JP2005113005A - Constant temperature refrigerant - Google Patents

Constant temperature refrigerant Download PDF

Info

Publication number
JP2005113005A
JP2005113005A JP2003349121A JP2003349121A JP2005113005A JP 2005113005 A JP2005113005 A JP 2005113005A JP 2003349121 A JP2003349121 A JP 2003349121A JP 2003349121 A JP2003349121 A JP 2003349121A JP 2005113005 A JP2005113005 A JP 2005113005A
Authority
JP
Japan
Prior art keywords
constant temperature
temperature refrigerant
water
sodium sulfate
smectite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003349121A
Other languages
Japanese (ja)
Inventor
Seiji Ichihara
清二 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003349121A priority Critical patent/JP2005113005A/en
Publication of JP2005113005A publication Critical patent/JP2005113005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly convenient constant temperature refrigerant, not requiring pre-use refrigeration in a refrigerating environment, with thermal circulation cycle efficiency improved by micronizing crystals. <P>SOLUTION: Appropriate amounts of sodium sulphate, a smectite such as montmorillonite clay, and water are mixed for the preparation of a properly thixotropic suspension wherein a saturated decahydrate solution is dispersed. A desired level of elasticity or fluidity may be achieved conbinedly when the constant temperature refrigerant constituting elements are mixed at a weight ratio of 20:1:20, that is, when a smectite of approximately 5 wt.% is added to sodium sulfate (=water), for manufacturing a high-efficiency constant-temperature refrigerant. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は予め冷媒材を冷却する事無く、外部発熱体等からの熱量を冷媒構成物質の可逆的変化により一定の冷却温度を長時間保つ恒温冷媒材に関するものである。 The present invention relates to a constant temperature refrigerant material that maintains a constant cooling temperature for a long time by reversibly changing the amount of heat from an external heating element or the like without refrigerating the refrigerant material in advance.

従来、外部熱源に対して冷媒材として高分子性ポリマー又は吸水性高分子ゲルなどと呼ばれる吸水性樹脂(hydro-gel polymer)を用いた保冷剤が良く知られている。
また、冷媒物質の結晶が外部からの熱量を吸収し溶解、熱環流を生じて表層で放熱して再結晶する冷媒材であるリン酸ナトリウムや硫酸ナトリウムを用いた恒温冷媒がある(例えば、特許文献1、及び2参照)。
実開昭58−196667号公報 実開平6−52815号公報
Conventionally, a cold-retaining agent using a water-absorbing resin (hydro-gel polymer) called a polymer polymer or a water-absorbing polymer gel as a refrigerant material for an external heat source is well known.
In addition, there are isothermal refrigerants using sodium phosphate or sodium sulfate, which is a refrigerant material that recrystallizes by refrigerating and crystallizing the refrigerant substance by absorbing heat from the outside and generating a heat recirculation to dissipate heat on the surface layer (for example, patents) Reference 1 and 2).
Japanese Utility Model Publication No. 58-196667 Japanese Utility Model Publication No. 6-52815

しかし、一般に前者の吸水性樹脂を用いたゲル状冷媒材は該吸水性樹脂の自重の数百〜数千倍の重量の水を吸水しゲル化保持する特性を利用しており、基本的には保持した水の熱容量、潜熱を冷却に用いる為、予め氷、ドライアイス、冷蔵庫等の冷凍環境で冷却する必要がある。また、自身に保持した水の熱容量に依存しており、長時間冷媒として使用したい場合には冷凍状態にまで冷却する必要があり、冷媒材自体が氷温状態になる為、被冷却物の温度を細胞破壊などの問題により極端に下げたくない場合や人体に直接使用する場合などでは冷媒材と被冷媒物の間に適当な温度調節材を介在させる必要がある。 However, the gel-like refrigerant material using the former water-absorbent resin generally utilizes the property of absorbing water of several hundred to several thousand times the weight of the water-absorbent resin and holding it in a gel state. In order to use the heat capacity and latent heat of the retained water for cooling, it is necessary to cool in advance in a freezing environment such as ice, dry ice, and a refrigerator. In addition, depending on the heat capacity of the water held by itself, if it is desired to use it as a refrigerant for a long time, it must be cooled to a refrigerated state, and the refrigerant material itself is in an ice temperature state. When it is not desired to lower the temperature extremely due to problems such as cell destruction or when it is used directly on the human body, it is necessary to interpose an appropriate temperature adjusting material between the refrigerant material and the object to be cooled.

また、後者の如き恒温冷媒材では硫酸ナトリウムの放熱再結晶時に尖鋭状結晶化や結晶の大型化の影響で、融解しにくくなると共に冷媒材内に均一分布しづらい為に冷却効率が低く、物理的にも流動性が乏しい事により熱循環サイクルが巧みに働かずに、実用応用化がしづらいという問題が有る。特に小型化、狭間構造化の妨げとなっていると共に尖鋭状結晶化などの結晶形状により容器材質、袋材質にも耐久強度が必要となり、これも吸熱、放熱の妨げとなる。 Also, the constant temperature refrigerant material such as the latter has low cooling efficiency because it is difficult to melt and difficult to be uniformly distributed in the refrigerant material due to the sharp crystallization and large crystal size at the time of heat recrystallization of sodium sulfate. In particular, there is a problem that the thermal circulation cycle does not work skillfully due to poor fluidity, and it is difficult to make practical application. In particular, it is a hindrance to downsizing and narrow structure, and a crystal shape such as sharp crystallization requires a durable strength for the container material and bag material, which also hinders heat absorption and heat dissipation.

そこで、本発明はこのような従来の課題に鑑みてなされたものであり、予め冷凍環境で冷却する必要が無い恒温冷媒材であって、しかも結晶の微細化により熱循環サイクルを効率化した利便性に優れた冷媒材を提供できるようにすることを目的とするものである。 Therefore, the present invention has been made in view of such a conventional problem, and is a constant temperature refrigerant material that does not need to be cooled in a refrigeration environment in advance, and has a convenience in which the thermal circulation cycle is made efficient by miniaturization of crystals. It aims at enabling it to provide the refrigerant | coolant material excellent in property.

上記課題を解決するために、請求項1に係る本発明は、吸熱媒体としての硫酸ナトリウムと膨潤性粘土鉱物の一種であるスメクタイト(Smectite)を主成分とし、適量の水を添加・混合する事により
前記硫酸ナトリウムの結晶を微細化すると共にチキソトロピー性(揺変性)を持たせた事を特徴としている。
In order to solve the above problems, the present invention according to claim 1 is based on sodium sulfate as an endothermic medium and smectite, which is a kind of swellable clay mineral, as a main component, and adding and mixing an appropriate amount of water. Thus, the crystal of sodium sulfate is refined and has thixotropic properties (thixotropic properties).

また、請求項2に係る本発明は、前記恒温冷媒材において構成要素材である硫酸ナトリウム、膨潤性粘土鉱物の一種であるスメクタイト(Smectite)、水を約20:1:20の重量混合比とした事を特徴としている。 Further, the present invention according to claim 2 is characterized in that sodium sulfate which is a component material in the constant temperature refrigerant material, smectite which is a kind of swellable clay mineral, and water have a weight mixing ratio of about 20: 1: 20. It is characterized by that.

かかる発明によれば、本恒温冷媒中に分散させた微細化した硫酸ナトリウムの結晶が外部発熱体よりの放熱を結晶溶解時に大量に吸収し、放熱後に再結晶する効率的な熱循環サイクルが構成される。 さらに前記硫酸ナトリウムが放熱後再結晶する際には、混合したスメクタイト懸濁液が該結晶の大型化を阻止する方向で働く為、予め冷却する必要の無い小型化、狭間構造にも対応した恒温冷媒材が供給出来、利便性、応用性の向上を実現する事が出来る。 According to this invention, the refined sodium sulfate crystals dispersed in the constant temperature refrigerant absorb a large amount of heat released from the external heating element when the crystals are dissolved, and an efficient thermal circulation cycle is formed in which recrystallization occurs after heat release. Is done. Furthermore, when the sodium sulfate is recrystallized after heat release, the mixed smectite suspension works in a direction to prevent the crystal from becoming large. Refrigerant material can be supplied, and convenience and applicability can be improved.

本発明における吸熱媒体としての硫酸ナトリウム(NaSO4・nH2O)は水を加える事によりNa2SO4・10H2Oとして使用する。 このNa2SO4・10H2Oは十水塩又はグラバー塩(Glauber Salt)と呼ばれ、過飽和溶液を作る性質が有ると共に約32℃前後の温度で下記の可逆的変態を繰り返す。
(化1)
Na2SO4・10H2O ⇔ Na2SO4 + 10H2O
具体的には32.38℃以下の温度で十水塩の結晶が溶液中に析出し、該温度以上では溶解して無水の硫酸ソーダと水に分解する。注目すべきはこの溶解に際して58.3Kcal/Kgにも及ぶ大量の融解熱を吸収する特性であり、本恒温冷媒ではこの吸熱作用を利用している。
Sodium sulfate (NaSO 4 .nH 2 O) as an endothermic medium in the present invention is used as Na 2 SO 4 .10H 2 O by adding water. This Na 2 SO 4 .10H 2 O is called decahydrate or Glauber Salt, and has the property of forming a supersaturated solution, and repeats the following reversible transformation at a temperature of about 32 ° C.
(Chemical formula 1)
Na 2 SO 4・ 10H 2 O ⇔ Na 2 SO 4 + 10H 2 O
Specifically, decahydrate crystals precipitate in the solution at a temperature of 32.38 ° C. or lower, dissolve at the temperature or higher, and decompose into anhydrous sodium sulfate and water. What should be noted is the property of absorbing a large amount of heat of fusion up to 58.3 Kcal / Kg during this dissolution, and this constant temperature refrigerant utilizes this endothermic action.

また、本恒温冷媒のもう一方の構成要素であるスメクタイト(Smectite)は薄板状八面体結晶構造を持つ膨潤性粘土鉱物の一種でモンモリロナイト(Montmorilonite)、バイデライト(Beidelite)、ノントロナイト(Nontronite)等が知られており、数百m2/gの活性表面積を持っていると同時にこの表面は高い極性の為、自重の何倍の水を吸収し保持する膨潤性を有している。 これら硫酸ナトリウム、モンモリロナイト粘土等スメクタイト、及び水を適量比混合させる事により、前記スメクタイトが吸水膨潤しコロイド性を発現させる事による適度なチキソトロピー性(揺変性)を持った懸濁液が得られると共に十水塩の飽和溶液が拡散される。また、同時に軟質容体や狭間容体に封入利用した際に効果的となる柔軟性や流動性も合わせ持たせる事が出来る。 Smectite, the other component of this constant temperature refrigerant, is a kind of swelling clay mineral with a lamellar octahedral crystal structure, such as Montmorilonite, Beidelite, Nontronite Is known and has an active surface area of several hundred m 2 / g and at the same time has a swelling property to absorb and retain water several times its own weight due to its high polarity. By mixing these smectites such as sodium sulfate, montmorillonite clay, and water in an appropriate ratio, a suspension having an appropriate thixotropic property (thixotropic property) can be obtained by allowing the smectite to absorb water and swell and develop colloidal properties. A saturated solution of decahydrate is diffused. In addition, at the same time, it is possible to provide flexibility and fluidity that are effective when encapsulated and used in a soft container or a narrow container.

この際、恒温冷媒材の構成要素である混合比はその冷媒材の応用形態により差違を生ずるが 硫酸ナトリウム:スメクタイト:水 の重量比が約20:1:20である事が効果的であり、即ち硫酸ナトリウム(=水)に対しスメクタイトを2〜5重量%で調整配合する事が好ましい。 At this time, the mixing ratio, which is a component of the constant temperature refrigerant material, varies depending on the application form of the refrigerant material, but it is effective that the weight ratio of sodium sulfate: smectite: water is about 20: 1: 20, That is, it is preferable to adjust and blend smectite with sodium sulfate (= water) at 2 to 5% by weight.

以下、本発明の冷却原理を図1を参照して、また、具体的一実施例を図2乃至図3を参照して説明する。図1にその概略を示すように約32℃以下で恒温冷媒材1(容器、容体は図示せず)は適度なチキソトロピー性を有した懸濁液3中に十水塩(Na2SO4・10H2O)2が微小結晶状態で分散析出しているが、外部発熱体(図示せず)からの熱が吸熱された場合、該十水塩の結晶が融解熱として吸収し溶解、冷媒材表層にて放熱して再結晶化するという吸熱−放熱の熱循環を硫酸ナトリウムの可逆的変態の形で繰り返す事により、また、十水塩結晶の融解熱量が非常に大きい事により長時間約32℃近傍の温度を保ち続ける。さらに前記硫酸ナトリウムが再結晶する際には、混合したスメクタイト懸濁液の適度なチキソトロピー性と前記熱循環による流動性が該結晶同士の接触結合による結晶大型化を妨げる方向に働く。 Hereinafter, the cooling principle of the present invention will be described with reference to FIG. 1 and a specific embodiment with reference to FIGS. As shown schematically in FIG. 1, the constant temperature refrigerant material 1 (container and container not shown) is about 32 ° C. or less in a suspension 3 having an appropriate thixotropy (Na 2 SO 4. 10H 2 O) 2 is dispersed and precipitated in a microcrystalline state, but when the heat from an external heating element (not shown) is absorbed, the crystals of the decahydrate absorb as melting heat and dissolve, By repeating the endothermic-heat dissipating heat cycle in which heat is released and recrystallized in the surface layer in the form of reversible transformation of sodium sulfate, and because the heat of fusion of the decahydrate crystals is very large, it takes about 32 hours. Keep the temperature around ℃. Further, when the sodium sulfate is recrystallized, the appropriate thixotropy of the mixed smectite suspension and the fluidity due to the thermal circulation act in the direction of hindering crystal enlargement due to contact bonding between the crystals.

図2は人体又は動物に直接接触使用する事を前提にしたマット状応用品の一例である。軟質樹脂シート(PVC,EVA等)5で構成された容体の周囲6、及び一部7を溶着加工し、内部に本発明の恒温冷媒材を封入している。この周囲6、及び一部7の部分的溶着箇所を増やす事はマット厚の薄平化を目的としているが、冷媒材中の十水塩結晶の微細化により熱環流が妨げられる事も無く、再結晶の尖鋭突起に対する強度を持たせる為に前記軟質樹脂シートに必要以上の厚みを要し、吸放熱効率を低下させる必要も無い。また、冷媒材の適度なチキソトロピー性によりマットの柔軟性も良好となる。したがって、医療用として氷嚢代用品や冷湿布代用品に、また、寝具、輸送、機器の冷却にとその応用範囲は広く、容体も上記の様な袋状軟質樹脂に限らず、吸熱、放熱の伝導と水密性が考慮されれば形状、材質は問わない。 FIG. 2 shows an example of a mat-like application product on the premise that it is used in direct contact with the human body or animal. The periphery 6 and part 7 of the container composed of a soft resin sheet (PVC, EVA, etc.) 5 are welded, and the constant temperature refrigerant material of the present invention is sealed inside. Increasing the number of partial welds in the periphery 6 and part 7 is intended to reduce the thickness of the mat, but thermal recirculation is not hindered by miniaturization of the decahydrate crystals in the refrigerant material, In order to give strength to the sharp protrusions of recrystallization, the soft resin sheet needs to be thicker than necessary, and it is not necessary to reduce the heat absorption and radiation efficiency. Moreover, the flexibility of the mat becomes good due to the appropriate thixotropy of the refrigerant material. Therefore, it has a wide range of applications, such as ice pack substitutes and cold compresses for medical use, and bedding, transportation, and equipment cooling, and the container is not limited to the above-mentioned bag-like soft resin. As long as conduction and water tightness are taken into consideration, the shape and material are not limited.

図3は上記マット状応用品(図2)を医療用氷嚢又は寝具を想定して人体頭部に使用した場合の経時的温度変化をサーミスタ温度計を使用して測定した結果の概略グラフであり、グラフ中8(鎖線)は頭部接触部位温度を9(実線)は冷媒温度を示している。このグラフ図で判るように使用開始時の約26℃の室温(恒温)状態から頭部体温の吸熱を始め、頭部が冷やされる事になるが、頭部接触部近傍より硫酸ナトリウム結晶(十水塩)がその熱量を吸収し該結晶の溶解に費やすと同時に内部熱循環により本冷媒材は長時間約32℃の人体に刺激の無い冷却温度を保ち続ける。 FIG. 3 is a schematic graph showing the results of measuring the temperature change with time using a thermistor thermometer when the mat-like application product (FIG. 2) is used on the human head assuming a medical ice bag or bedding. In the graph, 8 (chain line) indicates the head contact part temperature, and 9 (solid line) indicates the refrigerant temperature. As can be seen from this graph, the head temperature starts to be absorbed from the room temperature (constant temperature) state of about 26 ° C. at the start of use, and the head is cooled. Water salt) absorbs the amount of heat and spends it for dissolving the crystals, and at the same time, the refrigerant material keeps a cooling temperature that is not irritating to the human body at about 32 ° C. for a long time by internal heat circulation.

本発明の恒温冷媒材の冷却原理説明概略図である。It is a schematic diagram explaining the cooling principle of the constant temperature refrigerant material of the present invention. 本発明の恒温冷媒材を内封したシート状応用品である。It is a sheet-like applied product enclosing the constant temperature refrigerant material of the present invention. 人体に直接使用した場合の温度特性グラフである。It is a temperature characteristic graph at the time of using directly on a human body.

符号の説明Explanation of symbols

1 恒温冷媒材
2 硫酸ナトリウム(十水塩)結晶
3 スメクタイト懸濁液
4 恒温冷媒材充填部
5 シート表面
6 容体周囲溶着部
7 中央溶着部
8 頭部接触部位温度
9 冷媒温度
1 Constant Temperature Refrigerant Material 2 Sodium Sulfate (Decahydrate) Crystal 3 Smectite Suspension 4 Constant Temperature Refrigerant Material Filling Portion 5 Sheet Surface 6 Body Surrounding Welding Portion 7 Central Welding Portion 8 Head Contact Site Temperature 9 Refrigerant Temperature

Claims (2)

吸熱媒体としての硫酸ナトリウムと膨潤性粘土鉱物の一種であるスメクタイト(Smectite)を主成分とし、適量の水を添加・混合する事により
前記硫酸ナトリウムの結晶を微細化すると共にチキソトロピー性を持たせた事を特徴とする恒温冷媒材。
Sodium sulfate as an endothermic medium and smectite, a kind of swellable clay mineral, are the main components. By adding and mixing an appropriate amount of water, the crystals of sodium sulfate are refined and thixotropic. A constant temperature refrigerant material.
前記恒温冷媒材において、構成要素材である硫酸ナトリウム、膨潤性粘土鉱物の一種であるスメクタイト(Smectite)、水を約20:1:20の重量混合比とした事を特徴とする請求項1記載の恒温冷媒材。
2. The isothermal refrigerant material according to claim 1, wherein sodium sulfate as a constituent material, smectite as a kind of swellable clay mineral, and water have a weight mixing ratio of about 20: 1: 20. Constant temperature refrigerant material.
JP2003349121A 2003-10-08 2003-10-08 Constant temperature refrigerant Pending JP2005113005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349121A JP2005113005A (en) 2003-10-08 2003-10-08 Constant temperature refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003349121A JP2005113005A (en) 2003-10-08 2003-10-08 Constant temperature refrigerant

Publications (1)

Publication Number Publication Date
JP2005113005A true JP2005113005A (en) 2005-04-28

Family

ID=34541071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349121A Pending JP2005113005A (en) 2003-10-08 2003-10-08 Constant temperature refrigerant

Country Status (1)

Country Link
JP (1) JP2005113005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104816880A (en) * 2015-03-17 2015-08-05 江苏易舜医疗器械有限公司 Novel disposable ice bag and manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104816880A (en) * 2015-03-17 2015-08-05 江苏易舜医疗器械有限公司 Novel disposable ice bag and manufacturing method

Similar Documents

Publication Publication Date Title
US4702853A (en) Phase change thermal energy storage material
JP3324392B2 (en) Heat storage material
ES2981488T3 (en) Metal nitrate-based compositions for use as phase change materials
JP2004307772A (en) Eutectic crystal composition for latent cold heat storage
JP6864742B2 (en) Cold storage material and cold storage pack
JPS6343992A (en) Reversible phase transfer composition of calcium bromide hydrate
JP6744889B2 (en) Curing prevention cooling mat
JP2005113005A (en) Constant temperature refrigerant
JPS6311390B2 (en)
JP2005139311A (en) Thermostatic cooling medium material
JP2008088223A (en) Cooling member
WO1994004630A1 (en) Phase change material formulations for low temperature heat storage applications
JP2005147637A (en) Cooling sheet material
JPWO2004052251A1 (en) Cold bag
JP2981890B1 (en) Thermal storage device and thermal management method in the device
JPH05331457A (en) Composition for heat storage
Benson et al. Phase change thermal energy storage material
JPH01159572A (en) Cold accumulation agent
AU4933493A (en) Phase change material formulations for low temperature heat storage applications
JPH0157157B2 (en)
TW200843714A (en) Apparatus for ice-compress and fomentation
JP6588492B2 (en) Method for preventing overcooling of latent heat storage material and latent heat storage tank
JPH0451593B2 (en)
JPS588712B2 (en) Heat storage agent composition
JP3023833U (en) Cooling tool that does not freeze hard

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061006

A977 Report on retrieval

Effective date: 20080919

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090417