JP2005114261A - Combustion method of biomass-based fuel - Google Patents

Combustion method of biomass-based fuel Download PDF

Info

Publication number
JP2005114261A
JP2005114261A JP2003350130A JP2003350130A JP2005114261A JP 2005114261 A JP2005114261 A JP 2005114261A JP 2003350130 A JP2003350130 A JP 2003350130A JP 2003350130 A JP2003350130 A JP 2003350130A JP 2005114261 A JP2005114261 A JP 2005114261A
Authority
JP
Japan
Prior art keywords
biomass
combustion
coal
fuel
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003350130A
Other languages
Japanese (ja)
Inventor
Takashi Yamaguchi
剛史 山口
Takashi Kuwabara
隆 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2003350130A priority Critical patent/JP2005114261A/en
Publication of JP2005114261A publication Critical patent/JP2005114261A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion method of biomass-based fuel, capable of performing a combustion while suppressing generation of NOx more than in pulverized coal firing of coal, burning biomass at a high mixed-fuel ratio, and suppressing corrosion of a heat transfer tube or the like by a halogen-containing gas or generation of an unburnt component or dioxins. <P>SOLUTION: A pulverized powder obtained by pulverizing at least one kind of carbonates of biomass selected from ligneous biomass, a plant-based residue generated in a plantation and the like with a pulverized coal such as coal are mixed and burnt, whereby NOx contained in combustion exhaust gas is reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、バイオマス系燃料の燃焼方法に関し、特に火力発電設備を利用してバイオマス系燃料を石炭と混合燃焼させた時のNOx生成を抑制し、かつ、環境負荷低減が可能なバイオマス系燃料の燃焼方法に関する。   The present invention relates to a method for burning biomass fuel, and more particularly, a biomass fuel that can suppress NOx generation when biomass fuel is mixed and burned with coal using a thermal power generation facility and can reduce environmental burden. It relates to a combustion method.

地球温暖化を防止するために、温室効果ガスである二酸化炭素(CO)の大気放出の抑制が求められている。特に、火力発電所における石炭、石油、LNGなどの燃焼排ガスは大量に発生するが、これらの排ガス中にはCOが1〜40vol%含有され、さらにNOxやSOxも含まれているため、これらの排ガス成分の低減は必要不可欠である。 In order to prevent global warming, suppression of atmospheric emission of carbon dioxide (CO 2 ), which is a greenhouse gas, is demanded. In particular, a large amount of combustion exhaust gas such as coal, petroleum, and LNG is generated in a thermal power plant, but these exhaust gases contain 1 to 40 vol% of CO 2 and further contain NOx and SOx. Reduction of exhaust gas components is essential.

ところが、植物、農産物廃棄物、廃木材、家畜排泄物、下水汚泥などバイオマスをエネルギー源に使えば、地球温暖化防止に役立つ。例えば、植物を燃やしてCOを大気中に放出しても、該COは植物成長過程で大気から取り込んだものであるため、大気中のCO濃度は変わらない。そのため、都市ゴミなどの固形廃棄物や木材など各種バイオマスエネルギーに関する研究が盛んで、例えば木材等のバイオマスを液化したバイオマス液化燃料、木材等のバイオマスをガス化したバイオマスガス化燃料に関する提案などがなされているが、バイオマス燃料は季節毎の供給量が異なるため、一定の発電量を得るには石炭との混合燃焼(以下、「混焼」と略称することがある。)が望ましいと考えられている。しかし、バイオマスによっては多量の水分が含まれているものがあるため、実際にバイオマスと石炭とを混焼させる場合には、発熱量を確保するため、5〜10%が限界である。 However, if biomass such as plants, agricultural waste, waste wood, livestock excrement, and sewage sludge is used as an energy source, it will help prevent global warming. For example, even if the CO 2 burning plants were released into the atmosphere, the CO 2 is for those taken from the atmosphere at the plant growth process, CO 2 concentration in the atmosphere does not change. Therefore, research on various types of biomass energy such as solid waste such as municipal waste and wood has been actively conducted. However, since biomass fuel is supplied in different seasons, mixed combustion with coal (hereinafter sometimes referred to as “mixed combustion”) is considered desirable to obtain a certain amount of power generation. . However, since some biomass contains a large amount of moisture, in the case where biomass and coal are actually co-fired, 5 to 10% is the limit in order to secure a calorific value.

石炭との混焼に関し、特開平11−108324号公報には、ゴミ固形燃料(RDF)を解砕して石炭焚等ボイラの火炉内へ投入して浮遊させつつ、微粉炭等の主燃料と一緒に燃焼させる廃棄物混焼方法が提案されている(特許文献1参照)。該方法では廃棄物を主燃料のバーナとは別のポートからボイラの火炉内へ投入することで、主燃料より先に燃焼性の良好な廃棄物が燃焼することによって生じる空気不足の状態を回避し、主燃料の燃焼性低下を防止してダイオキシンの発生を防止している。   Regarding co-firing with coal, Japanese Patent Laid-Open No. 11-108324 discloses that solid waste fuel (RDF) is pulverized and put into a furnace such as a coal fired boiler and floated together with main fuel such as pulverized coal. A waste co-firing method for combusting is proposed (see Patent Document 1). In this method, waste is introduced into the boiler furnace from a port different from the main fuel burner, thereby avoiding an air shortage caused by combustible waste burning prior to the main fuel. In addition, the combustibility of the main fuel is prevented from being reduced to prevent the generation of dioxins.

また、特開2002−349821号公報には、都市ゴミなどの固形廃棄物や木材、木くずなどのバイオマスに代表される、塩素系化合物を含む固体燃料と石炭を混合燃焼するのに適した燃焼装置と燃焼方法が提案されており、該方法は、固形廃棄物とバイオマスの少なくとも一方からなる固体燃料を流動層燃焼する工程と、前記流動層燃焼工程の燃焼ガスを利用して微粉炭を燃焼する粉体燃焼工程とを有するものである(特許文献2参照)。   Japanese Patent Application Laid-Open No. 2002-349821 discloses a combustion apparatus suitable for mixed combustion of solid fuel containing chlorine-based compounds, such as solid waste such as municipal waste, and biomass such as wood and wood scrap, and coal. And a combustion method has been proposed, in which a solid fuel comprising at least one of solid waste and biomass is fluidized bed combusted, and pulverized coal is combusted using the combustion gas of the fluidized bed combustion step. It has a powder combustion process (refer patent document 2).

しかしながら、前者は、固形廃棄物に含まれる塩素化合物を脱塩するために石炭との混焼に流動層燃焼を用いると、燃焼ガスの温度が約800℃と低いため、熱効率を上げることができないという問題点を解決したものである。後者は、通常の石炭燃焼で用いられる粉体燃焼(浮遊燃焼)方式で固体燃料と石炭を混焼すると、燃焼ガス温度は1200℃以上にできるため熱効率は上がるが、固形廃棄物やバイオマスに含まれるハロゲン化物質からハロゲン元素がガス中に放出されるためハロゲン元素が原因で伝熱管を腐食するという問題点を解決するとともに、燃焼温度の低下による未燃分やダイオキシンの発生を抑制するために燃焼方法を改善したものである。バイオマスとして、木くず、木材、モミ殻などが開示されているに過ぎない。   However, in the former, when fluidized bed combustion is used for co-firing with coal in order to desalinate chlorine compounds contained in solid waste, the temperature of the combustion gas is as low as about 800 ° C., so that the thermal efficiency cannot be increased. It solves the problem. In the latter, when solid fuel and coal are co-fired by the powder combustion (floating combustion) method used in normal coal combustion, the combustion gas temperature can be raised to 1200 ° C or higher, so the thermal efficiency increases, but it is included in solid waste and biomass In order to solve the problem of corroding the heat transfer tube due to the halogen element being released from the halogenated substance into the gas, it also burns to suppress the generation of unburned components and dioxins due to a decrease in combustion temperature It is an improvement of the method. Only wood chips, wood, fir shells, etc. are disclosed as biomass.

また、特開2002−243108号公報には、バイオマス燃料を40%以上の混焼率で石炭と燃焼させた場合にもCOやNOxの生成を抑えた安定した燃焼を維持させることができ、火炉壁への灰付着も低減させるバーナを備えた燃焼装置が提案されている(特許文献3参照)。しかし、使用されているバイオマス燃料は、揮発分が70%以上で発熱量が4000kcal程度と低く、水分量も10%以上であるため、着火遅れや滞留時間不足が生じるとCOや未燃焼分が増加する。   Japanese Patent Laid-Open No. 2002-243108 discloses that even when biomass fuel is burned with coal at a mixed combustion rate of 40% or more, stable combustion with suppressed generation of CO and NOx can be maintained. There has been proposed a combustion apparatus equipped with a burner that reduces ash adhesion to the surface (see Patent Document 3). However, the biomass fuel used has a low volatile content of 70% or more, a calorific value as low as about 4000 kcal, and a moisture content of 10% or more. To increase.

特開平11−108324号公報(段落番号0018〜0019等)JP-A-11-108324 (paragraph numbers 0018 to 0019, etc.) 特開2002−349821号公報(段落番号0020等)JP 2002-349821 A (paragraph number 0020, etc.) 特開2002−243108号公報(段落番号0005等)JP-A-2002-243108 (paragraph number 0005, etc.)

本発明は、上記従来の問題点に鑑みてなされたものであり、石炭を微粉炭焚きした場合よりもNOxの生成を抑えた燃焼が可能で、かつ、高い混焼比率でバイオマスを燃焼させることができ、さらにハロゲン含有ガスによる伝熱管等の腐食、未燃分やダイオキシン類の発生を抑制し得るバイオマス系燃料の燃焼方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and combustion capable of suppressing generation of NOx is possible as compared with the case where coal is pulverized, and biomass can be burned at a high co-firing ratio. Further, it is an object of the present invention to provide a method for burning a biomass fuel that can suppress corrosion of a heat transfer tube or the like by a halogen-containing gas, generation of unburned components, and dioxins.

前記課題を解決するため、本発明者らは鋭意検討した結果、従来の微粉炭焚条件下にてバイオマスの炭化物を微粉炭と混焼することにより、発熱量が高く、それぞれを専焼した場合よりもNOxが低減されることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors diligently studied. As a result, the calorific value is high by mixing the carbonized biomass of biomass with pulverized coal under the conventional pulverized coal-fired condition, compared with the case where each is calcined. It has been found that NOx is reduced, and the present invention has been completed.

すなわち、本発明のバイオマス系燃料の燃焼方法は、バイオマスの炭化物と石炭とを混合燃焼させることを特徴とする。   That is, the biomass fuel combustion method of the present invention is characterized in that biomass carbide and coal are mixed and burned.

また、本発明のバイオマス系燃料の燃焼方法では、前記バイオマスの炭化物および石炭が微粉砕されていることが好ましく、バイオマス系燃料を微粉砕することにより、従来の微粉炭焚ボイラ等の火力発電設備を利用して燃料を燃焼させることが可能となる。   Further, in the biomass fuel combustion method of the present invention, the biomass carbide and coal are preferably finely pulverized, and by pulverizing the biomass fuel, a thermal power generation facility such as a conventional pulverized coal fired boiler It becomes possible to burn the fuel using the.

また、本発明のバイオマス系燃料の燃焼方法では、前記バイオマスの炭化物と石炭とを同一バーナから燃焼炉内へ投入しても良い。   Further, in the biomass fuel combustion method of the present invention, the biomass carbide and coal may be fed into the combustion furnace from the same burner.

本発明のバイオマス系燃料の燃焼方法においては、前記バイオマスが、木質系バイオマスおよび植物系残渣より選ばれる少なくとも一種であることが好ましい。   In the biomass fuel combustion method of the present invention, the biomass is preferably at least one selected from woody biomass and plant residue.

一般に燃焼時におけるNOx発生原因としては、燃料に含まれる窒素分によるフューエルNOx、及び燃焼用空気に含まれる窒素分と炉内温度とによるサーマルNOxがある。従って、燃料として用いるバイオマスの炭化物の窒素分が石炭に比べて少なければ、バイオマス混焼比率が高いほど燃料中の窒素分が少なくなり、フューエルNOxが低下するが、本発明によるバイオマスの炭化物を混焼した場合は、バイオマスの炭化物の窒素分が石炭に比べて多い場合であっても、それぞれを専焼した場合に比較して混焼によりNOx発生量が低下する。バイオマスの炭化物と石炭との混焼によるNOx低下原因は明らかではないが、フューエルNOxの影響ではなく、サーマルNOxの影響と推測される。即ち、燃焼状態が異なる2種類の燃料が同時に炉内に投入された場合、火炎の燃え方が異なるために炉内で温度分布が生じ、バイオマスの炭化物に比べて発熱量の低い微粉炭を還元状態で燃焼させることができる。還元状態における燃焼では、窒素酸化物は窒素に還元されるので、燃焼装置出口でのNOxの量が低減されると考えられる。   In general, NOx generation during combustion includes fuel NOx due to nitrogen contained in fuel and thermal NOx due to nitrogen contained in combustion air and furnace temperature. Therefore, if the nitrogen content of the biomass carbide used as fuel is less than that of coal, the higher the biomass co-firing ratio, the less nitrogen content in the fuel and the fuel NOx will be reduced, but the biomass carbide according to the present invention was co-fired. In this case, even when the nitrogen content of the carbide of biomass is larger than that of coal, the amount of NOx generated is reduced by co-firing as compared with the case where each of them is exclusively fired. Although the cause of NOx reduction due to co-firing of biomass carbide and coal is not clear, it is presumed to be the effect of thermal NOx, not the effect of fuel NOx. In other words, when two types of fuels with different combustion states are put into the furnace at the same time, the temperature distribution occurs in the furnace because the flames are burned differently, and pulverized coal with a lower calorific value than that of biomass is reduced. Can be burned in a state. In combustion in the reduced state, nitrogen oxides are reduced to nitrogen, so the amount of NOx at the outlet of the combustion apparatus is considered to be reduced.

以上説明した通り、本発明のバイオマス系燃料の燃焼方法によれば、石炭専焼よりもCOの排出量を大幅に低減することが可能で、NOxを低減させることができるため、環境負荷が低減される。また、バイオマスの炭化物の発熱量が高いため、石炭専焼に比べて燃焼効率を一層向上させることができ、しかも、燃料比の高い石炭を使用した場合でも燃焼効率を高めることができる。さらに、バイオマス系燃料の燃焼によって生じるハロゲン含有ガスによる伝熱管等の腐食や、ダイオキシン類の発生を防止することもできる。 As described above, according to the biomass fuel combustion method of the present invention, it is possible to significantly reduce CO 2 emissions compared to coal-fired, and it is possible to reduce NOx, thereby reducing the environmental load. Is done. Moreover, since the calorific value of the biomass of the biomass is high, the combustion efficiency can be further improved as compared with the coal-fired combustion, and the combustion efficiency can be increased even when coal having a high fuel ratio is used. Furthermore, corrosion of heat transfer tubes and the like due to halogen-containing gas generated by combustion of biomass fuel and generation of dioxins can be prevented.

また、本発明のバイオマス系燃料の燃焼方法によれば、既存の微粉炭燃焼炉(石炭焚きボイラ)でバイオマスを燃焼させることができるので、設備付加を最小限に抑えることができて経済性にも優れる。   Moreover, according to the biomass fuel combustion method of the present invention, biomass can be burned in an existing pulverized coal combustion furnace (coal-fired boiler), so that the addition of equipment can be minimized and economically achieved. Also excellent.

本発明のバイオマス系燃料の燃焼方法は、バイオマスの炭化物と石炭とを混合燃焼させるものであり、該バイオマスの炭化物はバイオマスの炭化処理により得られる。   The biomass fuel combustion method of the present invention is a method in which biomass carbide and coal are mixed and burned, and the biomass carbide is obtained by carbonization of biomass.

本発明において使用されるバイオマスとしては、稲わら、麦わら、バガス等の草類からのバイオマス;木材、間伐材、伐採木、剪定枝、おがくず、樹皮、チップ、端材、流木、竹、笹、木質建築廃材など木質系バイオマス;古紙などのセルロース製品からのバイオマス;植物、モミ殻など植物廃棄物;アブラヤシ(パーム油の原料)のヤシ殻などプランテーションにおいて発生する植物系残渣;下水汚泥、都市ゴミなどを挙げることができる。   The biomass used in the present invention includes biomass from grass such as rice straw, straw, bagasse; wood, thinned wood, felled trees, pruned branches, sawdust, bark, chips, mill ends, driftwood, bamboo, firewood, Woody biomass such as woody building waste; Biomass from cellulose products such as waste paper; Plant waste such as plants and fir shells; And so on.

バイオマスの炭化処理は、従来公知の炭化処理方法またはそれに準ずる方法に従って行えば良く、炭など従来公知のバイオマス炭化物を使用することもできる。炭化処理は内燃式と外燃式に大別され、内燃式は炉内で原料の一部を燃焼し、その熱によって炭化温度を維持するもので、炭化中に発生するタールや可燃ガスを燃焼する自燃式もこれに含まれる。外燃式は炉の外側を灯油バーナなどで加熱する間接型である。炭化は通常、空気の供給を制限または遮断し、あるいは不活性ガス中で行われる。   The carbonization treatment of biomass may be performed according to a conventionally known carbonization method or a method equivalent thereto, and a conventionally known biomass carbide such as charcoal can also be used. Carbonization is broadly divided into internal combustion and external combustion. Internal combustion burns part of the raw material in the furnace and maintains the carbonization temperature by the heat. Combustion of tar and combustible gas generated during carbonization. This includes the self-combustion type. The external combustion type is an indirect type in which the outside of the furnace is heated with a kerosene burner or the like. Carbonization is usually performed in an inert gas that limits or shuts off the air supply.

炭化処理に使用する炭化炉は、従来公知のもので良い。炭化炉は回分式と連続式に大別され、回分式には簡易式や平炉式等の開放型、炭窯式やトロリー式、かくはん式等の密閉型、連続式にはロータリー式や反復揺動式等の回転型、流動床式や多段かくはん式等の縦型、かくはん式やスクリュー式等の横型などがある。   A conventionally known carbonization furnace may be used for the carbonization treatment. Carbonization furnaces are broadly divided into batch and continuous types. The batch type is an open type such as a simple type or a flat furnace type, the closed type is a charcoal kiln type, a trolley type, or a stirring type. There are rotary types such as a vertical type, vertical types such as a fluidized bed type and a multistage stirring type, and horizontal types such as a stirring type and a screw type.

炭化処理条件は、バイオマスの種類や炭化炉の種類等によって異なるため、特に限定されない。木材の場合、一般に400〜500℃で炭化処理することにより乾留炭や平炉炭等が得られ、600〜700℃で炭化処理することにより黒炭が得られ、1000℃前後で炭化処理することにより白炭(ウバメガシの白炭を「備長炭」という)が得られる。木材以外のバイオマスの場合、400〜600℃程度で炭化した炭化物が通常用いられる。炭化温度が高い場合は、炭化度合いは進行するが炭化物の収率が低くなったり、揮発分が除去されるため燃えにくくなる等、炭化物を燃料として利用する場合に好ましくないことから、炭化温度は400〜600℃の範囲が好ましい。   The carbonization treatment conditions are not particularly limited because they vary depending on the type of biomass, the type of carbonization furnace, and the like. In the case of wood, carbonization is generally performed at 400 to 500 ° C. to obtain carbonized carbon, open hearth coal, etc., black carbon is obtained by carbonizing at 600 to 700 ° C., and white coal is carbonized at about 1000 ° C. (Ubmegashi white charcoal is called “Bincho charcoal”). In the case of biomass other than wood, carbides carbonized at about 400 to 600 ° C. are usually used. When the carbonization temperature is high, the degree of carbonization proceeds, but the yield of the carbide is low, or it is not preferable when using the carbide as a fuel, such as being difficult to burn because the volatile matter is removed. The range of 400-600 ° C is preferred.

さらに、上記の炭化処理方法に加えて、バイオマスを高温高圧の熱水中で熱分解させる水熱液化により得られたバイオマス炭化物を使用することもできる。具体的には、バイオマスを、水の存在下、飽和蒸気圧以上の圧力で改質処理してバイオマスを改質する工程、改質工程で得られた改質反応物を固形成分と液体成分に分離する工程により得られるもの等を挙げることができる。この場合、バイオマス原料に添加する水の量は、セルロース系バイオマス原料が元々含有する水分量によっても異なるが、バイオマス原料に対して質量(ドライベース)で、1〜20倍程度加えるのが好ましく、3〜15倍程度とするのがより好ましい。   Furthermore, in addition to the carbonization method described above, biomass carbide obtained by hydrothermal liquefaction in which biomass is thermally decomposed in hot water at high temperature and high pressure can be used. Specifically, biomass is reformed in the presence of water at a pressure equal to or higher than the saturated vapor pressure to reform the biomass, and the reformed reactant obtained in the reforming process is converted into a solid component and a liquid component. The thing obtained by the process to isolate | separate etc. can be mentioned. In this case, the amount of water added to the biomass raw material varies depending on the amount of water originally contained in the cellulosic biomass raw material, but is preferably about 1 to 20 times the mass (dry base) of the biomass raw material, More preferably, it is about 3 to 15 times.

改質工程における処理温度は250〜380℃であることが好ましく、270〜350℃であることがより好ましい。操作圧力としては、水の飽和蒸気圧より0.5〜5MPa高くするのが好ましく、1〜3MPa高くするのがより好ましい。改質工程における処理時間は特に限定されるものではないが、5分〜120分であることが好ましく、10分〜60分であることがより好ましい。処理時間は処理時間とのかね合いであり、処理時間が高ければ短い処理時間とし、処理温度が低ければ長い処理時間とすればよい。改質工程は、オートクレーブなどを用いたバッチ処理であってもよく、1つ又は2以上の反応帯域からなる連続式反応装置であってもよい。   The treatment temperature in the reforming step is preferably 250 to 380 ° C, and more preferably 270 to 350 ° C. The operating pressure is preferably 0.5 to 5 MPa higher than the saturated vapor pressure of water, and more preferably 1 to 3 MPa higher. The treatment time in the reforming step is not particularly limited, but is preferably 5 minutes to 120 minutes, and more preferably 10 minutes to 60 minutes. The processing time is a trade-off with the processing time. If the processing time is high, the processing time may be short, and if the processing temperature is low, the processing time may be long. The reforming step may be a batch process using an autoclave or the like, or may be a continuous reaction apparatus composed of one or two or more reaction zones.

改質工程により得られる改質反応物は、分離工程において、固体成分と液体成分とに分離される。分離工程では、固体成分が液体成分から分離され、水分量が多い場合には必要に応じて加熱乾燥される。分離工程により、バイオマス炭化物が固体成分として得られる。   The reforming reaction product obtained by the reforming step is separated into a solid component and a liquid component in the separation step. In the separation step, the solid component is separated from the liquid component, and when the amount of water is large, it is heat-dried as necessary. By the separation step, biomass carbide is obtained as a solid component.

上記のバイオマスの炭化物はそれぞれ単独で使用しても良いが、2種類以上を適宜に組み合わせても良い。これらの中でも、潜在量が大きく、大量調達の可能性がある点より、木材、間伐材、伐採木、剪定枝、おがくず、樹皮、チップ、端材、流木、竹、笹、木質建築廃材など木質系バイオマスの炭化物、及びアブラヤシ(パーム油の原料)のヤシ殻などプランテーションにおいて発生する植物系残渣の炭化物より選ばれる少なくとも一種のバイオマス炭化物が好適に用いられる。   Each of the above-mentioned biomass carbides may be used alone or in combination of two or more. Among these, wood, thinned wood, felled trees, pruned branches, sawdust, bark, chips, edgewood, driftwood, bamboo, firewood, wood construction waste, etc. At least one kind of biomass carbide selected from carbides of plant-based residues generated in plantations, such as carbonized carbides of plant biomass and palm shells of oil palm (raw material of palm oil), is preferably used.

バイオマスの炭化物を混焼させる場合は、燃焼効率を上げるために微粉砕したものを用いるのが良い。微粉砕物としては、200メッシュ(74μm)篩通過割合が70〜80%のものが好ましい。   When co-firing biomass carbides, it is preferable to use a finely pulverized one to increase combustion efficiency. As the finely pulverized product, one having a passing rate of 200 mesh (74 μm) sieve is preferably 70 to 80%.

本発明においてバイオマスの炭化物と混焼させる燃料には、無煙炭、瀝青炭、亜瀝青炭、褐炭などの石炭が使用されるが、石炭以外でも石油コークス、化学プラントから副生するカーボンブラック、有機物を炭化して得られるカーボンブラックなど炭素質エネルギー源として用いられるものを使用することもできる。石炭等はそれぞれ単独で使用しても良いが、2種類以上を適宜に組み合わせても良い。石炭等の燃料は、従来の微粉炭燃料炉に用いる場合と同様に微粉砕してなる微粉炭を用いるのが良い。微粉炭としては、200メッシュ(74μm)篩通過割合が70〜80%のものが好ましい。   In the present invention, coal such as anthracite, bituminous coal, subbituminous coal, lignite, etc. is used as fuel to be co-fired with biomass carbide. What is used as carbonaceous energy sources, such as obtained carbon black, can also be used. Coal or the like may be used alone, but two or more kinds may be appropriately combined. As the fuel such as coal, it is preferable to use pulverized coal obtained by fine pulverization as in the case of a conventional pulverized coal fuel furnace. As the pulverized coal, those having a 200 mesh (74 μm) sieve passage ratio of 70 to 80% are preferable.

本発明においてバイオマスの炭化物(A)及び石炭(B)の混焼比は制限されるものではないが、好ましくは質量比で(A)/(B)=1/99/50/50、より好ましくは10/90〜30/70とするのが良い。バイオマスの炭化物の比率が低すぎる場合は、CO削減効果及びNOx低減効果が不十分となる。一方、バイオマスの炭化物の比率が高すぎる場合は、バイオマスの調達状況によっては一定の発電量を得ることが困難となり、添加量に見合うNOx低減効果も得られ難くなる。 In the present invention, the co-firing ratio of biomass carbide (A) and coal (B) is not limited, but is preferably (A) / (B) = 1/99/50/50, more preferably by mass ratio. It is good to set it as 10 / 90-30 / 70. When the ratio of the carbide of biomass is too low, the CO 2 reduction effect and the NOx reduction effect are insufficient. On the other hand, when the ratio of the carbide of biomass is too high, it becomes difficult to obtain a certain amount of power generation depending on the procurement status of the biomass, and it becomes difficult to obtain an NOx reduction effect commensurate with the amount of addition.

本発明では、微粉砕したバイオマスの炭化物と微粉炭を混焼させる場合、燃焼炉への投入方法は特に限定されるものではなく、それぞれ別個の投入口から燃焼炉内に投入しても良く、両者を同一投入口から燃焼炉内に投入しても良い。或いは両者を混合して燃焼炉内に投入しても良い。両者を同一投入口から燃焼炉内に投入する場合、一気に種類の異なる燃料を噴射することで火炎の温度分布が出来易くなると想定されることより、同一バーナから燃焼炉内に投入することが好ましい。同一バーナから投入する場合は、微粉砕したバイオマスの炭化物及び微粉炭は、別個に同一バーナに供給しても良く、予め混合したものを供給しても良い。また、バイオマスの炭化物と石炭等を粉砕時に混合してバイオマスの炭化物の微粉体と微粉炭の混合物を調製しても良い。   In the present invention, when the finely pulverized biomass carbide and pulverized coal are co-fired, the method of charging into the combustion furnace is not particularly limited, and both may be charged into the combustion furnace through separate charging ports. May be charged into the combustion furnace from the same charging port. Or you may mix both and throw in in a combustion furnace. When both are introduced into the combustion furnace from the same charging port, it is assumed that it becomes easier to create a temperature distribution of the flame by injecting different types of fuel at once, and therefore it is preferable to input from the same burner into the combustion furnace. . In the case of charging from the same burner, the finely pulverized biomass carbide and pulverized coal may be supplied separately to the same burner or may be supplied in advance. Alternatively, biomass carbide and coal may be mixed at the time of pulverization to prepare a mixture of biomass carbide fine powder and pulverized coal.

バイオマスの炭化物(A)と石炭(B)との混合物(混炭)を調製する場合は、混合比は制限されるものではないが、上記したのと同様の理由から、好ましくは質量比で(A)/(B)=1/99/50/50、より好ましくは10/90〜30/70とするのが良い。混炭の発熱量はできるだけ高いことが望ましいが、固体成分の発熱量が6,000kcal/kg以上であることが好ましく、6,400kcal/kg以上であることがより好ましい。   When preparing a mixture of carbonized carbide (A) and coal (B) (mixed coal), the mixing ratio is not limited. However, for the same reason as described above, the mixing ratio is preferably (A ) / (B) = 1/99/50/50, more preferably 10/90 to 30/70. The calorific value of the mixed coal is desirably as high as possible, but the calorific value of the solid component is preferably 6,000 kcal / kg or more, and more preferably 6,400 kcal / kg or more.

本発明において、使用する燃焼炉は特に限定されるものではないが、既存設備の利用が可能で設備付加も最小限に抑えられことより、微粉炭燃焼炉(石炭焚きボイラ)を使用することが好ましい。燃焼条件は特に制限されるものではなく、通常の微粉炭燃焼条件にしたがって行えば良い。燃焼温度としては1200〜1500℃が好ましく、前記温度範囲で混焼させることにより、燃焼効率を高めつつNOxの低減を図ることがより一層可能となる。   In the present invention, the combustion furnace to be used is not particularly limited, but it is possible to use a pulverized coal combustion furnace (coal-fired boiler) because existing facilities can be used and the addition of facilities can be minimized. preferable. The combustion conditions are not particularly limited, and may be performed according to normal pulverized coal combustion conditions. As a combustion temperature, 1200-1500 degreeC is preferable, and it becomes possible further to aim at reduction of NOx, improving combustion efficiency by making it co-fire in the said temperature range.

以下、実施例及び比較例を用いて本発明を更に具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to only the following Examples.

(実施例1)
表1に示す各種のバイオマスの炭化物を微粉砕した微粉体(200メッシュアンダー)と、石炭(A炭)を微粉砕した微粉炭(200メッシュアンダー)とを、表2に示す割合で混合して燃料を調製した。この燃料を図1に示す燃料ホッパ4に充填し、燃料供給機5を介して一次空気と共に縦型燃焼炉ドロップチューブファーネス(Drop Tube Furnace)6に送り込み、燃焼用バーナ(微粉炭バーナ)7から燃焼炉内に噴射した。同時に押込ファン1で昇圧されて空気予熱器2a及び空気予熱器2bを通過して加熱された燃焼用空気を、空気ライン3a及び3bを介してバーナ及び燃焼炉に導入して、燃焼温度約1300〜1350℃で燃料を燃焼させた。燃焼炉出口8の排ガスをサンプリングし、排ガス中のO、NOx、SO、CO、CO及びCH濃度を、排ガス分析計(島津製作所製 NSA−308型、測定原理:非分散型赤外線吸収法)を使用して測定した。一方、燃焼排ガスは、排ガスライン10を介して吸引ファン13で吸引しながらサイクロン11、バグフィルタ12を通過させ、水スクラバ14で処理した後、煙突15から大気中に放出した。
(Example 1)
The fine powder (200 mesh under) obtained by finely pulverizing the carbides of various biomass shown in Table 1 and the pulverized coal (200 mesh under) obtained by finely pulverizing coal (A charcoal) were mixed at a ratio shown in Table 2. A fuel was prepared. This fuel is filled in the fuel hopper 4 shown in FIG. 1, and is sent to the vertical combustion furnace drop tube furnace (Drop Tube Furnace) 6 together with the primary air via the fuel supply machine 5, and from the combustion burner (pulverized coal burner) 7. It was injected into the combustion furnace. At the same time, combustion air that has been pressurized by the pushing fan 1 and heated through the air preheater 2a and the air preheater 2b is introduced into the burner and the combustion furnace via the air lines 3a and 3b, and the combustion temperature is about 1300. The fuel was burned at ˜1350 ° C. The exhaust gas at the combustion furnace outlet 8 is sampled, and the O 2 , NOx, SO 2 , CO, CO 2, and CH 4 concentrations in the exhaust gas are measured with an exhaust gas analyzer (NSA-308, manufactured by Shimadzu Corporation, measurement principle: non-dispersive infrared) Absorption method). On the other hand, the combustion exhaust gas was passed through the cyclone 11 and the bag filter 12 while being sucked by the suction fan 13 through the exhaust gas line 10, treated with the water scrubber 14, and then discharged from the chimney 15 into the atmosphere.

表1から明らかなように、本発明に係るバイオマスの炭化物は、燃料比(固定炭素/揮発分)が大きく発熱量も燃料として用いるのに十分な値を有していた。また、窒素含有量はバイオマスの種類により異なっていたが、石炭に比べて硫黄分の少ないものが得られていた。   As is clear from Table 1, the biomass carbide according to the present invention had a large fuel ratio (fixed carbon / volatile content) and a calorific value sufficient for use as fuel. Moreover, although nitrogen content differed with the kind of biomass, the thing with little sulfur content was obtained compared with coal.

Figure 2005114261
Figure 2005114261

バイオマスの炭化物と石炭との混合比率と、各混合燃料を燃焼させたときの燃焼排ガス中におけるNOx濃度及びSO濃度の測定結果を表2、表3に示す。 And mixing ratio of the carbide and coal biomass, the measurement results of the NOx concentration and SO 2 concentration in the combustion exhaust gas when burned Each mixture fuel shown in Table 2, Table 3.

Figure 2005114261
Figure 2005114261

Figure 2005114261
Figure 2005114261

表2から明らかなように、燃料に含まれる窒素分が多いほど排ガス中のNOx量は増加するが、石炭とバイオマスの炭化物を混焼した場合は、それぞれを専焼した場合に比べてNOxが低減されていることがわかる。また表3から明らかなように、バイオマスの炭化物の硫黄含有量が少ないことから、石炭を専焼した場合に比べてSOが低減されていることがわかる。 As is clear from Table 2, the amount of NOx in the exhaust gas increases as the amount of nitrogen contained in the fuel increases. However, when coal and biomass carbides are co-fired, NOx is reduced as compared with the case where each is co-fired. You can see that Further, as apparent from Table 3, it can be seen that SO 2 is reduced as compared with the case where coal is exclusively burned because the sulfur content of the biomass carbide is small.

(実施例2)
表4に示す汚泥炭化物を微粉砕した微粉体(200メッシュアンダー)と、石炭(B炭及びC炭)を微粉砕した微粉炭(200メッシュアンダー)とを、表5に示す割合で混合して燃料を調製した。この燃料を用いて、実施例1と同様にして燃焼試験を実施し、燃焼炉出口の排ガスを組成分析した。燃焼排ガス中におけるNOx濃度及びSO濃度の測定結果を表5に示す。
(Example 2)
Fine powder (200 mesh under) obtained by finely pulverizing sludge carbide shown in Table 4 and pulverized coal (200 mesh under) obtained by finely pulverizing coal (B charcoal and C charcoal) are mixed at a ratio shown in Table 5. A fuel was prepared. Using this fuel, a combustion test was conducted in the same manner as in Example 1, and the composition of the exhaust gas at the outlet of the combustion furnace was analyzed. The measurement results of the NOx concentration and SO 2 concentration in flue gas shown in Table 5.

Figure 2005114261
Figure 2005114261

Figure 2005114261
Figure 2005114261

表5から明らかなように、石炭とバイオマスの炭化物を混焼した場合は、石炭を専焼した場合に比べてNOxが大幅に低減されていることがわかる。   As is clear from Table 5, it can be seen that when coal and biomass carbides are co-fired, NOx is significantly reduced compared to when coal is exclusively fired.

(実施例3)
表4に示す汚泥炭化物を微粉砕した微粉体(200メッシュアンダー)と、石炭(B炭及びC炭)を微粉砕した微粉炭(200メッシュアンダー)とを、表6に示す割合で混合して燃料を調製した。この燃料を用いて、実施例1に準じて燃焼試験を実施し、燃焼炉出口の排ガスを組成分析した。なお、本実施例では、燃焼用空気の一部を三次空気(Over Fire Air)として火炎の後段へ吹き込むことにより燃焼試験を実施した。燃焼排ガス中におけるNOx濃度及びSO濃度の測定結果を表6に示す。
(Example 3)
Fine powder (200 mesh under) obtained by finely pulverizing sludge carbide shown in Table 4 and pulverized coal (200 mesh under) obtained by finely pulverizing coal (B charcoal and C charcoal) were mixed at a ratio shown in Table 6. A fuel was prepared. Using this fuel, a combustion test was conducted according to Example 1, and the composition of the exhaust gas at the outlet of the combustion furnace was analyzed. In this example, a combustion test was performed by blowing a part of combustion air as tertiary air (Over Fire Air) to the subsequent stage of the flame. The measurement results of the NOx concentration and SO 2 concentration in flue gas shown in Table 6.

OFA(Over Fire Air)ファクターは、式(1)により求められる。
OFA吹込み位置=(OFA吹込み位置/有効炉長)×(OFA空気量/全空気量)×100 (1)
The OFA (Over Fire Air) factor is obtained by the equation (1).
OFA blowing position = (OFA blowing position / effective furnace length) x (OFA air volume / total air volume) x 100 (1)

Figure 2005114261
Figure 2005114261

表6から明らかなように、石炭とバイオマスの炭化物を混焼した場合は、石炭を専焼した場合に比べてNOxが大幅に低減されていることがわかる。   As is apparent from Table 6, it can be seen that when coal and biomass carbides are co-fired, NOx is greatly reduced compared to when coal is exclusively fired.

本発明を実施する形態の一例を示す全体概要構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole schematic block diagram which shows an example of the form which implements this invention.

符号の説明Explanation of symbols

1…押込ファン
2a,2b…空気予熱器
3a,3b…空気ライン
4…燃料ホッパ
5…燃料供給機
6…燃焼炉
7…バーナ
8…燃焼炉出口
10…排ガスライン
11…サイクロン
12…バグフィルタ
13…吸引ファン
14…水スクラバ
DESCRIPTION OF SYMBOLS 1 ... Push-in fan 2a, 2b ... Air preheater 3a, 3b ... Air line 4 ... Fuel hopper 5 ... Fuel supply machine 6 ... Combustion furnace 7 ... Burner 8 ... Combustion furnace exit 10 ... Exhaust gas line 11 ... Cyclone 12 ... Bag filter 13 ... Suction fan 14 ... Water scrubber

Claims (4)

バイオマスの炭化物と石炭とを混合燃焼させることを特徴とするバイオマス系燃料の燃焼方法。 A biomass-based fuel combustion method comprising mixing and burning biomass carbide and coal. 微粉砕されたバイオマスの炭化物と石炭とを混合燃焼させる請求項1に記載のバイオマス系燃料の燃焼方法。 The method for burning biomass fuel according to claim 1, wherein finely pulverized biomass carbide and coal are mixed and burned. バイオマスの炭化物と石炭とを同一バーナから燃焼炉内へ投入する請求項1または2に記載のバイオマス系燃料の燃焼方法。 The biomass fuel combustion method according to claim 1 or 2, wherein the biomass carbide and coal are charged into the combustion furnace from the same burner. バイオマスが、木質系バイオマスおよび植物系残渣より選ばれる少なくとも一種である請求項1〜3のいずれかに記載のバイオマス系燃料の燃焼方法。
The method for burning biomass fuel according to any one of claims 1 to 3, wherein the biomass is at least one selected from woody biomass and plant residue.
JP2003350130A 2003-10-08 2003-10-08 Combustion method of biomass-based fuel Pending JP2005114261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003350130A JP2005114261A (en) 2003-10-08 2003-10-08 Combustion method of biomass-based fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003350130A JP2005114261A (en) 2003-10-08 2003-10-08 Combustion method of biomass-based fuel

Publications (1)

Publication Number Publication Date
JP2005114261A true JP2005114261A (en) 2005-04-28

Family

ID=34541773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003350130A Pending JP2005114261A (en) 2003-10-08 2003-10-08 Combustion method of biomass-based fuel

Country Status (1)

Country Link
JP (1) JP2005114261A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091888A (en) * 2005-09-29 2007-04-12 Ube Machinery Corporation Ltd Method for crushing woody biomass
JP2007091889A (en) * 2005-09-29 2007-04-12 Ube Machinery Corporation Ltd Manufacturing system of biomass fuel
JP2007091894A (en) * 2005-09-29 2007-04-12 Ube Machinery Corporation Ltd Production system for woody biomass fuel
JP2007091891A (en) * 2005-09-29 2007-04-12 Ube Machinery Corporation Ltd Manufacturing system of boiler fuel
JP2009180476A (en) * 2008-01-31 2009-08-13 Ube Techno Enji Kk Mixing combustion equipment for biomass resource and coal, and combustion method for boiler mixing and burning biomass resource and coal
JP2010230209A (en) * 2009-03-26 2010-10-14 Kobe Steel Ltd Pulverized coal combustion device and pulverized coal combustion method using the same
WO2011007505A1 (en) * 2009-07-13 2011-01-20 Noguchi Kazutoshi Treatment method for waste material generated through crude palm oil production process
CN102213412A (en) * 2011-04-07 2011-10-12 北京联合创业建设工程有限公司 Biomass dust fuel burning apparatus and biomass dust fuel burning method
CN103256616A (en) * 2013-05-22 2013-08-21 邓耀辉 Environment-friendly boiler system
CN105546524A (en) * 2015-12-11 2016-05-04 重庆生息节能技术有限公司 Biomass combustion technology
JP2019211158A (en) * 2018-06-06 2019-12-12 株式会社トクヤマ Power generation method
JP2020118314A (en) * 2019-01-21 2020-08-06 川崎重工業株式会社 Combustion furnace and method for starting-up the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091888A (en) * 2005-09-29 2007-04-12 Ube Machinery Corporation Ltd Method for crushing woody biomass
JP2007091889A (en) * 2005-09-29 2007-04-12 Ube Machinery Corporation Ltd Manufacturing system of biomass fuel
JP2007091894A (en) * 2005-09-29 2007-04-12 Ube Machinery Corporation Ltd Production system for woody biomass fuel
JP2007091891A (en) * 2005-09-29 2007-04-12 Ube Machinery Corporation Ltd Manufacturing system of boiler fuel
JP2009180476A (en) * 2008-01-31 2009-08-13 Ube Techno Enji Kk Mixing combustion equipment for biomass resource and coal, and combustion method for boiler mixing and burning biomass resource and coal
JP2010230209A (en) * 2009-03-26 2010-10-14 Kobe Steel Ltd Pulverized coal combustion device and pulverized coal combustion method using the same
WO2011007505A1 (en) * 2009-07-13 2011-01-20 Noguchi Kazutoshi Treatment method for waste material generated through crude palm oil production process
CN102213412A (en) * 2011-04-07 2011-10-12 北京联合创业建设工程有限公司 Biomass dust fuel burning apparatus and biomass dust fuel burning method
CN102213412B (en) * 2011-04-07 2014-04-02 北京联合创业环保工程股份有限公司 Biomass dust fuel burning apparatus and biomass dust fuel burning method
CN103256616A (en) * 2013-05-22 2013-08-21 邓耀辉 Environment-friendly boiler system
CN105546524A (en) * 2015-12-11 2016-05-04 重庆生息节能技术有限公司 Biomass combustion technology
JP2019211158A (en) * 2018-06-06 2019-12-12 株式会社トクヤマ Power generation method
JP7065699B2 (en) 2018-06-06 2022-05-12 株式会社トクヤマ Power generation method
JP2020118314A (en) * 2019-01-21 2020-08-06 川崎重工業株式会社 Combustion furnace and method for starting-up the same
JP7199235B2 (en) 2019-01-21 2023-01-05 川崎重工業株式会社 Combustion furnace and its starting method

Similar Documents

Publication Publication Date Title
Sami et al. Co-firing of coal and biomass fuel blends
Lasek et al. Combustion properties of torrefied biomass obtained from flue gas-enhanced reactor
EP2705302B1 (en) A process for cogasifying and cofiring engineered fuel with coal
Yanik et al. NO and SO2 emissions from combustion of raw and torrefied biomasses and their blends with lignite
Werther et al. Combustion of agricultural residues
Hein et al. EU clean coal technology—co-combustion of coal and biomass
JP2005114261A (en) Combustion method of biomass-based fuel
CN108534142A (en) A kind of refuse pyrolysis gasification burning chimney-free Zero discharging system
Horvat et al. Combustion of agricultural biomass-issues and solutions
JP2009191085A (en) Method and system for manufacturing solid fuel, and solid fuel
Kubica et al. Small combustion installations: Techniques, emissions and measures for emission reduction
RU2692250C2 (en) Method and system for low-energy biomass torrefaction
FI119124B (en) Procedure for combustion of biofuel in fossil fuel boiler
Lasek et al. The combustion of torrefied biomass in commercial-scale domestic boilers
RU2177977C2 (en) Method for thermally processing biomass
JP2010254749A (en) Method for producing biomass charcoal and apparatus for producing biomass charcoal used in the same
RU2718051C1 (en) Method of oxidative torrefaction of bio-wastes in fluidized bed
EP3850271B1 (en) A reactor capable of carbonized drying and burning volatile gases together with toxic gases
Kaczyński et al. Characteristics of agro and wood biomass combustion in the stream of inert material
Munir A review on biomass-coal co-combustion: current state of knowledge
Keivani et al. Co-combustion of biocoal and lignite in a circulating fluidised bed combustor to decrease the impact on global warming
CN103712218B (en) A kind of environment-friendlygarbage garbage incineration process and matched device
JP2005241054A (en) Waste material melting method using powder biomass
RU191669U1 (en) Wet Wood Burner
Patabang et al. The Effect of Adding Candlenut Shell into The Low Rank Coal on Combustion Performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060808

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Effective date: 20080226

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080625

Free format text: JAPANESE INTERMEDIATE CODE: A02