JP2005116852A - Method for correcting distortion aberration and aligner using same - Google Patents

Method for correcting distortion aberration and aligner using same Download PDF

Info

Publication number
JP2005116852A
JP2005116852A JP2003350349A JP2003350349A JP2005116852A JP 2005116852 A JP2005116852 A JP 2005116852A JP 2003350349 A JP2003350349 A JP 2003350349A JP 2003350349 A JP2003350349 A JP 2003350349A JP 2005116852 A JP2005116852 A JP 2005116852A
Authority
JP
Japan
Prior art keywords
residual aberration
correction
component
sum
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003350349A
Other languages
Japanese (ja)
Inventor
Tsuneo Kanda
恒雄 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003350349A priority Critical patent/JP2005116852A/en
Publication of JP2005116852A publication Critical patent/JP2005116852A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To overcome the problem that a working indicated value including a measuring error is presented when an inclination of a non-spherical working surface includes the error caused by disorder of an examination pattern at each point when working the non-spherical surface. <P>SOLUTION: A table indicating how a distortion changes is used when working a shape that can be represented with a Zernike function. On the basis of the table, the shape of the non-spherical surface is optimized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は投影光学系において電子回路パターンをウエハー上に露光・転写する半導体製造装置とそこで発生する歪曲収差の補正方法に関するものである。   The present invention relates to a semiconductor manufacturing apparatus that exposes and transfers an electronic circuit pattern onto a wafer in a projection optical system, and a method for correcting distortion occurring therein.

半導体技術の進展は近年ますます速度を増しており、それに伴って微細加工技術の進展も著しいものがある。特にその中心をなす半導体製造における投影露光装置を用いた光加工技術は、超解像技術(RET)と、レンズ製造技術の進歩により、露光波長の半分近くの領域に踏み込んだ。   The progress of semiconductor technology has been increasing in recent years, and the progress of microfabrication technology has been remarkable. In particular, optical processing technology using a projection exposure apparatus in semiconductor manufacturing, which is at the center of the process, has stepped into a region near half the exposure wavelength due to advances in super-resolution technology (RET) and lens manufacturing technology.

解像力の向上と同期して、オーバーレイの許容量も急激に減少し、画面内において、10nm以下を要求されるようになった。そのため、例えば本出願人により特開平11−031652が提案しているように、レチクルに近い場所にプレートを配置し、非球面加工を施すことにより歪曲収差補正している。(図1参照)
従来行われている非球面加工による補正方法は、以下の通りである。歪曲収差を補正するプレート(以下、補正プレート)は、レクチルの比較的近傍に配置してあるため、歪曲収差を補正するための非球面加工を施す面(以下、非球面加工面)上の光束は比較的細い。そのため、ほぼ主光線と同等に扱うことができる。そこで、ウエハー上で歪曲収差がなくなる、あるいは所定の形状になるようにこの主光線の向きを変え、歪曲収差をコントロールする。例えば、図7にあるように、ウエハー上のある点における歪曲収差が、Δである時、それを補正するための非球面加工面上のその点に対応する部分の傾きは、
Synchronously with the improvement of the resolution, the allowable amount of overlay has also decreased rapidly, and 10 nm or less is required in the screen. Therefore, for example, as proposed in Japanese Patent Laid-Open No. 11-031652 by the present applicant, the distortion is corrected by arranging a plate near the reticle and performing aspherical processing. (See Figure 1)
A conventional correction method using aspherical processing is as follows. Since a plate for correcting distortion (hereinafter referred to as a correction plate) is disposed relatively close to the reticle, the light flux on the surface subjected to aspherical processing for correcting distortion (hereinafter referred to as aspherical processing surface). Is relatively thin. For this reason, it can be handled almost the same as the principal ray. Therefore, the distortion is controlled by changing the direction of the chief ray so that the distortion does not occur on the wafer or has a predetermined shape. For example, as shown in FIG. 7, when the distortion at a certain point on the wafer is Δ, the inclination of the portion corresponding to that point on the aspherical surface for correcting it is

Figure 2005116852
Figure 2005116852

を満たすθとなる。このとき、mは、投影レンズの倍率、Dは、マスクパータン面と非球面加工面との距離、nは、補正プレートの屈折率を示す。この傾きを歪曲収差の各検査点において算出し、平面になるように2次元スプラインなどの関数を用い、つなげることにより、加工形状を算出する。
特開平11−031652号公報
Θ satisfying At this time, m is the magnification of the projection lens, D is the distance between the mask pattern surface and the aspherical surface, and n is the refractive index of the correction plate. The machining shape is calculated by calculating the inclination at each inspection point of distortion and connecting them using a function such as a two-dimensional spline so as to become a plane.
Japanese Patent Laid-Open No. 11-031652

しかし、上記に記載したように各点に於ける測定値から算出した場合、
(1)必ず、各点に於ける傾きを満足するような平面形状が出来るとは限らない。
However, when calculated from the measured values at each point as described above,
(1) A planar shape that always satisfies the inclination at each point is not always obtained.

(2)非球面加工面の傾きに各点に検査パターンのくずれ等に起因する測定誤差があった場合、それを含んで加工指示値を作ってしまう。
という問題がある。
(2) If there is a measurement error due to the inspection pattern displacement at each point in the inclination of the aspherical processing surface, a processing instruction value is generated including it.
There is a problem.

確実に加工できる面形状で加工指示値を作り、各検査点の測定誤差を平均化する手法として、
(1)非球面加工面に実際に加工が出来る複数の特定面形状、この場合、関数であらわすことが出来るもの(例えば、Zernike多項式のように各項が直交化したものが良いが、その限りではない)を与えた時、ディストーションが各検査点において、どのような量になるか、計算あるいは、実際に作成して装置に組み込み、その結果を測定しておき、単位面形状当りにおけるディストーションとしてテーブル化しておく。
As a method to create a processing instruction value with a surface shape that can be reliably processed and average the measurement error of each inspection point,
(1) A plurality of specific surface shapes that can actually be processed on an aspherical processed surface, in this case, a function that can be expressed by a function (for example, one in which each term is orthogonal such as a Zernike polynomial is preferable, ), The amount of distortion at each inspection point is calculated or actually created and incorporated into the device, and the result is measured to obtain the distortion per unit surface shape. Make a table.

(2)上記でテーブル化した複数の面形状の各々に係数を掛けたものを加算し、ディストーションが小さくなる(最大値最小化、3σ最小化等の最適解)非球面加工面形状を算出する。
という方法を提案する。これにより、実際に加工できる面形状の足し合わせのため、現実的な面形状を得ることができ、また、全点を参照した最適化になるため、ある箇所の測定誤差によらず、高精度な歪曲収差補正が可能になる。
(2) Calculate the aspherical surface shape by adding each of the surface shapes tabulated above multiplied by a coefficient to reduce distortion (optimal solution such as minimizing maximum value, minimizing 3σ, etc.) .
I propose a method. As a result, because the surface shapes that can actually be processed are added together, a realistic surface shape can be obtained, and because optimization is performed with reference to all points, high accuracy is achieved regardless of measurement errors at certain locations. Distortion can be corrected.

これらの手法により、各検査点の測定ばらつき、異常点の影響を軽減した補正プレートを作成することが出来る。また、確実に面形状を指示できるので、安定した歪曲収差補正精度を得ることが出来る。   By these methods, it is possible to create a correction plate that reduces the measurement variation of each inspection point and the influence of abnormal points. In addition, since the surface shape can be instructed reliably, stable distortion correction accuracy can be obtained.

まず、本実施例において、非球面加工指示値を作成するための方法について述べる。   First, a method for creating an aspherical processing instruction value in this embodiment will be described.

非球面加工面は、図1にあるように、レチクルの近傍に設定されている。この非球面加工面にZernike係数の例えば回転対称項である4項(2次関数)、9項(4次関数)、16項(6次関数)を作成した時、ウエハー上に22mmの正方形の露光エリアで焼き付けた時のディストーション形状がどうなるかを計算で求める。図2の(a)から(e)は、検査点を5×5の計25点にした時の形状をベクトル図で表したものである。これをX方向、Y方向に変換した状態でテーブル化した図が、図3である。   The aspherical surface is set near the reticle as shown in FIG. For example, when 4 terms (quadratic function), 9 terms (quadratic function), and 16 terms (sixth function), which are rotational symmetry terms of the Zernike coefficient, are created on this aspherical surface, a 22 mm square is formed on the wafer. Calculate what the distortion shape will be when the image is baked in the exposure area. (A) to (e) of FIG. 2 represent the shapes when the inspection points are 5 × 5 in total 25 points in a vector diagram. FIG. 3 is a table in which the table is converted into the X direction and the Y direction.

面形状に対し、ディストーションの形状は、微分となるので、6次関数の面形状で、5次の歪曲収差を発生させることができる。   Since the distortion shape is differential with respect to the surface shape, fifth-order distortion can be generated with a surface shape of a sixth order function.

歪曲収差は、非球面加工を行う前の平面の状態でまず、検査を行う。このとき、図4に示すような歪曲収差Rが残っていたとする。Rは、(x1,x2,x3,…,x25,y1,y2,y3,…,r25)という配列である。x1からx25、及びy1〜y25は、歪曲収差を検査する25点上での歪曲収差のX成分、Y成分を表している。これを補正するためには、図3にしめした様にテーブル化したZernike4項、9項、16項の配列を各々
Z4=(x4_01,x4_02,x4_03,…x4_25,y4_01,y4_02,y4_03,…,y4_25) (2)
Z9=(x9_01,x9_02,x9_03,…x9_25,y9_01,y9_02,y9_03,…,y9_25) (3)
Z16=(x16_01,x16_02,x16_03,…x16_25,y16_01,y16_02,y16_03,…,y16_25) (4)
というベクトルにして、
R-(a×Z4+b×Z9+c×Z16)=Rc (5)
とした時、このRcを小さくするようなa,b,cを求める。Rcを小さくするということは、Rcの各要素の内の最大値を最小化すること、あるいは、全要素の3σを小さくすること等いろいろとあるが、それは、各場合において手法を使い分けてよい。本実施例では、各要素の最大値最小化を計算し、その結果を図5に示す。
The distortion aberration is first inspected in the state of a plane before performing aspherical processing. At this time, it is assumed that the distortion aberration R as shown in FIG. 4 remains. R is an array of (x1, x2, x3,..., X25, y1, y2, y3,..., R25). x1 to x25, and y1 to y25 represent the X component and Y component of the distortion aberration on the 25 points at which the distortion aberration is inspected. In order to correct this, the Zernike 4 term, 9 term and 16 term arrays arranged in the table as shown in FIG.
Z4 = (x4_01, x4_02, x4_03,… x4_25, y4_01, y4_02, y4_03,…, y4_25) (2)
Z9 = (x9_01, x9_02, x9_03, ... x9_25, y9_01, y9_02, y9_03, ..., y9_25) (3)
Z16 = (x16_01, x16_02, x16_03,… x16_25, y16_01, y16_02, y16_03,…, y16_25) (4)
The vector
R- (a × Z4 + b × Z9 + c × Z16) = Rc (5)
Then, a, b, and c that reduce Rc are obtained. There are various ways to reduce Rc, such as minimizing the maximum value of each element of Rc, or reducing 3σ of all elements, but it is possible to use different methods in each case. In this embodiment, the maximum value minimization of each element is calculated, and the result is shown in FIG.

最適化計算の際は、(5)は線形なので線形計画法で最適化を行うと良い最適解を得ることが出来る。   In the optimization calculation, since (5) is linear, a good optimal solution can be obtained by performing optimization by linear programming.

これにより決定したa,b,cの値をZernike各項に掛けた後、足し合わせの形状を非球面加工面の現状の形状から変化させるかという指示形状を算出することが出来る。この方法だと、zernike項や、9項といった、すでに形状が明確になっているものの大きさを変化させ、足し合わせるので、現実に存在する形状になる。また、各検査点にランダムな測定誤差が乗っていたとしても、Zernike4項形状や、9項形状にフィッティングするため、その影響を回避することが可能となる。   After the values of a, b, and c determined in this manner are applied to each Zernike term, it is possible to calculate an indication shape as to whether the shape of addition is changed from the current shape of the aspherical surface. In this method, since the sizes of the already-defined shapes such as the zernicke term and the 9th term are changed and added together, the shape actually exists. Even if a random measurement error is placed on each inspection point, the fitting is made to the Zernike 4-term shape or the 9-term shape, so that the influence can be avoided.

一方、これが各点の傾きをスプライン関数等でつなぐ方法だと、所望の傾きでつなぐことが出来ないような形状、ひどい時には、各点をつなげず、加工が出来ない、という場合もある。   On the other hand, if this is a method of connecting the inclination of each point with a spline function or the like, there are cases where the shape cannot be connected with a desired inclination, and in severe cases, the points cannot be connected and processing cannot be performed.

非球面加工後は、その加工を施したワークの透過波面を干渉計にて測定する。非球面形状は、面反射による干渉でもチェックできるが、透過波面にする理由は、
(1)透過波面は、干渉計のシステムオフセットを簡単に除去できる
(2)面反射による干渉は、干渉縞にノイズが乗りやすい
ためである。
After the aspherical surface processing, the transmitted wavefront of the processed workpiece is measured with an interferometer. The aspherical shape can be checked by interference due to surface reflection, but the reason for making it a transmitted wavefront is
(1) The transmitted wavefront can easily remove the system offset of the interferometer. (2) Interference due to surface reflection is because noise tends to ride on the interference fringes.

透過波面測定後、その波面形状が所望のものになっているかどうかを判断する。ここでは、この波面形状から歪曲収差がどのように変化するか、シミュレーションを行い、歪曲収差がいくつになるかで、次工程に進むかどうかを決める。   After the transmitted wavefront measurement, it is determined whether or not the wavefront shape is a desired one. Here, a simulation is performed to determine how the distortion changes from the wavefront shape, and it is determined whether or not to proceed to the next step depending on how much the distortion becomes.

非球面加工が完成と判断された後、所定の形状に切り出し、コーティングを施す。その後、メカ部品を接着、あるいは、メカ部品に組み込み、露光装置に搭載する。これにより、歪曲収差を補正することが可能となる。   After it is determined that the aspherical surface processing is completed, it is cut into a predetermined shape and coated. Thereafter, the mechanical part is bonded or incorporated into the mechanical part and mounted on the exposure apparatus. This makes it possible to correct distortion.

上記実施例においては、説明のため、Zernike4項、9項、16項のみ使用したが、実際の歪曲収差は、回転対称な成分だけ残っているわけではない。そのため、例えば、Zernike多項式を用いて形状を作る場合は、必要な項全てにわたり、上記に記述したZ4、Z9などの配列を求めておき、(5)式のように式の中に組み込み、最適化をかける。これにより、非対称な非球面形状も容易に作ることが出来、高精度な歪曲収差補正が可能となる。   In the above embodiment, only the Zernike terms 4, 9, and 16 are used for explanation, but the actual distortion does not remain only in rotationally symmetric components. Therefore, for example, when creating a shape using a Zernike polynomial, the array of Z4, Z9, etc. described above is obtained over all necessary terms, and incorporated into the equation as shown in equation (5). Apply. As a result, an asymmetric aspherical shape can be easily formed, and highly accurate distortion correction can be performed.

さらに、この方法だと、製造誤差による歪曲収差を直すだけでなく、レンズの設計値として残存している歪曲収差も直すことが出来る。   Furthermore, this method not only corrects distortion due to manufacturing errors, but also corrects distortion remaining as a lens design value.

また、その他に、レクチルのたわみで生じる歪曲収差、レクチルの描画誤差も取れることが出来る。   In addition, distortion aberration caused by deflection of the reticle and drawing errors of the reticle can be taken.

図6は、ステッパーではなく、スキャナーに本発明の非球面を搭載した図である。スキャナーの場合、歪曲収差は、レンズだけでなく、ステージの走りの癖にも影響される。そこで、非球面補正板をレクチルスキャンステージ1と共にレンズに対し移動する様にすれば、ステージの走りの癖、レクチルのたわみ等で生じる歪曲収差も上記の歪曲収差補正用非球面作成手順で補正非球面形状を求め、加工することにより補正できる。   FIG. 6 is a diagram in which the aspherical surface of the present invention is mounted on a scanner, not a stepper. In the case of a scanner, distortion is affected not only by the lens but also by the habit of the stage. Therefore, if the aspherical correction plate is moved with respect to the lens together with the reticle scanning stage 1, the distortion caused by the stage running, the deflection of the reticle, etc. can also be corrected by the above-described distortion correction aspherical surface creation procedure. It can be corrected by obtaining and processing a spherical shape.

本発明における補正プレートを露光装置に搭載後、何かしらの原因で歪曲収差が変化した場合、補正プレートを着脱可能しておけば、変化分を追加工することが可能である。   When the distortion changes due to some reason after the correction plate according to the present invention is mounted on the exposure apparatus, the change can be additionally processed if the correction plate is removable.

また、非球面加工を施す時、加工指示値を作るためのデータ採りをした時の補正プレート非球面加工せず、そのデータを基に別の部材で非球面を形成し、完成後、装置上でデータ採りをしたときの補正板と入れ替えることも可能である。このようにすると、補正板を外す手間、及びその補正板に対する非球面加工以前の処理プロセスを省略でき、(別部材ならば、検査と並行して処理できるため)工程を短縮することが出来る。但し、その時、もともと入っていた補正板と、入れ替えるために新しく非球面加工を施した補正板の加工前における透過波面の差分を非球面加工に考慮する必要がある。考慮しない場合、その差が歪曲収差の補正残差となる。   In addition, when aspherical processing is performed, the correction plate when the data for creating the processing instruction value is collected. The aspherical surface is formed by another member based on the data, and the aspherical surface is formed on the device after completion. It is also possible to replace it with the correction plate used when collecting data. In this way, the trouble of removing the correction plate and the processing process before the aspherical surface processing for the correction plate can be omitted (because a separate member can be processed in parallel with the inspection), the process can be shortened. However, at that time, it is necessary to consider the difference in the transmitted wavefront before processing of the correction plate that was originally included and the correction plate that has been subjected to new aspherical processing for replacement. If not taken into account, the difference becomes a distortion residual correction.

また、両者の厚さも考慮する必要がある。厚さが異なるとその分、光路長が変化し、倍率成分や、ディストーション成分が光路長差に比例して変化する場合がある。したがって、光路長差で倍率や、ディストーションが変化する場合は、その光路長差で発生する分を非球面加工指示値に加えるか、露光装置の持つ補正機能でキャンセルする必要がある。   Moreover, it is necessary to consider the thickness of both. If the thickness is different, the optical path length is changed accordingly, and the magnification component and the distortion component may change in proportion to the optical path length difference. Therefore, when the magnification or distortion changes due to the optical path length difference, it is necessary to add the amount generated by the optical path length difference to the aspherical processing instruction value or cancel it with the correction function of the exposure apparatus.

次に別の実施例として、非球面加工指示値を計算する際、計算時に加工機の特性を配慮する方法を述べる。   Next, as another embodiment, a method for considering the characteristics of the processing machine when calculating the aspheric processing instruction value will be described.

先の実施例に準拠して、本実施例も説明する。歪曲収差は、非球面加工を行う前の平面の状態でまず、検査を行う。このとき、図4に示すような歪曲収差Rが残っていたとする。Rは、(x1,x2,x3,…,x25,y1,y2,y3,…,y25)という配列である。x1からx25、及びy1〜y25は、歪曲収差を検査する25点上での歪曲収差のX成分、Y成分を表している。これを補正するためには、図3にしめした様にテーブル化したZernike4項、9項、16項の配列を各々(2)、(3)、(4)というベクトルにする。このとき、非球面加工機の特性として、各Zernikeの項に対する加工難易度が異なる場合がある。そこで、この特性を考慮するため、各項のとりうる値に制限を設ける。例えば、(5)式のa,b,cにおいて、
−W4≦a≦+W4 (6)
−W9≦b≦+W9 (7)
−W16≦c≦W16 (8)
という制限を設け、この制限の中(5)のRcを小さくするようなa,b,cを求める。W4,W9,W16は、各項の制約値を表す。Rcを小さくするということは、Rcの各要素の内の最大値を最小化すること、あるいは、全要素の3σを小さくすること等いろいろとあるが、それは、各場合において手法を使い分けてよい。
This embodiment will also be described based on the previous embodiment. The distortion aberration is first inspected in the state of a plane before performing aspherical processing. At this time, it is assumed that the distortion aberration R as shown in FIG. 4 remains. R is an array of (x1, x2, x3,..., X25, y1, y2, y3,..., Y25). x1 to x25, and y1 to y25 represent the X component and Y component of the distortion aberration on the 25 points at which the distortion aberration is inspected. In order to correct this, the Zernike 4 term, 9 term and 16 term arrays arranged in the table as shown in FIG. 3 are made into vectors of (2), (3) and (4), respectively. At this time, as the characteristics of the aspherical surface processing machine, the processing difficulty level for each Zernike term may be different. Therefore, in order to take this characteristic into consideration, there is a limit on the value that each term can take. For example, in a, b, and c of equation (5),
−W4 ≦ a ≦ + W4 (6)
−W9 ≦ b ≦ + W9 (7)
−W16 ≦ c ≦ W16 (8)
A, b, and c that reduce Rc in (5) are obtained. W4, W9, and W16 represent constraint values for each term. There are various ways to reduce Rc, such as minimizing the maximum value of each element of Rc, or reducing 3σ of all elements, but it is possible to use different methods in each case.

最適化計算の際は、(5)は、線形なので線形計画法で最適化を行うと良い最適解を得ることが出来る。   In the optimization calculation, since (5) is linear, an optimal solution can be obtained by performing optimization by linear programming.

また、今まで述べた実施例では、Z4項のような倍率成分も非球面加工するように述べたが、露光装置に搭載されている収差補正機構で補正できる成分は、そちらで補正し、それで取りきれない分を非球面加工で補正してもよい。   In the embodiments described so far, it has been described that the magnification component such as the Z4 term is also aspherically processed. However, the component that can be corrected by the aberration correction mechanism mounted on the exposure apparatus is corrected there, The amount that cannot be removed may be corrected by aspherical processing.

また、本発明は上記実施例に限定されるものではなく、本実施例に記載の露光装置を用いたデバイスの製造方法にも適用可能である。具体的には、上述の露光装置を用いて、ウエハーやガラス基板等の被露光体を露光する工程と、その露光された被露光体を現像する工程と、さらに現像された被露光体に後処理を施す工程とを有するデバイスの製造方法である。   Further, the present invention is not limited to the above-described embodiment, and can be applied to a device manufacturing method using the exposure apparatus described in this embodiment. Specifically, using the above-described exposure apparatus, a step of exposing an object to be exposed such as a wafer or a glass substrate, a step of developing the exposed object to be exposed, and a step of further developing the exposed object to be developed A method for manufacturing a device.

本発明の補正プレートとそれを搭載した露光装置Correction plate of the present invention and exposure apparatus equipped with the same 非球面加工面における歪曲収差加工敏感度Distortion processing sensitivity on aspherical surfaces 非球面加工面における歪曲収差加工敏感度テーブルDistortion processing sensitivity table on aspherical surface 歪曲収差補正前Before distortion correction 歪曲収差補正後After distortion correction 補正プレートを搭載したスキャナーScanner with correction plate 歪曲収差補正の原理Principle of distortion correction

Claims (9)

第1物体面上のパターンを撮影光学系によって第2物体面上に撮影露光する撮影露光装置の光路中に設け、該撮影光学系の残存収差を補正するための残存収差補正板であって、該補正板上に非球面加工を施し残存収差を補正する補正方法において、該補正板上に加工する非球面形状をあらかじめ特定の関数でフィッティングできる複数の形状に成分分けしてあり、該成分ごとに残存収差変化量を求めており、補正したい残存収差量に対し、各成分の線形和と残存収差量の差、あるいは和が最小になるように各成分の割合を求め、その割合と各成分の単位形状の線形和を非球面加工値とする残存収差補正方法。   A residual aberration correction plate for correcting a residual aberration of the photographic optical system by providing a pattern on the first object plane in an optical path of a photographic exposure apparatus that shoots and exposes a second object plane by a photographic optical system; In the correction method for correcting the residual aberration by performing aspheric processing on the correction plate, the aspheric shape processed on the correction plate is divided into a plurality of shapes that can be fitted with a specific function in advance, and each component The amount of change in residual aberration is obtained, and the difference between the linear sum of each component and the amount of residual aberration, or the ratio of each component is calculated so that the sum is minimized with respect to the residual aberration amount to be corrected. A residual aberration correction method in which the linear sum of the unit shapes is an aspheric surface processing value. 前記非球面形状をフィッティングする関数はZernike多項式である請求項1記載の補正方法。   The correction method according to claim 1, wherein the function for fitting the aspherical shape is a Zernike polynomial. 前記各成分の線形和と残存収差量の差、あるいは和が最小値を求める方法は、線形計画法である請求項1記載の補正方法。   The correction method according to claim 1, wherein the difference between the linear sum of each component and the residual aberration amount, or a method for obtaining a minimum value of the sum is linear programming. 前記各成分の線形和と残存収差量の差、あるいは和の最小値とは、補正後の残存収差の測定点の絶対値の最大値を最小化した値である請求項1記載の補正方法。   The correction method according to claim 1, wherein the difference between the linear sum of the respective components and the residual aberration amount, or the minimum value of the sum is a value obtained by minimizing the maximum absolute value of the measurement point of the residual aberration after correction. 前記各成分の線形和と残存収差量の差、あるいは和が最小値とは、補正後の残存収差の測定点の3σを最小化した値である請求項1記載の補正方法。   The correction method according to claim 1, wherein the difference between the linear sum of the respective components and the residual aberration amount, or the minimum sum is a value obtained by minimizing 3σ of the measurement point of the residual aberration after correction. 前記各成分の割合に制約を設定してある請求項1記載の補正方法。   The correction method according to claim 1, wherein a restriction is set on a ratio of each component. 第1物体面上のパターンを撮影光学系によって第2物体面上に撮影露光する撮影露光装置の光路中に設け、該撮影光学系の残存収差を補正するための残存収差補正板であって、該補正板上に残存収差を補正するための非球面加工を施してあり、該補正非球面形状は、あらかじめ特定の関数でフィッティングできる複数の形状に成分分けしてあり、該成分ごとに残存収差変化量を求めており、補正したい残存収差量に対し、各成分の線形和と残存収差量の差、あるいは和が最小になるように各成分の割合を求め、その割合と各成分の単位形状の線形和で求めた形状である補正板を搭載してある露光装置。   A residual aberration correction plate for correcting a residual aberration of the photographic optical system by providing a pattern on the first object plane in an optical path of a photographic exposure apparatus that shoots and exposes a second object plane by a photographic optical system; The correction plate is subjected to aspheric processing for correcting residual aberration, and the corrected aspheric shape is divided into a plurality of shapes that can be fitted with a specific function in advance, and the residual aberration for each component. The amount of change is calculated, and the difference between the linear sum of each component and the amount of residual aberration, or the ratio of each component is calculated so that the sum is minimized, and the ratio and the unit shape of each component. An exposure apparatus equipped with a correction plate having a shape obtained by linear summation. 前記補正板は、着脱可である請求項7記載の露光装置。   The exposure apparatus according to claim 7, wherein the correction plate is detachable. 請求項7乃至8いずれかに記載の露光装置を用いて被露光体を露光する工程と、前記露光された被露光体を現像する工程とを有することを特徴とするデバイスの製造方法。
9. A device manufacturing method, comprising: a step of exposing an object to be exposed using the exposure apparatus according to claim 7; and a step of developing the exposed object to be exposed.
JP2003350349A 2003-10-09 2003-10-09 Method for correcting distortion aberration and aligner using same Withdrawn JP2005116852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003350349A JP2005116852A (en) 2003-10-09 2003-10-09 Method for correcting distortion aberration and aligner using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003350349A JP2005116852A (en) 2003-10-09 2003-10-09 Method for correcting distortion aberration and aligner using same

Publications (1)

Publication Number Publication Date
JP2005116852A true JP2005116852A (en) 2005-04-28

Family

ID=34541930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003350349A Withdrawn JP2005116852A (en) 2003-10-09 2003-10-09 Method for correcting distortion aberration and aligner using same

Country Status (1)

Country Link
JP (1) JP2005116852A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114750A (en) * 2005-09-09 2007-05-10 Asml Netherlands Bv Projection system design method, lithography apparatus, and device manufacturing method
JP2010535423A (en) * 2007-08-03 2010-11-18 カール・ツァイス・エスエムティー・アーゲー Projection objective system, projection exposure apparatus, projection exposure method, and optical correction plate for microlithography
JP2013195487A (en) * 2012-03-16 2013-09-30 Topcon Corp Exposure device
JP2014120682A (en) * 2012-12-18 2014-06-30 Canon Inc Exposure device, exposure method and method of manufacturing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114750A (en) * 2005-09-09 2007-05-10 Asml Netherlands Bv Projection system design method, lithography apparatus, and device manufacturing method
US7714307B2 (en) 2005-09-09 2010-05-11 Asml Netherlands B.V. Method of designing a projection system, lithographic apparatus and device manufacturing method
JP2010535423A (en) * 2007-08-03 2010-11-18 カール・ツァイス・エスエムティー・アーゲー Projection objective system, projection exposure apparatus, projection exposure method, and optical correction plate for microlithography
JP2014075610A (en) * 2007-08-03 2014-04-24 Carl Zeiss Smt Gmbh Projection objective system for microlithography, projection aligner, projection exposure method, and optical correction plate
JP2016042192A (en) * 2007-08-03 2016-03-31 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection objective system for microlithography, projection exposure apparatus, projection exposure method, and optical correction plate
JP2013195487A (en) * 2012-03-16 2013-09-30 Topcon Corp Exposure device
JP2014120682A (en) * 2012-12-18 2014-06-30 Canon Inc Exposure device, exposure method and method of manufacturing device

Similar Documents

Publication Publication Date Title
JP4352458B2 (en) Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method and exposure apparatus, exposure apparatus manufacturing method, program, and device manufacturing method
JP3927774B2 (en) Measuring method and projection exposure apparatus using the same
KR100879306B1 (en) Measurement method and apparatus, exposure apparatus
US7190443B2 (en) Reticle and optical characteristic measuring method
US20030174297A1 (en) Method of adjusting projection optical apparatus
US6639651B2 (en) Fabrication method for correcting member, fabrication method for projection optical system, and exposure apparatus
US20030091913A1 (en) Aberration measuring method and projection exposure apparatus
EP2503590A1 (en) Optical characteristic measurement method, exposure method and device manufacturing method
US7046334B2 (en) Displacement correction apparatus, exposure system, exposure method and a computer program product
JP4455129B2 (en) Aberration measuring method and projection exposure apparatus using the same
JP2007158225A (en) Aligner
JP2002206990A (en) Wave front aberration measuring method and projection exposure device
JP2006303196A (en) Measuring device and aligner having the same
JP3495983B2 (en) Mask and projection exposure apparatus
KR101320240B1 (en) Wavefront aberration measurement apparatus, exposure apparatus, and method of manufacturing device
JP4143614B2 (en) Measuring method
JP7054365B2 (en) Evaluation method, exposure method, and article manufacturing method
US20060132757A1 (en) System for measuring aberration, method for measuring aberration and method for manufacturing a semiconductor device
JP2005116852A (en) Method for correcting distortion aberration and aligner using same
JP4912205B2 (en) Exposure apparatus and device manufacturing method
JP2006030016A (en) Calibration method for wavefront aberration measurement apparatus, wavefront aberration measurement method and apparatus, projection optical system, manufacturing method of same, projection exposure apparatus, manufacturing method of same, microdevice, manufacturing method of same
JP3715751B2 (en) Residual aberration correction plate and projection exposure apparatus using the same
JP2007250723A (en) Evaluation method and regulation method of imaging optical system, exposure device and exposure method
JPH11297615A (en) Projection aligner and manufacture of semiconductor device using the aligner
JP3673783B2 (en) Aberration measuring method and projection exposure apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109