JP2005113688A - Engine exhaust emission control device - Google Patents

Engine exhaust emission control device Download PDF

Info

Publication number
JP2005113688A
JP2005113688A JP2003344758A JP2003344758A JP2005113688A JP 2005113688 A JP2005113688 A JP 2005113688A JP 2003344758 A JP2003344758 A JP 2003344758A JP 2003344758 A JP2003344758 A JP 2003344758A JP 2005113688 A JP2005113688 A JP 2005113688A
Authority
JP
Japan
Prior art keywords
reducing agent
exhaust
injection nozzle
temperature
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003344758A
Other languages
Japanese (ja)
Other versions
JP3718208B2 (en
Inventor
Hiroki Ueno
弘樹 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2003344758A priority Critical patent/JP3718208B2/en
Priority to US10/574,341 priority patent/US7703276B2/en
Priority to PCT/JP2004/013305 priority patent/WO2005033482A1/en
Priority to EP04772987A priority patent/EP1672191B1/en
Priority to CN2008101106559A priority patent/CN101328827B/en
Priority to AT04772987T priority patent/ATE520868T1/en
Publication of JP2005113688A publication Critical patent/JP2005113688A/en
Application granted granted Critical
Publication of JP3718208B2 publication Critical patent/JP3718208B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02T10/47

Abstract

<P>PROBLEM TO BE SOLVED: To improve NOx emission control efficiency by preventing choking in an injection nozzle to supply a reducing agent to the exhaust upstream side of a reduction catalyst. <P>SOLUTION: In a reducing agent supply device 6, a detection signal S1 for exhaust temperature from an exhaust temperature sensor 9 is used to set supply quantity of urea water to the injection nozzle 5 to be above the lowest limit value of supply quantity to cool the inside of the injection nozzle 5 at temperature less than urea water crystallizing temperature with the detected exhaust temperature. As urea water is supplied, the inside of the injection nozzle 5 is cooled to temperature less than urea water crystallizing temperature. Urea water is thus prevented from crystallizing in the injection nozzle 5, thereby choking in the injection nozzle 5 can be prevented. NOx emission control efficiency can thus be improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、移動車両搭載のディーゼルエンジン、ガソリンエンジン等から排出される窒素酸化物(NOx)を、還元剤を用いて還元除去する排気浄化装置に関し、特に、還元剤を還元触媒の排気上流側に供給する噴射ノズルの目詰まりを防止してNOxの浄化処理の効率を向上するエンジンの排気浄化装置に係るものである。   The present invention relates to an exhaust purification device that reduces and removes nitrogen oxides (NOx) discharged from a diesel engine, a gasoline engine or the like mounted on a moving vehicle by using a reducing agent, and in particular, an exhaust upstream side of a reducing catalyst. The present invention relates to an exhaust emission control device for an engine which prevents clogging of an injection nozzle supplied to the engine and improves the efficiency of NOx purification processing.

エンジンから排出される排気中の微粒子物質(PM)のうち、特にNOxを除去して排気を浄化するシステムとして、いくつかの排気浄化装置が提案されている。この排気浄化装置は、エンジンの排気系に還元触媒を置き、該還元触媒の上流側の排気通路に還元剤を噴射供給することにより、排気中のNOxと還元剤とを触媒還元反応させ、NOxを無害成分に浄化処理するものである。還元剤は貯蔵タンクに常温で液体状態に貯蔵され、必要量を噴射ノズルから噴射供給する。還元反応は、NOxとの反応性の良いアンモニアを用いるもので、還元剤としては、加水分解してアンモニアを容易に発生する尿素水溶液、アンモニア水溶液、その他の還元剤水溶液が用いられる(例えば、特許文献1参照)。
特開2000−27627号公報
Several exhaust emission control devices have been proposed as a system for purifying exhaust gas by removing NOx from particulate matter (PM) in exhaust gas discharged from the engine. This exhaust purification device places a reduction catalyst in an exhaust system of an engine, and injects and supplies a reducing agent into an exhaust passage upstream of the reduction catalyst, thereby causing NOx and reducing agent in the exhaust to undergo a catalytic reduction reaction, thereby reducing NOx. Is purified to harmless components. The reducing agent is stored in a storage tank in a liquid state at room temperature, and a required amount is injected and supplied from an injection nozzle. In the reduction reaction, ammonia having good reactivity with NOx is used, and as the reducing agent, an aqueous urea solution, an aqueous ammonia solution, or other reducing agent aqueous solution that easily generates ammonia by hydrolysis is used (for example, patents). Reference 1).
JP 2000-27627 A

しかし、上記従来の排気浄化装置においては、エンジンの運転状態(排気温度やNOx排出量など)に応じて還元剤の供給量を制御するが、エンジンの運転状態によっては、排気通路内に設けられた噴射ノズルの噴射孔又はそれに至る通路が目詰まりを起こし、還元剤を十分に供給できなくなる場合がある。その結果、上記還元触媒上でのNOxの還元反応がスムーズに進行せず、NOxが排出される虞がある。   However, in the conventional exhaust purification device, the supply amount of the reducing agent is controlled in accordance with the engine operating state (exhaust temperature, NOx emission amount, etc.). However, depending on the engine operating state, it is provided in the exhaust passage. In some cases, the injection hole of the injection nozzle or the passage leading to the injection nozzle is clogged, and the reducing agent cannot be supplied sufficiently. As a result, the reduction reaction of NOx on the reduction catalyst does not proceed smoothly, and there is a possibility that NOx is discharged.

上記噴射ノズルの目詰まりは、還元剤としての尿素水溶液(以下、「尿素水」という)中の尿素が噴射孔又はそれに至る通路内で結晶化して付着するのが主な原因である。これは、尿素水は100℃で凝結するので、尿素水が100℃以上に加熱されると尿素結晶が発生するからである。ここで、噴射ノズルによる尿素水の通常の噴射供給中は、貯蔵タンクから供給される尿素水(噴射ノズルに対して尿素水と共に圧縮空気を供給する還元剤供給系の場合には、尿素水及び圧縮空気)がノズル内部を冷却し、該噴射ノズルがエンジンからの排気により加熱されても、その尿素水が100℃になることはない。しかし、尿素水の供給量が減少し、ノズル内部を冷却しきれなくなった場合には、ノズル内部の尿素水が100℃以上となり尿素結晶が発生して、目詰まりを起こす虞がある。   The main cause of the clogging of the injection nozzle is that urea in an aqueous urea solution (hereinafter referred to as “urea water”) as a reducing agent crystallizes and adheres in an injection hole or a passage leading to it. This is because urea water condenses at 100 ° C., and when urea water is heated to 100 ° C. or higher, urea crystals are generated. Here, during normal injection supply of urea water by the injection nozzle, urea water supplied from the storage tank (in the case of a reducing agent supply system that supplies compressed air together with urea water to the injection nozzle, urea water and Even if the compressed air) cools the inside of the nozzle and the injection nozzle is heated by the exhaust from the engine, the urea water does not reach 100 ° C. However, when the supply amount of urea water decreases and the inside of the nozzle cannot be cooled completely, the urea water inside the nozzle becomes 100 ° C. or more, and urea crystals are generated, which may cause clogging.

そこで、本発明は、このような問題点に対処し、還元剤を還元触媒の排気上流側に供給する噴射ノズルの目詰まりを防止してNOxの浄化処理の効率を向上するエンジンの排気浄化装置を提供することを目的とする。   Accordingly, the present invention addresses such problems and prevents the clogging of the injection nozzle that supplies the reducing agent to the exhaust upstream side of the reduction catalyst, thereby improving the efficiency of the NOx purification process. The purpose is to provide.

請求項1に記載の排気浄化装置では、エンジンの排気系に配設され、排気中の窒素酸化物を還元剤により還元浄化する還元触媒と、前記排気系の排気通路内にて前記還元剤を前記還元触媒の排気上流側に供給する噴射ノズルを有する還元剤供給手段と、前記噴射ノズルの排気上流側の近傍に設けられ、排気通路内の排気温度を検出する温度検出手段と、を備えたエンジンの排気浄化装置であって、前記還元剤供給手段は、前記温度検出手段からの排気温度の検出信号を用いて、その排気温度において前記噴射ノズル内部を還元剤が結晶化する温度未満に冷却する供給量の下限値以上に設定し、該噴射ノズルに還元剤を供給することを特徴とする。   In the exhaust emission control device according to claim 1, a reduction catalyst disposed in an exhaust system of the engine for reducing and purifying nitrogen oxide in the exhaust gas with a reducing agent, and the reducing agent in the exhaust passage of the exhaust system. A reducing agent supply means having an injection nozzle for supplying the exhaust catalyst to the exhaust upstream side; and a temperature detection means provided near the exhaust upstream side of the injection nozzle for detecting the exhaust temperature in the exhaust passage. In the engine exhaust gas purification device, the reducing agent supply means cools the inside of the injection nozzle to a temperature below the temperature at which the reducing agent crystallizes at the exhaust temperature using an exhaust temperature detection signal from the temperature detecting means. It is set to be equal to or higher than the lower limit value of the supply amount to be supplied, and the reducing agent is supplied to the injection nozzle.

このような構成により、温度検出手段からの排気温度の検出信号を用いて、還元剤供給手段は、上記検出した排気温度において前記噴射ノズル内部を還元剤が結晶化する温度未満に冷却する供給量の下限値以上に設定し、その設定した供給量で噴射ノズルに還元剤を供給する。このような還元剤の供給により、噴射ノズル内部が還元剤が結晶化する温度未満に冷却される。   With such a configuration, using the detection signal of the exhaust temperature from the temperature detection means, the reducing agent supply means cools the inside of the injection nozzle below the temperature at which the reducing agent crystallizes at the detected exhaust temperature. The reducing agent is supplied to the injection nozzle at the set supply amount. By supplying such a reducing agent, the inside of the injection nozzle is cooled below a temperature at which the reducing agent crystallizes.

請求項2に記載の発明では、前記還元剤供給手段は、前記温度検出手段からの排気温度の検出信号を入力すると共にエンジンの運転状態の信号を入力し、そのエンジン運転状態における還元剤の供給量を求めると共に、その排気温度において前記噴射ノズル内部を還元剤が結晶化する温度未満に冷却する還元剤の供給量の下限値を求め、両者を比較して還元剤の供給量を設定する制御回路を備えたことを特徴とする。これにより、還元剤供給手段に備えられた制御回路で、温度検出手段からの排気温度の検出信号を入力すると共にエンジンの運転状態の信号を入力し、その時のエンジン運転状態における還元剤の供給量を求めると共に、上記検出した排気温度において前記噴射ノズル内部を還元剤が結晶化する温度未満に冷却する還元剤の供給量の下限値を求め、両者を比較して還元剤の供給量を設定する。   According to a second aspect of the present invention, the reducing agent supply means inputs an exhaust temperature detection signal from the temperature detection means and an engine operating state signal, and supplies the reducing agent in the engine operating state. Control which calculates | requires the amount, and calculates | requires the lower limit of the supply amount of the reducing agent which cools the inside of the said injection nozzle to less than the temperature which crystallizes the said injection nozzle in the exhaust temperature, compares both, and sets control agent supply amount A circuit is provided. Thus, the control circuit provided in the reducing agent supply means inputs the exhaust temperature detection signal from the temperature detection means and the engine operating state signal, and supplies the reducing agent in the engine operating state at that time. The lower limit of the supply amount of the reducing agent that cools the inside of the injection nozzle below the temperature at which the reducing agent crystallizes at the detected exhaust temperature is determined, and the supply amount of the reducing agent is set by comparing the two. .

請求項3に記載の発明では、前記還元剤供給手段は、噴射ノズルに対して還元剤と共に圧縮空気を供給し、還元剤を霧化して噴射供給するものであることを特徴とする。これにより、噴射ノズルに対して還元剤と共に圧縮空気を供給し、この圧縮空気で還元剤を霧化して前記還元触媒の排気上流側に噴射供給する。   The invention as set forth in claim 3 is characterized in that the reducing agent supply means supplies compressed air together with the reducing agent to the injection nozzle, atomizes the reducing agent, and supplies it by injection. As a result, compressed air is supplied to the injection nozzle together with the reducing agent, the reducing agent is atomized with the compressed air, and is supplied to the exhaust upstream side of the reduction catalyst.

請求項4に記載の発明では、前記還元剤は、尿素水溶液であることを特徴とする。これにより、加水分解してアンモニアを容易に発生する尿素水溶液を還元剤として、排気中の窒素酸化物を還元浄化する。   The invention according to claim 4 is characterized in that the reducing agent is an aqueous urea solution. Thus, nitrogen oxides in the exhaust gas are reduced and purified using an aqueous urea solution that easily generates ammonia by hydrolysis as a reducing agent.

請求項1に係る発明によれば、検出した排気温度において噴射ノズル内部を還元剤が結晶化する温度未満に冷却する供給量の下限値以上に設定された還元剤の供給により、噴射ノズル内部が冷却されて還元剤が結晶化せず、該噴射ノズルが目詰まりするのを防止することができる。したがって、NOxの浄化処理の効率を向上することができる。   According to the first aspect of the present invention, the supply of the reducing agent that is set to be equal to or higher than the lower limit of the supply amount that cools the inside of the injection nozzle below the temperature at which the reducing agent crystallizes at the detected exhaust temperature causes the inside of the injection nozzle to It is possible to prevent the reducing agent from being crystallized by cooling and preventing the injection nozzle from being clogged. Therefore, the efficiency of the NOx purification process can be improved.

また、請求項2に係る発明によれば、その時のエンジン運転状態における還元剤の供給量と、検出した排気温度において噴射ノズル内部を還元剤が結晶化する温度未満に冷却する還元剤の供給量の下限値とを比較して、常にその時の排気温度における還元剤の供給量の下限値以上に設定して、還元剤を供給することができる。したがって、噴射ノズル内部が冷却されて還元剤が結晶化せず、該噴射ノズルが目詰まりするのを防止することができる。   According to the second aspect of the present invention, the supply amount of the reducing agent in the engine operating state at that time and the supply amount of the reducing agent that cools the inside of the injection nozzle below the temperature at which the reducing agent crystallizes at the detected exhaust temperature. Is compared with the lower limit value, and the reducing agent can be supplied by always setting it to be equal to or higher than the lower limit value of the supply amount of the reducing agent at the exhaust temperature at that time. Therefore, the inside of the injection nozzle is cooled and the reducing agent is not crystallized, and the injection nozzle can be prevented from being clogged.

さらに、請求項3に係る発明によれば、噴射ノズルに対して還元剤と共に圧縮空気を供給することで、噴射ノズル内部が還元剤及び圧縮空気で効率よく冷却される。したがって、噴射ノズル内に還元剤が結晶化せず、目詰まりするのを防止することができる。   Furthermore, according to the invention which concerns on Claim 3, the inside of an injection nozzle is efficiently cooled with a reducing agent and compressed air by supplying compressed air with a reducing agent with respect to an injection nozzle. Therefore, the reducing agent does not crystallize in the injection nozzle and can be prevented from being clogged.

さらにまた、請求項4に係る発明によれば、還元剤としてアンモニアを直接使用することなく、加水分解してアンモニアを容易に発生する尿素水溶液を使用することで、排気中のNOxを無害成分に転化して、NOxの浄化処理の効率を向上することができる。   Furthermore, according to the invention of claim 4, NOx in the exhaust gas is made harmless by using a urea aqueous solution that easily generates ammonia by hydrolysis without directly using ammonia as a reducing agent. This can improve the efficiency of the NOx purification treatment.

以下、本発明の実施形態を添付図面に基づいて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

図1は本発明によるエンジンの排気浄化装置の実施形態を示す図である。この排気浄化装置は、移動車両搭載のディーゼルエンジン、ガソリンエンジン等から排出されるNOxを、還元剤を用いて還元除去するものである。ガソリンあるいは軽油を燃料とするエンジン1の排気は、排気マニフォ−ルド2からNOxの還元触媒3が配設された排気管4を経由して大気中に排出される。詳細には、排気通路としての排気管4には排気上流側から順に、一酸化窒素(NO)の酸化触媒、NOxの還元触媒、アンモニア酸化触媒の3つの触媒が配設され、その前後に温度センサ、NOxセンサ等が配設されて排気系が構成されるが、細部の構成は図示していない。   FIG. 1 is a view showing an embodiment of an exhaust emission control device for an engine according to the present invention. This exhaust purification device is for reducing and removing NOx discharged from a diesel engine, a gasoline engine or the like mounted on a moving vehicle using a reducing agent. The exhaust of the engine 1 using gasoline or light oil as fuel is discharged from the exhaust manifold 2 to the atmosphere via an exhaust pipe 4 provided with a NOx reduction catalyst 3. Specifically, the exhaust pipe 4 serving as an exhaust passage is provided with three catalysts, a nitric oxide (NO) oxidation catalyst, a NOx reduction catalyst, and an ammonia oxidation catalyst, in that order from the upstream side of the exhaust. Although an exhaust system is configured by arranging sensors, NOx sensors, etc., the detailed configuration is not shown.

上記NOxの還元触媒3は、排気管4内を通る排気中のNOxを還元剤により還元浄化するもので、セラミックのコーディライトやFe−Cr−Al系の耐熱鋼から成るハニカム形状の横断面を有するモノリスタイプの触媒担体に、例えばゼオライト系の活性成分が担持されている。そして、上記触媒担体に担持された活性成分は、還元剤の供給を受けて活性化し、NOxを効果的に無害物質に浄化させる。   The NOx reduction catalyst 3 reduces and purifies NOx in the exhaust gas passing through the exhaust pipe 4 with a reducing agent. The NOx reduction catalyst 3 has a honeycomb-shaped cross section made of ceramic cordierite or Fe-Cr-Al heat-resistant steel. For example, a zeolite-type active component is supported on the monolith type catalyst carrier. Then, the active component carried on the catalyst carrier is activated upon receiving the supply of the reducing agent, and effectively purifies NOx into a harmless substance.

上記排気管4の内部にてNOxの還元触媒3の排気上流側には、噴射ノズル5が配設されている。この噴射ノズル5は、還元剤を上記NOxの還元触媒3の排気上流側に供給するもので、還元剤供給装置6を介して還元剤と共に圧縮空気が供給され、該還元剤を霧化して噴射供給するようになっている。ここで、噴射ノズル5は、排気管4内にて排気の流れ方向Aと略平行に下流側に向けて配設され、或いは適宜の角度で斜めに傾斜して配設されている。また、還元剤供給装置6には、貯蔵タンク7内に貯留された還元剤が供給配管8を通じて供給される。そして、上記噴射ノズル5と還元剤供給装置6とで、還元剤をNOxの還元触媒3の排気上流側に供給する還元剤供給手段を構成している。   An injection nozzle 5 is disposed in the exhaust pipe 4 on the exhaust upstream side of the NOx reduction catalyst 3. The injection nozzle 5 supplies a reducing agent to the exhaust upstream side of the NOx reduction catalyst 3. Compressed air is supplied together with the reducing agent via the reducing agent supply device 6, and the reducing agent is atomized and injected. It comes to supply. Here, the injection nozzle 5 is disposed in the exhaust pipe 4 toward the downstream side substantially parallel to the flow direction A of the exhaust gas, or is inclined obliquely at an appropriate angle. The reducing agent supply device 6 is supplied with the reducing agent stored in the storage tank 7 through the supply pipe 8. The injection nozzle 5 and the reducing agent supply device 6 constitute reducing agent supply means for supplying the reducing agent to the exhaust upstream side of the NOx reduction catalyst 3.

この実施形態では、上記噴射ノズル5で噴射供給する還元剤として尿素水溶液(尿素水)を用いる。他にアンモニア水溶液等を用いてもよい。そして、噴射ノズル5で噴射供給された尿素水は、排気管4内の排気熱により加水分解してアンモニアを容易に発生する。得られたアンモニアは、NOxの還元触媒3において排気中のNOxと反応し、水及び無害なガスに浄化される。尿素水は、固体もしくは粉体の尿素の水溶液で、貯蔵タンク7に貯留されており、供給配管8を通じて還元剤供給装置6に供給されるようになっている。   In this embodiment, a urea aqueous solution (urea water) is used as a reducing agent to be supplied by injection from the injection nozzle 5. In addition, an aqueous ammonia solution or the like may be used. The urea water injected and supplied from the injection nozzle 5 is hydrolyzed by the exhaust heat in the exhaust pipe 4 to easily generate ammonia. The obtained ammonia reacts with NOx in the exhaust gas in the NOx reduction catalyst 3 to be purified into water and harmless gas. The urea water is a solid or powdery urea aqueous solution, stored in the storage tank 7, and supplied to the reducing agent supply device 6 through the supply pipe 8.

上記排気管4の内部にて噴射ノズル5の排気上流側の近傍には、排気温度センサ9が設けられている。この排気温度センサ9は、排気管4内の排気温度を検出する温度検出手段となるものであり、この実施形態では上記噴射ノズル5の排気上流側近傍の排気温度を検出するようになっている。そして、この排気温度センサ9で検出した排気温度の検出信号は、上記還元剤供給装置6に送られるようになっている。   An exhaust temperature sensor 9 is provided in the vicinity of the upstream side of the exhaust of the injection nozzle 5 inside the exhaust pipe 4. The exhaust temperature sensor 9 serves as temperature detection means for detecting the exhaust temperature in the exhaust pipe 4, and in this embodiment, the exhaust temperature in the vicinity of the exhaust upstream side of the injection nozzle 5 is detected. . An exhaust gas temperature detection signal detected by the exhaust gas temperature sensor 9 is sent to the reducing agent supply device 6.

ここで、本発明においては、上記還元剤供給装置6は、前記排気温度センサ9からの排気温度の検出信号を用いて、その排気温度において前記噴射ノズル5内部を尿素水が結晶化する温度未満に冷却する供給量の下限値以上に設定し、該噴射ノズル5に尿素水を供給するように構成されている。すなわち、図2に示すように、図1に示す貯蔵タンク7からの供給配管8の途中に設けられ尿素水の圧力を上げる昇圧ポンプ10と、この昇圧ポンプ10の下流側に設けられ尿素水の通路を開閉する供給バルブ11と、図示省略の圧縮空気源からのエア供給配管12の途中に設けられ圧縮空気の通路を開閉するエア供給バルブ13と、還元剤供給制御回路14とを備えて成る。   Here, in the present invention, the reducing agent supply device 6 uses the detection signal of the exhaust temperature from the exhaust temperature sensor 9 and is less than the temperature at which urea water crystallizes inside the injection nozzle 5 at the exhaust temperature. The urea water is supplied to the injection nozzle 5 by setting it to be equal to or higher than the lower limit value of the supply amount to be cooled. That is, as shown in FIG. 2, a booster pump 10 provided in the middle of the supply pipe 8 from the storage tank 7 shown in FIG. 1 to raise the pressure of urea water, and a urea water provided downstream of the booster pump 10. A supply valve 11 that opens and closes the passage, an air supply valve 13 that opens and closes the passage of compressed air provided in the middle of an air supply pipe 12 from a compressed air source (not shown), and a reducing agent supply control circuit 14 are provided. .

そして、上記還元剤供給制御回路14は、前記排気温度センサ9からの排気温度の検出信号S1を入力すると共に、エンジン制御回路15からエンジン1の運転状態の信号S2を入力し、そのエンジン運転状態における尿素水の供給量を求めると共に、その排気温度において前記噴射ノズル5内部を尿素水が結晶化する温度未満に冷却する尿素水の供給量の下限値を求め、両者を比較して尿素水の供給量を設定するもので、例えば制御用マイクロコンピュータ(MPU)から成り、その設定された尿素水の供給量に応じて、上記昇圧ポンプ10及び供給バルブ11並びにエア供給バルブ13に制御信号を送り、噴射ノズル5に対する尿素水及び圧縮空気の供給量を制御するようになっている。 The reducing agent supply control circuit 14 receives the exhaust gas temperature detection signal S 1 from the exhaust gas temperature sensor 9 and the engine control circuit 15 receives the operation state signal S 2 from the engine control circuit 15. The urea water supply amount in the operating state is obtained, and the lower limit value of the urea water supply amount for cooling the inside of the injection nozzle 5 below the temperature at which the urea water is crystallized at the exhaust temperature is obtained. For example, a control microcomputer (MPU) is used to set the supply amount of water, and control signals are supplied to the booster pump 10, supply valve 11, and air supply valve 13 in accordance with the set supply amount of urea water. And the supply amount of urea water and compressed air to the injection nozzle 5 is controlled.

また、上記エンジン制御回路15は、図1に示す排気マニフォールド2の排気温度(エンジン排気温度)を検出する温度センサや、図示省略のNOxセンサ、吸気流量センサ、回転速度センサ及び負荷センサ等からの検出信号を入力してエンジン1の運転状態を制御するもので、例えば制御用マイクロコンピュータ(MPU)から成り、エンジン排気温度及びNOx排出量等のエンジン1の運転状態信号S2を上記還元剤供給制御回路14へ送るようになっている。 The engine control circuit 15 includes a temperature sensor for detecting the exhaust temperature (engine exhaust temperature) of the exhaust manifold 2 shown in FIG. 1, a NOx sensor (not shown), an intake flow rate sensor, a rotational speed sensor, a load sensor, and the like. enter the detection signal controls the operating state of the engine 1, for example, a control microcomputer (MPU), the engine exhaust temperature and NOx emissions the reducing agent an operating condition signal S 2 of the engine 1, such as the amount of feed The data is sent to the control circuit 14.

次に、このように構成された排気浄化装置の動作について、図2及び図3を参照して説明する。まず、図1において、エンジン1の運転による排気は、排気マニフォ−ルド2から排気管4を経由して、該排気管4内の途中に配設されたNOxの還元触媒3を通り、排気管4の端部排出口から大気中に排出される。このとき、上記排気管4の内部にてNOxの還元触媒3の排気上流側に配設された噴射ノズル5から尿素水が噴射される。この噴射ノズル5には、尿素水の貯蔵タンク7から供給配管8を介して尿素水が還元剤供給装置6に供給された後、この還元剤供給装置6の動作により圧縮空気と共に尿素水が供給され、該噴射ノズル5は尿素水を霧化して噴射供給する。   Next, the operation of the exhaust emission control device configured as described above will be described with reference to FIGS. First, in FIG. 1, exhaust from the operation of the engine 1 passes through the exhaust manifold 2, the exhaust pipe 4, the NOx reduction catalyst 3 disposed in the exhaust pipe 4, and the exhaust pipe. 4 is discharged into the atmosphere from the end discharge port. At this time, urea water is injected from the injection nozzle 5 disposed upstream of the NOx reduction catalyst 3 in the exhaust pipe 4. After the urea water is supplied to the injection nozzle 5 from the urea water storage tank 7 through the supply pipe 8 to the reducing agent supply device 6, the urea water is supplied together with the compressed air by the operation of the reducing agent supply device 6. The injection nozzle 5 atomizes the urea water and supplies it by injection.

この状態で、図2において、上記噴射ノズル5の排気上流側の近傍に設けられた排気温度センサ9により排気管4内の排気温度を検出して、その検出信号S1が還元剤供給装置6の還元剤供給制御回路14へ送られる。また、エンジン制御回路15からは、エンジン排気温度及びNOx排出量等のエンジン1の運転状態の信号S2が同じく還元剤供給制御回路14へ送られる。 In this state, in FIG. 2, by detecting the exhaust temperature in the exhaust pipe 4 by the exhaust temperature sensor 9 provided near the exhaust upstream side of the injection nozzle 5, the detection signal S 1 is the reducing agent supply device 6 To the reducing agent supply control circuit 14. Further, from the engine control circuit 15, a signal S 2 of the operating state of the engine 1 such as the engine exhaust temperature and the NOx emission amount is also sent to the reducing agent supply control circuit 14.

すると、還元剤供給制御回路14は、入力したエンジン1の運転状態の信号S2を用いて、エンジン運転状態により決まる尿素水(還元剤)の供給量V1を求める(図3のステップS1)。さらに、上記還元剤供給制御回路14は、入力した排気管4内の排気温度の検出信号S1を用いて、噴射ノズル5の排気上流側近傍の排気温度により決まる、尿素水が結晶化する温度未満に冷却する尿素水(還元剤)の供給量の下限値V2を求める(ステップS2)。そして、上記求めた尿素水の供給量V1とその供給量の下限値V2とを比較して、V1がV2より小さいか否かを判断する(ステップS3)。 Then, the reducing agent supply control circuit 14 obtains the urea water (reducing agent) supply amount V 1 determined by the engine operating state by using the input signal S 2 of the operating state of the engine 1 (step S1 in FIG. 3). . Further, the reducing agent supply control circuit 14 uses the detected exhaust gas temperature detection signal S 1 in the exhaust pipe 4 to determine the temperature at which urea water is crystallized, which is determined by the exhaust gas temperature in the vicinity of the upstream side of the injection nozzle 5. A lower limit value V 2 of the supply amount of urea water (reducing agent) to be cooled below is obtained (step S2). Then, by comparing the supply quantity of urea water determined the V 1 and the lower limit V 2 of that supply quantity, V 1 determines whether V 2 is smaller than (Step S3).

いま、V1がV2と等しいかそれより大きいとすると、ステップS3は、“NO”側に進んでステップS1に戻り、ステップS1→S2→S3をループする。この場合は、現時点のエンジン運転状態により決まる尿素水の供給量V1が、噴射ノズル5の内部を尿素水が結晶化する温度未満に冷却する供給量の下限値V2以上であるので、現在設定されている尿素水の供給量V1で上記噴射ノズル5の内部を冷却することができる。したがって、還元剤供給制御回路14は現在の尿素水の供給バルブ11及び圧縮空気のエア供給バルブ13の開度を維持し、還元剤供給装置6は、そのままの尿素水の供給量V1で噴射ノズル5に尿素水を供給する。 If V 1 is equal to or greater than V 2 , step S3 proceeds to “NO”, returns to step S1, and loops steps S1 → S2 → S3. In this case, the urea water supply amount V 1 determined by the current engine operating condition is equal to or higher than the lower limit value V 2 of the supply amount for cooling the inside of the injection nozzle 5 to a temperature lower than the temperature at which the urea water crystallizes. at a feed rate V 1 of the urea water that is configured capable of cooling the interior of the injection nozzle 5. Therefore, the reducing agent supply control circuit 14 maintains the current urea water supply valve 11 and compressed air supply valve 13 opening, and the reducing agent supply device 6 injects the urea water supply amount V 1 as it is. Urea water is supplied to the nozzle 5.

次に、V1がV2より小さくなったとすると、ステップS3は、“YES”側に進んでステップS4に入る。この場合は、現時点のエンジン運転状態により決まる尿素水の供給量V1が、噴射ノズル5の内部を尿素水が結晶化する温度未満に冷却する供給量の下限値V2より小さい状態であるので、現在設定されている尿素水の供給量V1では上記噴射ノズル5の内部を冷却することができない。したがって、還元剤供給制御回路14は現在の尿素水の供給バルブ11及び圧縮空気のエア供給バルブ13の開度を大きくする側に変更し、還元剤供給装置6は、尿素水の供給量を該尿素水が結晶化する温度未満に冷却する供給量の下限値V2以上に設定を変更して(ステップS4)、噴射ノズル5に尿素水を供給する。これにより、ステップS4で変更設定された尿素水の供給で、噴射ノズル5の内部を冷却することができ、その目詰まりを防止してNOxの浄化処理の効率を向上することができる。 Next, assuming that V 1 becomes smaller than V 2 , step S3 proceeds to “YES” and enters step S4. In this case, the supply amount V 1 of urea water determined by the current engine operating state is in a state smaller than the lower limit value V 2 of the supply amount that cools the inside of the injection nozzle 5 below the temperature at which urea water crystallizes. , it is impossible to cool the interior of the supply amount V 1 in the injection nozzle 5 of the urea water that is currently set. Therefore, the reducing agent supply control circuit 14 changes the current urea water supply valve 11 and the compressed air air supply valve 13 to increase the degree of opening, and the reducing agent supply device 6 changes the supply amount of urea water. The setting is changed to the lower limit V 2 or more of the supply amount for cooling below the temperature at which the urea water is crystallized (step S4), and the urea water is supplied to the injection nozzle 5. Thereby, the inside of the injection nozzle 5 can be cooled by the supply of the urea water changed and set in step S4, and the clogging can be prevented and the efficiency of the NOx purification process can be improved.

その後、エンジン1の運転停止により、噴射ノズル5からの尿素水の噴射を終了するには、還元剤供給装置6の動作により、まず貯蔵タンク7からの尿素水の供給を遮断し、その後しばらくは噴射ノズル5に圧縮空気だけを供給する。これにより、噴射ノズル5の噴射孔又はそれに至る通路から尿素水を追い出して、尿素水の噴射を終了する。このように、噴射ノズル5から尿素水を追い出すことで、噴射ノズル5に対する尿素水の供給停止時における尿素水の残留又はいわゆる「後ダレ」が発生せず、噴射孔又はそれに至る通路内で尿素水が結晶化して目詰まりを起こすのを防止することができる。   Thereafter, in order to end the injection of the urea water from the injection nozzle 5 by stopping the operation of the engine 1, the supply of the urea water from the storage tank 7 is first interrupted by the operation of the reducing agent supply device 6, and then for a while. Only compressed air is supplied to the injection nozzle 5. Thereby, urea water is expelled from the injection hole of the injection nozzle 5 or the passage leading to it, and the injection of urea water is terminated. In this way, the urea water is expelled from the injection nozzle 5, so that no urea water remains or so-called “post sagging” when the supply of the urea water to the injection nozzle 5 is stopped, and the urea in the injection hole or the passage leading to it. It is possible to prevent water from crystallizing and causing clogging.

なお、以上の説明では、還元剤供給装置6及び噴射ノズル5は、該噴射ノズル5に対して尿素水と共に圧縮空気を供給する還元剤供給手段としたが、本発明はこれに限られず、噴射ノズル5に対して尿素水のみを供給するものであってもよい。   In the above description, the reducing agent supply device 6 and the injection nozzle 5 are reducing agent supply means for supplying compressed air together with urea water to the injection nozzle 5, but the present invention is not limited to this, and the injection Only the urea water may be supplied to the nozzle 5.

本発明によるエンジンの排気浄化装置の実施形態を示す概念図である。It is a conceptual diagram which shows embodiment of the exhaust emission purification device of the engine by this invention. 上記排気浄化装置における還元剤供給装置及び噴射ノズルの構成及び動作を説明するための概要図である。It is a schematic diagram for demonstrating a structure and operation | movement of the reducing agent supply apparatus and injection nozzle in the said exhaust gas purification apparatus. 上記排気浄化装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the said exhaust gas purification apparatus.

符号の説明Explanation of symbols

1…エンジン
3…還元触媒
4…排気管
5…噴射ノズル
6…還元剤供給装置
7…貯蔵タンク
8…供給配管
9…排気温度センサ
11…尿素水の供給バルブ
13…エア供給バルブ
14…還元剤供給制御回路
15…エンジン制御回路
DESCRIPTION OF SYMBOLS 1 ... Engine 3 ... Reduction catalyst 4 ... Exhaust pipe 5 ... Injection nozzle 6 ... Reducing agent supply device 7 ... Storage tank 8 ... Supply piping 9 ... Exhaust temperature sensor 11 ... Urea water supply valve 13 ... Air supply valve 14 ... Reducing agent Supply control circuit 15 ... Engine control circuit

Claims (4)

エンジンの排気系に配設され、排気中の窒素酸化物を還元剤により還元浄化する還元触媒と、
前記排気系の排気通路内にて前記還元剤を前記還元触媒の排気上流側に供給する噴射ノズルを有する還元剤供給手段と、
前記噴射ノズルの排気上流側の近傍に設けられ、排気通路内の排気温度を検出する温度検出手段と、
を備えたエンジンの排気浄化装置であって、
前記還元剤供給手段は、前記温度検出手段からの排気温度の検出信号を用いて、その排気温度において前記噴射ノズル内部を還元剤が結晶化する温度未満に冷却する供給量の下限値以上に設定し、該噴射ノズルに還元剤を供給することを特徴とするエンジンの排気浄化装置。
A reduction catalyst disposed in the exhaust system of the engine for reducing and purifying nitrogen oxides in the exhaust with a reducing agent;
Reducing agent supply means having an injection nozzle for supplying the reducing agent to the exhaust upstream side of the reduction catalyst in the exhaust passage of the exhaust system;
A temperature detecting means provided in the vicinity of the exhaust upstream side of the injection nozzle for detecting the exhaust temperature in the exhaust passage;
An exhaust emission control device for an engine equipped with
The reducing agent supply means uses an exhaust temperature detection signal from the temperature detection means to set the supply temperature at which the inside of the injection nozzle is cooled below the temperature at which the reducing agent is crystallized at the exhaust temperature. And an exhaust purification device for an engine, wherein a reducing agent is supplied to the injection nozzle.
前記還元剤供給手段は、前記温度検出手段からの排気温度の検出信号を入力すると共にエンジンの運転状態の信号を入力し、そのエンジン運転状態における還元剤の供給量を求めると共に、その排気温度において前記噴射ノズル内部を還元剤が結晶化する温度未満に冷却する還元剤の供給量の下限値を求め、両者を比較して還元剤の供給量を設定する制御回路を備えたことを特徴とする請求項1に記載のエンジンの排気浄化装置。   The reducing agent supply means inputs an exhaust temperature detection signal from the temperature detection means and also inputs an engine operating state signal to obtain a reducing agent supply amount in the engine operating state, and at the exhaust temperature. A control circuit is provided that obtains a lower limit value of a supply amount of the reducing agent that cools the inside of the injection nozzle to a temperature lower than a temperature at which the reducing agent crystallizes, and compares both to set a supply amount of the reducing agent. The exhaust emission control device for an engine according to claim 1. 前記還元剤供給手段は、噴射ノズルに対して還元剤と共に圧縮空気を供給し、還元剤を霧化して噴射供給するものであることを特徴とする請求項1又は2に記載のエンジンの排気浄化装置。   The engine exhaust purification according to claim 1 or 2, wherein the reducing agent supply means supplies compressed air together with the reducing agent to the injection nozzle, and atomizes and supplies the reducing agent by injection. apparatus. 前記還元剤は、尿素水溶液であることを特徴とする請求項1〜3のいずれか1項に記載のエンジンの排気浄化装置。   The engine exhaust gas purification apparatus according to any one of claims 1 to 3, wherein the reducing agent is an aqueous urea solution.
JP2003344758A 2003-10-02 2003-10-02 Engine exhaust purification system Expired - Lifetime JP3718208B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003344758A JP3718208B2 (en) 2003-10-02 2003-10-02 Engine exhaust purification system
US10/574,341 US7703276B2 (en) 2003-10-02 2004-09-13 Exhaust gas purifying apparatus for engine
PCT/JP2004/013305 WO2005033482A1 (en) 2003-10-02 2004-09-13 Exhaust gas cleaner for engine
EP04772987A EP1672191B1 (en) 2003-10-02 2004-09-13 Exhaust gas cleaner for engine
CN2008101106559A CN101328827B (en) 2003-10-02 2004-09-13 Exhaust gas purifying apparatus for engine
AT04772987T ATE520868T1 (en) 2003-10-02 2004-09-13 EMISSION CLEANER FOR ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003344758A JP3718208B2 (en) 2003-10-02 2003-10-02 Engine exhaust purification system

Publications (2)

Publication Number Publication Date
JP2005113688A true JP2005113688A (en) 2005-04-28
JP3718208B2 JP3718208B2 (en) 2005-11-24

Family

ID=34538284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003344758A Expired - Lifetime JP3718208B2 (en) 2003-10-02 2003-10-02 Engine exhaust purification system

Country Status (1)

Country Link
JP (1) JP3718208B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162488A (en) * 2005-12-09 2007-06-28 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2008215133A (en) * 2007-03-01 2008-09-18 Hitachi High-Technologies Corp Engine exhaust gas treatment device and engine exhaust gas treatment method using it
DE102008042536A1 (en) 2007-10-02 2009-04-16 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Additive agent diffusion plate assembly in an exhaust passage
JP2010071270A (en) * 2008-09-22 2010-04-02 Mazda Motor Corp Exhaust emission control device for engine
JP2010223041A (en) * 2009-03-23 2010-10-07 Mazda Motor Corp Exhaust emission control device for engine
JP2010248925A (en) * 2009-04-10 2010-11-04 Mazda Motor Corp Engine exhaust emission control device
JP2011144765A (en) * 2010-01-15 2011-07-28 Mitsubishi Heavy Ind Ltd Marine exhaust gas denitration device
JP2011526983A (en) * 2008-07-07 2011-10-20 グルンドフォス ノノックス エー/エス Input system for use in an exhaust system of a combustion engine
WO2011148808A1 (en) * 2010-05-25 2011-12-01 いすゞ自動車株式会社 Scr system
WO2011148809A1 (en) * 2010-05-25 2011-12-01 いすゞ自動車株式会社 Selective catalytic reduction apparatus
JP2012017687A (en) * 2010-07-08 2012-01-26 Isuzu Motors Ltd Scr system
US8209965B2 (en) 2007-09-14 2012-07-03 Toyota Jidosha Kabushiki Kaisha Additive-agent diffusion plate structure in exhaust passage, and additive-agent diffusion plate in exhaust passage
JP2012132330A (en) * 2010-12-20 2012-07-12 Ud Trucks Corp Urea water adding system
EP2535536A2 (en) 2011-06-15 2012-12-19 Kabushiki Kaisha Toyota Jidoshokki Reducing agent injection nozzle and nitrogen oxide purification system with reducing agent injection nozzle
CN102966416A (en) * 2011-08-30 2013-03-13 现代自动车株式会社 Verfahren zum vermeiden einer verstopfung einer harnstoff-einspritzdse an einem scr-system
EP2582936A1 (en) * 2010-06-21 2013-04-24 Scania CV AB (publ) Method pertaining to hc dosing systems and device of hc dosing systems
EP2582945A1 (en) * 2010-06-21 2013-04-24 Scania CV AB (publ) Method and device pertaining to dosing unit of scr system
US8443595B2 (en) 2007-09-07 2013-05-21 Toyota Jidosha Kabushiki Kaisha Additive-agent diffusion plate in exhaust passage, structure of additive-agent diffusion plate, and exhaust system including additive-agent diffusion plate
JP2014020290A (en) * 2012-07-18 2014-02-03 Osaka Gas Co Ltd Reductant injection device and denitrification equipment
WO2015059035A1 (en) * 2013-10-24 2015-04-30 Renault S.A.S. Management of the post-treatment of the exhaust gases from a combustion engine
JP2019532208A (en) * 2016-08-26 2019-11-07 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Exhaust gas decontamination equipment, particularly in internal combustion engines, and methods of using the equipment

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162488A (en) * 2005-12-09 2007-06-28 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2008215133A (en) * 2007-03-01 2008-09-18 Hitachi High-Technologies Corp Engine exhaust gas treatment device and engine exhaust gas treatment method using it
JP4646934B2 (en) * 2007-03-01 2011-03-09 株式会社日立ハイテクノロジーズ Engine exhaust treatment apparatus and engine exhaust treatment method using the same
US8443595B2 (en) 2007-09-07 2013-05-21 Toyota Jidosha Kabushiki Kaisha Additive-agent diffusion plate in exhaust passage, structure of additive-agent diffusion plate, and exhaust system including additive-agent diffusion plate
US8209965B2 (en) 2007-09-14 2012-07-03 Toyota Jidosha Kabushiki Kaisha Additive-agent diffusion plate structure in exhaust passage, and additive-agent diffusion plate in exhaust passage
DE102008042536A1 (en) 2007-10-02 2009-04-16 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Additive agent diffusion plate assembly in an exhaust passage
DE102008042536B4 (en) * 2007-10-02 2013-07-04 Toyota Jidosha Kabushiki Kaisha Additive agent diffusion plate assembly in an exhaust passage
JP2011526983A (en) * 2008-07-07 2011-10-20 グルンドフォス ノノックス エー/エス Input system for use in an exhaust system of a combustion engine
US8375702B2 (en) 2008-09-22 2013-02-19 Mazda Motor Corporation Exhaust emission control system for engine and control method therefor
JP2010071270A (en) * 2008-09-22 2010-04-02 Mazda Motor Corp Exhaust emission control device for engine
JP2010223041A (en) * 2009-03-23 2010-10-07 Mazda Motor Corp Exhaust emission control device for engine
JP2010248925A (en) * 2009-04-10 2010-11-04 Mazda Motor Corp Engine exhaust emission control device
JP2011144765A (en) * 2010-01-15 2011-07-28 Mitsubishi Heavy Ind Ltd Marine exhaust gas denitration device
WO2011148808A1 (en) * 2010-05-25 2011-12-01 いすゞ自動車株式会社 Scr system
US9328643B2 (en) 2010-05-25 2016-05-03 Isuzu Motors Limited Selective catalytic reduction system
US9181831B2 (en) 2010-05-25 2015-11-10 Isuzu Motors Limited Selective catalytic reduction system
JP2011247134A (en) * 2010-05-25 2011-12-08 Isuzu Motors Ltd Scr system
WO2011148809A1 (en) * 2010-05-25 2011-12-01 いすゞ自動車株式会社 Selective catalytic reduction apparatus
EP2582936A4 (en) * 2010-06-21 2014-12-17 Scania Cv Abp Method pertaining to hc dosing systems and device of hc dosing systems
EP2582936A1 (en) * 2010-06-21 2013-04-24 Scania CV AB (publ) Method pertaining to hc dosing systems and device of hc dosing systems
EP2582945A1 (en) * 2010-06-21 2013-04-24 Scania CV AB (publ) Method and device pertaining to dosing unit of scr system
JP2013534990A (en) * 2010-06-21 2013-09-09 スカニア シーブイ アクチボラグ Method related to HC charging system and apparatus of HC charging system
EP2582945A4 (en) * 2010-06-21 2014-12-17 Scania Cv Abp Method and device pertaining to dosing unit of scr system
JP2012017687A (en) * 2010-07-08 2012-01-26 Isuzu Motors Ltd Scr system
JP2012132330A (en) * 2010-12-20 2012-07-12 Ud Trucks Corp Urea water adding system
EP2535536A2 (en) 2011-06-15 2012-12-19 Kabushiki Kaisha Toyota Jidoshokki Reducing agent injection nozzle and nitrogen oxide purification system with reducing agent injection nozzle
JP2013050100A (en) * 2011-08-30 2013-03-14 Hyundai Motor Co Ltd Method of preventing clogging of urea injection nozzle of selective catalytic reduction system
CN102966416A (en) * 2011-08-30 2013-03-13 现代自动车株式会社 Verfahren zum vermeiden einer verstopfung einer harnstoff-einspritzdse an einem scr-system
JP2014020290A (en) * 2012-07-18 2014-02-03 Osaka Gas Co Ltd Reductant injection device and denitrification equipment
WO2015059035A1 (en) * 2013-10-24 2015-04-30 Renault S.A.S. Management of the post-treatment of the exhaust gases from a combustion engine
FR3012518A1 (en) * 2013-10-24 2015-05-01 Renault Sa MANAGING THE POST-PROCESSING OF EXHAUST GASES FROM A COMBUSTION ENGINE
JP2019532208A (en) * 2016-08-26 2019-11-07 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Exhaust gas decontamination equipment, particularly in internal combustion engines, and methods of using the equipment
JP7009450B2 (en) 2016-08-26 2022-01-25 イエフペ エネルジ ヌヴェル Exhaust gas decontamination equipment, especially in internal combustion engines, and how to use that equipment

Also Published As

Publication number Publication date
JP3718208B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP3718208B2 (en) Engine exhaust purification system
JP3732493B2 (en) Engine exhaust purification system
US7703276B2 (en) Exhaust gas purifying apparatus for engine
CN101680332B (en) NOX purification system, and method for control of nox purification system
JP4090972B2 (en) Engine exhaust purification system
EP2019190B1 (en) Exhaust gas after treatment system for internal combustion engine
EP1431533B1 (en) Emissions control system for increasing selective catalytic reduction efficiency
US20170218820A1 (en) Internal combustion engine
JP4470987B2 (en) Reducing agent injection control device
JP2007198316A (en) Device and method for controlling exhaust gas of internal combustion engine
US20100199642A1 (en) Exhaust gas purifying apparatus and method for regenerating particulate filter thereof
US20120047882A1 (en) Exhaust gas purification apparatus
JP2007239500A (en) Exhaust emission control device for internal combustion engine
JP2008180202A (en) Exhaust emission control device
WO2006006441A1 (en) System and method for purification of exhaust gas
JP2003328724A (en) Exhaust emission control device for internal combustion engine
JP2009024503A (en) Exhaust emission control device of engine
US8480962B2 (en) Exhaust gas purification apparatus for engine
JP5570188B2 (en) Engine exhaust purification system
JP4408051B2 (en) Engine exhaust purification system
JP2008291695A (en) Exhaust emission control device of internal combustion engine
JP2005264894A (en) Exhaust emission control device
WO2007108169A1 (en) Exhaust purification apparatus for engine
JP2005105969A (en) Exhaust emission control device of engine
KR101474281B1 (en) Application and Control Method of Aftertreatment System for Vehicle/Engine to Reduce Ammonia Slip using AOC

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050322

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050901

R150 Certificate of patent or registration of utility model

Ref document number: 3718208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371