JP2005116361A - Negative electrode can and manganese dry cell using it - Google Patents

Negative electrode can and manganese dry cell using it Download PDF

Info

Publication number
JP2005116361A
JP2005116361A JP2003349615A JP2003349615A JP2005116361A JP 2005116361 A JP2005116361 A JP 2005116361A JP 2003349615 A JP2003349615 A JP 2003349615A JP 2003349615 A JP2003349615 A JP 2003349615A JP 2005116361 A JP2005116361 A JP 2005116361A
Authority
JP
Japan
Prior art keywords
negative electrode
weight
beryllium
niobium
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003349615A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Sakamoto
光洋 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003349615A priority Critical patent/JP2005116361A/en
Publication of JP2005116361A publication Critical patent/JP2005116361A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode can which has can-forming processability, mechanical strength, and corrosion resistance without containing lead, but equal to or larger than processability when it contains lead. <P>SOLUTION: The negative electrode can for a manganese dry cell is made of a zinc alloy which does not contain lead and contains indium 0.01-0.5 wt%, and contains at least one kind selected from a group of niobium and beryllium 0.001-0.5 wt%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、マンガン乾電池、特に鉛を含有しない亜鉛合金からなる負極缶に関する。   The present invention relates to a manganese battery, particularly a negative electrode can made of a zinc alloy not containing lead.

従来より、マンガン乾電池における負極缶では、材料として用いられている亜鉛の加工性、機械的強度を高め、さらに耐食性を向上させるために、亜鉛に鉛を添加していた。
しかし、近年、使用後の乾電池がもたらす環境汚染を防止するため、電池を構成する部材に、水銀、カドミウム、および鉛等の有害物質を使用しない方向で種々の検討が進められている。
Conventionally, in a negative electrode can in a manganese dry battery, lead has been added to zinc in order to increase the workability and mechanical strength of zinc used as a material and to further improve the corrosion resistance.
However, in recent years, in order to prevent environmental pollution caused by dry batteries after use, various studies have been made in the direction of not using harmful substances such as mercury, cadmium, and lead for members constituting the batteries.

例えば、特許文献1では、負極缶を構成する材料として、インジウムを0.05〜0.5重量%含有し、かつアルミニウムとガリウムの少なくとも一方を0.001〜0.05重量%含有する亜鉛合金を用いることが提案されている。
しかし、亜鉛にインジウムを添加すると、亜鉛の耐食性は向上するが、成缶後の機械的強度が低下するという問題があった。また、亜鉛にアルミニウムやガリウムを添加すると、成缶後の機械的強度は向上するが、亜鉛の耐食性および加工性が良好でないという問題があった。
特開平6−196156号公報
For example, in Patent Document 1, as a material constituting the negative electrode can, a zinc alloy containing 0.05 to 0.5% by weight of indium and 0.001 to 0.05% by weight of at least one of aluminum and gallium It has been proposed to use
However, when indium is added to zinc, the corrosion resistance of zinc is improved, but there is a problem that the mechanical strength after the can is lowered. Further, when aluminum or gallium is added to zinc, the mechanical strength after the can is improved, but there is a problem that the corrosion resistance and workability of zinc are not good.
JP-A-6-196156

そこで、本発明は、上記の問題を解決するため、鉛を含まずに、従来の鉛を含有した場合と同等またはそれ以上の成缶加工性、機械的強度、および耐食性を有する負極缶を提供することを目的とする。また、この負極缶を用いることにより、環境に優しいマンガン乾電池を提供することを目的とする。   In order to solve the above problems, the present invention provides a negative electrode can which does not contain lead and has a can processability, mechanical strength, and corrosion resistance equivalent to or higher than that of conventional lead. The purpose is to do. Moreover, it aims at providing an environmentally friendly manganese dry battery by using this negative electrode can.

本発明のマンガン乾電池用負極缶は、鉛を含有せず、インジウムを0.01〜0.5重量%含有し、かつニオブおよびベリリウムよりなる群から選択される少なくとも一種を0.001〜0.5重量%含有する亜鉛合金からなることを特徴とする。
また、本発明は上記の負極缶を用いたマンガン乾電池に関する。
The negative electrode can for manganese dry batteries of the present invention does not contain lead, contains 0.01 to 0.5% by weight of indium, and contains at least one selected from the group consisting of niobium and beryllium in an amount of 0.001 to 0.00. It consists of a zinc alloy containing 5% by weight.
The present invention also relates to a manganese dry battery using the above negative electrode can.

本発明によれば、鉛を含まずに、従来の鉛を含有した場合と同等またはそれ以上の加工性、機械的強度、および耐食性を有する負極缶を提供することができる。また、この負極缶を用いることにより環境に優しいマンガン乾電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the negative electrode can which does not contain lead but has the workability, mechanical strength, and corrosion resistance equivalent or more than the case where the conventional lead is contained can be provided. Moreover, an environmentally friendly manganese dry battery can be provided by using this negative electrode can.

本発明は、鉛を含有せず、インジウムを0.01〜0.5重量%含有し、かつニオブおよびベリリウムよりなる群から選択される少なくとも一種を0.001〜0.5重量%含有する亜鉛合金からなるマンガン乾電池用負極缶に関する。
このとき、鉛を含有せずに、鉛を含有した場合と同等またはそれ以上の成缶加工性、機械的強度、および電解液に対する耐食性を有する負極缶が得られる。
The present invention does not contain lead, contains 0.01 to 0.5% by weight of indium, and contains 0.001 to 0.5% by weight of at least one selected from the group consisting of niobium and beryllium. The present invention relates to a negative electrode can for manganese dry batteries made of an alloy.
At this time, the negative electrode can which does not contain lead and has can processability, mechanical strength, and corrosion resistance with respect to the electrolytic solution equivalent to or higher than the case of containing lead can be obtained.

上記のインジウム、ニオブおよびベリリウムは水素過電圧が大きいため、亜鉛表面の水素過電圧が大きくなり、負極缶における水素ガス発生が抑制され、電解液に対する耐食性が向上する。
また、上記のニオブおよびベリリウムは純亜鉛の延性および硬さを向上させる効果を有するため、負極缶の成缶加工性および成缶後の機械的強度が向上する。
Since indium, niobium and beryllium have a large hydrogen overvoltage, the hydrogen overvoltage on the zinc surface is increased, the generation of hydrogen gas in the negative electrode can is suppressed, and the corrosion resistance to the electrolyte is improved.
Moreover, since said niobium and beryllium have the effect which improves the ductility and hardness of pure zinc, the can processability of a negative electrode can and the mechanical strength after a can improve.

しかし、インジウム量の含有量が、0.01重量%未満の場合、インジウムを含有することによる効果が不充分となる。一方、含有量が0.5重量%を超えると、機械的強度が低下する。特に、インジウムの含有量は0.05〜0.15重量%がより好ましい。
また、ニオブおよびベリリウムの一方または両方を合計した含有量が0.001重量%未満の場合、ニオブおよびベリリウムの効果が不充分となる。一方、含有量が0.5重量%を超えると、電解液に対する耐久性が低下する。
However, when the content of indium is less than 0.01% by weight, the effect of containing indium becomes insufficient. On the other hand, when the content exceeds 0.5% by weight, the mechanical strength decreases. In particular, the indium content is more preferably 0.05 to 0.15% by weight.
On the other hand, when the total content of one or both of niobium and beryllium is less than 0.001% by weight, the effect of niobium and beryllium becomes insufficient. On the other hand, when the content exceeds 0.5% by weight, durability against the electrolytic solution is lowered.

また、この負極缶を用いたマンガン乾電池では、負極缶に有害な鉛が含まれないため、環境汚染を抑制することができる。
以下、本発明の実施例を詳細に説明する。
Moreover, in the manganese dry battery using this negative electrode can, since harmful lead is not contained in the negative electrode can, environmental pollution can be suppressed.
Hereinafter, embodiments of the present invention will be described in detail.

《実施例1〜12および比較例1〜14》
(i)負極缶の作製
低周波誘導炉を使用して純度99.99重量%の亜鉛を約500℃で溶融し、これに表1に示す所定量の元素を添加し、亜鉛合金溶湯をそれぞれ得た。そして、これらの亜鉛合金溶湯を冷却しながら所定の厚さの板状に圧延し、合金板をそれぞれ得た。これらの合金板をプレスで打ち抜くことにより、所定の大きさの丸形、もしくは六角形の小片をそれぞれ得た。これらの小片を用いてインパクト成形法により有底円筒形の単1形および単3形マンガン乾電池用のR20およびR6サイズ負極缶をそれぞれ得た。
<< Examples 1-12 and Comparative Examples 1-14 >>
(I) Production of negative electrode can Using a low-frequency induction furnace, 99.99% by weight of zinc was melted at about 500 ° C., and a predetermined amount of elements shown in Table 1 were added thereto, respectively, Obtained. And while cooling these zinc alloy molten metal, it rolled into the plate shape of predetermined thickness, and obtained the alloy plate, respectively. These alloy plates were punched with a press to obtain round or hexagonal pieces having a predetermined size. Using these small pieces, R20 and R6 size negative electrode cans for bottomed cylindrical single-unit and single-unit manganese batteries were obtained by impact molding.

Figure 2005116361
Figure 2005116361

(ii)正極合剤の作製
二酸化マンガンと、導電性カーボンブラックと、塩化亜鉛30重量部および水70重量部を含む電解液とを、重量比50:10:40で混合し、成形して正極合剤を得た。
(Ii) Preparation of positive electrode mixture Manganese dioxide, conductive carbon black, and an electrolytic solution containing 30 parts by weight of zinc chloride and 70 parts by weight of water are mixed at a weight ratio of 50:10:40 and molded to form a positive electrode. A mixture was obtained.

(iii)マンガン乾電池の組み立て
上記で得られたR6サイズの負極缶を用い、以下に示す手順で図1に示す構成の単3形マンガン乾電池を作製した。
上記で得られた負極缶4内にセパレータ3を介して円筒形の正極合剤1を収納した。正極合剤の中央部に、カーボン粉末を固めた炭素棒2を差し込んだ。
(Iii) Assembly of Manganese Battery Using the R6 size negative electrode can obtained above, an AA manganese battery having the configuration shown in FIG.
The cylindrical positive electrode mixture 1 was accommodated in the negative electrode can 4 obtained above through the separator 3. A carbon rod 2 in which carbon powder was hardened was inserted into the central portion of the positive electrode mixture.

封口体5は、ポリオレフィン系樹脂で作製し、中央部に炭素棒2を挿入させる孔を設けた。鍔紙9は、板紙を中心孔を有する環状に打ち抜いて得たものであり、正極合剤1の上部に配置した。封口体5および鍔紙9の中心孔を貫通する炭素棒2は、正極の集電体として作用するように、その上部を正極端子11と接触させた。
負極缶4の外周には、絶縁を確保するための熱収縮性を有する樹脂フィルムからなる樹脂チューブ8を配し、その上端部で、封口体5の外周部上面を覆い、その下端部でシールリング7の下面を覆った。
The sealing body 5 was made of a polyolefin-based resin and provided with a hole for inserting the carbon rod 2 in the center. The paper 9 was obtained by punching a paperboard into an annular shape having a center hole, and was placed on the top of the positive electrode mixture 1. The upper part of the carbon rod 2 penetrating the sealing body 5 and the central hole of the paper 9 was brought into contact with the positive electrode terminal 11 so as to act as a positive electrode current collector.
A resin tube 8 made of a heat-shrinkable resin film is provided on the outer periphery of the negative electrode can 4 to cover the upper surface of the outer periphery of the sealing body 5 at its upper end and to be sealed at its lower end. The lower surface of the ring 7 was covered.

ブリキ板で作製した正極端子11には、炭素棒2の上端部に被せるキャップ状の中央部および平板状の鍔部を有する形状を持たせた。この正極端子11の平板状の鍔部には、樹脂製の絶縁リング12を配した。正極合剤1の底部と負極缶4の間には、絶縁を確保するために、底紙13を設けた。負極端子6の平板状外周部の外面側にはシールリング7を配置した。   The positive electrode terminal 11 made of a tin plate was provided with a shape having a cap-shaped central portion and a flat plate-shaped flange portion that covers the upper end portion of the carbon rod 2. An insulating ring 12 made of resin was disposed on the flat collar portion of the positive electrode terminal 11. A bottom paper 13 was provided between the bottom of the positive electrode mixture 1 and the negative electrode can 4 in order to ensure insulation. A seal ring 7 is disposed on the outer surface side of the flat plate-like outer peripheral portion of the negative electrode terminal 6.

筒状のブリキ板で作製した金属外装缶10を、樹脂チューブ8の外側に配置し、その下端部を内側に折り曲げ、その上端部を内方にカールさせるとともに、その上端部の先端を絶縁リング12に接触させた。このようにして、絶縁リング12、正極端子11の平板状の鍔部、樹脂チューブ8の上端部、封口体5の外周部、および負極缶4の開口端部、ならびに樹脂チューブ8の下端部、シールリング7、および負極端子6がそれぞれ所定位置に固定された。
上記で得られた各負極缶およびマンガン乾電池について以下のような評価を行った。
A metal outer can 10 made of a cylindrical tin plate is placed outside the resin tube 8, its lower end is bent inward, its upper end is curled inward, and the tip of its upper end is insulated with an insulating ring 12 was contacted. In this way, the insulating ring 12, the flat collar of the positive terminal 11, the upper end of the resin tube 8, the outer periphery of the sealing body 5, the open end of the negative electrode can 4, and the lower end of the resin tube 8, The seal ring 7 and the negative electrode terminal 6 were each fixed at a predetermined position.
Each negative electrode can and manganese dry battery obtained above were evaluated as follows.

[評価]
(1)負極缶の機械的強度
図2に示すように有底円筒形のR20サイズの負極缶14をVブロック15上に設置した。そして、負極缶14の開口部から10mmの外側面上に円錐状の圧力端子16を押し当てた。この圧力端子16の押し当てた点が移動したときの変移量と、この点に掛かる力を記録計で記録した。R20サイズの負極缶14では約4mmでほぼ一定値を示すので、4mm変移時に測定点に掛かる力を、便宜上、負極缶14の機械的強度とした。
[Evaluation]
(1) Mechanical strength of negative electrode can As shown in FIG. 2, a bottomed cylindrical R20 size negative electrode can 14 was placed on a V block 15. And the conical pressure terminal 16 was pressed on the outer surface of 10 mm from the opening part of the negative electrode can 14. The amount of change when the point pressed by the pressure terminal 16 moved and the force applied to this point were recorded with a recorder. Since the R20 size negative electrode can 14 shows a substantially constant value at about 4 mm, the force applied to the measurement point at the time of 4 mm transition is defined as the mechanical strength of the negative electrode can 14 for convenience.

(2)負極缶の耐食性
負極缶の電解液に対する耐食性を評価するため、R20サイズの負極缶を一定の重量に切断したものを、45℃の電解液中に浸漬したときの水素ガスの発生量を調べた。なお、電解液には塩化亜鉛を30重量%含む水溶液を用いた。
(2) Corrosion resistance of the negative electrode can In order to evaluate the corrosion resistance of the negative electrode can to the electrolyte, the amount of hydrogen gas generated when an R20 size negative electrode can cut into a constant weight was immersed in an electrolyte at 45 ° C. I investigated. Note that an aqueous solution containing 30% by weight of zinc chloride was used as the electrolytic solution.

(3)マンガン乾電池の放電性能
初度および45℃で3ヶ月間保存後の電池について、20±2℃の環境下で、1.8Ωの負荷で15秒間放電し、その後45秒間放電を休止するサイクルを、閉路電圧が0.9Vに達するまで繰り返した。そして、この時のサイクル数により放電性能を評価した。
(3) Discharge performance of manganese dry batteries Cycles in which batteries were initially stored at 45 ° C for 3 months, discharged at 1.8Ω load for 15 seconds in an environment of 20 ± 2 ° C, and then stopped for 45 seconds. Was repeated until the closed circuit voltage reached 0.9V. And discharge performance was evaluated by the number of cycles at this time.

インジウムを添加した場合
表1に示すようにインジウムを含有した亜鉛合金を負極缶に用いた比較例3〜8の評価結果を表2に示す。なお、従来品として亜鉛が鉛を0.4重量%含んだ場合の比較例1、および亜鉛のみの場合の比較例2の結果も示す。
Table 2 shows the evaluation results of Comparative Examples 3 to 8 in which a zinc alloy containing indium was used for the negative electrode can as shown in Table 1 when indium was added . In addition, the result of the comparative example 1 in case zinc contains 0.4 weight% of lead as a conventional product, and the comparative example 2 in the case of only zinc is also shown.

Figure 2005116361
Figure 2005116361

インジウムを0.01重量%以上含有した場合、負極缶の機械的強度がある程度向上した。また、水素ガスの発生量は大幅に減少し、電解液に対する耐食性が向上した。しかし、含有量が0.5重量%を超えると機械的強度が低下した。このことから、インジウムの含有量は、0.01〜0.5重量%が好ましいことがわかった。
しかし、インジウムを含有しただけでは、従来品の比較例1の負極缶に比べて、充分な機械的強度および耐食性は得られなかった。また、このような範囲のインジウムを含有した亜鉛合金を負極缶に用いた電池では、45℃、3ヶ月保存後の放電特性の低下が大きく、充分な保存特性が得られなかった。
When indium was contained in an amount of 0.01% by weight or more, the mechanical strength of the negative electrode can was improved to some extent. In addition, the amount of hydrogen gas generated was greatly reduced, and the corrosion resistance to the electrolyte was improved. However, when the content exceeded 0.5% by weight, the mechanical strength decreased. From this, it was found that the content of indium is preferably 0.01 to 0.5% by weight.
However, sufficient mechanical strength and corrosion resistance could not be obtained only by containing indium as compared with the conventional negative electrode can of Comparative Example 1. In addition, in a battery using a zinc alloy containing indium in such a range for a negative electrode can, the discharge characteristics after storage at 45 ° C. for 3 months were large, and sufficient storage characteristics could not be obtained.

上記より、インジウムの含有量は0.01〜0.5重量%が好ましいことがわかったが、以下、インジウムの含有量を0.1重量%に固定して、さらにニオブやベリリウムを添加した場合の検討を行った。   From the above, it was found that the content of indium is preferably 0.01 to 0.5% by weight. However, when the content of indium is fixed at 0.1% by weight and niobium or beryllium is further added. Was examined.

インジウムにさらにニオブを添加した場合
表1に示すようにインジウムおよびニオブを含有した亜鉛合金を負極缶に用いた実施例1〜4および比較例9、10の評価結果を表3に示す。
When niobium is further added to indium Table 3 shows the evaluation results of Examples 1 to 4 and Comparative Examples 9 and 10 in which a zinc alloy containing indium and niobium was used for the negative electrode can as shown in Table 1.

Figure 2005116361
Figure 2005116361

ニオブの含有量が多いほど、負極缶の機械的強度が向上した。また、負極缶における水素ガスの発生量は、比較例1とほぼ同等の量であった。しかし、ニオブの含有量が1.0重量%の比較例10では、水素ガスの発生量が増加した。また、電池特性としても、ニオブの含有量が0.5重量%以下の場合では、含有量が多いほど、保存特性は向上した。しかし、含有量が1.0重量%の比較例10では、保存特性が悪くなった。ニオブの含有量が0.0005重量%の比較例9では、負極缶の機械的強度が低く、水素ガスの発生量が多く、電池の保存特性が悪くなった。
表3より、ニオブを0.001〜0.5重量%含有した実施例1〜4では、比較例1の従来品よりも優れた機械的強度および耐食性が得られることがわかった。
The higher the niobium content, the better the mechanical strength of the negative electrode can. The amount of hydrogen gas generated in the negative electrode can was almost the same as that in Comparative Example 1. However, in Comparative Example 10 where the niobium content was 1.0% by weight, the amount of hydrogen gas generated increased. Further, as the battery characteristics, when the niobium content was 0.5% by weight or less, the storage characteristics improved as the content increased. However, in Comparative Example 10 having a content of 1.0% by weight, the storage characteristics deteriorated. In Comparative Example 9 in which the niobium content was 0.0005% by weight, the negative electrode can had low mechanical strength, a large amount of hydrogen gas was generated, and the storage characteristics of the battery deteriorated.
From Table 3, it was found that in Examples 1 to 4 containing 0.001 to 0.5% by weight of niobium, mechanical strength and corrosion resistance superior to those of the conventional product of Comparative Example 1 were obtained.

インジウムにさらにベリリウムを添加した場合
表1に示すようにインジウムおよびベリリウムを含有した亜鉛合金を負極缶に用いた実施例5〜8および比較例11、12の評価結果を表4に示す。
Table 4 shows the evaluation results of Examples 5 to 8 and Comparative Examples 11 and 12 in which a zinc alloy containing indium and beryllium was used for the negative electrode can as shown in Table 1 when beryllium was further added to indium.

Figure 2005116361
Figure 2005116361

ベリリウムの含有量が多いほど、負極缶の機械的強度が向上した。また、負極缶における水素ガスの発生量は、比較例1とほぼ同等の量であった。しかし、ベリリウムの含有量が1.0重量%の比較例12では、水素ガス発生量が増加した。また、電池特性としても、ベリリウムの含有量が0.5重量%以下の場合では、含有量が多いほど保存特性は向上したが、含有量が1.0重量%の比較例12では、保存特性が悪くなった。ベリリウムの含有量が0.0005重量%の比較例11では、負極缶の機械的強度が低く、水素ガスの発生量が多く、電池の保存特性が悪くなった。
表4より、ベリリウムを0.001〜0.5重量%含有した実施例5〜8では、比較例1の従来品よりも優れた機械的強度および耐食性が得られることがわかった。
The higher the beryllium content, the better the mechanical strength of the negative electrode can. The amount of hydrogen gas generated in the negative electrode can was almost the same as that in Comparative Example 1. However, in Comparative Example 12 in which the beryllium content was 1.0% by weight, the hydrogen gas generation amount increased. Further, as the battery characteristics, when the content of beryllium is 0.5% by weight or less, the storage characteristics improved as the content increased, but in Comparative Example 12 having a content of 1.0% by weight, the storage characteristics were improved. Became worse. In Comparative Example 11 in which the beryllium content was 0.0005% by weight, the negative electrode can had low mechanical strength, a large amount of hydrogen gas was generated, and the storage characteristics of the battery deteriorated.
From Table 4, it was found that in Examples 5 to 8 containing 0.001 to 0.5% by weight of beryllium, mechanical strength and corrosion resistance superior to the conventional product of Comparative Example 1 were obtained.

インジウムにさらにニオブおよびベリリウムを添加した場合
表1に示すようにインジウムを0.1重量%含有し、さらにニオブとベリリウムとを重量比1:1の割合で含有した亜鉛合金を負極缶に用いた実施例9〜12および比較例13、14の評価結果を表5に示す。
When niobium and beryllium were further added to indium, as shown in Table 1, a zinc alloy containing 0.1% by weight of indium and further containing niobium and beryllium at a weight ratio of 1: 1 was used for the negative electrode can. Table 5 shows the evaluation results of Examples 9 to 12 and Comparative Examples 13 and 14.

Figure 2005116361
Figure 2005116361

ニオブおよびベリリウムの含有量が多いほど、負極缶の機械的強度が向上した。また、負極缶における水素ガスの発生量は、比較例1とほぼ同等の量であった。しかし、ニオブとベリリウムの含有量が合計で1.0重量%の比較例14では、水素ガス発生量が増加した。また、電池特性としても、ニオブとベリリウムの含有量が合計で0.5重量%以下である場合では、含有量が多いほど保存特性は向上したが、ニオブとベリリウムの含有量が合計で1.0重量%の比較例14では、保存特性が悪くなった。ニオブとベリリウムの含有量が合計で0.0005重量%の比較例13では、負極缶の機械的強度が低く、水素ガスの発生量が多く、電池の保存特性が悪くなった。   The higher the content of niobium and beryllium, the better the mechanical strength of the negative electrode can. The amount of hydrogen gas generated in the negative electrode can was almost the same as that in Comparative Example 1. However, in Comparative Example 14 where the total content of niobium and beryllium was 1.0% by weight, the amount of hydrogen gas generated increased. In addition, as for battery characteristics, when the total content of niobium and beryllium is 0.5% by weight or less, the storage characteristics improved as the content increased, but the total content of niobium and beryllium was 1. In Comparative Example 14 of 0% by weight, the storage characteristics deteriorated. In Comparative Example 13 in which the total content of niobium and beryllium was 0.0005% by weight, the mechanical strength of the negative electrode can was low, the amount of hydrogen gas generated was large, and the storage characteristics of the battery deteriorated.

表5より、ニオブとベリリウムを合計で0.001〜0.5重量%含有した実施例9〜12では、比較例1の従来品よりも優れた機械的強度および耐食性が得られることがわかった。
なお、上記では、ニオブおよびベリリウムの添加効果については、インジウムを0.1重量%含有した場合を示したが、インジウムの含有量が0.01〜0.5重量%の範囲において同様の効果が得られる。
From Table 5, it was found that in Examples 9 to 12 containing 0.001 to 0.5% by weight of niobium and beryllium in total, mechanical strength and corrosion resistance superior to the conventional product of Comparative Example 1 were obtained. .
In the above, the addition effect of niobium and beryllium is shown in the case of containing 0.1% by weight of indium, but the same effect is obtained when the indium content is in the range of 0.01 to 0.5% by weight. can get.

以上のように、本発明のマンガン乾電池用負極缶は、鉛を含有せずに、従来の鉛を含有した負極缶と同等またはそれ以上の機械的強度、成缶加工性、および耐食性を有するため、鉛等の有害物質を用いないマンガン乾電池に適用できる。   As described above, the negative electrode can for manganese dry battery of the present invention does not contain lead, and has mechanical strength, can processability, and corrosion resistance equal to or higher than that of a conventional negative electrode can containing lead. It can be applied to manganese dry batteries that do not use harmful substances such as lead.

本発明のマンガン乾電池の一部を断面にした正面図である。It is the front view which made a part of manganese dry battery of the present invention a section. 負極缶の機械的強度の測定法を示す図である。It is a figure which shows the measuring method of the mechanical strength of a negative electrode can.

符号の説明Explanation of symbols

1 正極合剤
2 炭素棒
3 セパレータ
4、14 負極缶
5 封口体
6 負極端子
7 シールリング
8 樹脂チューブ
9 鍔紙
10 金属外装缶
11 正極端子
12 絶縁リング
13 底紙
15 Vブロック
16 圧力端子
DESCRIPTION OF SYMBOLS 1 Positive electrode mixture 2 Carbon rod 3 Separator 4, 14 Negative electrode can 5 Sealing body 6 Negative electrode terminal 7 Seal ring 8 Resin tube 9 Paperboard 10 Metal armored can 11 Positive electrode terminal 12 Insulation ring 13 Bottom paper 15 V block 16 Pressure terminal

Claims (2)

鉛を含有せず、インジウムを0.01〜0.5重量%含有し、かつニオブおよびベリリウムよりなる群から選択される少なくとも一種を0.001〜0.5重量%含有する亜鉛合金からなるマンガン乾電池用負極缶。   Manganese made of zinc alloy not containing lead, containing 0.01 to 0.5% by weight of indium, and containing 0.001 to 0.5% by weight of at least one selected from the group consisting of niobium and beryllium Negative electrode can for dry batteries. 請求項1記載のマンガン乾電池用負極缶を用いたマンガン乾電池。   A manganese dry battery using the negative electrode can for manganese dry battery according to claim 1.
JP2003349615A 2003-10-08 2003-10-08 Negative electrode can and manganese dry cell using it Pending JP2005116361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349615A JP2005116361A (en) 2003-10-08 2003-10-08 Negative electrode can and manganese dry cell using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003349615A JP2005116361A (en) 2003-10-08 2003-10-08 Negative electrode can and manganese dry cell using it

Publications (1)

Publication Number Publication Date
JP2005116361A true JP2005116361A (en) 2005-04-28

Family

ID=34541432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349615A Pending JP2005116361A (en) 2003-10-08 2003-10-08 Negative electrode can and manganese dry cell using it

Country Status (1)

Country Link
JP (1) JP2005116361A (en)

Similar Documents

Publication Publication Date Title
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
KR0150391B1 (en) Manganese dry battery with zinc alloy can
JP3215447B2 (en) Zinc alkaline battery
JP2005116361A (en) Negative electrode can and manganese dry cell using it
KR0132019B1 (en) Manganese dry cell
JP2005026151A (en) Positive current collector for manganese dry battery and manganese dry battery using it
JP2007200682A (en) Coin battery
JP2001068121A (en) Cylindrical alkaline battery
JP2004319205A (en) Current collection rod for alkaline battery
JP3968248B2 (en) Aluminum battery
JP3618140B2 (en) Manganese battery
JP4007636B2 (en) Organic electrolyte secondary battery
JPH07240202A (en) Alkaline battery
JP2606480B2 (en) Alkaline battery
JP3111773B2 (en) Mercury-free alkaline battery and its manufacturing method
JP2005129309A (en) Positive electrode mixture of alkaline battery, and alkaline battery
JP2006059546A (en) Manganese dry cell, its anode can, and manufacturing method of those
JP4292431B2 (en) Cylindrical alkaline battery
JP2007048534A (en) Manganese dry cell
JP2009301720A (en) Manganese dry cell
JP2006019090A (en) Manganese dry cell
JP2007073502A (en) Manganese dry battery
JP4399232B2 (en) Alkaline battery
JP2009170161A (en) Aaa alkaline battery