JP2005119194A - Phase change-type optical recording medium - Google Patents

Phase change-type optical recording medium Download PDF

Info

Publication number
JP2005119194A
JP2005119194A JP2003358223A JP2003358223A JP2005119194A JP 2005119194 A JP2005119194 A JP 2005119194A JP 2003358223 A JP2003358223 A JP 2003358223A JP 2003358223 A JP2003358223 A JP 2003358223A JP 2005119194 A JP2005119194 A JP 2005119194A
Authority
JP
Japan
Prior art keywords
phase change
recording
recording medium
optical recording
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003358223A
Other languages
Japanese (ja)
Inventor
Masato Harigai
眞人 針谷
Kazunori Ito
和典 伊藤
Eiko Suzuki
栄子 鈴木
Yuji Miura
裕司 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003358223A priority Critical patent/JP2005119194A/en
Publication of JP2005119194A publication Critical patent/JP2005119194A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phase change-type optical recording medium which is as much of a high packing density and large capacity as DVD-ROM; can be not only easily initialized in an initialization process but also can secure a sufficient degree of modulation to deal with the overwrite of information in a wide range of 3.5 to 35 m/s and at a high recording linear speed; and shows outstanding recording sensitivity, overwrite characteristics and shelf stability. <P>SOLUTION: This phase change-type optical recording medium has a recording layer composed of at least a phase change-type recording material formed on a substrate; gives rise to a reversible phase change in the recording layer by emitting an electromagnetic wave; and thereby, can at least record/reproduce information. In this recording medium, it is characteristic that the phase change-type recording material is expressed by the composition formula: InαSbβHγGeδXε(in the formula, X is Se and/or Te; α, β, γ, δ, ε are each an atomic%, α+β+γ+δ+ε=100, 8≤α≤35, 50≤β≤85, 2≤γ≤10, 1≤δ≤5, 2≤ε≤15). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電磁波を照射する事により、記録層に光学定数の変化を生じさせて、少なくとも情報の記録、再生を行うことができる、高速かつ大容量の高密度記録に応用される相変化型光記録媒体に関する。   The present invention is a phase change type applied to high-speed and large-capacity high-density recording that can record and reproduce at least information by causing an optical constant change in a recording layer by irradiating electromagnetic waves. The present invention relates to an optical recording medium.

従来、電磁波、特にレーザ光等の光ビームの照射により、情報の記録、再生、消去及びオーバーライト(書き換え)が可能な光記録媒体の一例として、結晶−非晶質相間、又は結晶−結晶相間の相転移を利用する、相変化型光ディスク等の相変化型光記録媒体が知られている。この相変化型光記録媒体は、単一ビームによるオーバーライトが可能であり、ドライブ側装置の光学系が単純な為に、コンピューターや映像・音響関連の記録媒体として使用されている。
このような相変化型光記録媒体の記録材料としては、これまでGe−Te系、Ge−Te−Se系、In−Sb系、Ga−Sb系、Ge−Sb−Te系、Ag−In−Sb−Te系等の相変化型記録材料が用いられている。
特に、Ag−In−Sb−Te系相変化型記録材料は、記録感度が高く、非晶質(アモルファス)状態の記録マークの輪郭が明確であるという特徴を有し、マークエッジ記録用材料として使用されている。
Ag−In−Sb−Te系相変化型記録材料は、例えば特許文献1〜3に開示されている。類似した系であるAg−Sb−Te系相変化型記録材料は、特許文献4〜5に開示されている。
Conventionally, as an example of an optical recording medium capable of recording, reproducing, erasing and overwriting (rewriting) information by irradiation with a light beam such as an electromagnetic wave, particularly a laser beam, a crystal-amorphous phase or a crystal-crystalline phase 2. Description of the Related Art Phase change optical recording media such as phase change optical discs that utilize the phase transition of are known. This phase change type optical recording medium can be overwritten by a single beam, and since the optical system of the drive side device is simple, it is used as a recording medium for computers and video / audio.
As a recording material for such a phase change type optical recording medium, Ge—Te, Ge—Te—Se, In—Sb, Ga—Sb, Ge—Sb—Te, Ag—In— have been used so far. Phase change type recording materials such as Sb—Te are used.
In particular, the Ag—In—Sb—Te phase change type recording material has the characteristics that the recording sensitivity is high and the outline of the recording mark in an amorphous state is clear. in use.
Ag-In-Sb-Te phase change recording materials are disclosed in Patent Documents 1 to 3, for example. Ag-Sb-Te phase change recording materials that are similar systems are disclosed in Patent Documents 4 to 5.

しかし、上記記録材料は、CD−RW(Compact Disk−Rewritable)等の比較的低い記録密度を有する記録媒体に用いられるものであり、例えばDVD(Digital Versatile Disk)−RAMやDVD−RW(Digital Versatile Disk−Rewritable)等に適用する場合には、記録線速が3.5m/s(1倍速)程度の低速ではオーバーライトは可能であるが、7.0m/s(2倍速)以上になると、オーバーライト特性が劣下するという問題が発生する。
この特性劣化の原因は、上記相変化型記録材料の結晶化速度が遅い為、高記録線速下でのオーバーライトが困難になる事にある。
この特性劣化を防止する為、上記相変化型記録材料の組成分であるSbの組成量を増加させる事により、該相変化型記録材料の結晶化速度を速くする事もできるが、その場合にはSb量の組成量が増加する事により結晶化温度が低下してしまい、記録マークの保存特性の低下がより顕著になる。
この保存特性の低下を防止する方法として、Ag−In−Ge−Sb−Te系相変化型記録材料を用いる事が特許文献6に開示されている。しかし、この記録材料を有する相変化型光記録媒体は、記録線速が3.0〜20m/sの範囲ではオーバーライト可能であるが、更に高記録線速の場合、即ち20m/sよりも高速の場合にはオーバーライトする事ができない。
However, the recording material is used for a recording medium having a relatively low recording density such as CD-RW (Compact Disk-Rewritable), for example, a DVD (Digital Versatile Disk) -RAM or a DVD-RW (Digital Versatile). In the case of application to disk-rewriteable), overwriting is possible at a recording linear velocity of about 3.5 m / s (1 × speed), but when it is 7.0 m / s (2 × speed) or more, There arises a problem that the overwrite characteristic is deteriorated.
The cause of this characteristic deterioration is that it is difficult to overwrite at a high recording linear velocity because the crystallization speed of the phase change recording material is low.
In order to prevent this characteristic deterioration, the crystallization speed of the phase change recording material can be increased by increasing the composition amount of Sb, which is the composition of the phase change recording material. In this case, the crystallization temperature decreases due to an increase in the composition amount of the Sb amount, and the storage characteristics of the recording mark are further deteriorated.
Patent Document 6 discloses the use of an Ag—In—Ge—Sb—Te phase change recording material as a method for preventing the deterioration of the storage characteristics. However, the phase change optical recording medium having this recording material can be overwritten when the recording linear velocity is in the range of 3.0 to 20 m / s, but in the case of a higher recording linear velocity, that is, more than 20 m / s. It cannot be overwritten at high speeds.

一方、高記録線速化用の材料としてGa−Sb系相変化型記録材料が非特許文献1に報告されている。
このGa−Sb系相変化型記録材料は、結晶化速度が極めて速いと報告されているが、結晶化温度が350℃と非常に高い為、記録材料を未記録状態とする為の初期化工程における初期結晶化が困難であるという難点がある。また、Ga−Sb系相変化型記録材料は共晶組成でも融点が630℃と比較的高い為に高線速下での記録感度に問題を有する。
更に、Ga−Sb系相変化型記録材料に、例えば、Mo、W、Ta、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Tl、Si、Ge、Sn、Pb、As、Bi、S、Se、Te等の金属元素を組成分として加えて、特性の向上を試みたものが、特許文献7〜8に開示されている。しかし、このような相変化型記録材料を用いた光記録媒体は、高記録線速でのオーバーライトの際に、充分な変調度を確保し、オーバーライト特性及び保存特性を同時に満足するものではない。また、In−Sb系記録材料が特許文献9、10に開示されているが、この系も高線速記録下でのオーバライト特性、及び、保存信頼性を同時に満足するものでない。
上記の様に種々の相変化型記録材料が報告されているが、何れもオーバーライト可能な相変化型光記録媒体として要求される特性を全て満足し得るものとは云えなかった。そこで、DVD−ROM等の高密度・大容量の記録媒体であり、しかも記録線速が更に高速化(〜35m/s)された場合に対応でき、十分な変調度を確保できると共に、オーバーライト特性、記録感度及び保存特性を同時に満足するようなオーバーライト可能な相変化型光記録媒体の開発が課題となっている。
On the other hand, Non-Patent Document 1 reports a Ga—Sb phase change recording material as a material for increasing the recording linear velocity.
This Ga-Sb phase change recording material has been reported to have a very high crystallization speed, but since the crystallization temperature is as high as 350 ° C., an initialization process for bringing the recording material into an unrecorded state. There is a problem that initial crystallization is difficult. In addition, since the Ga—Sb phase change recording material has a relatively high melting point of 630 ° C. even with a eutectic composition, it has a problem in recording sensitivity at a high linear velocity.
Further, Ga—Sb-based phase change recording materials include, for example, Mo, W, Ta, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Tl, Si, Ge, Sn, Pb, As. Patent Documents 7 to 8 disclose attempts to improve characteristics by adding metal elements such as Bi, S, Se, and Te as components. However, an optical recording medium using such a phase change recording material does not satisfy sufficient overwrite characteristics and storage characteristics at the same time while ensuring a sufficient degree of modulation when overwriting at a high recording linear velocity. Absent. In-Sb recording materials are disclosed in Patent Documents 9 and 10, but this system does not simultaneously satisfy the overwrite characteristics and storage reliability under high linear velocity recording.
As described above, various phase change recording materials have been reported, but none of them can satisfy all the characteristics required for an overwritable phase change optical recording medium. Therefore, it is a high-density and large-capacity recording medium such as a DVD-ROM, and can cope with the case where the recording linear velocity is further increased (up to 35 m / s), and can secure a sufficient modulation and overwrite. Development of an overwritable phase change optical recording medium that simultaneously satisfies characteristics, recording sensitivity, and storage characteristics is an issue.

結晶−非晶質相間の相転移を利用する光記録媒体において、情報の記録、再生、消去及びオーバーライトに用いられるレーザビームの径を1μmφとした場合に、レーザビームが高記録線速(35m/s)で回転するディスク(Disk)上の一点を横切る時間が約29nsec(ナノ秒)である。この事から、高記録線速(35m/s)では、前記光記録媒体の相変化型記録材料が29nsec以内にオーバーライト、即ち、古い記録マークから新しい記録マークへと書き換える事が必要になる。
高密度・大容量記録媒体であるDVD等では、使用される光学系のレーザ波長が650nmと従来の780nmより短くなる為、そのビーム径も1μmφより小さくなり、レーザビームが高記録線速(35m/s)で回転するディスク上の一点を横切る時間は、29nsecよりも短くなる。例えば、ビーム径を0.7μmφとすると、ディスク上の一点を横切る時間は約20nsecとなり、このような短時間でオーバーライトする事が必要となり、この為には極めて速い結晶化速度を必要とする。
前述の従来技術であるAg−In−Sb−Te系、Ga−Sb系、Ge−Sb−Te系の相変化型記録材料においても、この時間内でオーバーライトは可能であるが、保存特性や初期結晶化等に問題があり、高記録線速(35m/s)において、これらの特性を全て満足できるような記録材料は知られていなかった。
In an optical recording medium using a phase transition between a crystal and an amorphous phase, when the diameter of the laser beam used for recording, reproducing, erasing and overwriting of information is 1 μmφ, the laser beam has a high recording linear velocity (35 m The time for crossing a point on the disk (Disk) rotating at / s) is about 29 nsec (nanoseconds). Therefore, at a high recording linear velocity (35 m / s), it is necessary to overwrite the phase change recording material of the optical recording medium within 29 nsec, that is, to rewrite the old recording mark to the new recording mark.
In a DVD or the like which is a high-density and large-capacity recording medium, the laser wavelength of the optical system used is 650 nm, which is shorter than the conventional 780 nm, so that the beam diameter is smaller than 1 μmφ, and the laser beam has a high recording linear velocity (35 m The time to cross one point on the rotating disk at / s) is shorter than 29 nsec. For example, if the beam diameter is 0.7 μmφ, the time to cross one point on the disk is about 20 nsec, and it is necessary to overwrite in such a short time, and this requires a very fast crystallization speed. .
Even in the phase change type recording materials of the above-mentioned prior art, such as Ag—In—Sb—Te, Ga—Sb, and Ge—Sb—Te, overwriting is possible within this time. There has been a problem in initial crystallization and the like, and a recording material that can satisfy all these characteristics at a high recording linear velocity (35 m / s) has not been known.

特開平3−231889号公報Japanese Patent Laid-Open No. 3-231889 特開平4−191089号公報Japanese Patent Laid-Open No. 4-191089 特開平4−232779号公報JP-A-4-23279 特開平4−267192号公報JP-A-4-267192 特開平5−345478号公報JP-A-5-345478 特開2000−322740号公報JP 2000-322740 A 米国特許第4,818,666号明細書U.S. Pat. No. 4,818,666 米国特許第5,072,423号明細書US Pat. No. 5,072,423 特開昭60−177446号公報JP-A-60-177446 特開昭61−134944号公報Japanese Patent Laid-Open No. 61-134944 「Phase−change optical data storage in GaSb」,Applied Optics,Vol.26,No.22115,November,1987“Phase-change optical data storage in GaSb”, Applied Optics, Vol. 26, no. 22115, November, 1987

本発明は、DVD−ROM並に高密度・大容量の光記録媒体であって、初期化工程における初期化が容易であるだけでなく、3.5m/sから35m/sまでの広範囲かつ高記録線速での情報のオーバーライトに対応できる充分な変調度を確保でき、記録感度、オーバーライト特性、及び保存特性に優れた相変化型光記録媒体の提供を目的とする。   The present invention is a high-density and large-capacity optical recording medium similar to a DVD-ROM, and is not only easy to initialize in the initialization process, but also has a wide and high range from 3.5 m / s to 35 m / s. An object of the present invention is to provide a phase change type optical recording medium that can secure a sufficient degree of modulation that can cope with overwriting of information at a recording linear velocity and is excellent in recording sensitivity, overwriting characteristics, and storage characteristics.

上記課題は、次の1)〜2)の発明(以下、本発明1〜2という。)によって解決される。
1) 基板上に少なくとも相変化型記録材料からなる記録層を設け、該記録層に電磁波を照射して可逆的相変化を生起し、少なくとも情報の記録、再生を行うことができる相変化型光記録媒体において、相変化型記録材料が下記組成式で示される事を特徴とする相変化型光記録媒体。
InαSbβHγGeδXε
(式中、XはSe及び/又はTe、α、β、γ、δ、εは原子%)
8≦α≦35
50≦β≦85
2≦γ≦10
1≦δ≦5
2≦ε≦15
α+β+γ+δ+ε=100
2) 相変化型記録材料が、下記組成式で示される事を特徴とする1)記載の相変化型光記録媒体。
InαSbβHγGeδXεYκ
(式中、XはSe及び/又はTe、YはSn、Bi、Iの中から選ばれた少なくとも一つの元素、α、β、γ、δ、ε、κは原子%)
8≦α≦35
50≦β≦85
2≦γ≦10
1≦δ≦5
2≦ε≦15
2≦κ≦10
α+β+γ+δ+ε+κ=100
The above problems are solved by the following inventions 1) to 2) (hereinafter referred to as the present invention 1 and 2).
1) Phase change light capable of providing a recording layer made of at least a phase change recording material on a substrate, irradiating the recording layer with electromagnetic waves to cause a reversible phase change, and recording and reproducing at least information A phase change optical recording medium, wherein the phase change recording material is represented by the following composition formula.
InαSbβHγGeδXε
(Wherein X is Se and / or Te, α, β, γ, δ, ε is atomic%)
8 ≦ α ≦ 35
50 ≦ β ≦ 85
2 ≦ γ ≦ 10
1 ≦ δ ≦ 5
2 ≦ ε ≦ 15
α + β + γ + δ + ε = 100
2) The phase change optical recording medium according to 1), wherein the phase change recording material is represented by the following composition formula.
InαSbβHγGeδXεYκ
(Wherein X is Se and / or Te, Y is at least one element selected from Sn, Bi, and I, and α, β, γ, δ, ε, and κ are atomic%)
8 ≦ α ≦ 35
50 ≦ β ≦ 85
2 ≦ γ ≦ 10
1 ≦ δ ≦ 5
2 ≦ ε ≦ 15
2 ≦ κ ≦ 10
α + β + γ + δ + ε + κ = 100

以下、上記本発明について詳しく説明する。
本発明者らは、上記課題を解決する為に記録材料に着目して鋭意研究を重ねた結果、前記本発明1の組成式で示される相変化型記録材料を用いた時に、前述した課題を解決できる事を見出すと共に、更に、Sn、Bi、Iの中から選ばれた少なくとも一つの元素を添加した、前記本発明2の組成式で示される相変化型記録材料を用いた時に、高速線速化を向上させ、線速25m/s以上でのオーバライト特性をより安定化させる事が可能となる事を見出し、これらの知見に基づいて本発明を完成するに至った。
即ち、相変化型記録材料として、InとSbを構成元素とする事により、高速結晶化と初期結晶化の課題を解決し、H(水素)とGeを加える事により、記録感度の向上と、変調度を含む信号特性、オーバライト特性を大きく向上させ、Se及び/又はTeを加える事により保存信頼性の課題を解決した。
更に、Sn、Bi、Iの中から選ばれた少なくとも一つの元素を添加する事により更なる高速線速化を実現させて、線速25m/s以上でのオーバライト特性に余裕を持たせる事ができた。
Hereinafter, the present invention will be described in detail.
As a result of intensive studies focusing on the recording material in order to solve the above-mentioned problems, the present inventors have solved the above-mentioned problems when using the phase-change recording material represented by the composition formula of the present invention 1. When a phase change recording material represented by the composition formula of the present invention 2 to which at least one element selected from Sn, Bi, and I is added is used, a high-speed line is found. It has been found that it is possible to improve the speed and further stabilize the overwrite characteristics at a linear speed of 25 m / s or more, and based on these findings, the present invention has been completed.
That is, by using In and Sb as constituent elements as a phase change recording material, the problems of high-speed crystallization and initial crystallization are solved, and by adding H (hydrogen) and Ge, the recording sensitivity is improved. The signal characteristics including the modulation factor and the overwrite characteristics are greatly improved, and the problem of storage reliability is solved by adding Se and / or Te.
Furthermore, by adding at least one element selected from Sn, Bi, and I, a further increase in the linear velocity can be realized, so that there is a margin in the overwrite characteristics at a linear velocity of 25 m / s or more. I was able to.

GaSbは、極めて結晶化速度が速い事が知られているが、結晶化温度が350℃程度と高い為に、初期化結晶化が極めて困難である。そこで、Gaの代りに同族のInを用いてInとSbとする事により高速結晶化と初期結晶化の二つの課題を解決した。InSbの高速結晶化の理由は明確でないが、GaSbと同様に結晶相と非晶質相における最隣接原子間距離が同程度である事によるのではないかと考えている。一方、InSbの結晶化温度は180℃程度なので、初期結晶化はGaSbに比較して容易に行なう事ができる。
このInSbにH(水素)を加える事により、記録感度や、変調度を含む信号特性の向上を図る事ができる。その理由は、Hを加える事によりInSbの未結合手をHが補償する為、未結合手に起因する欠陥による光の散乱が減少し、光の吸収効率が向上するのではないかと考えられる。また、Hによる未結合手の補償は、InSbの平均配位数を少なくさせて非晶質相を安定にする為、ジッター等の信号特性を向上させる。しかし、変調度の改善の理由は不明である。
また、Geを加えるとオーバライト特性が向上する。これはGeは結合エネルギーの大きな元素であり、非晶質相と結晶相の構造の安定性を改善する為と考えられる。
更に、このIn、Sb、H、Geから成る記録材料にSe及び/又はTeを加えると保存信頼性が大きく向上する。この理由はInSbはn型の半導体と考えられる為、InSbが酸化した時もn型を保持していると思われるので、InSbに対しドナーとなるSeやTeは、InSbの酸化を防止する事で保存信頼性を向上させるものと考えられる。
また、Sn、Bi、Iの添加は結晶化速度を更に向上させるが、その理由はSn、Biは金属性が強い事、Iはターミネータとして働く為である。
Although it is known that GaSb has a very high crystallization speed, initialization crystallization is extremely difficult because the crystallization temperature is as high as about 350 ° C. Therefore, two problems of high-speed crystallization and initial crystallization were solved by using In of the same family instead of Ga and using In and Sb. The reason for the high-speed crystallization of InSb is not clear, but it is thought that, as in GaSb, the distance between adjacent atoms in the crystalline phase and the amorphous phase is approximately the same. On the other hand, since the crystallization temperature of InSb is about 180 ° C., the initial crystallization can be easily performed as compared with GaSb.
By adding H (hydrogen) to InSb, it is possible to improve recording characteristics and signal characteristics including modulation. The reason is that by adding H, H compensates the dangling bonds of InSb, so that light scattering due to defects caused by dangling bonds is reduced, and light absorption efficiency is improved. Further, compensation of dangling hands by H reduces the average coordination number of InSb and stabilizes the amorphous phase, thereby improving signal characteristics such as jitter. However, the reason for the improvement of the modulation factor is unknown.
In addition, the addition of Ge improves the overwrite characteristics. This is presumably because Ge is an element having a large binding energy and improves the stability of the structure of the amorphous phase and the crystalline phase.
Further, when Se and / or Te is added to the recording material composed of In, Sb, H, and Ge, the storage reliability is greatly improved. This is because InSb is considered to be an n-type semiconductor, and when InSb is oxidized, it is considered that it retains the n-type. Therefore, Se and Te serving as donors to InSb prevent InSb from being oxidized. This is considered to improve storage reliability.
Further, the addition of Sn, Bi, and I further improves the crystallization speed, because Sn and Bi are highly metallic and I acts as a terminator.

前記本発明1の相変化型記録材料の組成式において、αが8〜35原子%、βが50〜85原子%の範囲であれば結晶化速度が向上し、高線速下でのオーバライトに適したものとなり、初期結晶化が容易なものとなる。また、γが2〜10原子%の範囲であれば、記録感度と、変調度を含む信号特性を向上させる事ができ、δが1〜5原子%の範囲であれば、オーバライト時による繰り返し特性を向上させる事でき、εが2〜15原子%の範囲であれば、保存信頼性を向上させる事ができる。
また、前記本発明2の相変化型記録材料の組成式において、α〜εは本発明1の場合と同様であり、κについては、2〜10原子%の範囲であれば、更なる高線速化を可能とし、線速25m/s以上でのオーバライト特性をより安定化させる事ができる。
本発明の記録層は、各種気相製膜法(真空蒸着法、スパッタリング法、光CVD法、イオンプレーティング法等)により成膜される。膜厚は通常50〜1000Åであり、好ましくは100〜350Å、より好ましくは150〜250Åである。この範囲において、レーザ光等の光吸収能が十分である為に記録層としての機能に優れ、透過レーザ光の十分な為に、記録媒体の干渉効果にも優れたものとなる。
In the composition formula of the phase change recording material of the first aspect of the present invention, if α is in the range of 8 to 35 atomic% and β is in the range of 50 to 85 atomic%, the crystallization speed is improved and the overwrite is performed at a high linear velocity. Therefore, initial crystallization is easy. If γ is in the range of 2 to 10 atomic%, the recording sensitivity and the signal characteristics including the degree of modulation can be improved. If γ is in the range of 1 to 5 atomic%, the repetition is caused by overwriting. The characteristics can be improved. If ε is in the range of 2 to 15 atomic%, the storage reliability can be improved.
Further, in the composition formula of the phase change recording material of the second invention, α to ε are the same as those in the first invention. The speed can be increased and the overwrite characteristic at a linear speed of 25 m / s or more can be further stabilized.
The recording layer of the present invention is formed by various vapor deposition methods (vacuum deposition method, sputtering method, photo CVD method, ion plating method, etc.). The film thickness is usually 50 to 1000 mm, preferably 100 to 350 mm, more preferably 150 to 250 mm. In this range, the function as a recording layer is excellent because the light absorption capability of laser light or the like is sufficient, and the interference effect of the recording medium is also excellent because the transmitted laser light is sufficient.

本発明の相変化型光記録媒体においては、その構成層として、基板上に、記録層の他に耐熱保護層、反射層、保護層等を設ける事ができ、目的や要求特性に応じて構成層の形態が選ばれる。本発明の相変化型光記録媒体の層構成例を図面に基づいて説明する。
本発明の相変化型光記録媒体は、例えば図1〜図4に示したような構成とする事ができる。即ち、基板1上に第一耐熱保護層2、記録層3、第二耐熱保護層4、反射層5を順次設けた構成(図1)とするか、或いは図1の構成の反射層5上に、更に保護層6を設けた構成(図2)とする事ができる。耐熱保護層は必ずしも記録層3の両側に設ける必要はないが、基板1がポリカーボネート樹脂のように耐熱性が低い材料の場合には、図3、図4に示すように基板1と記録層3との間に第一耐熱保護層2を設け、記録層3と反射層5との間の構成層(図1、図2における第二耐熱保護層4)を省いた構成とする事もできる。なお、これらの構成は、実施の形態を説明する為の例であって他の構成でもよいが、通常図2の構成形態が好ましい。
In the phase change type optical recording medium of the present invention, a heat-resistant protective layer, a reflective layer, a protective layer, etc. can be provided on the substrate in addition to the recording layer as the constituent layer, and it is configured according to the purpose and required characteristics. The form of the layer is chosen. An example of the layer structure of the phase change optical recording medium of the present invention will be described with reference to the drawings.
The phase change optical recording medium of the present invention can be configured as shown in FIGS. That is, the first heat-resistant protective layer 2, the recording layer 3, the second heat-resistant protective layer 4, and the reflective layer 5 are sequentially provided on the substrate 1 (FIG. 1), or on the reflective layer 5 having the structure shown in FIG. In addition, a configuration in which a protective layer 6 is further provided (FIG. 2) can be employed. The heat-resistant protective layer is not necessarily provided on both sides of the recording layer 3, but when the substrate 1 is made of a material having low heat resistance such as polycarbonate resin, the substrate 1 and the recording layer 3 as shown in FIGS. The first heat-resistant protective layer 2 may be provided between the recording layer 3 and the reflective layer 5 (the second heat-resistant protective layer 4 in FIGS. 1 and 2) may be omitted. Note that these configurations are examples for explaining the embodiment, and other configurations may be used, but the configuration mode of FIG. 2 is generally preferable.

次に、記録層以外の各構成層について説明する。
基板1に用いられる材料としては、一般にガラス、セラミックス、樹脂などが挙げられるが、成形性、コストの点から樹脂製基板が望ましい。
樹脂の代表例としては、ポリカーボネート樹脂、アクリル樹脂、エポキシ樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、シリコーン樹脂、フッ素樹脂、ABS樹脂、ウレタン樹脂等が挙げられるが、加工性、光学特性等の点からポリカーボネート樹脂が好ましい。
また、基板1の形状は、ディスク状、カード状、シート状などの何れであってもよいが、操作性の点からデスク状である事が好ましい。
基板の厚さは、通常DVD用基板の0.75mmとする。
Next, each constituent layer other than the recording layer will be described.
The material used for the substrate 1 generally includes glass, ceramics, resin, etc., but a resin substrate is desirable in terms of moldability and cost.
Representative examples of the resin include polycarbonate resin, acrylic resin, epoxy resin, polystyrene resin, polyethylene resin, polypropylene resin, silicone resin, fluorine resin, ABS resin, urethane resin, etc., but in terms of processability, optical properties, etc. To polycarbonate resin.
The substrate 1 may have any shape such as a disk shape, a card shape, and a sheet shape, but is preferably a desk shape from the viewpoint of operability.
The thickness of the substrate is usually 0.75 mm of the DVD substrate.

耐熱保護層(第一耐熱保護層2又は第二耐熱保護層4)に用いられる材料としては、SiO、ZnO、ZrO等の金属酸化物;AlN、Si、TiN等の窒化物等;ZnS、CaS、Al等の硫化物等が挙げられるが、屈折率の点からZnSとSiOの混合物が好ましい。
耐熱保護層の形成には、記録層の場合と同様に各種気相製膜法が用いられる。特に、(ZnS)・(SiO)を用いてスパッタリング法により膜形成を行い、誘電体層を形成する事が好ましい。
この誘電体層は、耐熱保護層としての機能と光干渉層としての機能を有する事から、これらの機能が最大限に発揮されるように層形成する必要があり、その為には、膜厚を200〜3000Å、好ましくは350〜800Åとする。200Å未満の場合は、耐熱保護層としての機能が失われ、一方、3000Åを越えると界面剥離が生じ易くなるので好ましくない。
Materials used for the heat-resistant protective layer (first heat-resistant protective layer 2 or second heat-resistant protective layer 4) include metal oxides such as SiO 2 , ZnO, and ZrO 2 ; nitrides such as AlN, Si 3 N 4 , and TiN Etc .; sulfides such as ZnS, CaS, Al 2 S 3 and the like can be mentioned, but a mixture of ZnS and SiO 2 is preferable from the viewpoint of refractive index.
Various vapor deposition methods are used for forming the heat-resistant protective layer as in the case of the recording layer. In particular, it is preferable to form a dielectric layer by forming a film by sputtering using (ZnS) · (SiO 2 ).
Since this dielectric layer has a function as a heat-resistant protective layer and a function as a light interference layer, it is necessary to form a layer so that these functions are exhibited to the maximum. Is 200 to 3000cm, preferably 350 to 800cm. When the thickness is less than 200 mm, the function as a heat-resistant protective layer is lost.

反射層5に用いられる材料としては、高線速下でのオーバライトに対応できる高熱伝導性と高反射率を有するAg、Au、Cu等の金属やそれらの合金が挙げられる。具体例としては、Ag−Pd−Cu、Ag−In、Ag−Cu−Ni等のAg合金が挙げられるが、中でもAg−Pd−Cuが好ましい。
その膜形成は、記録層の場合と同様に各種気相成膜法、例えばスパッタリング法により行う事ができる。
膜厚は、500〜2000Å、好ましくは700〜1500Å、より好ましくは800〜1200Åである。この範囲においては、光学反射率、熱伝導率はバルク合金と同等であるから反射層の機能を十分に有するものとなる。
保護層6に用いられる材料としては、作業性が良く均一な薄膜形成が可能であり、記録媒体用としての機能を満足する耐環境性の優れた材料であれば特に制約はないが、スピンコート等の手法によって薄膜が形成できるエポキシ樹脂やアクリル樹脂等の樹脂材料が好ましい。
本発明の相変化型光記録媒体の記録、再生、消去及び書き換えには、電磁波(可視光、紫外線、赤外線、電子線等)が用いられるが、光学系の搭載性、小型化などから特に半導体レーザ光等の光ビームが好適である。
Examples of the material used for the reflective layer 5 include metals such as Ag, Au, and Cu having high thermal conductivity and high reflectivity that can cope with overwriting under high linear velocity, and alloys thereof. Specific examples include Ag alloys such as Ag—Pd—Cu, Ag—In, and Ag—Cu—Ni, among which Ag—Pd—Cu is preferable.
The film can be formed by various vapor deposition methods, for example, a sputtering method, as in the case of the recording layer.
The film thickness is 500 to 2000 mm, preferably 700 to 1500 mm, and more preferably 800 to 1200 mm. In this range, the optical reflectance and thermal conductivity are equivalent to those of the bulk alloy, so that the function of the reflective layer is sufficiently obtained.
The material used for the protective layer 6 is not particularly limited as long as it is a material having excellent workability and capable of forming a uniform thin film and satisfying the function for a recording medium. A resin material such as an epoxy resin or an acrylic resin that can form a thin film by a method such as the above is preferable.
Electromagnetic waves (visible light, ultraviolet rays, infrared rays, electron beams, etc.) are used for recording, reproduction, erasing and rewriting of the phase change optical recording medium of the present invention. A light beam such as laser light is preferred.

本発明1〜2の相変化型記録材料を記録層に用いる事により、DVD−ROM並の大記録容量で、記録線速が3.5m/sから35m/sまでの広範囲で、記録感度が良好で、十分な変調度特性、良好なオーバーライトとその繰り返し特性、高い保存信頼性を有する優れた相変化型光記録媒体を提供できる。   By using the phase change type recording material of the present invention 1 or 2 for the recording layer, the recording sensitivity is as large as the DVD-ROM, and the recording linear velocity is wide from 3.5 m / s to 35 m / s. It is possible to provide an excellent phase change type optical recording medium having good and sufficient modulation characteristics, good overwrite and its repetition characteristics, and high storage reliability.

以下、実施例及び比較例を挙げて本発明を更に詳しく説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in more detail, this invention is not limited at all by these Examples.

実施例1
トラックピッチ0.7μm、溝深さ400Å、厚さ0.6mm、直径120mmφのポリカーボネート基板1上に、第一耐熱保護層2、記録層3、第二耐熱保護層4、反射層5をスパッタリング法により順次設け、更に反射層5の上に、スピンコート法によりアクリル樹脂からなる厚さ約5nmの保護層6を設けて、図2と同じ層構成の評価用相変化型光記録媒体を作製した。
第一耐熱保護層2は(ZnS)70(SiO30を厚さ800Åとなるように、記録層3はIn24Sb68GeSeを厚さ160Åとなるように、第二耐熱保護層4は(ZnS)70(SiO30を厚さ300Åとなるように、反射層5はAg95PdCuを厚さ900Åとなるように、それぞれ制御してスパッタリング法により各層を積層した。
各構成層の材料組成と膜厚は表1に示した通りである。
Example 1
A first heat-resistant protective layer 2, a recording layer 3, a second heat-resistant protective layer 4, and a reflective layer 5 are sputtered on a polycarbonate substrate 1 having a track pitch of 0.7 μm, a groove depth of 400 mm, a thickness of 0.6 mm, and a diameter of 120 mm. Then, a protective layer 6 made of acrylic resin and having a thickness of about 5 nm is provided on the reflective layer 5 by a spin coating method, and a phase change optical recording medium for evaluation having the same layer configuration as that shown in FIG. .
The first heat-resistant protective layer 2 has (ZnS) 70 (SiO 2 ) 30 with a thickness of 800 mm, and the recording layer 3 has In 24 Sb 68 H 3 Ge 2 Se 3 with a thickness of 160 mm. The heat-resistant protective layer 4 is controlled by sputtering so that (ZnS) 70 (SiO 2 ) 30 has a thickness of 300 mm and the reflective layer 5 is Ag 95 Pd 3 Cu 2 with a thickness of 900 mm. Were laminated.
The material composition and film thickness of each constituent layer are as shown in Table 1.

実施例2〜8
実施例1において、記録層3として用いたIn24Sb68GeSeに代えて、次の材料を用いた点以外は、実施例1と全く同様にして、実施例2〜8の評価用相変化型光記録媒体を作製した。
・実施例2:In24Sb68GeTe
・実施例3:In22Sb67GeSeSn
・実施例4:In22Sb67GeTeSn
・実施例5:In22Sb67GeSeBi
・実施例6:In22Sb67GeTeBi
・実施例7:In22Sb67GeSe
・実施例8:In22Sb67GeTe
表1に、実施例2〜8の各構成層の材料組成と膜厚を纏めて示す。
Examples 2-8
In Example 1, instead of In 24 Sb 68 H 3 Ge 2 Se 3 used as the recording layer 3, the following materials were used in exactly the same manner as in Example 1 except that the following materials were used. A phase change optical recording medium for evaluation was produced.
Example 2: In 24 Sb 68 H 3 Ge 2 Te 3
Example 3: In 22 Sb 67 H 3 Ge 2 Se 3 Sn 3
Example 4: In 22 Sb 67 H 3 Ge 2 Te 3 Sn 3
Example 5: In 22 Sb 67 H 3 Ge 2 Se 3 Bi 3
Example 6: In 22 Sb 67 H 3 Ge 2 Te 3 Bi 3
Example 7: In 22 Sb 67 H 3 Ge 2 Se 3 I 3
Example 8: In 22 Sb 67 H 3 Ge 2 Te 3 I 3
Table 1 summarizes the material compositions and film thicknesses of the constituent layers of Examples 2 to 8.

Figure 2005119194
Figure 2005119194

比較例1〜6
記録層材料を表2に示すものに変えた点以外は、実施例1と同様にして比較例の相変化型光記録媒体を作製した。比較例の各構成層の材料組成と膜厚は、表2に示した通りである。
Comparative Examples 1-6
A phase change optical recording medium of a comparative example was produced in the same manner as in Example 1 except that the recording layer material was changed to that shown in Table 2. The material composition and film thickness of each constituent layer in the comparative example are as shown in Table 2.

Figure 2005119194
Figure 2005119194

上記実施例1〜8及び比較例1〜6で得られた評価用相変化型光記録媒体の記録層は非晶質(アモルファス)状態であるので、評価に際して該記録媒体を初期結晶化する必要がある。そこで下記の初期化方法に従って初期結晶化を行った。
なお、初期結晶化には、2000mW出力の半導体レーザ初期化装置(ビーム径;1μm×75μm、日立コンピュータ製)を用いて、レーザ波長810nm、初期結晶化線速12m/s、光源の移動速度を一回転当たり20μmとして、前記の評価用相変化型光記録媒体に60秒照射した。
初期化後、各評価用相変化型光記録媒体のオーバライト特性、変調度、及び保存信頼性を測定・評価した。
評価に際しては、記録線速、記録パワー(記録媒体上)をそれぞれ3.5m/s(10mW)、15m/s(16mW)、25m/s(26mW)、35m/s(36mW)に設定した。また、記録用レーザの波長を650nmとし、EFM(Eight Fourteen Modulation、8−14変調)ランダムパターンでオーバーライトの繰り返しを行い、再生信号特性の評価は3T信号のジッタ値と、14T信号の変調度で行った。また、保存信頼性は1000回オーバーライトした記録媒体を80℃、85%の温湿下で300時間保持した後の、オーバーライト1000回目における3T信号のジッタ値と14T信号の変調度で評価した。
実施例1〜8及び比較例1〜6の評価結果を表3〜表4に纏めて示す。
Since the recording layers of the phase change optical recording media for evaluation obtained in Examples 1 to 8 and Comparative Examples 1 to 6 are in an amorphous state, it is necessary to initially crystallize the recording media for evaluation. There is. Therefore, initial crystallization was performed according to the following initialization method.
For the initial crystallization, a semiconductor laser initialization apparatus (beam diameter: 1 μm × 75 μm, manufactured by Hitachi Computer) with a 2000 mW output was used, and the laser wavelength was 810 nm, the initial crystallization linear velocity was 12 m / s, and the moving speed of the light source was The phase change optical recording medium for evaluation was irradiated for 60 seconds at 20 μm per rotation.
After initialization, the overwrite characteristics, modulation degree, and storage reliability of each phase change optical recording medium for evaluation were measured and evaluated.
In the evaluation, the recording linear velocity and the recording power (on the recording medium) were set to 3.5 m / s (10 mW), 15 m / s (16 mW), 25 m / s (26 mW), and 35 m / s (36 mW), respectively. Further, the recording laser wavelength is set to 650 nm, overwriting is repeated with a random pattern of EFM (Eight Fourteen Modulation, 8-14 modulation), and the evaluation of the reproduction signal characteristics is performed by evaluating the jitter value of the 3T signal and the modulation degree of the 14T signal. I went there. The storage reliability was evaluated based on the jitter value of the 3T signal and the modulation factor of the 14T signal at the 1000th overwriting after holding the recording medium overwritten 1000 times at a temperature of 80 ° C. and 85% humidity for 300 hours. .
The evaluation results of Examples 1 to 8 and Comparative Examples 1 to 6 are summarized in Tables 3 to 4.

Figure 2005119194
Figure 2005119194

Figure 2005119194
Figure 2005119194

表3に示した様に、本発明の相変化型記録材料を用いた実施例1〜8は、何れも十分な変調度を確保できており、記録感度、オーバライト特性に優れ、初期結晶化も容易に行う事ができる。
一方、表4に示したように、従来技術である比較例においては、In50Sb50(比較例1)の組成、及びIn32Sb68(比較例2)の共晶組成を用いた記録媒体では、高線速下でのオーバライトは可能であるが、実施例の光記録媒体と比較して、変調度、記録感度、保存信頼性、及びオーバライト特性が劣る事が分る。
また、In−Sb系相変化型記録材料にAgを添加した比較例3は、記録感度、変調度は改善されているものの、保存信頼性、オーバライト特性はあまり改善されていない。
また、In−Sb系相変化型記録材料にSeを添加した比較例4は、保存信頼性は改善されているが、記録感度、変調度はオーバライト特性は実施例より劣る。
また、In−Sb系相変化型記録材料にGeを添加した比較例5は、オーバライト特性、保存信頼性は良好であるが、記録感度、変調度及びオーバライト特性は良好とは言えない。
また、Ag−In−Sb−Te系相変化型記録材料を用いた比較例6では、高線速下(25m/s及び35m/s)におけるオーバライトが不可能であった。
As shown in Table 3, each of Examples 1 to 8 using the phase change recording material of the present invention has a sufficient degree of modulation, excellent recording sensitivity and overwrite characteristics, and initial crystallization. Can also be done easily.
On the other hand, as shown in Table 4, in the comparative example which is the prior art, a recording medium using the composition of In 50 Sb 50 (Comparative Example 1) and the eutectic composition of In 32 Sb 68 (Comparative Example 2). However, overwriting at a high linear velocity is possible, but it can be seen that the degree of modulation, recording sensitivity, storage reliability, and overwriting characteristics are inferior to those of the optical recording medium of the embodiment.
In Comparative Example 3 in which Ag is added to the In—Sb phase change recording material, the recording sensitivity and the modulation degree are improved, but the storage reliability and the overwrite characteristics are not improved so much.
In Comparative Example 4 in which Se was added to the In—Sb phase change recording material, the storage reliability was improved, but the recording sensitivity and the modulation degree were inferior to those of the examples in the overwrite characteristics.
Further, Comparative Example 5 in which Ge is added to the In—Sb phase change recording material has good overwrite characteristics and storage reliability, but cannot be said to have good recording sensitivity, modulation degree, and overwrite characteristics.
In Comparative Example 6 using the Ag—In—Sb—Te phase change recording material, overwriting at high linear speeds (25 m / s and 35 m / s) was impossible.

本発明の相変化型光記録媒体の実施の形態を説明する為の層構成例を示す断面図である。It is sectional drawing which shows the layer structural example for describing embodiment of the phase change type optical recording medium of this invention. 本発明の相変化型光記録媒体の実施の形態を説明する為の他の層構成例を示す断面図である。It is sectional drawing which shows the other layer structural example for describing embodiment of the phase change type optical recording medium of this invention. 本発明の相変化型光記録媒体の実施の形態を説明する為の更に他の層構成例を示す断面図である。It is sectional drawing which shows the further another layer structural example for describing embodiment of the phase change type optical recording medium of this invention. 本発明の相変化型光記録媒体の実施の形態を説明する為の更に他の層構成例を示す断面図である。It is sectional drawing which shows the further another layer structural example for describing embodiment of the phase change type optical recording medium of this invention.

符号の説明Explanation of symbols

1 基板
2 第一耐熱保護層
3 記録層
4 第二耐熱保護層
5 反射層
6 保護層
DESCRIPTION OF SYMBOLS 1 Substrate 2 First heat-resistant protective layer 3 Recording layer 4 Second heat-resistant protective layer 5 Reflective layer 6 Protective layer

Claims (2)

基板上に少なくとも相変化型記録材料からなる記録層を設け、該記録層に電磁波を照射して可逆的相変化を生起し、少なくとも情報の記録、再生を行うことができる相変化型光記録媒体において、相変化型記録材料が下記組成式で示される事を特徴とする相変化型光記録媒体。
InαSbβHγGeδXε
(式中、XはSe及び/又はTe、α、β、γ、δ、εは原子%)
8≦α≦35
50≦β≦85
2≦γ≦10
1≦δ≦5
2≦ε≦15
α+β+γ+δ+ε=100
A phase change type optical recording medium in which a recording layer made of at least a phase change type recording material is provided on a substrate, and an electromagnetic wave is irradiated to the recording layer to cause a reversible phase change, and at least information can be recorded and reproduced. And a phase change recording material, wherein the phase change recording material is represented by the following composition formula:
InαSbβHγGeδXε
(Wherein X is Se and / or Te, α, β, γ, δ, ε is atomic%)
8 ≦ α ≦ 35
50 ≦ β ≦ 85
2 ≦ γ ≦ 10
1 ≦ δ ≦ 5
2 ≦ ε ≦ 15
α + β + γ + δ + ε = 100
相変化型記録材料が、下記組成式で示される事を特徴とする請求項1記載の相変化型光記録媒体。
InαSbβHγGeδXεYκ
(式中、XはSe及び/又はTe、YはSn、Bi、Iの中から選ばれた少なくとも一つの元素、α、β、γ、δ、ε、κは原子%)
8≦α≦35
50≦β≦85
2≦γ≦10
1≦δ≦5
2≦ε≦15
2≦κ≦10
α+β+γ+δ+ε+κ=100
2. The phase change type optical recording medium according to claim 1, wherein the phase change type recording material is represented by the following composition formula.
InαSbβHγGeδXεYκ
(Wherein X is Se and / or Te, Y is at least one element selected from Sn, Bi, and I, and α, β, γ, δ, ε, and κ are atomic%)
8 ≦ α ≦ 35
50 ≦ β ≦ 85
2 ≦ γ ≦ 10
1 ≦ δ ≦ 5
2 ≦ ε ≦ 15
2 ≦ κ ≦ 10
α + β + γ + δ + ε + κ = 100
JP2003358223A 2003-10-17 2003-10-17 Phase change-type optical recording medium Withdrawn JP2005119194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003358223A JP2005119194A (en) 2003-10-17 2003-10-17 Phase change-type optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003358223A JP2005119194A (en) 2003-10-17 2003-10-17 Phase change-type optical recording medium

Publications (1)

Publication Number Publication Date
JP2005119194A true JP2005119194A (en) 2005-05-12

Family

ID=34614866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003358223A Withdrawn JP2005119194A (en) 2003-10-17 2003-10-17 Phase change-type optical recording medium

Country Status (1)

Country Link
JP (1) JP2005119194A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196662A (en) * 2005-08-02 2007-08-09 Ricoh Co Ltd Optical recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196662A (en) * 2005-08-02 2007-08-09 Ricoh Co Ltd Optical recording medium
JP4607062B2 (en) * 2005-08-02 2011-01-05 株式会社リコー Optical recording medium

Similar Documents

Publication Publication Date Title
JP2003034081A (en) Phase change type optical information recording medium
TWI246078B (en) Information recording medium
WO1999030908A1 (en) Write once optical information recording medium
JP3895629B2 (en) Optical recording medium
JP4093846B2 (en) Phase change optical recording medium
JP2003231354A (en) Optical information recording medium
JP3920731B2 (en) Phase change optical recording medium
JP2005119194A (en) Phase change-type optical recording medium
JP2006095821A (en) Photorecording medium
JP2003246140A (en) Optical recording medium
TW476942B (en) Rewritable optical information medium
JP2006212880A (en) Phase change type optical recording medium
JP2005161730A (en) Phase change type optical recording medium
JP2004181742A (en) Phase changing optical recording medium
WO2004055791A1 (en) Optical recording method
JP2006341470A (en) Phase change type optical recording medium
JP4125994B2 (en) Optical recording medium
JP2004249603A (en) Phase transition type optical recording medium
JP4437727B2 (en) Optical recording medium
JP2006281749A (en) Information recording medium
KR20050026477A (en) Multi-stack optical data storage medium and use of such medium
JP2003145944A (en) Optical recording medium
JP2006027034A (en) Optical recording medium
JP2006255940A (en) Information recording medium
JP2006240031A (en) Optical recording medium and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080715

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080804