JP2005114702A - Fbg sensing system - Google Patents

Fbg sensing system Download PDF

Info

Publication number
JP2005114702A
JP2005114702A JP2003394815A JP2003394815A JP2005114702A JP 2005114702 A JP2005114702 A JP 2005114702A JP 2003394815 A JP2003394815 A JP 2003394815A JP 2003394815 A JP2003394815 A JP 2003394815A JP 2005114702 A JP2005114702 A JP 2005114702A
Authority
JP
Japan
Prior art keywords
fbg
wavelength band
fbgs
light
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003394815A
Other languages
Japanese (ja)
Inventor
Yusuke Takei
裕介 武井
Hiromi Yasujima
弘美 安島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003394815A priority Critical patent/JP2005114702A/en
Publication of JP2005114702A publication Critical patent/JP2005114702A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an FBG sensing system without use of two reflection wavelength bands of a FBG, capable of measuring the quantity of distortion using one reflection wavelength band and very small temperature characteristic, and excellent in wavelength utilizing efficiency. <P>SOLUTION: An FBG sensing apparatus is provided with the FBG (a fiber Bragg grating) for reflecting a light having the predetermined wavelength band and shifting the reflection wavelength band due to a temperature change and the distortion, a light source for outputting the light having the reflection wavelength band of the FBG, and an apparatus for detecting the shift of the wavelength band of the light output from the light source and reflected from the FBG. Two FBGs are provided in the same reflection wavelength band. One of FBGs is installed so as to simultaneously receive the temperature change and the distortion. The other is installed so as to receive only temperature change. A difference between the shifts of the wavelength bands of two FBGs is detected as the quantity of the distortion by allowing the temperature changes to be compensated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光ファイバからなるFBGを用いて歪計測を行うFBGセンシングシステムに関するものである。   The present invention relates to an FBG sensing system that performs strain measurement using an FBG made of an optical fiber.

近年、高度成長期に急激に建設された構造物の劣化が進み、構造物の健全度を評価する方法について、政府を中心に研究が活発に行われている。従来、構造物の歪を計測する方法として、抵抗線ひずみゲージを用いた電気的な方法が主流であったが、信頼性、落雷、電磁ノイズ等の問題があり、これら問題のない光ファイバによる計測(センシング)が注目されている。   In recent years, the structure that has been built rapidly during the high growth period has rapidly deteriorated, and research on the method for evaluating the soundness of the structure has been actively conducted mainly by the government. Conventionally, electrical methods using resistance strain gauges have been the mainstream method for measuring strain in structures, but there are problems such as reliability, lightning strikes, and electromagnetic noise. Measurement (sensing) is drawing attention.

光ファイバセンシング分野において、FBG(ファイバ・ブラッグ・グレーティング)は広帯域光源や波長可変光源と組み合わせて、構造物の歪計測に用いられている。   In the field of optical fiber sensing, FBG (fiber Bragg grating) is used in combination with a broadband light source or a wavelength tunable light source to measure the strain of a structure.

図6はFBGの概略を示す図である。   FIG. 6 is a diagram showing an outline of the FBG.

図6に示すようにFBG101は光ファイバ102のコア103の屈折率を一定の間隔Dで変化させたものである。光ファイバ102に入射した光は、間隔Dとコア103の屈折率で決まる波長の光を反射し、それ以外の波長は透過する。このため、反射波長はFBG101に架かる歪による間隔Dの変化や、温度による屈折率の変化で変位する特徴を有する。FBG101の温度特性は約0.01nm/℃、歪特性は約0.0012nm/μεであり、この特性を利用し温度計測や歪計測に使用される。   As shown in FIG. 6, the FBG 101 is obtained by changing the refractive index of the core 103 of the optical fiber 102 at a constant interval D. The light incident on the optical fiber 102 reflects light having a wavelength determined by the interval D and the refractive index of the core 103, and transmits other wavelengths. For this reason, the reflection wavelength has a feature that it is displaced by a change in the distance D due to strain applied to the FBG 101 or a change in the refractive index due to temperature. The temperature characteristics of the FBG 101 are about 0.01 nm / ° C., and the strain characteristics are about 0.0012 nm / με. The characteristics are used for temperature measurement and strain measurement.

ここで歪計測に使用される場合について考える。歪計測を行う場合、歪特性だけでなく、温度特性も考慮する必要があり、歪変化による反射波長の変位分を温度変化の反射波長変位分から差し引く必要がある。このため歪計測を行う場合は2個の異なる反射波長を有するFBGを用いる必要がある。   Consider the case where it is used for strain measurement. When performing strain measurement, it is necessary to consider not only the strain characteristic but also the temperature characteristic, and it is necessary to subtract the displacement of the reflected wavelength due to the strain change from the reflected wavelength displacement of the temperature change. Therefore, when performing strain measurement, it is necessary to use two FBGs having different reflection wavelengths.

非特許文献1は広帯域光源を用い、複数の異なる反射波長を有するFBGを一本の光ファイバで行うFBGセンシングシステムについて述べられている。   Non-Patent Document 1 describes an FBG sensing system that uses a broadband light source and performs FBGs having a plurality of different reflection wavelengths with a single optical fiber.

図12は非特許文献1に述べるFBGセンシングシステムの構成を示す図である。   FIG. 12 is a diagram showing the configuration of the FBG sensing system described in Non-Patent Document 1.

広帯域光源201から導出され光は光分岐器202を透過し、光ファイバ205を透過し、FBG203に達する。FBG203にて複数の異なる波長の光が反射され、光ファイバ205を透過し、光分岐器202を透過し、波長検出器204に到達し、反射波長を検出する。   The light derived from the broadband light source 201 passes through the optical splitter 202, passes through the optical fiber 205, and reaches the FBG 203. A plurality of different wavelengths of light are reflected by the FBG 203, pass through the optical fiber 205, pass through the optical splitter 202, reach the wavelength detector 204, and detect the reflected wavelength.

このように広帯域光源201を用いることで一本の光ファイバに、複数の異なる反射波長をもつFBGを備えられ、複数の歪、温度量を同時に計測することが可能である。   By using the broadband light source 201 in this way, an FBG having a plurality of different reflection wavelengths can be provided in one optical fiber, and a plurality of strains and temperature amounts can be measured simultaneously.

一般に広帯域光源にはSLD(Super Luminecent Diode)光源やASE(Amplified Sponteneous Emission)光源が用いられるが、それらの波長帯域は30nmから50nm程度である。   In general, an SLD (Super Luminescent Diode) light source or an ASE (Amplified Spontaneous Emission) light source is used as a broadband light source, and the wavelength band thereof is about 30 nm to 50 nm.

ここで広帯域光源201の帯域に対するFBGの数量について説明する。   Here, the number of FBGs for the band of the broadband light source 201 will be described.

1個のFBG203の使用帯域は、先に述べたように温度特性が約0.01nm/℃、歪特性は約0.0012nm/μεであるため、例えば0℃から50℃まで温度領域で±1000μεの歪量を計測する場合、0.01nm×50℃+0.0012nm×2000με=2.9nm必要となる。更にFBG203の反射波長帯域は半値幅で0.2nm程度であり、これを考慮すると1個のFBG203の使用帯域は3.1nm程度必要となる。一般的にはマージンを持ち4nm以上の帯域が使用される。以上により異なる反射波長帯域のFBG203の数量は10個程度になる。   As described above, the use band of one FBG 203 has a temperature characteristic of about 0.01 nm / ° C. and a strain characteristic of about 0.0012 nm / με. For example, ± 1000 με in the temperature range from 0 ° C. to 50 ° C. When measuring the amount of strain, it is necessary that 0.01 nm × 50 ° C. + 0.0012 nm × 2000 με = 2.9 nm. Further, the reflection wavelength band of the FBG 203 is about 0.2 nm in half width, and considering this, the use band of one FBG 203 needs to be about 3.1 nm. In general, a band having a margin of 4 nm or more is used. As a result, the number of FBGs 203 in different reflection wavelength bands is about ten.

歪計測を行う場合、先に述べたとおり歪計測用と温度補償用の2個のFBG203が必要となり、歪計測数は5点となる。歪計測に求められる点数は10点以下のものもあるが、数十点以上の規模もあり、十分な点数ではない。   When strain measurement is performed, two FBGs 203 for strain measurement and temperature compensation are required as described above, and the number of strain measurements is five. The number of points required for strain measurement is 10 or less, but there are also several tens or more, which is not a sufficient score.

計測箇所を増やす手段として広帯域光源の帯域を増やすことが容易に考えられ、既に100nm程度の帯域をもつ光源も市販されているが、FBG203の種類が増えるため積極的には利用されていない。現在は光ファイバの本数を増やすことで対処されているのが一般的である。
山下真司 他、オプトロニクス社光通信技術の最新資料集、光測定/センサへの応用、1995年12月発行
Increasing the bandwidth of a broadband light source as a means for increasing the measurement location is easily considered, and light sources having a bandwidth of about 100 nm are already on the market, but are not actively used because the types of FBG 203 increase. Currently, it is generally handled by increasing the number of optical fibers.
Shinji Yamashita et al., Latest Materials on Optical Communication Technology of Optronics, Application to Optical Measurement / Sensor, December 1995

以上の従来技術では、歪計測を行う場合、歪計測用FBGと温度補償用FBGを一組で使用する必要があり、波長帯域の利用効率が悪いといった欠点があった。   In the above prior art, when strain measurement is performed, it is necessary to use the strain measurement FBG and the temperature compensation FBG as a set, and there is a disadvantage that the use efficiency of the wavelength band is poor.

ここでは歪計測用FBGと温度補償用FBGを同一波長帯で用いることで波長利用効率の高いFBGセンシングシステムを提供することを課題とする。   Here, it is an object to provide an FBG sensing system with high wavelength utilization efficiency by using a strain measurement FBG and a temperature compensation FBG in the same wavelength band.

本発明はこれらの課題を解決するためのものであり、特定波長帯域の光を反射し、温度変化や歪を受けることで反射波長帯域が変移する特徴を有するFBG(ファイバ・ブラッグ・グレーティング)を備え、該FBGの反射波長帯域の光を出力する光源と、該光源から出力され、前記FBGからの反射光の波長帯域の変移を検出する装置を備えたFBGセンシング装置において、同一反射波長帯域に前記FBGを2つ備え、一方は温度変化と歪を同時に受けるように設置し、他方は温度変化のみを受けるように設置し、温度変化を補償できるようにすることで、前記2つのFBGの波長帯域変移量の差分を歪量として検出することを特徴とする。   The present invention is for solving these problems. An FBG (fiber Bragg grating) having a characteristic that a reflected wavelength band is changed by reflecting light in a specific wavelength band and receiving a temperature change or distortion. An FBG sensing device comprising: a light source that outputs light in the reflected wavelength band of the FBG; and a device that detects a change in the wavelength band of reflected light from the FBG that is output from the light source. Two FBGs are provided, one is installed so as to receive temperature change and strain at the same time, and the other is installed so as to receive only temperature change so that the temperature change can be compensated. The difference between the band shift amounts is detected as a distortion amount.

さらに前記2つのFBGの反射波長帯域が共有帯域を有することを特徴とする。   Further, the reflection wavelength band of the two FBGs has a shared band.

さらに前記2つのFBGの反射波長帯域変移量の差分を、合波光の帯域幅の変移として検出することを特徴とする。   Further, the difference between the reflection wavelength band shift amounts of the two FBGs is detected as a shift in the bandwidth of the combined light.

さらに前記2つのFBGがアポダイズされたことを特徴とする。   Further, the two FBGs are apodized.

以上、本発明によれば、特定波長帯域の光を反射し、温度変化や歪を受けることで反射波長帯域が変移する特徴を有するFBG(ファイバ・ブラッグ・グレーティング)を備え、該FBGの反射波長帯域の光を出力する光源と、該光源から出力され、前記FBGからの反射光の波長帯域の変移を検出する装置を備えたFBGセンシング装置において、同一反射波長帯域に前記FBGを2つ備え、一方は温度変化と歪を同時に受けるように設置し、他方は温度変化のみを受けるように設置し、温度変化を補償できるようにすることで、前記2つのFBGの波長帯域変移量の差分を歪量として検出することを特徴とするFBGセンシングシステムを提供することができる。   As described above, according to the present invention, there is provided an FBG (fiber Bragg grating) that reflects light in a specific wavelength band and has a characteristic that the reflected wavelength band changes due to temperature change or distortion, and the reflected wavelength of the FBG. A FBG sensing device comprising a light source that outputs light in a band and a device that detects a shift in the wavelength band of light reflected from the FBG that is output from the light source, and includes two FBGs in the same reflection wavelength band; One is installed to receive temperature change and strain at the same time, and the other is installed to receive only temperature change so that the temperature change can be compensated for, thereby distorting the difference between the two FBG wavelength band shifts. It is possible to provide an FBG sensing system characterized in that it is detected as a quantity.

以下に実施例として、本発明によるFBGセンシングシステムについて説明する。   As an example, an FBG sensing system according to the present invention will be described below.

図1は本発明のFBGセンシングシステムの構成を示す図である。   FIG. 1 is a diagram showing the configuration of the FBG sensing system of the present invention.

広帯域光源1、波長検出器4、光分岐器2、FBG3a、FBG3b、光ファイバ5で構成されており、各部品は光ファイバで結合されている。FBG3aとFBG3bはほぼ等しい波長帯域の反射帯域を有し、反射帯域がより多く共有している方が望ましい。光分岐器2は2分岐カプラでも光サーキュレータでも良い。   A broadband light source 1, a wavelength detector 4, an optical splitter 2, FBG 3 a, FBG 3 b, and an optical fiber 5 are configured, and each component is coupled by an optical fiber. It is desirable that the FBG 3a and the FBG 3b have reflection bands having substantially the same wavelength band, and share more reflection bands. The optical branching device 2 may be a two-branch coupler or an optical circulator.

FBG3bは両端を引っ張ることで、歪を生じさせ、FBG3bと同等の線熱膨張係数を有する固体に固定する。FBG3bの線熱膨張は10−6以下と小さく、固定する固体としては同様に線熱膨張の小さいインバー等が良い。ここで歪量の計測については直接行わず、波長シフト量から歪量を換算している。一般にFBG3bの歪量はFBG3bの反射波長のシフト量に対し、線形的に変化し、1μεの歪に対し0.0012nmの波長変位が生じることが知られており、この関係を用いた。一方FBG3aは両端ともに固定を行わない。 The FBG 3b is distorted by pulling both ends, and is fixed to a solid having a linear thermal expansion coefficient equivalent to that of the FBG 3b. The linear thermal expansion of the FBG 3b is as small as 10 −6 or less, and an invar having a low linear thermal expansion is preferable as the solid to be fixed. Here, the distortion amount is not directly measured, and the distortion amount is converted from the wavelength shift amount. In general, the strain amount of the FBG 3b changes linearly with respect to the shift amount of the reflection wavelength of the FBG 3b, and it is known that a wavelength displacement of 0.0012 nm occurs with respect to the strain of 1 με, and this relationship is used. On the other hand, the FBG 3a is not fixed at both ends.

広帯域光源1から出力された光は光分岐器2を透過し、光ファイバ5を透過し、FBG3aに達する。FBG3aで特定波長の光が反射される。FBG3aの特定波長以外の波長は透過し、FBG3bに達し、FBG3bで異なる特定波長の光が反射される。FBG3bで反射された光はFBG3aを透過し、FBG3aで反射された光と合波され光ファイバ5を透過し、光分岐器2を透過し、波長検出器4に達し、FBG3aとFBG3bの合波された光を検出する。   The light output from the broadband light source 1 passes through the optical splitter 2, passes through the optical fiber 5, and reaches the FBG 3a. The light having a specific wavelength is reflected by the FBG 3a. Wavelengths other than the specific wavelength of the FBG 3a are transmitted, reach the FBG 3b, and light having different specific wavelengths is reflected by the FBG 3b. The light reflected by the FBG 3b passes through the FBG 3a, is combined with the light reflected by the FBG 3a, passes through the optical fiber 5, passes through the optical branching device 2, reaches the wavelength detector 4, and is multiplexed by the FBG 3a and FBG 3b. Detected light.

図2はFBG3a、3bのそれぞれの25℃での反射スペクトラムを示す図である。   FIG. 2 is a diagram showing the reflection spectrum of each of the FBGs 3a and 3b at 25 ° C.

FBG3a、3bともに1553.9nm近傍に中心波長をもち、半値幅約0.2nmの反射帯域を有し、ほぼ全ての帯域を共有していることが分かる。共有領域が多いほど、波長利用効率は高いことは明らかである。   It can be seen that both FBGs 3a and 3b have a central wavelength in the vicinity of 1553.9 nm, have a reflection band with a half width of about 0.2 nm, and share almost all bands. Clearly, the more shared areas, the higher the wavelength utilization efficiency.

図3は本発明の構成でのFBG3a、3bの合波された反射スペクトラムとFBG3bに架かる歪量の関係を示す図である。図3よりFBG3a、3bの合波された反射スペクトラムは互いのピーク波長を検出することが難しいことが分かる。しかしながらFBG3aは固定されており、歪の架かるFBG3bの反射光のみ波長シフトしているため、反射波長帯域の広がりと歪量が関係していることが判断される。   FIG. 3 is a diagram showing the relationship between the combined reflection spectrum of the FBGs 3a and 3b and the amount of distortion over the FBG 3b in the configuration of the present invention. It can be seen from FIG. 3 that it is difficult to detect the peak wavelengths of the combined reflection spectra of the FBGs 3a and 3b. However, since the FBG 3a is fixed and only the reflected light of the FBG 3b with distortion is wavelength-shifted, it is determined that the spread of the reflected wavelength band and the amount of distortion are related.

図4は歪量と反射波長帯域(半値幅)の関係を示す図である。ほぼ実線で示す実測値と点線で示す近似的直線がほぼ一致していることが分かる。このようにFBG3a、3bの合波された反射スペクトラムの半値幅はほぼ歪量と比例関係にあることが分かる。   FIG. 4 is a diagram showing the relationship between the amount of distortion and the reflection wavelength band (half-value width). It can be seen that the actually measured value indicated by the solid line almost coincides with the approximate straight line indicated by the dotted line. Thus, it can be seen that the half-value width of the combined reflection spectrum of the FBGs 3a and 3b is substantially proportional to the amount of distortion.

図5はFBG3bに架かる歪量を一定にした際の温度と、FBG3a、3bの重なり合う反射スペクトラムの半値幅の関係を示す図である。   FIG. 5 is a diagram showing the relationship between the temperature when the strain amount applied to the FBG 3b is constant and the half width of the reflection spectrum where the FBGs 3a and 3b overlap.

図5に示すように半値幅は、0℃から50℃で0.05nmの変動が確認されるが、これはFBGの単体の温度特性(約0.01nm/℃)の5℃程度の変動量であり、約1/10に相当する。図4から、変動量0.05nmは歪量に換算して±20με程度であり、数百μεの歪計測において誤差程度の値となり、本実施形態において温度補償できることが確認される。   As shown in FIG. 5, the full width at half maximum is confirmed to vary by 0.05 nm from 0 ° C. to 50 ° C. This is a fluctuation amount of about 5 ° C. of the temperature characteristic of the FBG alone (about 0.01 nm / ° C.). Which corresponds to about 1/10. From FIG. 4, the fluctuation amount of 0.05 nm is about ± 20 με in terms of strain, which is a value of an error in strain measurement of several hundred με, and it is confirmed that temperature compensation can be performed in this embodiment.

次に本発明の第2の実施形態について説明する。   Next, a second embodiment of the present invention will be described.

本発明では図1に示すFBGセンシングシステムにおいて、FBG3aの替わりにFBG3c、FBG3bの替わりにFBG3dを用いた。図8にFBG3cの反射スペクトラムを示す。FBG3cの反射スペクトラムは図2に示すFBG3a、3bの反射スペクトラムと比較して、リプルが極めて小さいことが分かる。   In the present invention, in the FBG sensing system shown in FIG. 1, FBG3c is used instead of FBG3a, and FBG3d is used instead of FBG3b. FIG. 8 shows the reflection spectrum of the FBG 3c. It can be seen that the reflection spectrum of the FBG 3c has a very small ripple compared to the reflection spectra of the FBGs 3a and 3b shown in FIG.

図7はFBGの屈折率分布をイメージした図である。図7(a)はFBG3a、3bの屈折率であり、屈折率を一定にしている。この場合、グレーティング間で共振が発生し、ピーク波長の両端にリプルが生じる。一方FBG3c、3dはアポダイズにより、リプルをなくしている。アポダイズとは、図7(b)のように屈折率の包括曲線がガウス分布を示すように屈折率を変調させることである。   FIG. 7 is an image of the refractive index distribution of FBG. FIG. 7A shows the refractive indexes of the FBGs 3a and 3b, and the refractive indexes are made constant. In this case, resonance occurs between the gratings, and ripples occur at both ends of the peak wavelength. On the other hand, FBGs 3c and 3d have no ripple due to apodization. Apodization means that the refractive index is modulated so that the refractive index inclusion curve shows a Gaussian distribution as shown in FIG.

一般的にFBGは紫外線を照射し、屈折率に分布を持たせて作製される。アポダイズのためには紫外線照射量を変化させることで対応可能なため、比較的容易に作製できる。   In general, FBGs are produced by irradiating with ultraviolet rays and having a distribution in refractive index. Since apodization can be handled by changing the UV irradiation amount, it can be produced relatively easily.

第1の実施例と同様にFBG3dは両端を引っ張ることで、歪を生じさせ、FBG3dと同等の線熱膨張係数を有する固体に固定する。ここで歪量の計測については直接行わず、波長シフト量から歪量を換算している。一般にFBG3dの歪量はFBG3dの反射波長のシフト量に対し、線形的に変化し、1μεの歪に対し0.0012nmの波長変位が生じることが知られており、この関係を用いた。一方FBG3cは両端ともに固定を行わない。   Similar to the first embodiment, the FBG 3d pulls at both ends, thereby generating distortion and fixing it to a solid having a linear thermal expansion coefficient equivalent to that of the FBG 3d. Here, the distortion amount is not directly measured, and the distortion amount is converted from the wavelength shift amount. In general, the strain amount of the FBG 3d changes linearly with respect to the shift amount of the reflection wavelength of the FBG 3d, and it is known that a wavelength displacement of 0.0012 nm occurs with respect to the strain of 1 με, and this relationship is used. On the other hand, the FBG 3c is not fixed at both ends.

広帯域光源1から出力された光は光分岐器2を透過し、光ファイバ5を透過し、FBG3aに達する。FBG3cで特定波長の光が反射される。FBG3cの特定波長以外の波長は透過し、FBG3dに達し、FBG3dで異なる特定波長の光が反射される。FBG3bで反射された光はFBG3cを透過し、FBG3cで反射された光と合波され光ファイバ5を透過し、光分岐器2を透過し、波長検出器4に達し、FBG3cとFBG3dの合波された光を検出する。   The light output from the broadband light source 1 passes through the optical splitter 2, passes through the optical fiber 5, and reaches the FBG 3a. The light having a specific wavelength is reflected by the FBG 3c. Wavelengths other than the specific wavelength of the FBG 3c are transmitted, reach the FBG 3d, and light having different specific wavelengths is reflected by the FBG 3d. The light reflected by the FBG 3b passes through the FBG 3c, is combined with the light reflected by the FBG 3c, passes through the optical fiber 5, passes through the optical branching unit 2, reaches the wavelength detector 4, and is combined with the FBG 3c and FBG 3d. Detected light.

図9は本発明の構成でのFBG3c、3dの合波された反射スペクトラムとFBG3dに架かる歪量の関係を示す図である。第1の実施例と同様に反射波長帯域の広がりと歪量が関係していることが判断される。   FIG. 9 is a diagram showing the relationship between the combined reflection spectrum of the FBGs 3c and 3d and the amount of distortion over the FBG 3d in the configuration of the present invention. Similar to the first embodiment, it is determined that the spread of the reflection wavelength band and the amount of distortion are related.

図10は歪量と反射波長帯域(半値幅)の関係を示す図である。ほぼ実線で示す実測値と点線で示す近似的直線がほぼ一致していることが分かる。このようにFBG3c、3dの合波された反射スペクトラムの半値幅はほぼ歪量と比例関係にあることが分かる。   FIG. 10 is a diagram showing the relationship between the amount of distortion and the reflection wavelength band (half-value width). It can be seen that the actually measured value indicated by the solid line almost coincides with the approximate straight line indicated by the dotted line. Thus, it can be seen that the half-value width of the combined reflection spectrum of the FBGs 3c and 3d is substantially proportional to the amount of distortion.

図11はFBG3bに架かる歪量を一定にした際の温度と、FBG3c、3dの重なり合う反射スペクトラムの半値幅の関係を示す図である。   FIG. 11 is a diagram showing the relationship between the temperature when the strain amount applied to the FBG 3b is constant and the half width of the reflection spectrum where the FBGs 3c and 3d overlap.

図11に示すように半値幅は、0℃から50℃で0.01nm以下の変動である。図8から、変動量0.01nmは歪量に換算して10με以下であり、極めて精度よく温度補償できることが確認される。   As shown in FIG. 11, the full width at half maximum is a fluctuation of 0.01 nm or less from 0 ° C. to 50 ° C. FIG. 8 confirms that the fluctuation amount of 0.01 nm is 10 με or less in terms of the strain amount, and that temperature compensation can be performed with extremely high accuracy.

このように、ほぼ等しい反射波長帯域を有するFBG3aとFBG3bの一方を歪計測用に用い、他方を温度補償に用い、それらの合波された反射帯域の帯域幅を計測することで、1つのFBGの反射波長帯域で、温度特性が非常に小さく歪量を計測することが可能になり、従来の2つの反射波長帯域を使用していた計測方法より、波長利用効率を2倍にすることが可能となる。   In this way, one FBG 3a and FBG 3b having substantially the same reflection wavelength band is used for strain measurement, the other is used for temperature compensation, and the bandwidth of these combined reflection bands is measured, so that one FBG is measured. It is possible to measure the amount of strain in the reflection wavelength band with a very small temperature characteristic, and the wavelength utilization efficiency can be doubled compared to the conventional measurement method using two reflection wavelength bands. It becomes.

さらにFBG3a、3bのかわりにアポダイズしたFBG3c、3dを用いることで温度特性はさらに小さくなり、1つのFBGの反射波長帯域で、より精度の高い歪量を計測することが可能になる。   Further, by using the apodized FBGs 3c and 3d instead of the FBGs 3a and 3b, the temperature characteristics are further reduced, and a more accurate distortion amount can be measured in the reflection wavelength band of one FBG.

本発明の第1の実施形態に示すFBGセンシングシステムを作成した。   The FBG sensing system shown in the first embodiment of the present invention was created.

広帯域光源1は1530nmから1560nmの帯域で−10dBm/nm以上の光を出力するASE光源を用いた。波長検出器4には光通信で一般的に使用される光スペクトラムアナライザを用いた。光分岐器2には透過損失が0.5dB程度であり、透過損失の波長特性も0.1dB未満であるサーキュレータを用いた。FBG3a、3bは反射率95%以上、反射スペクトラムの半値全幅0.25nm以下、25℃における反射ピーク波長が1553.9nmのものを使用した。反射波長以外の波長における透過損失は約0.1dBである。   As the broadband light source 1, an ASE light source that outputs light of −10 dBm / nm or more in a band from 1530 nm to 1560 nm was used. As the wavelength detector 4, an optical spectrum analyzer generally used in optical communication was used. As the optical branching device 2, a circulator having a transmission loss of about 0.5 dB and a wavelength characteristic of the transmission loss of less than 0.1 dB was used. As FBGs 3a and 3b, those having a reflectance of 95% or more, a full width at half maximum of the reflection spectrum of 0.25 nm or less, and a reflection peak wavelength at 25 ° C. of 1553.9 nm were used. The transmission loss at wavelengths other than the reflection wavelength is about 0.1 dB.

FBG3bに200μεの歪を与え、FBG3a、3bともに恒温槽に入れ、0℃から50℃のFBG3a、3bの合波された反射光の半値幅を確認した。図5とほぼ同様な温度特性になることを確認した。歪量の誤差は25℃を基準として約±10%程度になる。同様に異なる歪量をFBG3bに与え、同様な結果になることを確認した。   A strain of 200 με was applied to the FBG 3b, and both the FBGs 3a and 3b were placed in a thermostatic bath, and the half-value width of the combined reflected light of the FBGs 3a and 3b from 0 ° C. to 50 ° C. was confirmed. It was confirmed that the temperature characteristics were almost the same as in FIG. The error of the strain amount is about ± 10% with 25 ° C. as a reference. Similarly, different strain amounts were given to the FBG 3b, and it was confirmed that the same results were obtained.

次に本発明の第2の実施形態に示すFBGセンシングシステムを作成した。   Next, the FBG sensing system shown in the second embodiment of the present invention was created.

FBG3c、3dはアポダイズされておりリプルが小さい。反射率95%以上、反射スペクトラムの半値全幅0.2nm以下、25℃における反射ピーク波長が1548.0nmのものを使用した。反射波長以外の波長における透過損失は約0.1dBである。他の構成部品は第1の実施形態と同じものを使用し、同様な計測をした。   FBG3c and 3d are apodized and have a small ripple. The reflectance is 95% or more, the full width at half maximum of the reflection spectrum is 0.2 nm or less, and the reflection peak wavelength at 25 ° C. is 1548.0 nm. The transmission loss at wavelengths other than the reflection wavelength is about 0.1 dB. Other components were the same as those in the first embodiment, and the same measurement was performed.

図11とほぼ同様な温度特性になることを確認した。歪量の温度誤差は10με以下で極めて精度の高くなる。   It was confirmed that the temperature characteristics were almost the same as in FIG. The temperature error of the distortion amount is extremely high when it is 10 με or less.

本発明のFBGセンシングシステムの構成を示す図である。It is a figure which shows the structure of the FBG sensing system of this invention. FBGの25℃での反射スペクトラムを示す図である。It is a figure which shows the reflection spectrum in 25 degreeC of FBG. FBGの合波された反射スペクトラムとFBGに架かる歪量の関係を示す図である。It is a figure which shows the relationship between the reflection spectrum combined with FBG, and the amount of distortion over FBG. 歪量と反射波長帯域(半値幅)の関係を示す図である。It is a figure which shows the relationship between distortion amount and a reflective wavelength band (half-value width). 歪量を一定にした際の温度とFBG重なり合う反射スペクトラムの半値幅の関係を示す図である。It is a figure which shows the relationship between the temperature at the time of making distortion amount constant, and the half value width of the reflection spectrum which FBG overlaps. FBGの概略を示す図である。It is a figure which shows the outline of FBG. FBGの屈折率分布をイメージした図である。It is the figure which imaged the refractive index distribution of FBG. FBG3の反射スペクトラムを示す図である。It is a figure which shows the reflection spectrum of FBG3. FBG3c、3dの合波された反射スペクトラムとFBGに架かる歪量の関係を示す図である。It is a figure which shows the relationship between the reflected spectrum combined of FBG3c, 3d, and the amount of distortion over FBG. 歪量と反射波長帯域(半値幅)の関係を示す図である。It is a figure which shows the relationship between a distortion amount and a reflective wavelength band (half-value width). 歪量を一定にした際の温度とFBG重なり合う反射スペクトラムの半値幅の関係を示す図である。It is a figure which shows the relationship between the temperature at the time of making distortion amount constant, and the half value width of the reflection spectrum which FBG overlaps. 非特許文献1に述べるFBGセンシングシステムの構成を示す図である。It is a figure which shows the structure of the FBG sensing system described in the nonpatent literature 1. FIG.

符号の説明Explanation of symbols

1:広帯域光源
2:光分岐器
3a、3b:FBG
3c、3d:アポダイズFBG
4:波長検出器
5:光ファイバ
101:FBG
102:光ファイバ
103:コア
201:広帯域光源
202:光分岐器
203:FBG
204:波長検出器
205:光ファイバ
1: Broadband light source 2: Optical splitter 3a, 3b: FBG
3c, 3d: Apodized FBG
4: Wavelength detector 5: Optical fiber 101: FBG
102: Optical fiber 103: Core 201: Broadband light source 202: Optical splitter 203: FBG
204: Wavelength detector 205: Optical fiber

Claims (4)

特定波長帯域の光を反射し、温度変化や歪を受けることで反射波長帯域が変移する特徴を有するFBG(ファイバ・ブラッグ・グレーティング)を備え、該FBGの反射波長帯域の光を出力する光源と、該光源から出力され、前記FBGからの反射光の波長帯域の変移を検出する装置を備えたFBGセンシング装置において、同一反射波長帯域に前記FBGを2つ備え、一方は温度変化と歪を同時に受けるように設置し、他方は温度変化のみを受けるように設置し、温度変化を補償できるようにすることで、前記2つのFBGの反射波長帯域変移量の差分を歪量として検出することを特徴とするFBGセンシングシステム。 A light source for reflecting light in a specific wavelength band, and having an FBG (fiber Bragg grating) having a characteristic that the reflected wavelength band is changed by being subjected to temperature change or strain, and outputting light in the reflected wavelength band of the FBG; In the FBG sensing device provided with a device that detects a change in the wavelength band of the reflected light from the FBG output from the light source, the FBG sensing device includes two FBGs in the same reflection wavelength band, one of which is subject to temperature change and strain simultaneously. The difference between the reflection wavelength band shift amounts of the two FBGs is detected as a distortion amount by installing the other so that only the temperature change is received and allowing the temperature change to be compensated. FBG sensing system. 前記2つのFBGの反射波長帯域が共有帯域を有することを特徴とする請求項1記載のFBGセンシングシステム。 The FBG sensing system according to claim 1, wherein a reflection wavelength band of the two FBGs has a shared band. 前記2つのFBGの反射波長帯域変移量の差分を、合波光の帯域幅の変移として検出することを特徴とする請求項1記載のFBGセンシングシステム。 The FBG sensing system according to claim 1, wherein a difference between reflection wavelength band shift amounts of the two FBGs is detected as a shift of the bandwidth of the combined light. 前記2つのFBGがアポダイズされたものであることを特徴とする請求項1〜3のいずれかに記載のFBGセンシングシステム。 The FBG sensing system according to claim 1, wherein the two FBGs are apodized.
JP2003394815A 2003-09-17 2003-11-25 Fbg sensing system Pending JP2005114702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003394815A JP2005114702A (en) 2003-09-17 2003-11-25 Fbg sensing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003325022 2003-09-17
JP2003394815A JP2005114702A (en) 2003-09-17 2003-11-25 Fbg sensing system

Publications (1)

Publication Number Publication Date
JP2005114702A true JP2005114702A (en) 2005-04-28

Family

ID=34554528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394815A Pending JP2005114702A (en) 2003-09-17 2003-11-25 Fbg sensing system

Country Status (1)

Country Link
JP (1) JP2005114702A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101547A (en) * 2005-09-30 2007-04-19 General Electric Co <Ge> Chemical substance sensing device, system and method of optical fiber type
JP2008173397A (en) * 2007-01-22 2008-07-31 Olympus Corp Endoscope system
JP2008541122A (en) * 2005-05-17 2008-11-20 ペトロレオ ブラジレイロ ソシエダ アノニマ − ペトロブラス Optical fiber position transducer with magnetostrictive material and position calibration method
JP2012198161A (en) * 2011-03-23 2012-10-18 Nippon Steel & Sumikin Welding Co Ltd Eccentric rotation sensor, welding torch swinging detector, and swinging device
JP2013543112A (en) * 2010-09-08 2013-11-28 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Slow light fiber Bragg grating sensor
US9329089B2 (en) 2009-06-05 2016-05-03 The Board Of Trustees Of The Leland Stanford Junior University Optical device utilizing fiber bragg grating and narrowband light with non-bragg wavelength
US9347826B2 (en) 2010-09-08 2016-05-24 The Board Of Trustees Of The Leland Stanford Junior University System and method for measuring perturbations utilizing an optical filter and a narrowband optical source
US9366808B2 (en) 2010-09-08 2016-06-14 The Board Of Trustees Of The Leland Stanford Junior University Slow-light sensor utilizing an optical filter and a narrowband optical source
US10281345B2 (en) 2016-10-25 2019-05-07 Konica Minolta, Inc. Strain sensor and recording medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541122A (en) * 2005-05-17 2008-11-20 ペトロレオ ブラジレイロ ソシエダ アノニマ − ペトロブラス Optical fiber position transducer with magnetostrictive material and position calibration method
JP2007101547A (en) * 2005-09-30 2007-04-19 General Electric Co <Ge> Chemical substance sensing device, system and method of optical fiber type
JP2008173397A (en) * 2007-01-22 2008-07-31 Olympus Corp Endoscope system
US9329089B2 (en) 2009-06-05 2016-05-03 The Board Of Trustees Of The Leland Stanford Junior University Optical device utilizing fiber bragg grating and narrowband light with non-bragg wavelength
JP2013543112A (en) * 2010-09-08 2013-11-28 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Slow light fiber Bragg grating sensor
US9347826B2 (en) 2010-09-08 2016-05-24 The Board Of Trustees Of The Leland Stanford Junior University System and method for measuring perturbations utilizing an optical filter and a narrowband optical source
US9366808B2 (en) 2010-09-08 2016-06-14 The Board Of Trustees Of The Leland Stanford Junior University Slow-light sensor utilizing an optical filter and a narrowband optical source
JP2012198161A (en) * 2011-03-23 2012-10-18 Nippon Steel & Sumikin Welding Co Ltd Eccentric rotation sensor, welding torch swinging detector, and swinging device
US10281345B2 (en) 2016-10-25 2019-05-07 Konica Minolta, Inc. Strain sensor and recording medium

Similar Documents

Publication Publication Date Title
US9759585B2 (en) TDM- and WDM-based FBG sensor array system
CN102879022B (en) Method and device for demodulating fiber bragg grating (FBG) sensor
CN104864911B (en) High-speed demodulating apparatus and method based on Fabry-perot optical fiber chamber and the double parameter combined measurements of fiber grating
US9484146B2 (en) High voltage transformer having a sensor system, method for monitoring physical characteristic variables of a high voltage transformer and sensor system for monitoring physical characteristic variables
US7366366B2 (en) FBG sensing system
US20050134861A1 (en) Wavelength reference system for optical measurements
CN201476800U (en) High-speed multi-channel fiber grating sensor demodulating system based on AWG
EP2825839A1 (en) An optical sensing system for determining the position and/or shape of an associated object
CN101881634A (en) High-speed multi-channel fiber bragg grating (FBG) sensing demodulation system based on AWG (Arrayed Waveguide Grating) and method
JP2007024826A (en) Optical detection sensor
US11391645B2 (en) Birefringent multi-peak optical reference element and birefringent sensor system
JP2005114702A (en) Fbg sensing system
JP2016133443A (en) Ofdr device
Guo et al. Chirped and tilted fiber Bragg grating edge filter for in-fiber sensor interrogation
EP3818331B1 (en) Method and system for determining grating perturbation by modulated light
Luo et al. Online reflectivity measurement of an ultra-weak fiber Bragg grating array
JPH109974A (en) Method and system for measuring temperature distribution
CN113640252A (en) Method and device for measuring reflectivity of fiber bragg grating
JP2005274333A (en) Fiber-optic sensing system
JP2006029995A (en) Optical method and instrument for measuring physical quantity
Kremp et al. Characteristics of Continuous Grating Arrays in Single and Multicore Fiber for Distributed Sensing
US11506548B2 (en) Interrogator for two fiber bragg grating measurement points
JP2010096597A (en) Optical sensor measuring device and optical sensor measuring method
Buck et al. Performance analysis of interrogators for fiber Bragg grating sensors based on arrayed waveguide gratings
Marrazzo Arrayed Waveguide Grating-Based Interrogation System for Safety Applications and High-Speed Measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Effective date: 20080714

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317