.2, 128.0, 127.9, 127.7, 127.4, 127.1, 126.5, 120.4, 116.6, 110.3, 55.8, 55.0, 51.4, 40.7
MS(EI) m/z(相対強度) 226 [M+-allyl] (15.8), 209 (6.7), 197 (3.1), 194 (4.9), 134 (3.8), 121 (17.6), 91 (100)
1821NO(267.37)の分析
計算値:C,80.86;H,7.91;N,5.23
測定値:C,80.81;H,8.11;N,5.28
不斉収率は、トリフルオロアセチルアミド([α]D 22=+31.0(c2.8,CHCl3))に変化させることにより、CHIRALCEL ODカラムを用いて決定
ヘキサン/i-PrOH=100/1,流量=0.7mL/min,254nmのUVで検出
tR=9.04min(主エナンチオマー),tR=10.43min(副エナンチオマー)。
Compound (13d): N-benzyl-1- (2-methoxyphenyl) -3-butenylamine colorless oil; [α] D 22 = + 37.2 (c 1.0, CHCl 3 )
IR (neat) 3330, 3063, 3027, 3001, 2935, 2835, 1638, 1600, 1586, 1489, 1437, 1363, 1281, 1239, 1173, 1095, 1050, 1029, 996, 914, 754 cm -1
1 H NMR (CDCl 3 ) δ 7.38-7.35 (m, 1H), 7.26-7.16 (m, 6H), 6.95-6.83 (m, 2H), 5.72 (ddt, J = 16.1Hz, 10.2Hz, 6.7Hz, 1H), 5.03-4.93 (m, 2H), 4.07-4.03 (m, 1H), 3.77 (s, 3H), 3.65 (d, J = 13Hz, 1H), 3.51 (d, J = 13Hz, 1H), 2.5-2.34 (m, 2H), 1.8 (brs, 1H)
13 C NMR (CDCl 3 ) δ 13 C NMR (CDCl 3 ) δ 157.2, 140.7, 136.0, 131.2, 128.0, 127.9, 127.7, 127.4, 127.1, 126.5, 120.4, 116.6, 110.3, 55.8, 55.0, 51.4, 40.7
MS (EI) m / z (relative intensity) 226 [M + -allyl] (15.8), 209 (6.7), 197 (3.1), 194 (4.9), 134 (3.8), 121 (17.6), 91 (100 )
Analysis of C 18 H 21 NO (267.37) Calculated: C, 80.86; H, 7.91; N, 5.23
Measurement: C, 80.81; H, 8.11; N, 5.28
The asymmetric yield was determined using a CHIRALCEL OD column by changing to trifluoroacetylamide ([α] D 22 = + 31.0 (c2.8, CHCl 3 )) Hexane / i-PrOH = 100 / 1. Flow rate = 0.7 mL / min, detected with UV at 254 nm
t R = 9.04 min (major enantiomer), t R = 10.43 min (minor enantiomer).

化合物(13e):N-ベンジル-1-(3,4-ジメトキシフェニル)-3−ブテニルアミン
無色の油状;[α]D 23=+38.6(c 1.75,CHCl3
IR(neat) 3325, 3062, 2998, 2932, 2833, 1638, 1593, 1514, 1463, 1417, 1358, 1262, 1233, 1139, 1029, 916, 856, 808, 747 cm-1
1H NMR(CDCl3) δ 7.32-7.19(m, 5H), 6.95-6.81(m, 3H), 5.72(ddt, J=16.2Hz, 10.2Hz, 7.2Hz, 1H), 5.06(ddt, J=16.2Hz, 2Hz, 2Hz, 1H), 5.03(ddt, J=10.2Hz, 2Hz, 2Hz, 1H), 3.9(s, 3H), 3.88(s, 3H), 3.69(d, J=13.2Hz, 1H), 3.63-3.59(m, 1H), 3.54(d, J=13.2Hz, 1H), 2.41-2.34(m, 2H), 1.81 (brs, 1H)
13C NMR(CDCl3) δ 149.0, 147.9, 140.6, 136.3, 135.5, 128.3, 128.1, 126.8, 119.5, 117.5, 110.8, 109.9, 61.2, 55.8, 51.3, 43.2
MS (EI) m/z (相対強度) 256 [M+-allyl] (14.8), 239 (5), 214 (9.4), 151 (20.8), 91 (100)
1923NO2(297.39)の分析
計算値:C,76.73;H,7.79;N,4.71
測定値:C,76.68;H,8.06;N,4.72
不斉収率は、CHIRALCEL OD−Rカラムを用いて決定
CH3CN/1M NaClO4 aq=30/70,流量=0.8mL/min,254nmのUVで検出
tR=28.57min(主エナンチオマー),tR=32.58min(副エナンチオマー)。
Compound (13e): N-benzyl-1- (3,4-dimethoxyphenyl) -3-butenylamine colorless oil; [α] D 23 = + 38.6 (c 1.75, CHCl 3 )
IR (neat) 3325, 3062, 2998, 2932, 2833, 1638, 1593, 1514, 1463, 1417, 1358, 1262, 1233, 1139, 1029, 916, 856, 808, 747 cm -1
1 H NMR (CDCl 3 ) δ 7.32-7.19 (m, 5H), 6.95-6.81 (m, 3H), 5.72 (ddt, J = 16.2Hz, 10.2Hz, 7.2Hz, 1H), 5.06 (ddt, J = 16.2Hz, 2Hz, 2Hz, 1H), 5.03 (ddt, J = 10.2Hz, 2Hz, 2Hz, 1H), 3.9 (s, 3H), 3.88 (s, 3H), 3.69 (d, J = 13.2Hz, 1H ), 3.63-3.59 (m, 1H), 3.54 (d, J = 13.2Hz, 1H), 2.41-2.34 (m, 2H), 1.81 (brs, 1H)
13 C NMR (CDCl 3 ) δ 149.0, 147.9, 140.6, 136.3, 135.5, 128.3, 128.1, 126.8, 119.5, 117.5, 110.8, 109.9, 61.2, 55.8, 51.3, 43.2
MS (EI) m / z (relative intensity) 256 [M + -allyl] (14.8), 239 (5), 214 (9.4), 151 (20.8), 91 (100)
Analysis of C 19 H 23 NO 2 (297.39) Calculated: C, 76.73; H, 7.79; N, 4.71
Measurement: C, 76.68; H, 8.06; N, 4.72
Asymmetric yield determined using CHIRALCEL OD-R column
CH 3 CN / 1M NaClO4 aq = 30/70, flow rate = 0.8 mL / min, detected by UV at 254 nm
t R = 28.57 min (major enantiomer), t R = 32.58 min (minor enantiomer).

表3に示されるように、(エントリーNo.1〜5)では、ほとんどのイミンは短時間で反応して、高い収率および優れた不斉収率で目的の不斉アリルアミンが得られた。例えば、N−ベンジリデンベンジルアミン(化合物12a)は、48時間の反応により85%の不斉収率で化合物(13a)を与える。化合物(12b)および(12e)からは、それぞれ85%および70%の不斉収率で化合物(13b)および(13e)が得られるが、反応が完了するまでに長時間を要する。パラ位にメチル基を有する化合物(12c)は、高い収率および90%の不斉収率で化合物(13c)を与える。メトキシ基のようなオルトキレート基は、キレート化の間の移動状態に剛性を与え、高い不斉収率が得られるものと推測される。オルト位にメトキシ基を有するイミンである化合物(12d)からは、88%という非常に高い不斉収率で化合物(13d)が得られるが、12dと12b(パラメトキシ置換体)との間に顕著な違いは確認されない。

Figure 2005120041
As shown in Table 3, in (Entry Nos. 1 to 5), most of the imine reacted in a short time, and the target asymmetric allylamine was obtained with high yield and excellent asymmetric yield. For example, N-benzylidenebenzylamine (compound 12a) gives compound (13a) with an asymmetric yield of 85% by reaction for 48 hours. Compounds (12b) and (12e) give compounds (13b) and (13e) in asymmetric yields of 85% and 70%, respectively, but it takes a long time to complete the reaction. Compound (12c) having a methyl group at the para position gives compound (13c) in high yield and 90% asymmetric yield. It is presumed that ortho-chelating groups such as methoxy groups give rigidity to the moving state during chelation and a high asymmetric yield is obtained. The compound (12d), which is an imine having a methoxy group at the ortho position, gives the compound (13d) with a very high asymmetric yield of 88%, but it is remarkable between 12d and 12b (paramethoxy-substituted product). No difference is confirmed.
Figure 2005120041

Figure 2005120041
Figure 2005120041

化合物(15):N−ベンジル−1―シクロヘキシル−3−ブテニルアミン
無色の油状;[α]D 21=-5.4(c 0.5,CHCl3
IR(neat) 3329, 3063, 3026, 3001, 2924, 2851, 1638, 1495, 1450, 1120, 995, 733, 698cm-1
1H NMR(CDCl3) δ 7.39-7.19(m, 5H), 5.78(dddd, J=18.0, 10.5, 8.0, 7.0Hz, 1H), 5.08(m, 1H), 5.06(m, 1H), 3.75(bs, 2H), 2.41(ddd, J=8.0, 5.0, 5.0Hz, 1H), 2.35-2.02(m, 2H),1.83-0.95(m, 11H)
13C NMR(CDCl3) δ 141.1, 136.7, 128.2, 128.1, 126.7, 116.8, 61.3, 51.9, 40.6, 35.3, 29.4, 28.9, 26.8, 26.7
不斉収率は、[α]D 22=-7.8(c 0.6,CHCl3)のトリフルオロアセチルアミドに変化させ、CHIRALCEL ODカラムを用いて決定
ヘキサン/i-PrOH=800/1,流量=0.6mL/min,254nmのUVで検出
tR=26.04min(副エナンチオマー),tR=30.41min(主エナンチオマー)。
Compound (15): N-benzyl-1-cyclohexyl-3-butenylamine colorless oil; [α] D 21 = −5.4 (c 0.5, CHCl 3 )
IR (neat) 3329, 3063, 3026, 3001, 2924, 2851, 1638, 1495, 1450, 1120, 995, 733, 698cm -1
1 H NMR (CDCl 3 ) δ 7.39-7.19 (m, 5H), 5.78 (dddd, J = 18.0, 10.5, 8.0, 7.0Hz, 1H), 5.08 (m, 1H), 5.06 (m, 1H), 3.75 (bs, 2H), 2.41 (ddd, J = 8.0, 5.0, 5.0Hz, 1H), 2.35-2.02 (m, 2H), 1.83-0.95 (m, 11H)
13 C NMR (CDCl 3 ) δ 141.1, 136.7, 128.2, 128.1, 126.7, 116.8, 61.3, 51.9, 40.6, 35.3, 29.4, 28.9, 26.8, 26.7
The asymmetric yield was determined using a CHIRALCEL OD column, changed to trifluoroacetylamide of [α] D 22 = −7.8 (c 0.6, CHCl 3 ) Hexane / i-PrOH = 800/1 , Flow rate = 0.6mL / min, detected with 254nm UV
t R = 26.04 min (minor enantiomer), t R = 30.41 min (main enantiomer).

化合物(17):N−ベンジル−1−フェニル-1,5-ヘキサジエン−3−イルアミン
無色の油状;[α]D 23=+77.2(c 1.0,CHCl3
IR(neat) 3319, 3081, 3061, 3026, 3001, 2976, 2924, 2837, 1639, 1599, 1493, 1452, 1109, 1072, 1028, 995, 968, 914, 748, 694 cm-1
1H NMR(CDCl3) δ 7.43-7.20(m, 10H), 6.51(d, J=15.7Hz, 1H), 6.09(dd, J=15.7, 7.5Hz, 1H), 5.79(ddt, J=17.0, 10.0, 6.5Hz, 1H), 5.12(ddt, J=17.0, 2.0, 1.5Hz, 1H), 5.09(ddt, J=10.0, 2.0, 1.5Hz, 1H), 3.89(d, J=13.5Hz, 1H), 3.70(d,J=13.5Hz, 1H), 3.30(dt, J=7.5, 6.5Hz, 1H), 2.47-2.25(m, 2H)
13C NMR(CDCl3) δ 140.5, 137.0, 135.0, 132.5, 131.3, 128.5, 128.4, 128.1, 127.4, 126.8, 126.3, 117.6, 59.5
不斉収率は、CHIRALCEL OD−Rカラムを用いて決定
CH3CN/1M NaClO4 aq=60/40,流量=0.6mL/min,254nmのUVで検出
tR=10.03min(主エナンチオマー),tR=12.17min(副エナンチオマー)。
Compound (17): N-benzyl-1-phenyl-1,5-hexadien-3-ylamine colorless oil; [α] D 23 = + 77.2 (c 1.0, CHCl 3 )
IR (neat) 3319, 3081, 3061, 3026, 3001, 2976, 2924, 2837, 1639, 1599, 1493, 1452, 1109, 1072, 1028, 995, 968, 914, 748, 694 cm -1
1 H NMR (CDCl 3 ) δ 7.43-7.20 (m, 10H), 6.51 (d, J = 15.7Hz, 1H), 6.09 (dd, J = 15.7, 7.5Hz, 1H), 5.79 (ddt, J = 17.0 , 10.0, 6.5Hz, 1H), 5.12 (ddt, J = 17.0, 2.0, 1.5Hz, 1H), 5.09 (ddt, J = 10.0, 2.0, 1.5Hz, 1H), 3.89 (d, J = 13.5Hz, 1H), 3.70 (d, J = 13.5Hz, 1H), 3.30 (dt, J = 7.5, 6.5Hz, 1H), 2.47-2.25 (m, 2H)
13 C NMR (CDCl 3 ) δ 140.5, 137.0, 135.0, 132.5, 131.3, 128.5, 128.4, 128.1, 127.4, 126.8, 126.3, 117.6, 59.5
Asymmetric yield determined using CHIRALCEL OD-R column
CH 3 CN / 1M NaClO 4 aq = 60/40, flow rate = 0.6 mL / min, detected by UV at 254 nm
t R = 10.03 min (major enantiomer), t R = 12.17 min (minor enantiomer).

N−シクロヘキシリデンベンジルアミン(化合物14)からホモアリルアミン(化合物15)を得る場合、111時間の反応を行なっても不斉収率は40%にとどまることが、本発明者らにより確認されている。しかしながら、前記表4のエントリー6に示されるように、本発明の実施形態にかかる方法により、74時間の反応で50%eeの化合物(15)を得ることが可能となった。また、エントリー7に示されるように、化合物(16)もまた、高い収率および69%という優れた不斉収率で化合物(17)を与える。

Figure 2005120041
When obtaining homoallylamine (compound 15) from N-cyclohexylidenebenzylamine (compound 14), the present inventors have confirmed that the asymmetric yield is only 40% even after 111 hours of reaction. Yes. However, as shown in entry 6 of Table 4 above, the method according to the embodiment of the present invention made it possible to obtain 50% ee of the compound (15) in 74 hours of reaction. Also, as shown in entry 7, compound (16) also gives compound (17) with a high yield and an excellent asymmetric yield of 69%.
Figure 2005120041

Figure 2005120041
Figure 2005120041

化合物(19a): N−ベンジル−1−(2−フルフリル)−3−ブテニルアミン
無色の油状;[α]D 22=+55.9(c 1.0,CHCl3
IR(neat) 3330, 3063, 3028, 2978, 2914, 2837, 1640, 1604, 1512, 1495, 1455, 1346, 1248, 1176, 1148, 1108, 1073, 1028, 918, 884, 807, 734 cm-1
1H NMR(CDCl3) δ 7.31-7.13(m, 6H), 6.25(dd, J=3.2Hz, 2Hz, 1H), 6.11(d, J=3.2Hz, 1H), 5.68(ddt, J= 17.1Hz, 10.2Hz, 6.6Hz, 1H), 5.05(ddt, J=17.1Hz, 2.2Hz, 2Hz, 1H), 5.03(ddt, J=10.2Hz, 2.2Hz, 2Hz, 1H), 3.72-3.70(m, 1H), 3.69(d, J=13.2Hz, 1H), 3.54(d, J=13.2Hz, 1H), 2.4 (dd, J=6.6Hz, 1.3Hz, 2H), 1.65(brs, 1H)
13C NMR(CDCl3) δ 156.0, 141.4, 140.1, 134.8, 128.2, 128.0, 126.7, 117.5, 109.7, 106.5, 54.7, 50.93, 39.2
MS (EI) m/z (相対強度) 186 [M+-allyl] (33.9), 131 (1.5), 95 (1.8), 91 (100)
1517NO(227.3)の分析
計算値:C,79.26;H,7.53;N,6.16
分析値:C,79.11;H,7.84;N,6.15
不斉収率は、[α]D 22=+54.7(c 1.0,CHCl3)のトリフルオロアセチルアミドに変化させ、CHIRALCEL ODカラムを用いて決定
ヘキサン/i-PrOH=500/1,流量=0.5mL/min,254nmのUVで検出
tR=22.18min(主エナンチオマー),tR=25.2min(副エナンチオマー)。
Compound (19a): N-benzyl-1- (2-furfuryl) -3-butenylamine colorless oil; [α] D 22 = + 55.9 (c 1.0, CHCl 3 )
IR (neat) 3330, 3063, 3028, 2978, 2914, 2837, 1640, 1604, 1512, 1495, 1455, 1346, 1248, 1176, 1148, 1108, 1073, 1028, 918, 884, 807, 734 cm -1
1 H NMR (CDCl 3 ) δ 7.31-7.13 (m, 6H), 6.25 (dd, J = 3.2Hz, 2Hz, 1H), 6.11 (d, J = 3.2Hz, 1H), 5.68 (ddt, J = 17.1 Hz, 10.2Hz, 6.6Hz, 1H), 5.05 (ddt, J = 17.1Hz, 2.2Hz, 2Hz, 1H), 5.03 (ddt, J = 10.2Hz, 2.2Hz, 2Hz, 1H), 3.72-3.70 (m , 1H), 3.69 (d, J = 13.2Hz, 1H), 3.54 (d, J = 13.2Hz, 1H), 2.4 (dd, J = 6.6Hz, 1.3Hz, 2H), 1.65 (brs, 1H)
13 C NMR (CDCl 3 ) δ 156.0, 141.4, 140.1, 134.8, 128.2, 128.0, 126.7, 117.5, 109.7, 106.5, 54.7, 50.93, 39.2
MS (EI) m / z (relative intensity) 186 [M + -allyl] (33.9), 131 (1.5), 95 (1.8), 91 (100)
Analysis of C 15 H 17 NO (227.3) Calculated: C, 79.26; H, 7.53; N, 6.16
Analytical value: C, 79.11; H, 7.84; N, 6.15.
The asymmetric yield was determined using a CHIRALCEL OD column by changing to [trifluoro] amide of [α] D 22 = + 54.7 (c 1.0, CHCl 3 ) hexane / i-PrOH = 500/1, Flow rate = 0.5mL / min, detected at 254nm UV
t R = 22.18 min (major enantiomer), t R = 25.2 min (minor enantiomer).

化合物(19b):N−ベンジル−1−(2−チオフェニル)−3−ブテニルアミン
無色の油状;[α]D 22=+24.5(c 1.0,CHCl3
IR(neat) 3325, 3064, 3027, 2977, 2910, 2835, 1639, 1603, 1495, 1454, 1434, 1368, 1225, 1168, 1029, 995, 917, 850, 735 cm-1
1H NMR(CDCl3) δ 7.27-7.14(m, 6H), 6.9-6.84(m, 2H), 5.69(ddt, J=16.1Hz, 10.0Hz, 6.9Hz, 1H), 5.05(ddt, J=16.1Hz, 2.1Hz, 2Hz, 1H), 5.0(ddt, J=10.0Hz, 2.1Hz, 2Hz, 1H), 3.92(t, J=6.7Hz, 1H), 3.74(d, J=13.2Hz, 1H), 3.55(d, J=13.2Hz, 1H), 2.44-2.34(m, 2H), 1.73(brs, 1H)
13C NMR(CDCl3) δ 149.2, 140.2, 134.8, 128.3, 128.2, 126.9, 126.3, 124.2, 123.9, 117.9, 57.0
MS (EI) m/z (相対強度) 202 [M+-allyl] (18.9), 111 (2), 106 (1.3), 97 (7.9), 91 (100)
1517NS(243.37)の分析
計算値:C,74.03;H,7.04;N,5.75;S,13.17
分析値:C,73.96;H,7.32;N,5.66;S,13.18
不斉収率は、[α]D 22=+43.4(c 1.0,CHCl3)のトリフルオロアセチルアミドに変化させ、CHIRALCEL ODカラムを用いて決定
ヘキサン/i−PrOH=500/1,流量=0.5mL/min,254nmのUVで検出
tR=27.55min(主エナンチオマー),tR=30.59min(副エナンチオマー)。
Compound (19b): N-benzyl-1- (2-thiophenyl) -3-butenylamine colorless oil; [α] D 22 = + 24.5 (c 1.0, CHCl 3 )
IR (neat) 3325, 3064, 3027, 2977, 2910, 2835, 1639, 1603, 1495, 1454, 1434, 1368, 1225, 1168, 1029, 995, 917, 850, 735 cm -1
1 H NMR (CDCl 3 ) δ 7.27-7.14 (m, 6H), 6.9-6.84 (m, 2H), 5.69 (ddt, J = 16.1Hz, 10.0Hz, 6.9Hz, 1H), 5.05 (ddt, J = 16.1Hz, 2.1Hz, 2Hz, 1H), 5.0 (ddt, J = 10.0Hz, 2.1Hz, 2Hz, 1H), 3.92 (t, J = 6.7Hz, 1H), 3.74 (d, J = 13.2Hz, 1H ), 3.55 (d, J = 13.2Hz, 1H), 2.44-2.34 (m, 2H), 1.73 (brs, 1H)
13 C NMR (CDCl 3 ) δ 149.2, 140.2, 134.8, 128.3, 128.2, 126.9, 126.3, 124.2, 123.9, 117.9, 57.0
MS (EI) m / z (relative intensity) 202 [M + -allyl] (18.9), 111 (2), 106 (1.3), 97 (7.9), 91 (100)
Analysis of C 15 H 17 NS (243.37) Calculated: C, 74.03; H, 7.04; N, 5.75; S, 13.17
Analytical value: C, 73.96; H, 7.32; N, 5.66; S, 13.18.
The asymmetric yield was changed to trifluoroacetylamide of [α] D 22 = + 43.4 (c 1.0, CHCl 3 ) and determined using a CHIRALCEL OD column Hexane / i-PrOH = 500/1 Flow rate = 0.5 mL / min, detected with 254 nm UV
t R = 27.55 min (major enantiomer), t R = 30.59 min (minor enantiomer).

表5の結果(エントリー8,9)から、ヘテロ環イミン(化合物18aおよび18b)は、良好に反応して、それぞれ化合物19a(67%ee)および化合物19b(53%ee)が得られることがわかる。いずれも不斉収率は中程度であるが収率は高く、ルイス酸を用いた触媒反応の際にしばしば生じる重合は確認されなかった。

Figure 2005120041
From the results in Table 5 (entries 8 and 9), the heterocyclic imines (compounds 18a and 18b) react well to give compound 19a (67% ee) and compound 19b (53% ee), respectively. Understand. In all cases, the asymmetric yield was moderate, but the yield was high, and polymerization often occurring during the catalytic reaction using a Lewis acid was not confirmed.
Figure 2005120041

Figure 2005120041
Figure 2005120041

化合物(11a):N−(4−メトキシベンジル)−1−フェニル-3-ブテニルアミン
無色の油状;[α]D 23=+49.1(c 1.0,CHCl3
IR(neat) 3350, 3063, 3026, 3001, 2976, 2931, 2908, 2833, 1639, 1612, 1512, 1454, 1250, 1200, 1175, 1105, 1070, 1038, 995, 916, 756, 702 cm-1
1H NMR(CDCl3) δ 7.39-7.22(m, 5H), 7.17(ddd, J=8.5Hz, 2.7Hz, 2.4Hz, 2H), 6.84(ddd, J=8.5Hz, 2.7Hz, 2.4Hz, 2H), 5.70(dddd, J=17.0 Hz, 10.0Hz, 8Hz, 7Hz, 1H), 5.06(dddd, J=17.0Hz, 2Hz, 2Hz, 2Hz, 1H), 5.03(dddd, J=10.0Hz, 2Hz, 2Hz, 1Hz, 1H), 3.79(S, 3H), 3.68(dd, J=7.5Hz, 6.4Hz, 1H), 3.6(d, J=13.0Hz, 1H), 3.46(d, J=13.0Hz, 1H), 2.49-2.31(m, 2H)
13C NMR(CDCl3) δ 158.5, 143.8, 135.5, 132,7 129.2, 128.3, 127.3, 127.0, 117.5, 113.7, 61.5, 55.2, 50.8, 43.0
1821NO(267.36)の分析
計算値:C,80.86;H,7.92;N,5.24
分析値:C,80.67;H,7.96;N,5.22
不斉収率は、[α]D 22=+75.0(c 1.75,CHCl3)のトリフルオロアセチルアミドに変化させ、CHIRALCEL ODカラムを用いることにより決定
ヘキサン/i−PrOH=100/1,流量=0.6mL/min,254nmのUVで検出
tR=17.02min(主エナンチオマー),tR=20.19min(副エナンチオマー)。
Compound (11a): N- (4-methoxybenzyl) -1-phenyl-3-butenylamine colorless oil; [α] D 23 = + 49.1 (c 1.0, CHCl 3 )
IR (neat) 3350, 3063, 3026, 3001, 2976, 2931, 2908, 2833, 1639, 1612, 1512, 1454, 1250, 1200, 1175, 1105, 1070, 1038, 995, 916, 756, 702 cm -1
1 H NMR (CDCl 3 ) δ 7.39-7.22 (m, 5H), 7.17 (ddd, J = 8.5Hz, 2.7Hz, 2.4Hz, 2H), 6.84 (ddd, J = 8.5Hz, 2.7Hz, 2.4Hz, 2H), 5.70 (dddd, J = 17.0 Hz, 10.0Hz, 8Hz, 7Hz, 1H), 5.06 (dddd, J = 17.0Hz, 2Hz, 2Hz, 2Hz, 1H), 5.03 (dddd, J = 10.0Hz, 2Hz , 2Hz, 1Hz, 1H), 3.79 (S, 3H), 3.68 (dd, J = 7.5Hz, 6.4Hz, 1H), 3.6 (d, J = 13.0Hz, 1H), 3.46 (d, J = 13.0Hz , 1H), 2.49-2.31 (m, 2H)
13 C NMR (CDCl 3 ) δ 158.5, 143.8, 135.5, 132,7 129.2, 128.3, 127.3, 127.0, 117.5, 113.7, 61.5, 55.2, 50.8, 43.0
Analysis of C 18 H 21 NO (267.36) Calculated: C, 80.86; H, 7.92; N, 5.24
Analytical value: C, 80.67; H, 7.96; N, 5.22.
The asymmetric yield was determined by changing [α] D 22 = + 75.0 (c 1.75, CHCl 3 ) to trifluoroacetylamide and using a CHIRALCEL OD column. Hexane / i-PrOH = 100/1 , Flow rate = 0.6 mL / min, detected with 254 nm UV
t R = 17.02 min (major enantiomer), t R = 20.19 min (minor enantiomer).

化合物(11b):
N−(4−メトキシベンジル)−1−(4−メトキシフェニル)−3−ブテニルアミン
無色の油状;[α]D 22=+48.3(c 1.0,CHCl3
IR(neat) 3325, 3072, 2998, 2932, 2907, 2834, 2059, 1638, 1611, 1585, 1512, 1463, 1351, 1301, 1245, 1174, 1106, 1036, 997, 917, 831, 781, 756 cm-1
1H NMR(CDCl3) δ 7.26(d, J=8.6Hz, 2H), 7.15(d, J=8.6Hz, 2H), 6.89(d, J=8.6Hz, 2H), 6.84(d, J=8.6Hz, 2H), 5.7(ddt, J=16.2Hz, 10.1Hz, 6.5Hz, 1H), 5.07-4.9(m, 2H), 3.8(s, 3H), 3.78(s, 3H), 3.63-3.61(m, 1H), 3.58(d, J=13Hz, 1H), 3.44(d, J=13Hz, 1H), 2.38-2.33(m, 2H), 1.69(brs, 1H)
13C NMR(CDCl3) δ 158.5, 135.7, 135.6, 132.7, 129.2, 128.2, 117.3, 113.6, 60.7, 55.2, 55.1, 50.6, 43.1
MS (EI) m/z (相対強度) 256 [M+-allyl] (9.4), 160 (6), 122 (8.8), 121 (100), 91 (6.7), 77 (2.9)
1923NO2(297.39)の分析
計算値:C,76.73;H,7.79;N,4.71
分析値:C,76.6;H,7.98;N,4.68
不斉収率は、CHIRALCEL OD−Rカラムを用いて決定
CH3CN/1M NaClO4 aq=35/65,流量=0.8mL/min,254nmのUVで検出
tR=31.9min(主エナンチオマー),tR=36.22min(副エナンチオマー)。
Compound (11b):
N- (4-methoxybenzyl) -1- (4-methoxyphenyl) -3-butenylamine colorless oil; [α] D 22 = + 48.3 (c 1.0, CHCl 3 )
IR (neat) 3325, 3072, 2998, 2932, 2907, 2834, 2059, 1638, 1611, 1585, 1512, 1463, 1351, 1301, 1245, 1174, 1106, 1036, 997, 917, 831, 781, 756 cm -1
1 H NMR (CDCl 3 ) δ 7.26 (d, J = 8.6 Hz, 2H), 7.15 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.6Hz, 2H), 5.7 (ddt, J = 16.2Hz, 10.1Hz, 6.5Hz, 1H), 5.07-4.9 (m, 2H), 3.8 (s, 3H), 3.78 (s, 3H), 3.63-3.61 (m, 1H), 3.58 (d, J = 13Hz, 1H), 3.44 (d, J = 13Hz, 1H), 2.38-2.33 (m, 2H), 1.69 (brs, 1H)
13 C NMR (CDCl 3 ) δ 158.5, 135.7, 135.6, 132.7, 129.2, 128.2, 117.3, 113.6, 60.7, 55.2, 55.1, 50.6, 43.1
MS (EI) m / z (relative intensity) 256 [M + -allyl] (9.4), 160 (6), 122 (8.8), 121 (100), 91 (6.7), 77 (2.9)
Analysis of C 19 H 23 NO 2 (297.39) Calculated: C, 76.73; H, 7.79; N, 4.71
Analytical value: C, 76.6; H, 7.98; N, 4.68.
Asymmetric yield determined using CHIRALCEL OD-R column
CH 3 CN / 1M NaClO 4 aq = 35/65, flow rate = 0.8 mL / min, detected by UV at 254 nm
t R = 31.9 min (major enantiomer), t R = 36.22 min (minor enantiomer).

化合物(11c):
N−(4−メトキシベンジル)−1−(4−メチルフェニル)−3−ブテニルアミン
無色の油状;[α]D 22=+48.5(c 1.0,CHCl3
IR(neat) 3325, 3002, 2910, 2833, 1638, 1612, 1584, 1512, 1463, 1349, 1301, 1247, 1173, 1105, 1037, 996, 917, 817, 781, 757 cm-1
1H NMR(CDCl3) δ 7.32(d, J=8.5Hz, 2H), 7.24(d, J=8 Hz, 4H), 6.92(d, J=8.5Hz, 2H), 5.78(ddt, J=16Hz, 10.2Hz, 6.8Hz, 1H), 5.07-5.15(m, 2H), 3.85(s, 3H), 3.72-3.7(m, 1H), 3.69(d, J=13Hz, 1H), 3.53(d, J=13Hz, 1H), 2.47-2.45(m, 2H), 2.42(s, 3H), 1.73(brs, 1H)
13C NMR(CDCl3) δ 158.4, 140.7, 136.4, 135.6, 132.7, 129.2, 129.0, 127.1, 117.4, 113.6, 61.0, 55.1, 50.6, 43.1, 21.0
MS (EI) m/z (相対強度) 240 [M+-allyl] (13.3), 160 (4.9), 121 (100), 119 (4.9), 91 (12.4), 77 (5.3)
1923NO(281.39)の分析
計算値:C,81.10;H,8.24;N,4.97
分析値:C,81.02;H,8.47;N,4.97
不斉収率は、CHIRALCEL OD−Rカラムを用いることにより決定
CH3CN/1M NaClO4 aq=35/65,流量=0.8mL/min,254nmのUVで検出
tR=41.41min(主エナンチオマー),tR=46.64min(副エナンチオマー)。
Compound (11c):
N- (4-methoxybenzyl) -1- (4-methylphenyl) -3-butenylamine colorless oil; [α] D 22 = + 48.5 (c 1.0, CHCl 3 )
IR (neat) 3325, 3002, 2910, 2833, 1638, 1612, 1584, 1512, 1463, 1349, 1301, 1247, 1173, 1105, 1037, 996, 917, 817, 781, 757 cm -1
1 H NMR (CDCl 3 ) δ 7.32 (d, J = 8.5 Hz, 2H), 7.24 (d, J = 8 Hz, 4H), 6.92 (d, J = 8.5 Hz, 2H), 5.78 (ddt, J = 16Hz, 10.2Hz, 6.8Hz, 1H), 5.07-5.15 (m, 2H), 3.85 (s, 3H), 3.72-3.7 (m, 1H), 3.69 (d, J = 13Hz, 1H), 3.53 (d , J = 13Hz, 1H), 2.47-2.45 (m, 2H), 2.42 (s, 3H), 1.73 (brs, 1H)
13 C NMR (CDCl 3 ) δ 158.4, 140.7, 136.4, 135.6, 132.7, 129.2, 129.0, 127.1, 117.4, 113.6, 61.0, 55.1, 50.6, 43.1, 21.0
MS (EI) m / z (relative intensity) 240 [M + -allyl] (13.3), 160 (4.9), 121 (100), 119 (4.9), 91 (12.4), 77 (5.3)
Analysis of C 19 H 23 NO (281.39) Calculated: C, 81.10; H, 8.24; N, 4.97
Analytical value: C, 81.02; H, 8.47; N, 4.97
Asymmetric yield determined by using CHIRALCEL OD-R column
CH 3 CN / 1M NaClO 4 aq = 35/65, flow rate = 0.8 mL / min, detected by UV at 254 nm
t R = 41.41 min (major enantiomer), t R = 46.64 min (minor enantiomer).

化合物(11d):
N−(4−メトキシベンジル)−1−(4−ニトロフェニル)−3−ブテニルアミン
淡黄色の油状;[α]D 22=+26.9(c 1.0,CHCl3
IR(neat) 3331, 3075, 3001, 2933, 2835, 1639, 1609, 1515, 1463, 1346, 1301, 1247, 1176, 1108, 1035, 1013, 996, 920, 856, 825, 753 cm-1
1H NMR(CDCl3) δ 8.14(d, J=8.6Hz, 2H), 7.48(d, J=8.6Hz, 2H), 7.07(d, J=8.6Hz, 2H), 6.78(d, J=8.6Hz, 2H), 5.62(ddt, J=16.4Hz, 10.1Hz, 6.4Hz, 1H), 5.52-4.96(m, 2H), 3.74-3.73(m, 1H), 3.72(s, 3H), 3.52(d, J=13Hz, 1 H), 3.38(d, J=13Hz, 1H), 2.37-2.21(m, 2H), 1.7(brs, 1H)
13C NMR(CDCl3) δ 158.6, 151.8, 147.0, 134.2, 131.9, 129.1, 128.0, 123.6, 118.5, 113.7, 60.9, 55.2, 50.9, 42.8
MS (EI) m/z (相対強度) 271 [M+-allyl] (2), 186 (14.6), 150 (4.3), 121 (44.6), 91 (100), 81 (10.2), 77 (11.8)
182023(312.37)の分析
計算値:C,69.21;H,6.45;N,8.96
分析値:C,68.98;H,6.73;N,8.8
不斉収率は、[α]D 22=+30.6(c 1.5,CHCl3)のトリフルオロアセチルアミドに変化させ、CHIRALCEL ODカラムを用いることにより決定
ヘキサン/i−PrOH=50/1,流量=0.8mL/min,254のUVで検出
tR=27.43min(副エナンチオマー),tR=29.75min(主エナンチオマー)。
Compound (11d):
N- (4-methoxybenzyl) -1- (4-nitrophenyl) -3-butenylamine pale yellow oil; [α] D 22 = + 26.9 (c 1.0, CHCl 3 )
IR (neat) 3331, 3075, 3001, 2933, 2835, 1639, 1609, 1515, 1463, 1346, 1301, 1247, 1176, 1108, 1035, 1013, 996, 920, 856, 825, 753 cm -1
1 H NMR (CDCl 3 ) δ 8.14 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.6 Hz, 2H), 7.07 (d, J = 8.6 Hz, 2H), 6.78 (d, J = 8.6Hz, 2H), 5.62 (ddt, J = 16.4Hz, 10.1Hz, 6.4Hz, 1H), 5.52-4.96 (m, 2H), 3.74-3.73 (m, 1H), 3.72 (s, 3H), 3.52 (d, J = 13Hz, 1 H), 3.38 (d, J = 13Hz, 1H), 2.37-2.21 (m, 2H), 1.7 (brs, 1H)
13 C NMR (CDCl 3 ) δ 158.6, 151.8, 147.0, 134.2, 131.9, 129.1, 128.0, 123.6, 118.5, 113.7, 60.9, 55.2, 50.9, 42.8
MS (EI) m / z (relative intensity) 271 [M + -allyl] (2), 186 (14.6), 150 (4.3), 121 (44.6), 91 (100), 81 (10.2), 77 (11.8 )
Analysis of C 18 H 20 N 2 O 3 (312.37) Calculated: C, 69.21; H, 6.45; N, 8.96
Analytical value: C, 68.98; H, 6.73; N, 8.8
The asymmetric yield was determined by changing the trifluoroacetylamide of [α] D 22 = + 30.6 (c 1.5, CHCl 3 ) and using a CHIRALCEL OD column Hexane / i-PrOH = 50/1 , Flow rate = 0.8 mL / min, detected with 254 UV
t R = 27.43 min (minor enantiomer), t R = 29.75 min (main enantiomer).

化合物(11e):N−(2−メトキシベンジル)−1−フェニル-3-ブテニルアミン
無色の油状;[α]D 22=+51.6(c 1.0,CHCl3
IR(neat) 3343, 3062, 3026, 3001, 2934, 2835, 1638, 1601, 1588, 1492, 1463, 1358, 1288, 1241, 1175, 1117, 1048, 1029, 955, 916, 836, 754, 702 cm-1
1H NMR(CDCl3) δ 7.34-7.18(m, 6H), 7.1-7.05(m, 1H), 6.89-6.82(m, 2H), 5.66(ddt, J=16.8Hz, 10.1Hz, 6.8Hz, 1H), 5.07(ddt, J=16.8Hz, 2.2Hz, 2Hz, 1H), 5.02(ddt, J=10.1Hz, 2.2Hz, 2Hz, 1H), 3.8(s, 3H), 3.72 (d, J=13.4Hz, 1H), 3.63-3.6(m, 1H), 3.58(d, J=13.4Hz, 1H), 2.39-2.35(m, 2H), 2.12-1.91(brs, 1H)
13C NMR(CDCl3) δ 157.6, 143.8, 135.5, 129.8, 128.2, 128.1, 128.0, 127.3, 126.8, 120.1, 117.3, 110.0, 60.9, 54.9, 47.1, 43.1
MS (EI) m/z (相対強度) 226 [M+-allyl] (11.9), 160 (3.9), 122 (9.2), 121 (100), 105 (2.3), 94 (3.1), 93 (37.6), 91 (7.2), 79 (1.3), 77 (1)
1821NO(267.37)の分析
計算値:C,80.86;H,7.91;N,5.23
分析値:C,80.83;H,8.18;N,5.2
不斉収率は、CHIRALCEL OD−Rカラムを用いることにより決定
CH3CN/1M NaClO4 aq=50/50,流量=0.8mL/min,254nmのUVで検出
tR=10.03min(副エナンチオマー),tR=12.66min(主エナンチオマー)。
Compound (11e): N- (2-methoxybenzyl) -1-phenyl-3-butenylamine colorless oil; [α] D 22 = + 51.6 (c 1.0, CHCl 3 )
IR (neat) 3343, 3062, 3026, 3001, 2934, 2835, 1638, 1601, 1588, 1492, 1463, 1358, 1288, 1241, 1175, 1117, 1048, 1029, 955, 916, 836, 754, 702 cm -1
1 H NMR (CDCl 3 ) δ 7.34-7.18 (m, 6H), 7.1-7.05 (m, 1H), 6.89-6.82 (m, 2H), 5.66 (ddt, J = 16.8Hz, 10.1Hz, 6.8Hz, 1H), 5.07 (ddt, J = 16.8Hz, 2.2Hz, 2Hz, 1H), 5.02 (ddt, J = 10.1Hz, 2.2Hz, 2Hz, 1H), 3.8 (s, 3H), 3.72 (d, J = 13.4Hz, 1H), 3.63-3.6 (m, 1H), 3.58 (d, J = 13.4Hz, 1H), 2.39-2.35 (m, 2H), 2.12-1.91 (brs, 1H)
13C NMR (CDCl 3 ) δ 157.6, 143.8, 135.5, 129.8, 128.2, 128.1, 128.0, 127.3, 126.8, 120.1, 117.3, 110.0, 60.9, 54.9, 47.1, 43.1
MS (EI) m / z (relative intensity) 226 [M + -allyl] (11.9), 160 (3.9), 122 (9.2), 121 (100), 105 (2.3), 94 (3.1), 93 (37.6 ), 91 (7.2), 79 (1.3), 77 (1)
Analysis of C 18 H 21 NO (267.37) Calculated: C, 80.86; H, 7.91; N, 5.23
Analytical value: C, 80.83; H, 8.18; N, 5.2
Asymmetric yield determined by using CHIRALCEL OD-R column
CH 3 CN / 1M NaClO 4 aq = 50/50, flow rate = 0.8mL / min, detected by UV at 254nm
t R = 10.03 min (deputy enantiomer), t R = 12.66 min (main enantiomer).

表6には、アルデヒド部位のアリール基またはイミノ窒素のベンジル基のいずれかにキレートメトキシ置換基を有するイミンについての結果をまとめた。エントリー10〜12に示されるように、パラメトキシベンジル基を有する化合物(10a)、(10b)、および(10c)からは、それぞれ90%、85%、および86%の不斉収率でホモアリルアミン(11a)、(11b)、および(11c)が得られる。アルデヒド部位のパラ位にニトロ基を有する化合物(10d)は、94%という高い収率で化合物(11d)を与えるが、不斉収率は十分ではない(エントリー13)。さらに、エントリー14に示されるように、ルトメトキシベンジル基を有する化合物(10e)からは、89%という不斉収率で化合物(11e)が得られる。

Figure 2005120041
Table 6 summarizes the results for imines having a chelate methoxy substituent on either the aryl group of the aldehyde moiety or the benzyl group of the imino nitrogen. As shown in entries 10-12, compounds (10a), (10b), and (10c) having a paramethoxybenzyl group were homoallylamine in asymmetric yields of 90%, 85%, and 86%, respectively. (11a), (11b), and (11c) are obtained. Compound (10d) having a nitro group at the para position of the aldehyde moiety gives compound (11d) with a high yield of 94%, but the asymmetric yield is not sufficient (entry 13). Furthermore, as shown in entry 14, compound (11e) is obtained from compound (10e) having a ltomethoxybenzyl group with an asymmetric yield of 89%.
Figure 2005120041

Figure 2005120041
Figure 2005120041

化合物(21a):N−ベンジル−1−(2−ナフチル)−3−ブテニルアミン
無色の油状;[α]D 21=+64.0(c 1.5,CHCl3
IR(neat) 3327, 3059, 3026, 2976, 2909, 2833, 1638, 1495, 1454, 1124, 870, 819, 746, 698 cm-1
1H NMR(CDCl3) δ 7.80-7.65(m, 4H), 7.49-7.30(m, 3H), 7.27-7.10(m, 5H), 5.65(dddd, J=16.5, 10.0, 6.8, 6.5, 1H), 5.00(m. 1H), 4.95(m, 1H), 3.78(t, J=6.5Hz, 1H), 3.62(d, J=12.7Hz, 1H), 3.47(d, J=12.7Hz. 1H), 2.48-2.34(m, 2H)
13C NMR(CDCl3) δ 141.2, 14.5, 135.3, 133.4, 132.9, 128.3, 128.2, 128.1, 127.8, 127.6, 126.8, 126.2, 125.9
不斉収率は、CHIRALCEL OD−Rカラムを用いて決定
CH3CN/1M NaClO4 aq=40/60,流量=0.8mL/min,254nmのUVで検出
tR=58.3min(主エナンチオマー),tR=67.45min(副エナンチオマー)。
Compound (21a): N-benzyl-1- (2-naphthyl) -3-butenylamine colorless oil; [α] D 21 = + 64.0 (c 1.5, CHCl 3 )
IR (neat) 3327, 3059, 3026, 2976, 2909, 2833, 1638, 1495, 1454, 1124, 870, 819, 746, 698 cm -1
1 H NMR (CDCl 3 ) δ 7.80-7.65 (m, 4H), 7.49-7.30 (m, 3H), 7.27-7.10 (m, 5H), 5.65 (dddd, J = 16.5, 10.0, 6.8, 6.5, 1H ), 5.00 (m. 1H), 4.95 (m, 1H), 3.78 (t, J = 6.5Hz, 1H), 3.62 (d, J = 12.7Hz, 1H), 3.47 (d, J = 12.7Hz. 1H ), 2.48-2.34 (m, 2H)
13 C NMR (CDCl 3 ) δ 141.2, 14.5, 135.3, 133.4, 132.9, 128.3, 128.2, 128.1, 127.8, 127.6, 126.8, 126.2, 125.9
Asymmetric yield determined using CHIRALCEL OD-R column
CH 3 CN / 1M NaClO 4 aq = 40/60, flow rate = 0.8mL / min, detected by UV at 254nm
t R = 58.3 min (major enantiomer), t R = 67.45 min (minor enantiomer).

化合物(21b):
N−(4−メトキシベンジル)−1−(2−ナフチル)−3−ブテニルアミン
無色の油状;[α]D 22=+54.3(c 1.0,CHCl3
IR(neat) 3330, 3076, 3026, 2978, 2911, 2833, 1640, 1602, 1492, 1454, 1415, 1357, 1115, 1070, 1027, 994, 759 cm-1
1H NMR(CDCl3) δ 7.95-7.86(m, 4H), 7.63-7.51(m, 3H), 7.26(d, J=8.6Hz, 2H), 6.94(d, J=8.6Hz, 2H), 5.85(ddt, J=16.4Hz, 10.2Hz, 6.9Hz, 1H), 5.2-5.1(m, 2H), 3.95-3.91(m, 1H), 3.87(s, 3H), 3.74(d, J=13Hz, 1H), 3.5(d, J=13Hz, 1H), 2.62-2.52(m, 2H), 1.87(brs, 1H)
13C NMR(CDCl3) δ 158.4, 141.1, 135.3, 133.3, 132.7, 132.5, 129.1, 128.0, 127.6, 126.1, 125.8, 125.3, 125.2, 117.5, 113.6, 61.4, 55.0, 50.6, 42.8
MS (EI) m/z (相対強度) 276 [M+-allyl] (7.7), 160 (6.6), 122 (8.7), 121 (100), 91 (4.8), 77 (2.4)
2223NO(317.43)の分析
計算値:C,83.24;H,7.3;N,4.41
分析値:C,83.19;H,7.49;N,4.58
不斉収率は、CHIRALCEL OD−Rカラムにより決定
CH3CN/1M NaClO4 aq=50/50,流量=0.7mL/min,254nmのUVで検出
tR=38.16min(主エナンチオマー),tR=42.87min(副エナンチオマー)。
Compound (21b):
N- (4-methoxybenzyl) -1- (2-naphthyl) -3-butenylamine colorless oil; [α] D 22 = + 54.3 (c 1.0, CHCl 3 )
IR (neat) 3330, 3076, 3026, 2978, 2911, 2833, 1640, 1602, 1492, 1454, 1415, 1357, 1115, 1070, 1027, 994, 759 cm -1
1 H NMR (CDCl 3 ) δ 7.95-7.86 (m, 4H), 7.63-7.51 (m, 3H), 7.26 (d, J = 8.6Hz, 2H), 6.94 (d, J = 8.6Hz, 2H), 5.85 (ddt, J = 16.4Hz, 10.2Hz, 6.9Hz, 1H), 5.2-5.1 (m, 2H), 3.95-3.91 (m, 1H), 3.87 (s, 3H), 3.74 (d, J = 13Hz , 1H), 3.5 (d, J = 13Hz, 1H), 2.62-2.52 (m, 2H), 1.87 (brs, 1H)
13 C NMR (CDCl 3 ) δ 158.4, 141.1, 135.3, 133.3, 132.7, 132.5, 129.1, 128.0, 127.6, 126.1, 125.8, 125.3, 125.2, 117.5, 113.6, 61.4, 55.0, 50.6, 42.8
MS (EI) m / z (relative intensity) 276 [M + -allyl] (7.7), 160 (6.6), 122 (8.7), 121 (100), 91 (4.8), 77 (2.4)
Analysis of C 22 H 23 NO (317.43) Calculated: C, 83.24; H, 7.3; N, 4.41
Analytical value: C, 83.19; H, 7.49; N, 4.58
Asymmetric yield determined by CHIRALCEL OD-R column
CH 3 CN / 1M NaClO 4 aq = 50/50, flow rate = 0.7mL / min, detected by UV at 254nm
t R = 38.16 min (major enantiomer), t R = 42.87 min (minor enantiomer).

表7に示されるように、N−2−ナフチリデンベンジルアミン(化合物20a)は、91%という高い不斉収率で化合物21aを与える(エントリー15)。しかしながら、エントリー16に示されるように、パラ−メトキシベンジル基を有する化合物(20b)の場合には、不斉収率は比較的低い。

Figure 2005120041
As shown in Table 7, N-2-naphthylidenebenzylamine (compound 20a) gives compound 21a with a high asymmetric yield of 91% (entry 15). However, as shown in entry 16, in the case of compound (20b) having a para-methoxybenzyl group, the asymmetric yield is relatively low.
Figure 2005120041

Figure 2005120041
Figure 2005120041

化合物(23a):N−アリル−1−フェニル−3−ブテニルアミン

Figure 2005120041
無色の油状;[α]D 23=+24.8(c 1.0,CHCl3
IR(neat) 3329, 3077, 3026, 3003, 2977, 2910, 2833, 1640, 1602, 1542, 1492, 1454, 1357, 1307, 1235, 1199, 1069, 1027, 994, 917, 758 cm-1
1H NMR(CDCl3) δ 7.35-7.23(m, 5H), 5.86-5.73(m, 1H), 5.73-5.7(m, 1H), 5.14-5.03(m, 4H), 3.72(dd, J=6.2Hz, 1.2Hz, 1H), 3.11-3.02(m, 2H), 2.44-2.39(m, 2H), 1.71(brs, 1H)
13C NMR(CDCl3) δ 143.4, 136.4, 135.2, 128.5, 126.9, 126.7, 117.3, 115.4, 61.4, 49.7, 42.8
MS (EI) m/z (相対強度) 188 [M++1] (0.9), 146 [M+-allyl] (16.1), 129 (14.9), 119 (2.6), 104 (4.8), 91 (100), 77 (2.1)
1317N(187.28)
計算値:C,83.37;H,9.14;N,7.47
分析値:C,83.07;H,9.35;N,7.4
不斉収率は、[α]D 22=+93.2(c 1.0,CHCl3)のトリフルオロアセチルアミドに変化させ、CHIRALCEL ODカラムを用いて決定
ヘキサン/i−PrOH=300/1,流量=0.6mL/min,254nmのUVで検出
tR=16.17min(主エナンチオマー),tR=17.85min(副エナンチオマー)。 Compound (23a): N-allyl-1-phenyl-3-butenylamine
Figure 2005120041
Colorless oil; [α] D 23 = + 24.8 (c 1.0, CHCl 3 )
IR (neat) 3329, 3077, 3026, 3003, 2977, 2910, 2833, 1640, 1602, 1542, 1492, 1454, 1357, 1307, 1235, 1199, 1069, 1027, 994, 917, 758 cm -1
1 H NMR (CDCl 3 ) δ 7.35-7.23 (m, 5H), 5.86-5.73 (m, 1H), 5.73-5.7 (m, 1H), 5.14-5.03 (m, 4H), 3.72 (dd, J = 6.2Hz, 1.2Hz, 1H), 3.11-3.02 (m, 2H), 2.44-2.39 (m, 2H), 1.71 (brs, 1H)
13 C NMR (CDCl 3 ) δ 143.4, 136.4, 135.2, 128.5, 126.9, 126.7, 117.3, 115.4, 61.4, 49.7, 42.8
MS (EI) m / z (relative intensity) 188 [M + +1] (0.9), 146 [M + -allyl] (16.1), 129 (14.9), 119 (2.6), 104 (4.8), 91 ( 100), 77 (2.1)
C 13 H 17 N (187.28)
Calculated value: C, 83.37; H, 9.14; N, 7.47
Analytical value: C, 83.07; H, 9.35; N, 7.4
The asymmetric yield was changed to trifluoroacetylamide of [α] D 22 = + 93.2 (c 1.0, CHCl 3 ) and determined using a CHIRALCEL OD column Hexane / i-PrOH = 300/1 Flow rate = 0.6mL / min, detected at 254nm UV
t R = 16.17 min (major enantiomer), t R = 17.85 min (minor enantiomer).

ベンジル基以外の置換基がイミノ窒素に結合したイミンについて調べ、その結果を上記表8にまとめた。エントリー17に示されるように、N−アリルイミン(化合物22a)は、高い収率および78%の不斉収率でアリル化されたホモアリルアミン(化合物23a)を与える。化合物(22b)の反応は非常に遅く、イミンが完全に消費されたところで、生成物23bの収率は144時間後でも10%未満であることが、エントリー18からわかる。このように反応が遅い理由は後述する。

Figure 2005120041
The imines in which substituents other than the benzyl group were bonded to the imino nitrogen were examined, and the results are summarized in Table 8 above. As shown in entry 17, N-allylimine (compound 22a) gives allylated homoallylamine (compound 23a) in high yield and asymmetric yield of 78%. It can be seen from entry 18 that the reaction of compound (22b) is very slow and when the imine is completely consumed, the yield of product 23b is less than 10% even after 144 hours. The reason for such a slow reaction will be described later.
Figure 2005120041

Figure 2005120041
Figure 2005120041

化合物(25):N−メチル−1−(3−ピリジル)−3−ブテニルアミン
黄色液体;[α]D 22=+43.1(c 1.66,CHCl3
IR(neat) 3324, 3082, 2979, 2936, 1666, 1640, 1578, 1476, 1428, 1098, 1027, 996, 734 cm-1
1H NMR(CDCl3) δ 8.45-8.41(m, 2H), 7.62-7.58(m, 1H), 7.23-7.2(m, 1H), 5.69-5.59(m, 1H), 5.08-5.01(m, 2H), 3.64-3.60(m, 1H), 3.51(t, J=6.8Hz, 1H), 2.47-2.4(m, 2H), 2.2(s, 3H)
13C NMR(CDCl3) δ 149.2, 148.5, 138.6, 134.7, 134.3, 123.5, 118.3, 62.1, 42.4, 34.7
MS (EI) m/z (相対強度) 163 [M++ H] (3.5), 161 [M+-H] (6.3), 121 [M+-allyl] (100), 119 (9.6), 94 (92), 80 (18.7), 78 (9.4)
10142(162.23)の分析
計算値:C,74.04;H,8.69;N,17.27
分析値:C,74.24;H,8.85;N,16.94
不斉収率は、[α]D 22=+90.5(c 0.5,CHCl3)のトリフルオロアセチルアミドに変化させ、CHIRALCEL ODカラムを用いて決定
ヘキサン/i−PrOH=10/1,流量=0.7mL/min,254nmのUVで検出
tR=24.13min(副エナンチオマー),tR=32.58min(主エナンチオマー)。
Compound (25): N-methyl-1- (3-pyridyl) -3-butenylamine yellow liquid; [α] D 22 = + 43.1 (c 1.66, CHCl 3 )
IR (neat) 3324, 3082, 2979, 2936, 1666, 1640, 1578, 1476, 1428, 1098, 1027, 996, 734 cm -1
1 H NMR (CDCl 3 ) δ 8.45-8.41 (m, 2H), 7.62-7.58 (m, 1H), 7.23-7.2 (m, 1H), 5.69-5.59 (m, 1H), 5.08-5.01 (m, 2H), 3.64-3.60 (m, 1H), 3.51 (t, J = 6.8Hz, 1H), 2.47-2.4 (m, 2H), 2.2 (s, 3H)
13 C NMR (CDCl 3 ) δ 149.2, 148.5, 138.6, 134.7, 134.3, 123.5, 118.3, 62.1, 42.4, 34.7
MS (EI) m / z (relative intensity) 163 [M + + H] (3.5), 161 [M + -H] (6.3), 121 [M + -allyl] (100), 119 (9.6), 94 (92), 80 (18.7), 78 (9.4)
Analysis of C 10 H 14 N 2 (162.23) Calculated: C, 74.04; H, 8.69; N, 17.27
Analytical value: C, 74.24; H, 8.85; N, 16.94.
The asymmetric yield was changed to trifluoroacetylamide of [α] D 22 = + 90.5 (c 0.5, CHCl 3 ) and determined using a CHIRALCEL OD column. Hexane / i-PrOH = 10/1, Flow rate = 0.7mL / min, detected with 254nm UV
t R = 24.13 min (minor enantiomer), t R = 32.58 min (main enantiomer).

化合物(27):
N−ベンジル−1−(3,4,5−トリメトキシフェニル)−3−ブテニルアミン
無色の濃厚な液体;[α]D 22=+15.3(c 1.0,CHCl3
IR(neat) 3325, 3062, 2997, 2936, 2835, 1638, 1590, 1505, 1462, 1419, 1325, 1233, 1183, 1128, 1009, 917, 831, 739 cm-1
1H NMR(CDCl3) δ 7.34-7.21(m, 5H), 6.6(s, 2H), 5.73(ddt, J=16.6Hz, 10.0Hz, 6.9Hz, 1H), 5.13-5.05(m, 2H), 3.87(s, 6H), 3.85(s, 3H), 3.71(d, J=13.2Hz, 1H), 3.63-3.59(m, 1H), 3.56(d, J=13.2Hz, 1H), 2.45-2.31(m, 2H), 1.81(brs, 1H)
13C NMR(CDCl3) δ 153.2, 140.5, 139.6, 136.6, 135.4, 128.3, 128.1, 126.8, 117.7, 103.8, 61.8, 60.8, 56.0, 51.4, 43
MS (EI) m/z (相対強度) 286 [M+-allyl] (14.9), 254 (8.4), 238 (23.2), 209 (6.1), 195 (6.9), 181 (13.8), 169 (4), 125 (1.2), 91 (100)
2025NO3(327.42)の分析
計算値:C,73.36;H,7.69;N,4.27
分析値:C,73.12;H,7.89;N,4.57
不斉収率は、CHIRALCEL OD−Rカラムを用いて決定
CH3CN/1M NaClO4 aq=30/70,流量=0.8mL/min,254nmのUVで検出
tR=31.15min(主エナンチオマー),tR=34.64min(副エナンチオマー)。
Compound (27):
N-benzyl-1- (3,4,5-trimethoxyphenyl) -3-butenylamine colorless thick liquid; [α] D 22 = + 15.3 (c 1.0, CHCl 3 )
IR (neat) 3325, 3062, 2997, 2936, 2835, 1638, 1590, 1505, 1462, 1419, 1325, 1233, 1183, 1128, 1009, 917, 831, 739 cm -1
1 H NMR (CDCl 3 ) δ 7.34-7.21 (m, 5H), 6.6 (s, 2H), 5.73 (ddt, J = 16.6Hz, 10.0Hz, 6.9Hz, 1H), 5.13-5.05 (m, 2H) , 3.87 (s, 6H), 3.85 (s, 3H), 3.71 (d, J = 13.2Hz, 1H), 3.63-3.59 (m, 1H), 3.56 (d, J = 13.2Hz, 1H), 2.45- 2.31 (m, 2H), 1.81 (brs, 1H)
13 C NMR (CDCl 3 ) δ 153.2, 140.5, 139.6, 136.6, 135.4, 128.3, 128.1, 126.8, 117.7, 103.8, 61.8, 60.8, 56.0, 51.4, 43
MS (EI) m / z (relative intensity) 286 [M + -allyl] (14.9), 254 (8.4), 238 (23.2), 209 (6.1), 195 (6.9), 181 (13.8), 169 (4 ), 125 (1.2), 91 (100)
Analysis of C 20 H 25 NO 3 (327.42) Calculated: C, 73.36; H, 7.69; N, 4.27
Analytical value: C, 73.12; H, 7.89; N, 4.57
Asymmetric yield determined using CHIRALCEL OD-R column
CH 3 CN / 1M NaClO 4 aq = 30/70, flow rate = 0.8 mL / min, detected by UV at 254 nm
t R = 31.15 min (major enantiomer), t R = 34.64 min (minor enantiomer).

表9に示されるように、N−3−ピリジリデンメチルアミン(化合物24)は、より長い反応時間を必要とし、化合物(25)の不斉収率は中程度である。3つのメトキシ基を有する化合物26は、34%と不充分な不斉収率で化合物(27)を与える。

Figure 2005120041
As shown in Table 9, N-3-pyridylidenemethylamine (Compound 24) requires a longer reaction time and the asymmetric yield of Compound (25) is moderate. Compound 26 having three methoxy groups gives compound (27) with an asymmetric yield as insufficient as 34%.
Figure 2005120041

Figure 2005120041
Figure 2005120041

化合物(9a):N−ベンジル−1−ピペロニル−3−ブテニルアミン
無色の油状;[α]D 22=+59.1(c 1.0,CHCl3
IR(neat) 3327, 3063, 3026, 2976, 2894, 1638, 1607, 1468, 1439, 1376, 1243, 1183, 1100, 1040, 996, 865, 736 cm-1
1H NMR(CDCl3) δ 7.32-7.21(m, 5H), 6.91(s, 1H), 6.77(s, 2H), 5.95(s, 2H), 5.69(ddt, J=17.0Hz, 10.2Hz, 7.2Hz, 1H), 5.09(ddt, J=17.0Hz, 2.2Hz, 2Hz, 1H), 5.03(ddt, J=10.2Hz, 2.2Hz, 2Hz, 1H), 3.66(d, J=13.2Hz, 1H), 3.6(t, J=6.8Hz, 1H), 3.51(d, J=13.2Hz, 1H), 2.38-2.28(m, 2H), 1.7(brs, 1H)
13C NMR(CDCl3) δ 147.8, 146.4, 140.5, 137.8, 135.3, 128.3, 128.0, 126.8, 120.5, 117.5, 107.9, 107.2, 100.8, 61.3, 51.3, 43.2
MS (EI) m/z (相対強度) 240 [M+-allyl] (100), 148 (3.9), 117 (2.5), 91 (81), 65 (5.7)
1819NO2(281.35)の分析
計算値:C,76.84;H,6.8;N,4.97
分析値:C,76.52;H,6.68;N,5.21
不斉収率は、CHIRALCEL OD−Rカラムにより決定
CH3CN/1M NaClO4 aq=40/60,流量=0.8mL/min,254nmのUVで検出
tR=18.4min(主エナンチオマー),tR=22.2min(副エナンチオマー)。
Compound (9a): N-benzyl-1-piperonyl-3-butenylamine colorless oil; [α] D 22 = + 59.1 (c 1.0, CHCl 3 )
IR (neat) 3327, 3063, 3026, 2976, 2894, 1638, 1607, 1468, 1439, 1376, 1243, 1183, 1100, 1040, 996, 865, 736 cm -1
1 H NMR (CDCl 3 ) δ 7.32-7.21 (m, 5H), 6.91 (s, 1H), 6.77 (s, 2H), 5.95 (s, 2H), 5.69 (ddt, J = 17.0Hz, 10.2Hz, 7.2Hz, 1H), 5.09 (ddt, J = 17.0Hz, 2.2Hz, 2Hz, 1H), 5.03 (ddt, J = 10.2Hz, 2.2Hz, 2Hz, 1H), 3.66 (d, J = 13.2Hz, 1H ), 3.6 (t, J = 6.8Hz, 1H), 3.51 (d, J = 13.2Hz, 1H), 2.38-2.28 (m, 2H), 1.7 (brs, 1H)
13 C NMR (CDCl 3 ) δ 147.8, 146.4, 140.5, 137.8, 135.3, 128.3, 128.0, 126.8, 120.5, 117.5, 107.9, 107.2, 100.8, 61.3, 51.3, 43.2
MS (EI) m / z (relative intensity) 240 [M + -allyl] (100), 148 (3.9), 117 (2.5), 91 (81), 65 (5.7)
Analysis of C 18 H 19 NO 2 (281.35) Calculated: C, 76.84; H, 6.8; N, 4.97
Analytical value: C, 76.52; H, 6.68; N, 5.21
Asymmetric yield determined by CHIRALCEL OD-R column
CH 3 CN / 1M NaClO 4 aq = 40/60, flow rate = 0.8mL / min, detected by UV at 254nm
t R = 18.4 min (major enantiomer), t R = 22.2 min (minor enantiomer).

化合物(9b):
N−(4−メトキシベンジル)−1−ピペロニル−3−ブテニルアミン
無色の油状;[α]D 22=+54.9(c 1.0,CHCl3
IR(neat) 3327, 3072, 2902, 2834, 1638, 1611, 1584, 1512, 1376, 1300, 1244, 1177, 1101, 1038, 997, 814, 759 cm-1
1H NMR(CDCl3) δ 7.26(d, J=8.4Hz, 2H), 7.0(s, 1H), 6.95(d, J=8.4Hz, 2H), 6.85(s, 2H), 6.04(s, 2H), 5.78(ddt, J=16.1Hz, 10.1Hz, 6.6Hz, 1H), 5.1 (ddt, J=16.1Hz, 2.1Hz, 2Hz, 1H), 5.12(ddt, J=10.1Hz, 2.1Hz, 2Hz, 1H), 3.87(s, 3H), 3.71-3.7(m, 1H), 3.67(d, J=13Hz, 1H), 3.55(d, J=13Hz, 1H), 2.46-2.42(m, 2H), 1.77(brs, 1H)
13C NMR(CDCl3) δ 158.4, 147.7, 146.4, 137.8, 135.4, 132.6, 129.2, 120.5, 117.4, 113.6, 107.8, 107.2, 100.8, 61.1, 55.2, 50.6, 43.1
MS (EI) m/z (相対強度) 270 [M+-allyl] (8.4), 160 (5.4), 122 (9.8), 121 (100), 91 (7.4), 77 (2.8)
1921NO3(311.38)の分析
計算値:C,73.28;H,6.79;N,4.49
分析値:C,73.07;H,6.9;N,4.78
不斉収率は、CHIRALCEL OD−Rカラムを用いて決定
CH3CN/1M NaClO4 aq=35/65,流量=0.8mL/min,254nmのUVで検出
tR=34.37min(主エナンチオマー),tR=38.25min(副エナンチオマー)。
Compound (9b):
N- (4-methoxybenzyl) -1-piperonyl-3-butenylamine colorless oil; [α] D 22 = + 54.9 (c 1.0, CHCl 3 )
IR (neat) 3327, 3072, 2902, 2834, 1638, 1611, 1584, 1512, 1376, 1300, 1244, 1177, 1101, 1038, 997, 814, 759 cm -1
1 H NMR (CDCl 3 ) δ 7.26 (d, J = 8.4 Hz, 2H), 7.0 (s, 1H), 6.95 (d, J = 8.4 Hz, 2H), 6.85 (s, 2H), 6.04 (s, 2H), 5.78 (ddt, J = 16.1Hz, 10.1Hz, 6.6Hz, 1H), 5.1 (ddt, J = 16.1Hz, 2.1Hz, 2Hz, 1H), 5.12 (ddt, J = 10.1Hz, 2.1Hz, 2Hz, 1H), 3.87 (s, 3H), 3.71-3.7 (m, 1H), 3.67 (d, J = 13Hz, 1H), 3.55 (d, J = 13Hz, 1H), 2.46-2.42 (m, 2H ), 1.77 (brs, 1H)
13 C NMR (CDCl 3 ) δ 158.4, 147.7, 146.4, 137.8, 135.4, 132.6, 129.2, 120.5, 117.4, 113.6, 107.8, 107.2, 100.8, 61.1, 55.2, 50.6, 43.1
MS (EI) m / z (relative intensity) 270 [M + -allyl] (8.4), 160 (5.4), 122 (9.8), 121 (100), 91 (7.4), 77 (2.8)
Analysis of C 19 H 21 NO 3 (311.38) Calculated: C, 73.28; H, 6.79; N, 4.49
Analytical value: C, 73.07; H, 6.9; N, 4.78
Asymmetric yield determined using CHIRALCEL OD-R column
CH 3 CN / 1M NaClO 4 aq = 35/65, flow rate = 0.8 mL / min, detected by UV at 254 nm
t R = 34.37 min (major enantiomer), t R = 38.25 min (minor enantiomer).

化合物(9c):
N−(2−メトキシベンジル)−1−ピペロニル−3−ブテニルアミン
無色の油状;[α]D 22=+57.8(c 1.0,CHCl3
IR(neat) 3341, 3073, 3001, 2902, 2834, 1638, 1601, 1588, 1490, 1376, 1326, 1289, 1180, 1098, 996, 868, 755 cm-1
1H NMR(CDCl3) δ 7.18-7.12(m, 1H), 7.03-7.0(m, 1H), 6.85-6.76(m, 3H), 6.69(s, 2H), 5.87(s, 2H), 5.6(ddt, J=16.4Hz, 10.2Hz, 6.6Hz, 1H), 5.0(ddt, J=16.4Hz, 2.1Hz, 2Hz, 1H), 4.96(ddt, J=10.2Hz, 2.1Hz, 2Hz, 1H), 3.75(s, 3H), 3.65(d, J=13.4Hz, 1H), 3.48-3.46(m, 1H), 3.42(d, J=13.4Hz, 1H), 2.3-2.17(m, 2H), 1.95(brs, 1H)
13C NMR(CDCl3) δ 157.5, 147.0, 146.2, 137.9, 135.5, 129.8, 128.2, 128.0, 120.5, 120.1, 117.2, 110.0, 107.7, 107.3, 100.6, 60.7, 54.9, 46.9, 43.2
MS (EI) m/z (相対強度) 270 [M+-allyl] (10.5), 160 (5.9), 148 (1.4), 122 (8.9), 121 (100), 93 (23), 91 (3.5)
1921NO3(311.38)の分析
計算値:C,73.28;H,6.79;N,4.49
分析値:C,73.1;H,7.01;N,4.4
不斉収率は、CHIRALCEL OD−Rカラムを用いて決定
CH3CN/1M NaClO4 aq=50/50,流量=0.7mL/min,254nmのUVで検出
tR=13.3min(副エナンチオマー),tR=17.11min(主エナンチオマー)。
Compound (9c):
N- (2-methoxybenzyl) -1-piperonyl-3-butenylamine colorless oil; [α] D 22 = + 57.8 (c 1.0, CHCl 3 )
IR (neat) 3341, 3073, 3001, 2902, 2834, 1638, 1601, 1588, 1490, 1376, 1326, 1289, 1180, 1098, 996, 868, 755 cm -1
1 H NMR (CDCl 3 ) δ 7.18-7.12 (m, 1H), 7.03-7.0 (m, 1H), 6.85-6.76 (m, 3H), 6.69 (s, 2H), 5.87 (s, 2H), 5.6 (ddt, J = 16.4Hz, 10.2Hz, 6.6Hz, 1H), 5.0 (ddt, J = 16.4Hz, 2.1Hz, 2Hz, 1H), 4.96 (ddt, J = 10.2Hz, 2.1Hz, 2Hz, 1H) , 3.75 (s, 3H), 3.65 (d, J = 13.4Hz, 1H), 3.48-3.46 (m, 1H), 3.42 (d, J = 13.4Hz, 1H), 2.3-2.17 (m, 2H), 1.95 (brs, 1H)
13 C NMR (CDCl 3 ) δ 157.5, 147.0, 146.2, 137.9, 135.5, 129.8, 128.2, 128.0, 120.5, 120.1, 117.2, 110.0, 107.7, 107.3, 100.6, 60.7, 54.9, 46.9, 43.2
MS (EI) m / z (relative intensity) 270 [M + -allyl] (10.5), 160 (5.9), 148 (1.4), 122 (8.9), 121 (100), 93 (23), 91 (3.5 )
Analysis of C 19 H 21 NO 3 (311.38) Calculated: C, 73.28; H, 6.79; N, 4.49
Analytical value: C, 73.1; H, 7.01; N, 4.4
Asymmetric yield determined using CHIRALCEL OD-R column
CH 3 CN / 1M NaClO 4 aq = 50/50, flow rate = 0.7mL / min, detected by UV at 254nm
t R = 13.3 min (minor enantiomer), t R = 17.11 min (main enantiomer).

化合物(9d):N−ベンジル−1−2−クロロピペロニル−3−ブテニルアミン
無色の油状;[α]D 22=+48.0(c 1.0,CHCl3
IR(neat) 3330, 3075, 3027, 2977, 2896, 1639, 1603, 1502, 1475, 1408, 1391, 1375, 1269, 1237, 1159, 1110, 1038, 996, 935, 841, 796, 734 cm-1
1H NMR(CDCl3) δ 7.92-7.21(m, 5H), 7.2(s, 1H), 6.77(s, 1H), 5.94-5.92(m, 2H), 5.74(ddt, J=16.8Hz, 10.2Hz, 6.8Hz, 1H), 5.07-5.0(m, 2H), 4.15(dd, J=4.8Hz, 3.8Hz, 1H), 3.62(d, J=13.2Hz, 1H), 3.5(d, J=13.2Hz, 1H), 2.43-2.35(m, 1H), 2.23-2.13(m, 1H), 1.66(brs, 1H)
13C NMR(CDCl3) δ 147.1, 146.7, 140.3, 134.9, 134.2, 128.2, 128.0, 126.8, 124.9, 117.8, 109.5, 107.4, 101.5, 57.1, 51.4, 41.4
MS (EI) m/z (相対強度) 274 [M+-allyl] (7.5), 169 (2), 115 (2.2), 91 (100)
1818ClNO2(315.8)の分析
計算値:C,68.46;H,5.75;N,4.43;Cl,11.23
分析値:C,68.4;H,5.85;N,4.46;Cl,11.11
不斉収率は、CHIRALCEL OD−Rカラムにより決定
CH3CN/1M NaClO4 aq=60/40,流量=0.6mL/min,254nmのUVで検出
tR=17.13min(主エナンチオマー),tR=19.3min(副エナンチオマー)。
Compound (9d): N-benzyl-1-chloropiperonyl-3-butenylamine colorless oil; [α] D 22 = + 48.0 (c 1.0, CHCl 3 )
IR (neat) 3330, 3075, 3027, 2977, 2896, 1639, 1603, 1502, 1475, 1408, 1391, 1375, 1269, 1237, 1159, 1110, 1038, 996, 935, 841, 796, 734 cm -1
1 H NMR (CDCl 3 ) δ 7.92-7.21 (m, 5H), 7.2 (s, 1H), 6.77 (s, 1H), 5.94-5.92 (m, 2H), 5.74 (ddt, J = 16.8Hz, 10.2 Hz, 6.8Hz, 1H), 5.07-5.0 (m, 2H), 4.15 (dd, J = 4.8Hz, 3.8Hz, 1H), 3.62 (d, J = 13.2Hz, 1H), 3.5 (d, J = 13.2Hz, 1H), 2.43-2.35 (m, 1H), 2.23-2.13 (m, 1H), 1.66 (brs, 1H)
13C NMR (CDCl 3 ) δ 147.1, 146.7, 140.3, 134.9, 134.2, 128.2, 128.0, 126.8, 124.9, 117.8, 109.5, 107.4, 101.5, 57.1, 51.4, 41.4
MS (EI) m / z (relative intensity) 274 [M + -allyl] (7.5), 169 (2), 115 (2.2), 91 (100)
Analysis of C 18 H 18 ClNO 2 (315.8) Calculated: C, 68.46; H, 5.75; N, 4.43; Cl, 11.23
Analytical value: C, 68.4; H, 5.85; N, 4.46; Cl, 11.11.
Asymmetric yield determined by CHIRALCEL OD-R column
CH3CN / 1M NaClO 4 aq = 60/40, flow rate = 0.6mL / min, detected by UV at 254nm
t R = 17.13 min (major enantiomer), t R = 19.3 min (minor enantiomer).

化合物(9e):N−ベンジル−1−2−ブロモピペロニル−3−ブテニルアミン
無色の油状;[α]D 22=+40.2(c 1.0,CHCl3
IR(neat) 3330, 3074, 3027, 2976, 2896, 1638, 1604, 1500, 1473, 1406, 1388, 1373, 1234, 1158, 1038, 996, 981, 837, 735 cm-1
1H NMR(CDCl3) δ 7.38-7.31(m, 5H), 7.3(s, 1H), 7.03(s, 1H), 6.02-6.01(m, 2H), 5.81(ddt, J=16.8Hz, 10.2Hz, 6.7Hz, 1H), 5.16-5.09(m, 2H), 4.19(dd, J=4.6Hz, 3.9Hz, 1H), 3.70(d, J=13.2Hz, 1H), 3.58(d, J=13.2Hz, 1H), 2.52-2.43(m, 1H), 2.29-2.18(m, 1H), 1.76(brs, 1H)
13C NMR(CDCl3) δ 147.7, 147.0, 140.3, 135.7, 134.9, 128.2, 128.0, 126.8, 117.8, 113.9, 112.4, 107.8, 101.5, 59.6, 51.4, 41.5
MS (EI) m/z (相対強度) 318 [M+-allyl] (1.8), 238 (2.9), 214 (2.1), 148 (2), 107 (2.2), 91 (100)
1818BrNO2(360.25)の分析
計算値:C,60.01;H,5.04;N,3.89;Br,22.18
分析値:C,59.71;H,5.17;N,3.98;Br,22.48
不斉収率は、CHIRALCEL OD−Rカラムを用いて決定
CH3CN/1M NaClO4 aq=60/40,流量=0.6mL/min,254nmのUVで検出
tR=21.97min(主エナンチオマー),tR=24.92min(副エナンチオマー)。
Compound (9e): N-benzyl-1-bromobromoperonyl-3-butenylamine colorless oil; [α] D 22 = + 40.2 (c 1.0, CHCl 3 )
IR (neat) 3330, 3074, 3027, 2976, 2896, 1638, 1604, 1500, 1473, 1406, 1388, 1373, 1234, 1158, 1038, 996, 981, 837, 735 cm -1
1 H NMR (CDCl 3 ) δ 7.38-7.31 (m, 5H), 7.3 (s, 1H), 7.03 (s, 1H), 6.02-6.01 (m, 2H), 5.81 (ddt, J = 16.8Hz, 10.2 Hz, 6.7Hz, 1H), 5.16-5.09 (m, 2H), 4.19 (dd, J = 4.6Hz, 3.9Hz, 1H), 3.70 (d, J = 13.2Hz, 1H), 3.58 (d, J = 13.2Hz, 1H), 2.52-2.43 (m, 1H), 2.29-2.18 (m, 1H), 1.76 (brs, 1H)
13 C NMR (CDCl 3 ) δ 147.7, 147.0, 140.3, 135.7, 134.9, 128.2, 128.0, 126.8, 117.8, 113.9, 112.4, 107.8, 101.5, 59.6, 51.4, 41.5
MS (EI) m / z (relative intensity) 318 [M + -allyl] (1.8), 238 (2.9), 214 (2.1), 148 (2), 107 (2.2), 91 (100)
Analysis of C 18 H 18 BrNO 2 (360.25) Calculated: C, 60.01; H, 5.04; N, 3.89; Br, 22.18
Analytical value: C, 59.71; H, 5.17; N, 3.98; Br, 22.48.
Asymmetric yield determined using CHIRALCEL OD-R column
CH 3 CN / 1M NaClO 4 aq = 60/40, flow rate = 0.6 mL / min, detected by UV at 254 nm
t R = 21.97 min (major enantiomer), t R = 24.92 min (minor enantiomer).

化合物(9f):N−ジフェニルメチレン−1−ピペロニル−3−ブテニルアミン
無色の油状;[α]D 22=+53.5(c 1.58,CHCl3
IR(neat) 3325, 3063, 3027, 2978, 2887, 2775, 1639, 1600, 1547, 1504, 1487, 1445, 1377, 1324, 1246, 1184, 1098, 1075, 1042, 941, 912, 864, 762 cm-1
1H NMR(CDCl3) δ 7.32-7.13(m, 10H), 6.81(d, J=2Hz, 1H), 6.74(d, J=8Hz, 1H), 6.64(dd, J=8Hz, 2Hz, 1H), 5.92(s, 2H), 5.6 (ddt, J=16.8Hz, 10.1Hz, 6.8Hz, 1H), 5.05(ddt, J=16.8Hz, 2Hz, 2Hz, 1H), 4.97(ddt, J=10.1Hz, 2Hz, 2Hz, 1H), 4.59(s, 1H), 3.46(t, 6.5Hz, 1H), 2.38-2.34(m, 2H), 2.0-1.94(brs, 1H)
13C NMR(CDCl3) δ 147.7, 146.4, 144.5, 143.3, 137.8, 135.4, 128.4, 128.2, 127.7, 127.3, 126.9, 126.6, 120.5, 117.3, 107.9, 107.2, 100.8, 63.0, 58.9, 43.0
MS (EI) m/z (相対強度) 316 [M+-allyl] (8.6), 167 (100), 165 (17.3), 148 (1.8), 122 (3), 115 (4.2), 76 (5.7)
2423NO2(357.45)の分析
計算値:C,80.64;H,6.48;N,3.92
分析値:C,80.52;H,6.51;N,3.8
不斉収率は、[α]D 22=+78.2(c 1.0,CHCl3)のトリフルオロアセチルアミドに変化させて、CHIRALCEL ODカラムを用いて決定
ヘキサン/i−PrOH=50/1,流量=0.8mL/min,254nmのUVで検出
tR=14.44min(主エナンチオマー),tR=18.95min(副エナンチオマー)。
Compound (9f): N-diphenylmethylene-1-piperonyl-3-butenylamine colorless oil; [α] D 22 = + 53.5 (c 1.58, CHCl 3 )
IR (neat) 3325, 3063, 3027, 2978, 2887, 2775, 1639, 1600, 1547, 1504, 1487, 1445, 1377, 1324, 1246, 1184, 1098, 1075, 1042, 941, 912, 864, 762 cm -1
1 H NMR (CDCl 3 ) δ 7.32-7.13 (m, 10H), 6.81 (d, J = 2Hz, 1H), 6.74 (d, J = 8Hz, 1H), 6.64 (dd, J = 8Hz, 2Hz, 1H ), 5.92 (s, 2H), 5.6 (ddt, J = 16.8Hz, 10.1Hz, 6.8Hz, 1H), 5.05 (ddt, J = 16.8Hz, 2Hz, 2Hz, 1H), 4.97 (ddt, J = 10.1 Hz, 2Hz, 2Hz, 1H), 4.59 (s, 1H), 3.46 (t, 6.5Hz, 1H), 2.38-2.34 (m, 2H), 2.0-1.94 (brs, 1H)
13 C NMR (CDCl 3 ) δ 147.7, 146.4, 144.5, 143.3, 137.8, 135.4, 128.4, 128.2, 127.7, 127.3, 126.9, 126.6, 120.5, 117.3, 107.9, 107.2, 100.8, 63.0, 58.9, 43.0
MS (EI) m / z (relative strength) 316 [M + -allyl] (8.6), 167 (100), 165 (17.3), 148 (1.8), 122 (3), 115 (4.2), 76 (5.7 )
Analysis of C 24 H 23 NO 2 (357.45) Calculated: C, 80.64; H, 6.48; N, 3.92
Analytical value: C, 80.52; H, 6.51; N, 3.8
The asymmetric yield was determined using a CHIRALCEL OD column, changing to [trifluoro] amide of [α] D 22 = + 78.2 (c 1.0, CHCl 3 ) Hexane / i-PrOH = 50/1 , Flow rate = 0.8mL / min, detected with UV at 254nm
t R = 14.44 min (major enantiomer), t R = 18.95 min (minor enantiomer).

本発明者らは、表10に示した化合物(8a)をアリル化して得られた化合物(9a)に着目した。このアミン(化合物9a)における二重結合の完全な還元、およびベンジル保護基の脱離によって、(R)−α−プロピルピペロニルアミンが得られる。このキラルブチルアミンは、ヒトの白血球エラスターゼ拮抗剤L−694,458の合成に重要な物質である。こうしたアミンの合成例は、これまでにごく僅かしか報告されていない。エントリー21に示されるように、化合物(8a)アリル化は、76%の収率、90%という高い不斉収率で化合物(9a)を与える(21)。この化合物は、二重結合の水素化およびベンジル脱保護によって、(R)−α−プロピルピペロニルアミンに容易に変化させることができる。   The inventors focused on the compound (9a) obtained by allylation of the compound (8a) shown in Table 10. Complete reduction of the double bond in this amine (compound 9a) and elimination of the benzyl protecting group gives (R) -α-propylpiperonylamine. This chiral butylamine is an important substance for the synthesis of human leukocyte elastase antagonist L-694,458. Only a few examples of the synthesis of such amines have been reported so far. As shown in entry 21, allylation of compound (8a) gives compound (9a) in a high yield of 76%, asymmetric yield of 90% (21). This compound can be readily converted to (R) -α-propylpiperonylamine by double bond hydrogenation and benzyl deprotection.

表10には、アリル部位に他の置換基を有するアリールイミン、およびベンジル基に他の置換基が結合したアリールイミンのアリル化の結果も示した。パラ−メトキシベンジル基を有する化合物(8b)、およびオルト−メトキシベンジル基を有する化合物(8c)は、それぞれ化合物(9b)および(9c)を与え、不斉収率は89%と前述の場合と同等である(エントリー22,23)。エントリー24および25に示されるように、アリール基のオルト位にClまたはBrを導入しても、効果は変わらない。ジフェニルメチレンのような嵩高い置換基をイミノ窒素に導入した場合には、ほとんど何も改善されない。化合物(8f)は、30%の低い収率、83%の不斉収率で化合物(9f)を与える(エントリー26)。

Figure 2005120041
Table 10 also shows the results of allylation of arylimines having other substituents at the allyl moiety and arylimines having other substituents bonded to the benzyl group. Compound (8b) having a para-methoxybenzyl group and compound (8c) having an ortho-methoxybenzyl group give compounds (9b) and (9c), respectively, with an asymmetric yield of 89%, as described above. They are equivalent (entries 22, 23). As shown in entries 24 and 25, the introduction of Cl or Br at the ortho position of the aryl group does not change the effect. When bulky substituents such as diphenylmethylene are introduced into the imino nitrogen, there is little improvement. Compound (8f) gives compound (9f) with a low yield of 30% and an asymmetric yield of 83% (entry 26).
Figure 2005120041

Figure 2005120041
Figure 2005120041

なお、ここで採用した[α]D値は、Nakamura,M.;Hirai,A.;Nakamura,E.J.Am.Chem.Soc.1996,118,8489.あるいはMeyers.A.I.;Dickman,D.A.;Boes,M.Tetrahedron 1987,43,5095に記載されている。 The [α] D value employed here is the same as that of Nakamura, M .; Hirai, A .; Nakamura, E .; J. et al. Am. Chem. Soc. 1996, 118, 8489. Or Meyers. A. I. Dickman, D .; A. Boes, M .; Tetrahedron 1987, 43, 5095.

化合物(29):(S)−2−アリルピペリジン
ハイドロクロライドの1H NMR(D2O+CH3NO2内部標準) δ 5.877-5.73(m, 1H), 5.26-5.2(m, 2H), 3.39-3.35(m, 1H), 3.17-3.13(m, 1H), 3.06-2.87(m, 1H), 2.52-2.29(m, 2H), 2.00-1.43(m, 6H)
13C NMR(CDCl3) δ 135.5, 117.2, 56.0, 47.0, 41.9, 32.6, 26.2, 24.8
不斉収率は、[α]D 21=-0.43(c, 0.9,CH2Cl2)、淡黄色のN−トシルアミドに変化させ、CHIRALCEL ODカラムを用いて決定
ヘキサン/i−PrOH=50/1,流量=1.0mL/min,254nmのUVで検出
tR=9.91min(副エナンチオマー),tR=11.12min(主エナンチオマー)
配置の決定は、報告されている光学回転との比較により行なった。
Compound (29): 1 H NMR of (S) -2-allylpiperidine hydrochloride (D 2 O + CH 3 NO 2 internal standard) δ 5.877-5.73 (m, 1H), 5.26-5.2 (m, 2H), 3.39- 3.35 (m, 1H), 3.17-3.13 (m, 1H), 3.06-2.87 (m, 1H), 2.52-2.29 (m, 2H), 2.00-1.43 (m, 6H)
13 C NMR (CDCl 3 ) δ 135.5, 117.2, 56.0, 47.0, 41.9, 32.6, 26.2, 24.8
The asymmetric yield was determined by changing [α] D 21 = −0.43 (c, 0.9, CH 2 Cl 2 ), pale yellow N-tosylamide and using a CHIRALCEL OD column. PrOH = 50/1, flow rate = 1.0 mL / min, detected by UV at 254 nm
t R = 9.91min (deputy enantiomer), t R = 11.12min (main enantiomer)
The placement was determined by comparison with the reported optical rotation.

化合物(30):(R)−2−アリルピペリジン
1H NMRおよび13C NMRは、上述と同様
不斉収率は、[α]D 23=+4.1(c, 0.995,CH2Cl2)、淡黄色のN−トシルアミドに変化させ、CHIRALCEL ODカラムを用いて決定
ヘキサン/i−PrOH=50/1,流量=1.0mL/min,254nmのUVで検出
tR=9.92min(主エナンチオマー,tR=11.42min(副エナンチオマー)。
Compound (30): (R) -2-allylpiperidine
In 1 H NMR and 13 C NMR, the asymmetric yield was changed to [α] D 23 = + 4.1 (c, 0.995, CH 2 Cl 2 ), pale yellow N-tosylamide, as described above. Determined using a CHIRALCEL OD column Hexane / i-PrOH = 50/1, flow rate = 1.0 mL / min, detected with UV at 254 nm
t R = 9.92 min (main enantiomer, t R = 11.42 min (minor enantiomer).

化合物(32):(R)−1−アリル−1,2,3,4−テトラヒドロイソキノリン
黄色の油状; [α]D 22=+6.2(c 0.61,THF)
配置の決定は、報告されている光学回転との比較により行なった
IR(neat) 3072, 3018, 2920, 2833, 2803, 2728, 1638, 1492, 1454, 1430, 1315, 1132, 997, 914, 741 cm-1
1H NMR(CDCl3) δ 7.17-7.07(m, 4H), 5.85-5.79(m, 1H), 5.2-5.12(m, 2H), 4.05(dd, J=9.0Hz, 3.5Hz, 1H), 3.26-3.2(m, 1H), 3.01-2.93(m, 1H), 2.83-2.63(m, 3H), 2.55-2.48(m, 1H), 1.81(brs, 1H)
13C NMR(CDCl3) δ 138. 7, 135.8, 129.1, 126.4, 125.5, 117.8, 55.3, 41.2, 29.8
MS (EI) m/z (相対強度) 173 [M+] (0.3), 172 [M+-H] (1.9), 132 [M+-allyl] (100), 117 (6.9), 105 (5.1), 91 (1.2), 77 (3.5)。
Compound (32): (R) -1-allyl-1,2,3,4-tetrahydroisoquinoline yellow oil; [α] D 22 = + 6.2 (c 0.61, THF)
The determination of the arrangement was made by comparison with the reported optical rotation IR (neat) 3072, 3018, 2920, 2833, 2803, 2728, 1638, 1492, 1454, 1430, 1315, 1132, 997, 914, 741 cm -1
1 H NMR (CDCl 3 ) δ 7.17-7.07 (m, 4H), 5.85-5.79 (m, 1H), 5.2-5.12 (m, 2H), 4.05 (dd, J = 9.0Hz, 3.5Hz, 1H), 3.26-3.2 (m, 1H), 3.01-2.93 (m, 1H), 2.83-2.63 (m, 3H), 2.55-2.48 (m, 1H), 1.81 (brs, 1H)
13 C NMR (CDCl 3 ) δ 138. 7, 135.8, 129.1, 126.4, 125.5, 117.8, 55.3, 41.2, 29.8
MS (EI) m / z (relative intensity) 173 [M + ] (0.3), 172 [M + -H] (1.9), 132 [M + -allyl] (100), 117 (6.9), 105 (5.1 ), 91 (1.2), 77 (3.5).

化合物(33):(S)−1−アリル−1,2,3,4−テトラヒドロイソキノリン
黄色の油状;[α]D 22=-16.1(c 0.61,THF)
IR,1H NMR,13C NMRおよびMSのデータは、上述と同様であった。
Compound (33): (S) -1-allyl-1,2,3,4-tetrahydroisoquinoline yellow oil; [α] D 22 = −16.1 (c 0.61, THF)
IR, 1 H NMR, 13 C NMR and MS data were the same as described above.

表11には、シス環状イミン(化合物28および31)のアリル化をエントリー27,28として示した。シス環状イミンである化合物は、本発明の実施形態にかかる方法による不斉アリル化が生じにくい物質であることが証明された。トランス−イミンとシス−イミンとの顕著な相違の理由は、以下に詳細に説明する。   Table 11 shows the allylation of cis cyclic imines (compounds 28 and 31) as entries 27 and 28. It has been proved that a compound that is a cis-cyclic imine is a substance that hardly undergoes asymmetric allylation by the method according to the embodiment of the present invention. The reason for the significant difference between trans-imine and cis-imine is explained in detail below.

アリル化のメカニズムは、下記に示すスキームで表わされる。

Figure 2005120041
The mechanism of allylation is represented by the following scheme.
Figure 2005120041

すでに報告されているように、ビス−π−アリルパラジウム錯体4は、反応性の中間体であり、アリル配位子は移動性の基として作用し、他の非移動性アリル基は、アリル化の立体制御を決定する。したがって、触媒2aとアリルトリブチルスタナンとの間のトランスメタレーションによって、トリブチルスタニルクロライドおよびビス−π−アリルパラジウム錯体4が生じる。錯体4はイミン5と反応し、錯体34を経てπ−アリルパラジウムアミン35が得られる。   As already reported, bis-π-allyl palladium complex 4 is a reactive intermediate, the allyl ligand acts as a mobile group, and other non-mobile allyl groups are allylated. Determine the three-dimensional control. Thus, transmetallation between catalyst 2a and allyltributylstannane yields tributylstannyl chloride and bis-π-allyl palladium complex 4. Complex 4 reacts with imine 5 and π-allyl palladium amine 35 is obtained via complex 34.

キラル導入のための重要な段階は、イミン5がビス−π−アリルパラジウムクロライド4に配位して化合物34を与える段階であり、引き続いたアリル化は6員鎖状の遷移状態で進行して、化合物35が得られる。パラジウムへのアリルトリブチルスタナンの引き続いたトランスメタレーションにより、対応するスタニルホモアリルアミン36および再生物4が得られて、触媒サイクルが完了する。   An important step for chiral introduction is the step in which imine 5 coordinates to bis-π-allyl palladium chloride 4 to give compound 34, and subsequent allylation proceeds in a 6-membered chain transition state. Compound 35 is obtained. Subsequent transmetallation of allyltributylstannane to palladium yields the corresponding stannyl homoallylamine 36 and recycle 4 to complete the catalytic cycle.

化合物36の加水分解によって、生成物であるホモアリルアミン6が得られる。この反応における水の役割は、5配位アリルスタナンを形成することである。すなわち、水は4価のスタナンに配位してC−Sn結合の開裂を促進し、再生物4およびスタニルホモアリルアミン36を与える際のトランスメタレーション段階を高める。なお、前述のエントリー18に示したスルホニルイミン(化合物22b)は、反応で消費されても、十分な収率でアミンを生成することができない。これは、化合物35に対応する中間体の電子求引性トシル基による窒素原子の求核性の安定化および減少に起因するものと推測される。この中間体は、アリルトリブチルスタナンとのトランスメタレーションにより、生成物アミンおよび再生物4を生じる。したがって、触媒サイクルは、閉鎖していなければならない。   The product, homoallylamine 6, is obtained by hydrolysis of compound 36. The role of water in this reaction is to form pentacoordinate allylstannane. That is, water coordinates to tetravalent stannane to promote C-Sn bond cleavage and enhances the transmetallation step in providing regenerated product 4 and stannyl homoallylamine 36. In addition, even if the sulfonylimine (compound 22b) shown in the above-mentioned entry 18 is consumed by reaction, it cannot produce | generate an amine with sufficient yield. This is presumably due to stabilization and reduction of the nucleophilicity of the nitrogen atom by the electron-withdrawing tosyl group of the intermediate corresponding to compound 35. This intermediate yields the product amine and regenerated product 4 by transmetallation with allyltributylstannane. Therefore, the catalyst cycle must be closed.

トランス−イミンおよびシス−イミンの遷移状態のモデルを、下記スキームに示す。

Figure 2005120041
Trans-imine and cis-imine transition state models are shown in the scheme below.
Figure 2005120041

スキームにおけるa)およびb)は、それぞれトランス−イミンおよびシス−イミンについてのモデルである。   A) and b) in the scheme are models for trans-imine and cis-imine, respectively.

トランス−イミンの場合には、a)に示されるようにパラジウム触媒のη3−10−メチルピネン基の前方は、C−10位のメチル基により込み合っており、妨害のより少ない後方からイミンが接近する。イミンの窒素原子は、パラジウム原子に配位し、椅子型6員環の遷移状態を経てC−C結合が形成される。化合物38の場合、イミンのR基とC−7メチレン基との間には、大きな立体的斥力が存在する。したがって、反応は遷移状態モデル37を経て進行し、(R)−ホモアリルアミンを優先的に生じる。 In the case of trans-imine, as shown in a), the front of the palladium catalyst η 3 -10-methylpinene group is crowded by the methyl group at the C-10 position, and the imine approaches from the rear with less interference. To do. The nitrogen atom of imine coordinates to a palladium atom, and a C—C bond is formed through a transition state of a chair type 6-membered ring. In the case of Compound 38, a large steric repulsive force exists between the R group of the imine and the C-7 methylene group. Thus, the reaction proceeds via the transition state model 37 and preferentially yields (R) -homoallylamine.

一方、b)に示したシス−イミンの場合には、水素原子(H)が小さいことから、イミンの水素原子とC−7メチレン基との間に大きな斥力は存在しない。したがって、窒素にα−置換基を有しない環状シス−イミンは、活性化された錯体のいずれのアリル化剤とも立体的に激しく相互作用することはない。こうした理由から、遷移状態モデル39と40との間のエネルギー差は小さく、満足のいく不斉収率は得られない。   On the other hand, in the case of cis-imine shown in b), since the hydrogen atom (H) is small, there is no large repulsive force between the hydrogen atom of the imine and the C-7 methylene group. Thus, a cyclic cis-imine that does not have an α-substituent on the nitrogen does not interact sterically vigorously with any allylating agent of the activated complex. For these reasons, the energy difference between the transition state models 39 and 40 is small and a satisfactory asymmetric yield cannot be obtained.

トランス−イミンを本発明の実施形態にかかる方法により不斉アリル化することによって、高い収率および不斉収率でアリルアミンを合成することができる。   Allylamine can be synthesized in high yield and asymmetric yield by asymmetric allylation of trans-imine by the method according to the embodiment of the present invention.

本発明の実施形態にかかる方法は、医薬中間体として重要な物質である不斉アリルアミンの合成に好適に用いることができる。   The method concerning embodiment of this invention can be used suitably for the synthesis | combination of asymmetric allylamine which is an important substance as a pharmaceutical intermediate.

本発明の実施形態にかかる精製方法を説明するフローチャート。The flowchart explaining the purification method concerning embodiment of this invention. 本発明の実施形態にかかる精製方法を説明するフローチャート。The flowchart explaining the purification method concerning embodiment of this invention.

Claims (12)

(1S)−(−)−β−ピネンから、下記化学式(7)で表わされるエキソエチリデンノルピナンのE体とZ体との1:1混合物を得る工程、
Figure 2005120041
前記混合物をアセトン中、n−Bu4NClの存在下でPd(OCOCF32と反応させて、下記化学式(2a)で表わされる化合物と化学式(2b)で表わされる化合物との混合物を得る工程、
Figure 2005120041
前記化合物(2a)と(2b)との混合物を、CH2Cl2/ヘキサン中で2回、結晶化する工程、
結晶化後の前記化合物(2a)と(2b)との混合物を、プロピオニトリル中で3回再結晶化する工程、および
ろ過により前記化学式(2a)で表わされる化合物を単離する工程
を具備することを特徴とするビス−π−アリルパラジウム錯体の精製方法。
A step of obtaining a 1: 1 mixture of E-form and Z-form of exoethylidene norpinane represented by the following chemical formula (7) from (1S)-(−)-β-pinene;
Figure 2005120041
Reacting the mixture with Pd (OCOCF 3 ) 2 in the presence of n-Bu 4 NCl in acetone to obtain a mixture of a compound represented by the following chemical formula (2a) and a compound represented by the chemical formula (2b) ,
Figure 2005120041
Crystallizing the mixture of the compounds (2a) and (2b) twice in CH 2 Cl 2 / hexane;
A step of recrystallizing the mixture of the compounds (2a) and (2b) after crystallization in propionitrile three times, and a step of isolating the compound represented by the chemical formula (2a) by filtration. A method for purifying a bis-π-allyl palladium complex.
下記一般式(6)で表わされる不斉アリルアミンを合成する方法であって、
下記一般式(5)で表わされるイミンとアリルトリブチルスタナンとを、触媒としての下記化学式(2a)で表わされるビス−π−アリルパラジウム錯体の存在下、水を含む溶媒中で反応させることを特徴とする合成方法。
Figure 2005120041
(前記一般式中、R1は、オルト,メタ,パラ−置換芳香族、ナフチル、アルケニル、アルキル、フリル、チオフェニル、およびピリジン基からなる群から選択され、R2は、ベンジル、芳香環置換ベンジル、アリル、およびメチルからなる群から選択される。)
A method for synthesizing an asymmetric allylamine represented by the following general formula (6),
Reacting an imine represented by the following general formula (5) with allyltributylstannane in a solvent containing water in the presence of a bis-π-allyl palladium complex represented by the following chemical formula (2a) as a catalyst. A characteristic synthesis method.
Figure 2005120041
(Wherein R 1 is selected from the group consisting of ortho, meta, para-substituted aromatic, naphthyl, alkenyl, alkyl, furyl, thiophenyl, and pyridine groups; R 2 is benzyl, aromatic ring-substituted benzyl; Selected from the group consisting of, allyl, and methyl.)
前記アリルトリブチルスタナンは、1.25当量の割合で用いられることを特徴とする請求項2に記載の不斉アリルアミンの合成方法。   The method for synthesizing an asymmetric allylamine according to claim 2, wherein the allyltributylstannane is used at a ratio of 1.25 equivalents. 前記アリルトリブチルスタナンにおけるアリル基は、アリル、2−メチルアリル、クロチル、プレニル、および2−メトキシカルボニル−アリルからなる群から選択される少なくとも一種の置換基により置換されていることを特徴とする請求項2または3に記載の不斉アリルアミンの合成方法。   The allyl group in the allyltributylstannane is substituted with at least one substituent selected from the group consisting of allyl, 2-methylallyl, crotyl, prenyl, and 2-methoxycarbonyl-allyl. Item 4. A method for synthesizing an asymmetric allylamine according to Item 2 or 3. 下記一般式(6)で表わされる不斉アリルアミンを合成する方法であって、
下記一般式(5)で表わされるイミンとアリルトリメチルスタナンとを、触媒としての下記化学式(2a)で表わされるビス−π−アリルパラジウム錯体の存在下、水を含む溶媒中で反応させることを特徴とする合成方法。
Figure 2005120041
(前記一般式中、R1は、オルト,メタ,パラ−置換芳香族、ナフチル、アルケニル、アルキル、フリル、チオフェニル、およびピリジン基からなる群から選択され、R2は、ベンジル、芳香環置換ベンジル、アリル、およびメチルからなる群から選択される。)
A method for synthesizing an asymmetric allylamine represented by the following general formula (6),
Reacting an imine represented by the following general formula (5) with allyltrimethylstannane in a solvent containing water in the presence of a bis-π-allyl palladium complex represented by the following chemical formula (2a) as a catalyst. A characteristic synthesis method.
Figure 2005120041
(Wherein R 1 is selected from the group consisting of ortho, meta, para-substituted aromatic, naphthyl, alkenyl, alkyl, furyl, thiophenyl, and pyridine groups; R 2 is benzyl, aromatic ring-substituted benzyl; Selected from the group consisting of, allyl, and methyl.)
前記アリルトリブチルスタナンは、1.25当量の割合で用いられることを特徴とする請求項5に記載の不斉アリルアミンの合成方法。   The method for synthesizing an asymmetric allylamine according to claim 5, wherein the allyltributylstannane is used at a ratio of 1.25 equivalents. 前記アリルトリメチルスタナンにおけるアリル基は、アリル、2−メチルアリル、クロチル、プレニル、および2−メトキシカルボニル−アリルからなる群から選択される少なくとも一種の置換基により置換されていることを特徴とする請求項5または6に記載の不斉アリルアミンの合成方法。   The allyl group in the allyltrimethylstannane is substituted with at least one substituent selected from the group consisting of allyl, 2-methylallyl, crotyl, prenyl, and 2-methoxycarbonyl-allyl. Item 7. A method for synthesizing an asymmetric allylamine according to Item 5 or 6. 前記溶媒は、0.7〜4.0当量の水を含有するテトラヒドロフランであることを特徴とする請求項2ないし7のいずれか1項に記載の不斉アリルアミンの合成方法。   The method for synthesizing an asymmetric allylamine according to any one of claims 2 to 7, wherein the solvent is tetrahydrofuran containing 0.7 to 4.0 equivalents of water. 前記溶媒は、1当量の水を含有するテトラヒドロフランであることを特徴とする請求項2ないし8のいずれか1項に記載の不斉アリルアミンの合成方法。   The method for synthesizing an asymmetric allylamine according to any one of claims 2 to 8, wherein the solvent is tetrahydrofuran containing 1 equivalent of water. 前記反応は、−10〜10℃で行なわれることを特徴とする請求項2ないし9のいずれか1項に記載の不斉アリルアミンの合成方法。   The method for synthesizing an asymmetric allylamine according to any one of claims 2 to 9, wherein the reaction is performed at -10 to 10 ° C. 前記反応は、0℃で行なわれることを特徴とする請求項2ないし10のいずれか1項に記載の不斉アリルアミンの合成方法。   The method for synthesizing an asymmetric allylamine according to any one of claims 2 to 10, wherein the reaction is carried out at 0 ° C. 前記一般式(5)におけるR1は下記化学式(Ra)で表わされる基であり、R2は下記化学式(Rb)で表わされる基であることを特徴とする請求項2ないし11のいずれか1項に記載の不斉アリルアミンの合成方法。
Figure 2005120041
The R 1 in the general formula (5) is a group represented by the following chemical formula (Ra), and R 2 is a group represented by the following chemical formula (Rb). A method for synthesizing an asymmetric allylamine according to Item.
Figure 2005120041
JP2003358265A 2003-10-17 2003-10-17 METHOD OF PURIFYING BIS-pi-ALLYLPALLADIUM COMPLEX AND METHOD FOR SYNTHESIZING ASYMMETRIC ALLYLAMINE Pending JP2005120041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003358265A JP2005120041A (en) 2003-10-17 2003-10-17 METHOD OF PURIFYING BIS-pi-ALLYLPALLADIUM COMPLEX AND METHOD FOR SYNTHESIZING ASYMMETRIC ALLYLAMINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003358265A JP2005120041A (en) 2003-10-17 2003-10-17 METHOD OF PURIFYING BIS-pi-ALLYLPALLADIUM COMPLEX AND METHOD FOR SYNTHESIZING ASYMMETRIC ALLYLAMINE

Publications (1)

Publication Number Publication Date
JP2005120041A true JP2005120041A (en) 2005-05-12

Family

ID=34614890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003358265A Pending JP2005120041A (en) 2003-10-17 2003-10-17 METHOD OF PURIFYING BIS-pi-ALLYLPALLADIUM COMPLEX AND METHOD FOR SYNTHESIZING ASYMMETRIC ALLYLAMINE

Country Status (1)

Country Link
JP (1) JP2005120041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020217310A1 (en) * 2019-04-23 2021-10-21 三菱電機株式会社 Motor control device and air conditioner equipped with it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020217310A1 (en) * 2019-04-23 2021-10-21 三菱電機株式会社 Motor control device and air conditioner equipped with it

Similar Documents

Publication Publication Date Title
Paull et al. Catalytic, asymmetric reactions of ketenes and ketene enolates
O’Brien Recent advances in asymmetric synthesis using chiral lithium amide bases
Denissova et al. Stereoselective formation of quaternary carbon centers and related functions
JP4768638B2 (en) Stereoselective ring-opening reaction
Tiseni et al. Catalytic asymmetric formation of δ‐lactones from unsaturated acyl halides
Corey et al. Kinetic resolution by enantioselective dihydroxylation of secondary allylic 4-methoxybenzoate esters using a mechanistically designed cinchona alkaloid catalyst
Kim et al. Synthesis and conformational analysis of 3-hydroxypipecolic acid analogs via CSI-mediated stereoselective amination
JP3504960B2 (en) Preparation of tertiary butyl (3R, 5S) -6-hydroxy-3,5-O-isopropylidene-3,5-dihydroxyhexanoate
Mukaiyama et al. New role of tin (II) compounds in organic synthesis
JP2005120041A (en) METHOD OF PURIFYING BIS-pi-ALLYLPALLADIUM COMPLEX AND METHOD FOR SYNTHESIZING ASYMMETRIC ALLYLAMINE
Komarov et al. A new hydroxydiphosphine as a ligand for Rh (I)-catalyzed enantioselective hydrogenation
JP2000256247A (en) Production of aldehyde
M Bugarcic et al. Stereo-and regioselective synthesis of cyclic ethers by means of organoselenium-mediated cyclization of unsaturated alcohols
Tamura et al. Asymmetric synthesis of 3-substituted-2-exo-methylenecyclohexanones via 1, 5-diastereoselection by using a chiral amine
Ruff et al. A combined vinylogous Mannich/Diels–Alder approach for the stereoselective synthesis of highly functionalized hexahydroindoles
Sauriol-Lord et al. Asymmetric induction in additions to epoxides. Addition of. alpha.-anions of N, N-disubstituted carboxamides
JP2005154350A (en) Method for synthesizing asymmetric allylamine
JPH1072430A (en) Production of optically active sulfoxide compound
Wang Transition-metal-catalyzed CC bonds formation via transfer hydrogenation: from methodology development to (+)-SCH 351448 synthesis
CN115304568B (en) Asymmetric synthesis method of 6-azidomethylene-1-aryl-3-oxabicyclo [3,1,0] hex-2-one
Bagnoli et al. Organoselenium Compounds as Chiral Building Blocks
Young Allylic C—H activation to access anti-1, 3-amino alcohol motifs
O'Brien Part I Expansion of Type II Anion Relay Chemistry (ARC); Part II Synthesis of a Recyclable Polymer-Supported Siloxane Transfer Agent for Transition Metal-Catalyzed Cross-Coupling Reactions (CCR) of Organolithiums
Han A Pd-catalysed Decarboxylative Route to Functionalized Nitrogen Heterocycles
Kondratyev Organocatalytic asymmetric alkenylation of carbonyl compounds